NT

33 records found

Temporomandibular joint (TMJ) replacement prostheses often face limitations in accommodating translational movements, leading to unnatural kinematics and loading conditions, which affect functionality and longevity. Here, we investigate the potential of functionally graded materi ...
Objective: To examine the association between 3D patellar shape and 1) isolated magnetic resonance imaging (MRI)-based patellofemoral osteoarthritis (PFOA), 2) the morphological features of PFOA, and 3) the clinical symptoms of PFOA. Design: MRI data from 66 women with isolated M ...
Objective: Mandibular reconstruction using patient-specific cage implants is a promising alternative to the vascularized free flap reconstruction for nonirradiated patients with adequate soft tissues, or for patients whose clinical condition is not conducive to microsurgical reco ...
The treatment of femoral nonunion with large segmental bone defect is still challenging. Although magnesium alloys have been considered potential materials for such a treatment, their application is limited by their fast degradation. Adding bioceramic particles into magnesium to ...
Porous biodegradable Mg and its alloys are considered to have a great potential to serve as ideal bone substitutes. The recent progress in additive manufacturing (AM) has prompted its application to fabricate Mg scaffolds with geometrically ordered porous structures. Extrusion-ba ...
Background: Bone fracture fixation surgery is one of the most commonly performed surgical procedures in the orthopedic field. However, fracture healing complications occur frequently, and the choice of the most optimal surgical approach often remains challenging. In the last year ...
We designed and fabricated a simple setup for the controlled crumpling of nanopatterned, surface-porous flat metallic sheets for the fabrication of volume-porous biomaterials and showed that crumpling can be considered as an efficient alternative to origami-inspired folding. Befo ...
Background: The objective consisted of 2 elements, primarily to define 2 bone geometry variations of the ankle that may be of prognostic value on ankle instability and secondly to translate these bone variations from a 3D model to a simple 2D radiographic measurement for clinical ...
The reconstruction of large mandibular defects with optimal aesthetic and functional outcomes remains a major challenge for maxillofacial surgeons. The aim of this study was to design patient-specific mandibular reconstruction implants through a semi-automated digital workflow an ...
Additive manufacturing (AM) offers great design freedom that enables objects with desired unique and complex geometry and topology to be readily and cost-effectively fabricated. The overall benefits of AM are well known, such as increased material and resource efficiency, enhance ...
We studied the three-dimensional (3-D) shape variations and symmetry of the lunate to evaluate whether a contralateral shape-based approach to design patient-specific implants for treatment of Kienböck’s disease is accurate. A 3-D statistical shape model of the lunate was built u ...
Additively manufactured (AM) biodegradable magnesium (Mg) scaffolds with precisely controlled and fully interconnected porous structures offer unprecedented potential as temporary bone substitutes and for bone regeneration in critical-sized bone defects. However, current attempts ...

Magnetic Resonance Imaging compatible Elastic Loading Mechanism (MELM)

A minimal footprint device for MR imaging under load

Quantitative Magnetic Resonance Imaging (MRI) can enable early diagnosis of knee cartilage damage if imaging is performed during the application of load. Mechanical loading via ropes, pulleys and suspended weights can be obstructive and require adaptations to the patient table. I ...
The design of advanced functional devices often requires the use of intrinsically curved geometries that belong to the realm of non-Euclidean geometry and remain a challenge for traditional engineering approaches. Here, it is shown how the simple deflection of thick meta-plates b ...
Biodegradable porous magnesium (Mg) scaffolds are promising for application in the regeneration of critical-sized bone defects. Although additive manufacturing (AM) carries the promise of offering unique opportunities to fabricate porous Mg scaffolds, current attempts to apply th ...
Recent progress in nano-/micro-fabrication techniques has paved the way for the emergence of synthetic bactericidal patterned surfaces that are capable of killing the bacteria via mechanical mechanisms. Different design parameters are known to affect the bactericidal activity of ...
Origami-inspired folding methods present novel pathways to fabricate three-dimensional (3D) structures from 2D sheets. A key advantage of this approach is that planar printing and patterning processes could be used prior to folding, affording enhanced surface functionality to the ...
Bone shapes, particularly those defining the subtalar joint (STJ), have not received much attention yet as a risk factor for developing chronic ankle instability (CAI) after sustaining a lateral ankle sprain (LAS). This study aimed to compare three-dimensional (3D) shape variatio ...

Nature helps

Toward bioinspired bactericidal nanopatterns

Development of synthetic bactericidal surfaces is a drug-free route to the prevention of implant-associated infections. Surface nanotopographies with specific dimensions have been shown to kill various types of bacterial strains through a mechanical mechanism, while regulating st ...
Recent discoveries have shown that nanopatterns with feature sizes ≤100 nm could direct stem cell fate or kill bacteria. These effects could be used to develop orthopedic implants with improved osseointegration and decreased chance of implant-associated infections. The quest for ...