Fast ℓ1-regularized space-Time adaptive processing using alternating direction method of multipliers

More Info
expand_more

Abstract

Motivated by the sparsity of filter coefficients in full-dimension space-Time adaptive processing (STAP) algorithms, this paper proposes a fast ℓ1-regularized STAP algorithm based on the alternating direction method of multipliers to accelerate the convergence and reduce the calculations. The proposed algorithm uses a splitting variable to obtain an equivalent optimization formulation, which is addressed with an augmented Lagrangian method. Using the alternating recursive algorithm, the method can rapidly result in a low minimum mean-square error without a large number of calculations. Through theoretical analysis and experimental verification, we demonstrate that the proposed algorithm provides a better output signal-To-clutter-noise ratio performance than other algorithms.

Files

44920118.pdf
(pdf | 1.92 Mb)
Unknown license