On the monotonicity of tail probabilities
More Info
expand_more
expand_more
Abstract
Let S and X be independent random variables, assuming values in the set of non-negative integers, and suppose further that both E(S) and E(X) are integers satisfying E(S) ≥ E(X). We establish a sufficient condition for the tail probability P(S ≥ E(S)) to be larger than the tail P(S + X ≥ E(S + X)), when the mean of S is equal to the mode.