Space and frequency dependence of nanocapacitor array sensors response to microparticles in electrolyte
More Info
expand_more
Abstract
We present new experimental evidence and extensive numerical simulations of a few distinct fingerprints generated by dielectric and conductive microparticles in electrolyte environment on the capacitance spectra of nanoelectrode array sensors. Finite element simulations in good agreement with measurements allow us to identify unambiguously the physical origin of these features, and to illustrate their dependence on the system's geometrical and physical properties. In particular, we show that conductive particles induce a response with complex space and frequency dependencies, caused by the formation of an AC electrical double layer at the particle surface, and its interaction with the working and counter electrodes in the array. Furthermore, we highlight features that could lead to false-negative detection events in sensing applications. The theoretical predictions are confirmed by experiments on a state of the art CMOS pixelated nanocapacitor biosensor platform.
Files
Download not available