A machine learning model to predict runway exit at Vienna airport

More Info
expand_more

Abstract

Runway utilisation is a function of actual yearly runway throughput and annual capacity. The aim of the analysis in this project is to find data driven prediction models based on the features and relevant scenarios that might impact runway utilisation. The Gradient Boosting machine learning method will be assessed on their forecast performance and computational time for predicting the procedural and non-procedural runway exit to be utilised after the landing rollout. The Gradient Boosting method obtained an accuracy of 79% and was used to observe key related precursors of unique data patterns. Tests were conducted using runway and final approach data consisting of 54,679 arrival flights at Vienna airport.

Files

1_s2.0_S1366554518313383_main.... (pdf)
(pdf | 4.16 Mb)
Unknown license

Download not available