N2SID

Nuclear norm subspace identification of innovation models

More Info
expand_more

Abstract

The identification of multivariable state space models in innovation form is solved in a subspace identification framework using convex nuclear norm optimization. The convex optimization approach allows to include constraints on the unknown matrices in the data-equation characterizing subspace identification methods, such as the lower triangular block-Toeplitz of weighting matrices constructed from the Markov parameters of the unknown observer. The classical use of instrumental variables to remove the influence of the innovation term on the data equation in subspace identification is avoided. The avoidance of the instrumental variable projection step has the potential to improve the accuracy of the estimated model predictions, especially for short data length sequences

Files

N2SID_Nuclear_norm_subspace_id... (pdf)
(pdf | 0.279 Mb)
- Embargo expired in 19-07-2018