An integrated neuro-mechanical model of C. elegans forward locomotion
More Info
expand_more
expand_more
Abstract
One of the most tractable organisms for the study of nervous systems is the nematode Caenorhabditis elegans, whose locomotion in particular has been the subject of a number of models. In this paper we present a first integrated neuro-mechanical model of forward locomotion. We find that a previous neural model is robust to the addition of a body with mechanical properties, and that the integrated model produces oscillations with a more realistic frequency and waveform than the neural model alone. We conclude that the body and environment are likely to be important components of the worm's locomotion subsystem. © 2008 Springer-Verlag Berlin Heidelberg.