Time courses in visual-information processing
Some empirical evidence for inhibition
More Info
expand_more
Abstract
In the literature two different views on the time course of activation of "recognition units" - hypothetical units that represent identity information - are proposed. The first view assumes that the recognition units accumulate activation gradually over time. The second assumes that the activation levels increase fast initially and then start to decrease. Hagenzieker and Van der Heijden (1990) have proposed a more general information-processing model, which is compatible with both views. In this model a treshold determines what type of time course will be obtained. For below-threshold-activation values a gradual accumulation of activation will be found; for above-threshold values activation levels will first increase and then, because of inhibition, decrease. This model served as a starting-point for the present paper. Elaboration of this model led to two testable hypotheses with regard to identification performance. The first prediction is that evidence for inhibition should be observed only under relatively bright luminance conditions. The second is that, given inhibition, the amount of the effect of this inhibition should increase over time. A partial-report bar-probe task was used to test the predictions. The experiment involved two luminance conditions and the information was sampled at two different moments in time. To control for possible localization artefacts a digit-naming task was also used. Evidence for inhibition was found in both luminance conditions. In accordance with the model the amount of the effect of inhibition increased over time.