YL
Yutian Lei
6 records found
1
Interface engineering is a simple and effective strategy for improving the photovoltaic performance and stability of perovskite solar cells (PSCs). Herein, an interface co-modification strategy is proposed, using [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and 2-fluoro-1,4-
...
Two-dimensional (2D) Dion-Jacobson (D-J)-type cesium lead iodide CsPbI
3 perform remarkably in terms of stability. However, the complex interactions between spacer and inorganic layers limit its excellent progress in perovskite solar cells (PSCs). Herein,
...
Two-dimensional (2D) Ruddlesden-Popper (RP) CsPbI3 exhibits enhanced phase stability compared with 3D CsPbI3. However, the issue of the uncontrollable crystallization process limits its photovoltaic performance. Here, the influence of a binary mixed solvent on the film quality an
...
Two-dimensional (2D) Ruddlesden–Popper (RP) CsPbI3 perovskite possesses superior phase stability by introducing steric hindrance. However, due to the quantum and dielectric confinement effect, 2D structures usually exhibit large exciton binding energy, and the charge t
...
Iodine vacancies and uncoordinated iodide ions of CsPbI3 films are mainly responsible for nonradiative recombination. Here, we report a composition-engineering passivation method that through guanidium (GA+) and I− forms strong hydrogen bonds to p
...
Inorganic 2D layered CsPbI3 is awaiting to overcome the phase instability of traditional 3D components. However, the most reported Ruddlesden–Popper (RP) phase 2D CsPbI3 leads to larger interlayer distance and weaker interlayer coupling since the existence o
...