Lyapunov design for event-triggered exponential stabilization

More Info
expand_more

Abstract

Control Lyapunov Functions (CLF) method gives a constructive tool for stabilization of nonlinear systems. To find a CLF, many methods have been proposed in the literature, e.g. backstepping for cascaded systems and sum of squares (SOS) programming for polynomial systems. Dealing with continuous-time systems, the CLF-based controller is also continuous-time, whereas practical implementation on a digital platform requires sampled-time control. In this paper, we show that if the continuous-time controller provides exponential stabilization, then an exponentially stabilizing event-triggered control strategy exists with the convergence rate arbitrarily close to the rate of the continuous-time system.

Files

3178126.3178142.pdf
(pdf | 1.14 Mb)
- Embargo expired in 01-11-2018
Unknown license