Adaptive Gap-Filling of Multi-Spectral Images at Coarse and Fine Spatial Resolution

More Info
expand_more

Abstract

Optical fine and coarse spatial resolution multi-spectral images are essential for monitoring land surface processes but are often affected by gaps due to cloud contamination and other factors. Gap-filling methods are vital for overcoming these issues, yet existing approaches struggle to accurately reconstruct pixels impacted by undetected thin clouds and shadows, particularly in fine spatial resolution images. This study introduces a comprehensive gap-filling method that identifies and reconstructs invalid pixels in both fine and coarse spatial resolution images. The method combines different spatial and temporal gap-filling methods. The specific combination of methods is orchestrated to adapt to each image, mainly on the basis of the fractional abundance and spatial pattern of cloud cover. To evaluate the performance, experiments were conducted using MODIS (coarse-resolution) and Landsat/OLI (fine-resolution) images with artificial gaps (10%-90%) introduced at varying positions in cloud-free reference images. For coarse-resolution images, the blue band showed the lowest Root Mean Square Error (RMSE) of 0.004 to 0.03, while the NIR band had higher RMSE (0.01-0.05). The Structural Similarity Index Measure (SSIM) ranged from 0.96 to 0.73 as gap percentages increased. For fine-resolution images, random gaps were reconstructed most effectively, with RMSE values for the blue band between 0.005 and 0.01, and NIR errors ranging from 0.01 to 0.05. SSIM values ranged from 0.90 to 0.83 (blue) and 0.86 to 0.71 (NIR), confirming the method reliability for time-series analysis and data fusion applications.