A user-item relevance model for log-based collaborative filtering
More Info
expand_more
Abstract
.Implicitacquisitionofuserpreferencesmakeslog-basedcollaborative¿lteringfavorableinpracticetoaccomplishrecommendations.Inthispaper,wefollowaformalapproachintextretrievaltore-formulatetheproblem.Basedontheclassicprobabilityrankingprinciple,weproposeaprobabilisticuser-itemrelevancemodel.Underthisformalmodel,weshowthatuser-basedanditem-basedapproachesareonlytwodi¿erentfactorizationswithdi¿erentindependenceassumptions.Moreover,weshowthatsmoothingisanimportantaspecttoestimatetheparametersofthemodelsduetodatasparsity.Byaddinglinearinterpolationsmoothing,theproposedmodelgivesaprobabilisticjusti¿cationofusingTF×IDF-likeitemrankingincollaborative¿ltering.Besidesgivingtheinsightunderstandingoftheproblemofcollaborative¿ltering,wealsoshowexperimentsinwhichtheproposedmethodprovidesabetterrecommendationperformanceonamusicplay-listdataset.