Robust Event-Driven Interactions in Cooperative Multi-agent Learning
More Info
expand_more
Abstract
We present an approach to safely reduce the communication required between agents in a Multi-Agent Reinforcement Learning system by exploiting the inherent robustness of the underlying Markov Decision Process. We compute robustness certificate functions (off-line), that give agents a conservative indication of how far their state measurements can deviate before they need to update other agents in the system with new measurements. This results in fully distributed decision functions, enabling agents to decide when it is necessary to communicate state variables. We derive bounds on the optimality of the resulting systems in terms of the discounted sum of rewards obtained, and show these bounds are a function of the design parameters. Additionally, we extend the results for the case where the robustness surrogate functions are learned from data, and present experimental results demonstrating a significant reduction in communication events between agents.