Experimental Parameter Identification of Nonlinear Mechanical Systems via Meta-heuristic Optimisation Methods

More Info
expand_more

Abstract

Meta-heuristic optimisation algorithms are high-level procedures designed to discover near-optimal solutions to optimisation problems. These strategies can efficiently explore the design space of the problems; therefore, they perform well even when incomplete and scarce information is available. Such characteristics make them the ideal approach for solving nonlinear parameter identification problems from experimental data. Nonetheless, selecting the meta-heuristic optimisation algorithm remains a challenging task that can dramatically affect the required time, accuracy, and computational burden to solve such identification problems. To this end, we propose investigating how different meta-heuristic optimisation algorithms can influence the identification process of nonlinear parameters in mechanical systems. Two mature meta-heuristic optimisation methods, i.e. particle swarm optimisation (PSO) method and genetic algorithm (GA), are used to identify the nonlinear parameters of an experimental two-degrees-of-freedom system with cubic stiffness. These naturally inspired algorithms are based on the definition of an initial population: this advantageously increases the chances of identifying the global minimum of the optimisation problem as the design space is searched simultaneously in multiple locations. The results show that the PSO method drastically increases the accuracy and robustness of the solution, but it requires a quite expensive computational burden. On the contrary, the GA requires similar computational effort but does not provide accurate solutions.

Files

978_3_031_36999_5_28.pdf
(pdf | 1.29 Mb)
- Embargo expired in 19-12-2023
Unknown license