A 3D separable cohesive element for modelling the coupled failure in laminated composite materials

More Info
expand_more

Abstract

The interaction between matrix cracks and interface delamination is a major failure mechanism in composite laminates and has been a subject of active research in recent years. Although coupled failure behaviour of composite laminates between matrix cracks and delamination has been observed in experiments, accurate modelling of this phenomenon for application in composite structures remains challenging. In this work, a three-dimensional separable cohesive element (SCE) is proposed to enable the modelling of interaction between matrix cracking and interfacial delamination in laminated fibre-reinforced composite materials. It is demonstrated that traditional cohesive elements are incapable of modelling the coupled failure mechanisms accurately if partitioning is not allowed. The SCE may be partitioned according to the configuration and geometry of matrix cracks in adjacent plies, thus maintaining appropriate connection between plies. Physically, the original interface is split and new interfaces are formed to bond the homologous cracked solids during fracturing process. The stress concentration induced by matrix cracks and the load transfer from cracked solid elements to interface cohesive element are effectively modelled. The proposed SCE is applied to model progressive failure in composite laminates and the results are found to agree with experiments.