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Identification of Strategic Maintenance 
Resource Demand - A Reliability Based 

Approach
Prasobh NARAYANAN, Wim J.C. VERHAGEN1 and V.S. Viswanath

DHANISETTY
Delft University of Technology

Abstract. Airline Maintenance and Engineering (M&E) organizations face 
accidental damages on their fleet of aircraft as part of daily practice. As this type 
of damage is stochastic in nature, the approach towards repairing accidental 
damage is reactive in practice. However, it is possible to predict future long-term 
(strategic) demand for maintenance resources associated with accidental damages 
and use this to identify required capacity. To achieve the mutually related goals of 
prediction of future repairs and determination of capacity, a novel approach for 
integration of reliability modelling and inventory control is presented in this paper. 
Here, the concept of inventory control has been specifically applied to determine 
the maintenance capacity by taking into account the stochastic demand related to
unscheduled repairs following from accidental damages. To predict demand, a 
Non-homogeneous Poisson Process (NHPP) reliability model has been adopted. 
The reliability model includes superpositioning, through which failure behaviour 
at aircraft fleet-level can be estimated and subsequently simulated. The resulting 
demand is fed into a single-system, single location base-stock inventory model. 
This allows for determination of strategic capacity based on optimum costs as well 
as service level requirements. A case study has been performed on a fleet of 
Boeing 777 aircraft of a major European airline. The results prove the feasibility of 
adopting an integrated approach towards strategic capacity identification, using 
real-life data to predict future demand occurrence.

Keywords. Aircraft maintenance, strategic resource scheduling, reliability

Introduction

When operating aircraft, there is a clear, present but minor risk of incurring accidental 
damage. Causes of accidental damage include collisions with ground and cargo 
handling equipment, erosion from rain, hail, lightning or runway debris, and damages 
resulting from human error during aircraft operations and maintenance (e.g., tool-
drops) [1]. The resulting damage typically needs to be repaired quickly to adhere to 
regulatory requirements, given possible safety implications. Furthermore, from an 
economic perspective, there is a major incentive to repair quickly: prevent costly 
aircraft downtime [1]. At an individual level, accidental damages are highly stochastic 
in nature compared to damage caused by structural aging, fatigue and deterioration.
Note that fault forecasting related to these latter causes, as for instance described by 
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Pogacnik et al. [2] and Pleumpirom et al. [3], are not incorporated from this perspective.
The approach towards repairing accidental damage is reactive in operational practice. 
This may lead to additional use of limited resources, for instance manpower, hangar 
space or materials. If resources are not available at the right time, delays may ensue, 
leading to very high costs for the maintenance organisation as well as the operator.

However, at a fleet level, it is possible to predict future long-term (strategic) 
demand for maintenance resources associated with accidental damages and compare 
this with available resource capacity. This may influence maintenance planning 
policies, by identifying the required capacity (and its deviations over time), with the 
possibility to fine-tune planned buffer capacity or even adjust available capacity over 
time. To achieve the mutually related goals of prediction of future repairs and 
determination of resource capacity requirements, a novel approach for integration of 
reliability modelling and inventory control is presented in this paper. While the 
constituent elements are part of well-established research fields, limited work has been 
done towards integrating these elements towards capacity identification purposes in 
maintenance applications. In addition, existing studies typically use simulated demand. 
In contrast, this study presents results for a case study which incorporates actual 
accidental damage data.

The theoretical context of the problem at hand is discussed in Section 1. This is 
followed by introduction of the method followed, comprising integration of reliability 
modelling and analysis, stochastic demand generation and capacity planning through an 
inventory control method. The method is applied in a case study, which uses actual 
Boeing 777 damage data from a European airline / maintenance operator. The case 
study explores capacity planning through sensitivity analysis for a range of parameters. 
Finally, conclusions are given and future research directions are indicated.

1. Theoretical context

The occurrence of accidental damage is a stochastic process: a counting variable can be 
used to enumerate the number of occurrences resulting from an underlying random 
process. Given the availability of sufficient occurrence data, stochastic process models 
can be used to characterise the process of damage occurrence. From a maintenance 
perspective, these models have been studied in-depth as part of reliability modelling 
and application. The most relevant theory regarding reliability in aircraft maintenance 
is briefly discussed in Section 1.1. The reliability models can subsequently be used to 
predict future occurrences of accidental damage, which opens up a path towards 
determination of long-term capacity requirements. Existing models towards planning of 
maintenance capacity are discussed in Section 1.2. 

1.1. Applications of reliability modelling in aircraft maintenance

A sizeable body of work discusses reliability modelling and analysis, using experience-
based, statistical, evolutionary or physical model-based methods [4]. From the 
perspective of accidental damage occurrences on aircraft, methods should be suitable to 
address the repairable nature of the structures and components that typically face these 
type of damages. Selecting a suitable reliability model that provides the best match 
with the underlying failure process as well as the available data is of utmost importance 
for estimation accuracy and subsequent extension towards prediction of future events.
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Several systematic approaches towards reliability model selection and application have 
been proposed [5-8]. These approaches typically address the methodology, data, 
information and assumptions needed for model building, the properties of different 
models, and tools and techniques to determine whether a particular model is 
appropriate for a given data set. The following aspects are particularly relevant towards 
the modelling of incidental damage:

� Data collection: to model repairable components, a key parameter to collect is 
the time between failures, or in this case, damage occurrences. Technical 
information concerning occurrences, description of occurrences and their 
characteristics, as well as environmental conditions, repair times and root 
causes are data of interest as well.

� Homogenization process: Many models assume independence and identically 
distributed occurrence times, despite possible differences in extraneous factors 
(e.g., operational and environmental conditions). In particular cases, it is 
necessary to homogenize the available data, leading to a set of identical 
components with comparable operational and environmental conditions. This 
can be even more important given the infrequent nature of failure / damage 
occurrence, which may lead to adoption of data pooling to generate 
sufficiently large sample sizes for subsequent analysis [7].

� Trend analysis: Before committing to a specific model, it is usual to test the 
available data for trends, as behaviour can be monotonic or nonmonotonic (or 
trend free). There are various methods by which trends can be analysed,
including graphical and analytical methods.

� Reliability model selection and parameter estimates: the most commonly 
used models for reliability analysis are the homogeneous Poisson process
(HPP), renewal process (RP), non-homogenous Poisson process (NHPP) and 
generalised renewal process (GRP) [9]. In case of data pooling, superposed or 
super-imposed systems result [10], which can be modelled using a HPP or 
NHPP model. In terms of parameter estimation, least-squares estimation or 
maximum likehood estimation are typically used to estimate model parameters, 
followed by goodness-of-fit testing to establish whether the model estimates 
are sufficiently close to observed reality.

1.2. Integrating maintenance demand and capacity planning

Product reliability over time drives future demand for repair or replacement activity. As 
such, if sufficiently accurate estimates of product reliability are available, it becomes 
feasible to predict future demand for different time horizons. This information can 
subsequently be used to identify and plan maintenance activity and the supporting 
capacity. 

There has been significant interest in models seeking to integrate the aspects of 
production, quality and maintenance for planning purposes within various industries.
Within the production industry, planning refers to determination of lot sizes (the units 
of products manufactured) and computing the capacity needs in the case of changing 
demand. Economic production quantity (EPQ) models, which can be classified as a 
type of inventory control model, have been used extensively to incorporate fluctuating 
demand due to maintenance events [11-13].
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Dekker [14] describes existing models to determine the required capacity to carry 
out maintenance, but restrict efforts to planned maintenance. When considering
unplanned (or unscheduled) maintenance, the demand behaviour becomes stochastic.
Several research efforts describe maintenance demand generation using stochastic 
processes (e.g. an NHPP model in Bengu et al. [15]) in combination with capacity 
determination and/or optimization [15-17]. However, these research efforts focus on 
operational planning, i.e., describing a short-term time horizon. In contrast, Duffuaa et 
al. [18] aim to integrate maintenance demand forecasting with strategic planning. 
However, time series techniques are employed to perform forecasting, which has 
drawbacks in terms of identifying and responding to trends as well as stochastic 
behaviour [19].

In a maintenance intensive industry like the airline industry, with a significant 
amount of unscheduled maintenance events, estimation of required capacity needed to 
fulfill any future unscheduled repairs becomes important from a strategic planning 
point of view. To the best of the authors’ knowledge, there has been no work that 
directly addresses the stochastic nature of unscheduled maintenance induced by 
accidental damages in combination with strategic capacity identification.

2. Method

To address the identified research gap, an approach is proposed which is defined in 
Section 2.1., followed by more in-depth discussion of the contributing elements of 
reliability, demand and capacity modelling..

2.1. Approach and assumptions

The followed approach to integrate the modelling elements is given in Figure 1. It 
highlights the main elements of the integrated approach, including three main steps 
which are described in more detail in Sections 2.2 – 2.4. In addition, the main input 
and output parameters are included, as well as a feedback loop to incorporate the 
periodic updates to the input data, reliability model output, demand generation and 
subsequent capacity identification.

In terms of assumptions and scope, the integrated approach has been developed 
with an eye towards application for accidental damage occurrences. As such, the 
following aspects should be taken into account:

� All accidental damages are aggregated; no individual types are considered.
� The type of repair is not specifically considered as part of the reliability model. 

Repair time is considered negligible in comparison to the time between events. 
� The reliability model does not explicitly consider repair effectiveness. 
� Capacity is evaluated in terms of costs and facilities; material support required 

to fulfil a maintenance action is not taken into account. 
� It is assumed that all aircraft are to undergo maintenance at a single location.

Having introduced the integrated approach, the following sections will consider the 
main elements in more detail, starting with the followed approach towards reliability 
modelling.
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Figure 1. Integrated modelling approach for strategic maintenance capacity identification

2.2. Step 1 - Reliability modelling

In terms of reliability modelling, in principle it is possible to adopt a variety of 
stochastic process models. Model selection and parameter estimation is dependent on 
the (type of) data considered. As such, data extraction is first considered, followed by 
model selection and parameter estimation.

2.2.1. Step 1.a - Data extraction

For the problem at hand – i.e., incidental damage occurrences on a fleet of aircraft, a
step by step approach is taken to extract relevant data:

1. Data classification in terms of number of damage occurrences into the main 
ATA-100 chapters, leading to a breakdown of damage occurrences per 
primary aircraft structure. This is followed by a further classification up to 
component level.

2. Damage occurrences classification for each system (aircraft).
3. Extraction of occurrence characteristics (type; time of occurrence).

If an insufficient number of damage occurrences for each individual system is 
present, it is possible to combine � systems into one single system. This principle is 
known as superposition. While conclusions at individual system level are impossible, 
the advantage of the superposed system is that it can model reliability for the entire k
systems, representing a fleet (of aircraft). This matches the strategic orientation of the 
current research. The principle behind superposition is illustrated in Figure 2.
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Figure 2. Superpositioning of k independent systems

2.2.2. Step 1.b - Reliability modelling and analysis

When using superpositioning, available stochastic process models for repairables are 
typically restricted to HPP and NHPP models. For the case considered in this research, 
the NHPP process is adopted, with a power law process (PLP) to represent the intensity 
function. Suppose the observation of a system starts at age 0 and runs until time �

(truncation time), the number of failures the system experiences during this time is
denoted �(�) and is a random variable with successive times to failure ,i jT . The 
intensity function for the PLP is given by [20]:

1( )u t t��� �� , 0t � (1)

In the case of superpositioning with � systems, the power law intensity function is 
given by the equation below [20]:

1( )su t k t��� �� , 0t � (2) 

With s k� �� thus representing the superpositioned scale parameter of the PLP, 
and with � being the shape parameter. Parameter estimation can be performed using 
Maximum Likelihood Estimation (MLE), accompanied by the Cramer-von Mises test,
adapted from Crow [20], which is specifically used to test the data for a PLP model. 

2.3. Step 2 - Demand generation

The obtained reliability model and its parameters can be used to simulate future 
demand, which is stochastic in nature. Demand is the number of occurrences in a given 
unit of time, denoted by � . Demand is generated using the inverse transform method 
to calculate successive damage occurrence times iT [21]. The distribution function 
derived from a PLP with superpositioned intensity function is given by:

( ) 1 exp( [( ) ])
ijT sF t y t y� ��� � � 	 � (3)

This can be used to derive the equations for the successive occurrence times as 
given below:

1/
1 1

1[ ln ]
ŝ

T U �

�
� � (4)

P. Narayanan et al. / Identification of Strategic Maintenance Resource Demand 951



1/
1

1[ ln ]ˆq q q
s

T T U� �

��� � , 2q 
 (5)

Here 1T is the time to first occurrence and qT are the successive occurrence times 
after 1T (both of them representing fleet level behaviour due to superposition, hence 
dropping the index j), with qU representing a uniformly distributed random variable for
simulation purposes. Due to the random number qU , each generated sequence of 
occurrence times iT (= 1 qT T	 ) is unique. To capture aggregate behaviour, a Monte 
Carlo simulation can be performed. The time between occurrences for the generated 
sequences are analysed to determine the mean time between failures (MTBF). Finally,
demand rate � is computed from the MTBF, where the � signifies the number of 
occurrences per flight cycle.

2.4. Step 3 - Capacity identification

To identify capacity, a base-stock policy inventory model is adopted [22]. The input to 
the capacity identification model are the demand rate � and several capacity cost ratios.
The capacity identification model generates outputs in the form of several performance 
measures through which the capacity requirements can be identified. Table 1 describes 
the main model parameters, their inventory control definitions as well as their 
translation towards the aircraft maintenance domain.

Table 1. Model parameters – inventory control and aircraft maintenance interpretations

Symbol Inventory control Aircraft maintenance
s Base stock inventory level Slot capacity (number of maintenance 

positions at a (set of) location(s))
L Leadtime – time taken for order to arrive Leadtime – time between two major 

maintenance checks
� Poisson distributed demand rate Poisson distributed occurrence rate

A Stockout frequency: long-term rate in which 
demand exceeds stock

Long-term rate in which demand exceeds 
capacity

I Long-term average inventory Long-term rate for resolved occurrences

B Long-term average backorders Long-term rate for non-resolved 
occurrences

( )C s Cost of operating at a given base stock Cost of maintenance at a given slot capacity

3. Results

To test the proposed approach, a case study has been conducted. This is described in 
more detail in Section 3.1, followed by results, sensitivity analysis and validation.

3.1. Case study description

The case study has been conducted on a fleet of Boeing 777 aircraft from a major 
European airline, for which a database containing historical incidental damage 
occurrence data has been made available, covering 10+ years of operational use.
Following data extraction, the case study has been scoped towards two types of 
secondary structures (outboard flaps and leading edge slats), further subdivided into 
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geometric location (left-hand side (LHS) and right-hand side (RHS)) on the aircraft. 
Table 2 provides an overview of the main input data. For all components, the timeline 
has been truncated at 7000 flight cycles (FC). qN represents the total number of 
accidental damages observed, with k representing the number of individual aircraft on 
which these damages have been observed. Interpreting the table, one can for instance 
observe that the LHS flap has had 64 occurrences on 53 individual aircraft, whereas the 
RHS flap has had 48 occurrences on 30 individual aircraft.

Table 2. Case study – reliability model input data

Symbol LHS flap RHS flap LHS slat RHS slat
( )T FC 7000 7000 7000 7000

qN 64 48 61 47

k 53 30 35 35

3.2. Results

A superpositioned NHPP power law process has been applied to the data presented in 
Table 3. Using Maximum Likelihood Estimation, the parameter estimates as given in 
Table 3 were established. It is interesting to note that the outboard flaps show close-to-
random occurrence behaviour (as would be expected from incidental damage 
occurrence), whereas the leading edge slats both show a slight upwards deviation in 
their respective shape parameter values.

Table 3. NHPP power law process – parameter estimates

Outboard flaps Leading edge slats
Symbol LHS flap RHS flap LHS slat RHS slat

�̂ 1.108 1.045 1.311 1.236

ŝ� 0.003514 0.004593 0.000553 0.000831

The resulting superimposed intensity functions can be visualized as shown in 
Figure 3. Figure 4 shows the output of a Monte Carlo simulation (n = 1000) for the 
LHS slat, showing the mean demand value as well as the associated quantiles. The 
mean has been used to generate demand rate � , the results of which are given in Table 
4. 

Figure 3. Intensity function plots for slats Figure 4. Monte Carlo simulation output – left slat
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The demand rates generated from the Monte Carlo simulations are used as the 
input for the planning model. The three measures that help in understanding the effects 
of the demand are A , B and I . These are functions of �, where � is the number of 
slots available in a hangar to carry out repair for a given component. There are two 
ways by which the desired slot capacity can be identified: 1) by fixing an adequate 
service level through �; 2) by minimisation of the cost function �(�).

Table 4. NHPP power law process – parameter estimates
Outboard flaps Leading edge slats

Demand LHS flap RHS flap Combined LHS slat RHS slat Combined

mean� 0.0103 0.0073 0.0176 0.0121 0.009 0.021

Figure 5. Cost function for slats Figure 6. Cost variation with changing demand 

Figures 5 and 6 show output when the second approach is applied, using a cost 
ratio between penalty and holding cost of 1,5 together with a leadtime value of 50 
flight cycles. Figure 5 shows a cost minimum at s = 1, indicating that a single slot is 
most cost-effective for long-term planning under the current input conditions. This 
indicates that 30 slots have to be available over a period of 1500 flight cycles to 
address incidental damage occurrences, at a cost minimum. Figure 6 shows variation of 
cost when the demand is varied from the current rate ± 90%, with step size 30%, 
showcasing the sensitivity of the cost optimum to changes in demand rate.

4. Conclusions and Recommendations

This research has presented a successful adaptation of an inventory control model, 
specifically the base-stock policy model, towards identifying strategic maintenance 
capacity resource demand. The base-stock model was used to identify the average 
capacity required to carry out future unscheduled maintenance for slats and flaps, on 
the basis of real-life damage occurrence data. The results show that it is possible to 
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apply an integrated approach towards strategic capacity identification, using real-life 
data to predict future demand occurrence.

In future work, several assumptions can be relaxed. For instance, a constant 
leadtime has been applied to repair fulfilment, which is not necessarily reflective of 
real-life processes. Furthermore, the presented model assumes a superimposed system 
repaired at a single location with a certain slot capacity. However, in real life 
conditions, several locations may be available in the maintenance network.
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