Smoothed finite element approach for kinematic limit analysis of cohesive frictional materials

More Info
expand_more

Abstract

By employing different smoothed finite element (S-FE) methods, the kinematic limit analysis approach has been presented by using three noded triangular elements to solve plane strain and plane stress stability problems on basis of the Mohr-Coulomb yield criterion. By using the concept of duality in conic programming, the expressions for the power dissipation function and the associated constraints have been written entirely in terms of kinematic variables. The optimization formulation is framed as a second order cone programming problem. Based on the absolute maximum magnitude of the shear strain rate, an algorithm to update the mesh has been provided. Amongst the different approaches, the node-based S-FE formulation has been found to be very accurate as well as efficient to solve large scale stability problems. The selective edge-based and the edge-based with a bubble node approaches also generate quite accurate solutions though require a little more computational time.