Ducted wind turbine optimization
A numerical approach
More Info
expand_more
Abstract
The practice of ducting wind turbines has shown a beneficial effect on the overall performance, when compared to an open turbine of the same rotor diameter1. However, an optimization study specifically for ducted wind turbines (DWT’s) is missing or incomplete. This work focuses on a numerical optimization of the duct orientation and the ideal loading coefficient for the rotor. A 2D planar geometry was employed to model the DWT and the rotor is modelled as an uniformly loaded actuator disc (AD). The flow-field around the DWT is obtained through numerical solutions of Reynolds-averaged-Navier-Stokes (RANS) equations2 and a steady state Lagrangian approach based on vortex ring method3 . The study determines the optimal angle of attack for the duct corresponding to the AD loading, in order to achieve the optimal performance for a given DWT configuration.