Augmented embedding of dissimilarity data into (pseudo-)Euclidean spaces
More Info
expand_more
Abstract
Pairwiseproximitiesdescribethepropertiesofobjectsintermsoftheirsimilarities.Byusingdi¿erentdistance-basedfunctionsonemayencodedi¿erentcharacteristicsofagivenproblem.However,tousetheframeworkofstatisticalpatternrecognitionsomevectorrepresentationshouldbeconstructed.Oneofthesimplestwaystodothatistode¿neanisometricembeddingtosomevectorspace.Inthiswork,wewillfocusonalinearembeddingintoa(pseudo-)Euclideanspace.
Thisisusuallywellde¿nedfortrainingdata.Someinadequacy,however,appearswhenprojectingnewortestobjectsduetotheresultingprojectionerrors.Inthispaperweproposeanaugmentedembeddingalgorithmthatenlargesthedimensionalityofthespacesuchthattheresultingprojectionerrorvanishes.Ourpreliminaryresultsshowthatitmayleadtoabetterclassi¿cationaccuracy,especiallyfordatawithhighintrinsicdimensionality.