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Stability Analysis for Incremental Nonlinear
Dynamic Inversion Control

Xuerui Wang∗, Erik-Jan van Kampen†, Qiping Chu‡

Delft University of Technology, Delft, Zuid-Holland, 2629HS, The Netherlands

Peng Lu§
Eidgenössische Technische Hochschule Zürich, 8093 Zürich, Switzerland

As a sensor-based control approach, the Incremental Nonlinear Dynamic Inversion (INDI)
method has been successfully applied on various aerospace systems and shown desirable robust
performance to aerodynamic model uncertainties. However, its previous derivations based
on the so-called time scale separation principle is not mathematically rigorous. There also
lack of stability and robustness analysis for INDI. Therefore, this paper reformulated the
INDI control law without using the time scale separation principle and generalized it to not
necessarily relative-degree-one problems, with consideration of the internal dynamics. Besides,
the stability of the closed-loop system in the presence of external disturbances is analyzed using
Lyapunov methods and nonlinear system perturbation theory. Moreover, the robustness of
the closed-loop system against regular and singular perturbations is analyzed. Finally, the
reformulated INDI control law and main conclusions are verified by a rigid aircraft gust load
alleviation problem.

I. Introduction

Nonlinear Dynamic Inversion (NDI) is a nonlinear control method which cancels the system nonlinearity by means
of feedback and results into entirely or partly linearized closed-loop system dynamics, where conventional linear

control techniques can then be applied [1, 2]. This method is essentially different from the widely used Jacobian
linearization around specific operational points in combination with gain-scheduled linear controllers, whose stability
and performance become questionable between operational points.

The NDI control method requires an accurate knowledge of the nonlinear system dynamics to achieve an explicit
cancellation. Such requirement is almost impossible to meet in reality due to model simplifications, computational
errors and parametric uncertainties. This main drawback of NDI control motived many control technologies to improve
its robustness. One popular approach is combining NDI control with linear robust control techniques such as structural
singular value (µ) analysis [3, 4] and H∞ synthesis. Although these techniques have brought significant benefits to
regular NDI, not all the uncertainties are taken into account or some known nonlinear, time-varying (NLTV) dynamics
are treated as uncertainties, thus the closed-loop systems can be either marginally or overly conservative in performance
and stability robustness [5].

There are many attempts on using indirect adaptive control methods to improve the robustness of NDI [6]. Indirect
adaptive control methods, in some form or the other, rely on on-line identification, which requires on-line excitation and
selection of thresholds. There are also some concerns about the stability and parameter convergence property of indirect
adaptive NDI [6].

Incremental Nonlinear Dynamic Inversion (INDI) is a sensor-based control method, which requires less model
information in both qualitative and quantitative sense, and thus improving the system robustness against model
uncertainties. The concept of this method originated from the late nineties and was previously referred to as the
SimplifiedNDI [7] andModifiedNDI [8]. INDI control has been elaborately applied on various aerospace systems [9–17].
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Regarding its applications on aerospace systems, the INDI method is generally used for the inner loop angular
velocity control [9–12], which leads to a relative-degree-one problem for each control channel. The internal dynamics
are then avoided by using cascaded control structure, which is a common practice in rigid aircraft flight control
designs [10, 11, 14]. However, the stability of the cascaded control structure is not easy to prove because of its
dependency on the time scale separations between different control loops. Also, this cascaded control structure is
not suitable for some problems. e.g. It is neither physically meaningful nor practical to separate the higher-order
elastic dynamics into cascaded loops. In view of these reasons, the INDI control will be broadened into not necessarily
relative-degree-one problems in this paper with consideration of the internal dynamics.

The existing derivations of the INDI control law are based on the so-called time scale separation principle, which
claims that when the sampling frequency is high, the controls can change significantly faster than the states [9–17].
The nonlinear plants are then simplified into linear incremental dynamic equations by omitting state variation related
nonlinear terms and higher-order terms in their Taylor series expansion, based on which the incremental control inputs
are designed. This approach is not mathematically rigorous since the plant simplification is made before introducing
the INDI control inputs and thus becomes deficient for unstable plants. Moreover, although the state related nonlinear
terms and higher-order terms are not used in the INDI controller design, they should be kept in the closed-loop dynamic
equations and remain influencing the closed-loop system stability and performance, which is also not the case in the
existing derivations. Therefore, in this paper, the INDI control law will be reformulated without using the time scale
separation principle, and the influences of the omitted terms will be analyzed using Lyapunov methods and nonlinear
system perturbation theory [2].

Although INDI control has shown promising capability of external disturbance rejection [13–15], there is no
theoretical proof so far for the stability of the closed-loop system under the perturbation of external disturbances. Also,
the influences of disturbances on the internal dynamics remain unknown. These issues will also be addressed in the
present paper.

Furthermore, in spite of the desirable robust performance of INDI to aerodynamic model uncertainties that has been
verified via numerical simulations [9, 15], its previous theoretical stability and robustness proofs have some drawbacks.
These previous attempts usually draw the stability conclusions based on the linear transfer functions derived from block
diagrams [9, 13, 14], where inappropriate assumptions are made. The robust performance of this control method will be
rediscussed in this paper, and comparisons with regular NDI method will also be made.

This paper is structured as follows: Sec. II reformulates the INDI control law for three different problems. The
stability and robustness issues of INDI is discussed in Sec. III. Sec. IV provides a numerical example. Main conclusions
and recommendations are presented in Sec. V.

II. Incremental Nonlinear Dynamic Inversion
In this section, the Incremental Nonlinear Dynamic Inversion (INDI) control method will be reformulated for three

problems, namely the multi-input/multi-output (MIMO) input-output linearization, output tracking and input-to-state
linearization in the presence of external disturbances.

A. MIMO Input-Output Linearization
Consider a MIMO nonlinear system described by

Ûx = f (x) + G(x)u
y = h(x) (1)

where f : Rn → Rn and h : Rn → Rp are smooth vector fields. G is a smooth function mapping Rn → Rn×m, whose
columns are smooth vector fields. When p < m, which means the number of outputs is smaller than the number of
inputs, control of the system given by Eq. (1) via input-output linearization method is an overdetermined problem, where
a control allocation technique is needed. On the other hand, p > m yields an underdetermined problem, and weighted
least squares method can be used for the controller design, but the desired control aims cannot be fully achieved. p = m
is assumed in the following derivations.

Denote the elements of h as hi, i = 1, 2, ...,m, and the column vectors of the matrix G as g j, j = 1, 2, ...,m, then the
Lie derivatives [2] of the function hi with respect to the vector fields f and g j are defined as

L f hi =
∂hi
∂x

f , Lg j hi =
∂hi
∂x

g j, Lk
f hi =

∂(Lk−1
f

hi)
∂x

f , Lg jLk
f hi =

∂(Lk
f
hi)

∂x
g j (2)
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The relative degree ρi for each output channel i is defined as the smallest integer such that for all x ∈ Rn, at least
one j ∈ {1, 2, ...,m} satisfies Lg jL

ρi−1
f

hi , 0.
Define the vector relative degree [18] of the system as ρ = [ρ1, ρ2, ..., ρm]T satisfying

ρ = ‖ρ‖1 =
m∑
i=1

ρi ≤ n (3)

then the output dynamics of the system can be represented as
y
(ρ1)
1
y
(ρ2)
2
...

y
(ρm)
m


=


Lρ1

f
h1(x)

Lρ2
f

h2(x)
...

Lρm
f

hm(x)


+


Lg1L

ρ1−1
f

h1(x) Lg2L
ρ1−1
f

h1(x) · · · LgmL
ρ1−1
f

h1(x)
Lg1L

ρ2−1
f

h2(x) Lg2L
ρ2−1
f

h2(x) · · · LgmL
ρ2−1
f

h2(x)
...

...
...

Lg1L
ρm−1
f

hm(x) Lg2L
ρm−1
f

hm(x) · · · LgmL
ρm−1
f

hm(x)


u (4)

or
y(ρ) = α(x) + B(x)u (5)

If ρ = n, then the system given by Eq. (1) is full-state feedback linearizable. Otherwise, there are n − ρ internal
dynamics unobservable from the output y. According to the Frobenius theorem [2], ∀x∗ ∈ D, there exist smooth
functions φ(x) = [φ1(x), φ2(x), ..., φn−ρ(x)]T defined in a neighborhood D0 of x∗ such that

∂φk
∂x

g j(x) = 0, ∀k ∈ {1, 2, ..., n − ρ}, ∀ j ∈ {1, 2, ...,m}, ∀x ∈ D0 (6)

Also, z = T (x) defined by

z = T (x) = [T 1(x);T 2(x)] = [η; ξ], η = φ(x), ξ = [ξ1; ξ2; ...; ξm],
ξ i = [hi(x),L f hi(x), ...,Lρi−1

f
hi(x)]T , i = 1, 2, ...,m (7)

is a diffeomorphism on the domain D0. η and ξ are the state vectors for the internal and external dynamics respectively.
Using Eqs. (5, 6, 7), the nonlinear system described by Eq. (1) can be transformed into

Ûη = f 0(η, ξ) =
∂φ

∂x
f (x)

����
x=T−1(z)

Ûξ = Acξ + Bc[α(x) + B(x)u]
y = Ccξ (8)

where Ac = diag{Ai
0}, Bc = diag{Bi

0}, Cc = diag{Ci
0}, i = 1, 2, ...,m, and (Ai

0, B
i
0,C

i
0) is a canonical form

representation of a chain of ρi integrators.
Assume det{B(x)} , 0 (Otherwise, even p = m, it is still an underdetermined problem), the Nonlinear Dynamic

Inversion (NDI) control law is designed as u = B−1(x)(ν − α(x)), where ν ∈ Rm is called the pseudo-control input. In
the absence of model uncertainties and disturbances, this control law results in the closed-loop system

Ûη = f 0(η, ξ)
Ûξ = Acξ + Bcν

y = Ccξ (9)

which indicates that the closed-loop system has n − ρ internal dynamics, and m decoupled channels. The input-output
mapping for each channel from νi to yi is a chain of ρi integrators.

NDI control however is based on the exact mathematical cancellation of the nonlinear terms α(x) and B(x). This is
almost impossible in practice due to model simplifications, computational errors and parametric uncertainties. One
method to reduce the control law model dependency is Incremental Nonlinear Dynamic Inversion (INDI) control, which
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is derived by taking the first order Taylor series expansion of Eq. (5) around the current (denoted by the subscript 0)
states x0 and control input u0 as

y(ρ) = α(x) + B(x)u

= y
(ρ)
0 +

∂[α(x) + B(x)u]
∂x

����
0
∆x + B(x0)∆u + O(∆x2)

= y
(ρ)
0 + B(x0)∆u + δ(z,∆t) (10)

where ∆x and ∆u represent the state and control increments in one sampling time step ∆t. δ(z,∆t) is given by

δ(z,∆t) =
[
∂[α(x) + B(x)u]

∂x

����
0
∆x + O(∆x2)

] ����
x=T−1(z)

(11)

Design the incremental control input as

∆u = B(x0)−1(ν − y
(ρ)
0 ) (12)

where y
(ρ)
0 is measured or estimated. The total control command for the actuator is u = u0 + ∆u. Substituting Eq. (12)

into Eq. (10) results in the input-output mapping of y(ρ) = ν + δ(z,∆t). Using the same diffeomorphism z = T (x), the
closed-loop system dynamics under INDI control are given by

Ûη = f 0(η, ξ)
Ûξ = Acξ + Bc[ν + δ(z,∆t)]
y = Ccξ (13)

which is consistent with Eq. (9) except for the perturbation term δ(z,∆t). Since x is continuously differentiable, the
norm value of δ(z,∆t) can be reduced by increasing the sampling frequency. The influence of the δ(z,∆t) term on
system stability and robustness will be analyzed in Sec. III. Although Eq. (9) under NDI control seems to be neat,
perturbation terms will appear when model uncertainties are considered, which will also be shown in Sec. III. As
compared to the conventional NDI control law, the INDI control method is less sensitive to model mismatches, because
the model information of α(x) is not used in Eq. (12). On the other hand, this INDI control law needs the measurement
or estimation of y(ρ)0 and the actuator position u0, this is why INDI control is referred to as a sensor-based approach.

B. Output Tracking
The INDI control law can also solve the command tracking problem. Consider the nonlinear plant (Eq. (1)) with

relative degree ρ = [ρ1, ρ2, ..., ρm]T , which can be transformed into the internal and external dynamics given by Eq. (8).
The output tracking problem requires the output y to asymptotically track a reference signal r(t) = [r1(t), r2(t), ..., rm(t)]T .
Assume ri(t), i = 1, 2, ...,m and its derivatives up to r (ρi )i (t) are bounded for all t and r (ρi )i (t) is piecewise continuous.

Denote the reference and the tracking error vectors as

R = [R1;R2; ...;Rm], Ri = [ri, r (1)i , ..., r (ρi−1)
i ]T , i = 1, 2, ...,m, e = ξ −R (14)

Then Eq. (8) can then be transformed into

Ûη = f 0(η, e +R)
Ûe = Ace + AcR − ÛR + Bc[α(x) + B(x)u]
= Ace + Bc[α(x) + B(x)u − r (ρ)] (15)

where r (ρ) = [r (ρ1)
1 , r (ρ2)

2 , ..., r (ρm)m ]T . The NDI control law is designed as

u = B−1(x)[ν − α(x) + r (ρ)] (16)

When prefect model cancellation is assumed, this NDI control law results in the closed-loop system

Ûη = f 0(η, e +R), Ûe = Ace + Bcν (17)
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On the other hand, by using Eq. (10), the INDI control law can be designed as

∆u = B(x0)−1[ν − y
(ρ)
0 + r (ρ)] (18)

which leads to the closed-loop system as

Ûη = f 0(η, e +R), Ûe = Ace + Bc[ν + δ(z,∆t)] (19)

The closed-loop system dynamics given by Eq. (13) for the input-output linearization problem and the reference
tracking problem described by Eq. (19) are essentially the same. Only the equilibrium point of z = [η; ξ] = 0 is shifted
into z ′ = [η; e] = 0, so similar stability and robustness analyses can be made for these two problems.

C. Input-to-State Linearization under Disturbance Perturbations
Consider a special case of Input-output linearization by taking the outputs as yi = hi(x) = xi − xi∗, i = 1, 2, ...,m,

or equally y = H(x − x∗), where H is a Boolean selection matrix and x∗ is the equilibrium point. This choice of output
results in a so-called symmetrical system [18] where all the m channels have the same relative degree ρi = 1, and the
total relative degree is ρ = m. When m < n, there are n − m internal dynamics.

Adding the disturbance perturbation d ∈ Rn into the nonlinear plant (Eq. (1)) as

Ûx = f (x) + G(x)u + d

y = H(x − x∗) (20)

Recall Eq. (7), since ρi = 1, the external states are given by ξi = hi(x) = xi − xi∗, i = 1, 2, ..,m with dynamics

Ûy = Ûξ = f̄ (ξ) + Ḡ(ξ)u + Hd (21)

where f̄ : Rρ → Rm, ḡ : Rρ → Rm×m can be calculated by substituting xi = ξi + xi∗, i = 1, 2, ...,m into Eq. (20).
Taking the first order Taylor series expansion of the external dynamic equations as

Ûξ = f̄ (ξ) + Ḡ(ξ)u + Hd

= Ûξ0 +
∂[ f̄ (ξ) + Ḡ(ξ)u]

∂ξ

����
0
∆ξ + Ḡ(ξ0)∆u + H∆d + O(∆ξ2)

= Ûξ0 + Ḡ(ξ0)∆u + H∆d + δ(ξ,∆t) (22)

Design the incremental control law as ∆u = Ḡ
−1(ξ0)(ν − Ûξ0), the closed-loop external dynamics are formulated by

Ûξ = ν + H∆d + δ(ξ,∆t) (23)

Analogously, using Eq. (6), the internal dynamics under disturbance perturbations are given by

Ûη = ∂φ

∂x
( f (x) + G(x)u + d) = ∂φ

∂x
( f (x) + d) = f d(η, ξ, d) (24)

where f d(η, ξ, d) : Rn−ρ ×Rρ ×Rn → Rn−ρ. Choose φ(x∗) = 0, the diffeomorphism z = T (x) = [η; ξ] transforms the
equilibrium x = x∗ into the origin point z = [η; ξ] = 0.

When d = 0, the input-to-state linearized closed-loop system dynamics given by Eqs. (23, 24) are a special case of the
input-output linearized dynamics described by Eq. (13). It can also be observed from Eqs. (23, 24) that the disturbance
d influences the external dynamics only by its increments ∆d while directly influencing the internal dynamics. When
the sampling frequency is sufficiently high, the disturbance increments ‖∆d‖2 is smaller than ‖d‖2. This is another
feature of INDI control that the major part of the disturbance influences can be reflected in the measurement of Ûξ0 and
been compensated by the controller. This control method thus presents improved disturbance rejection ability as verified
by simulations [15] and flight tests [13, 14]. This ability will be further analyzed in Sec. III.

III. Stability and Robustness Analysis
The stability and robustness of the present INDI control will be analyzed in this section. In the first subsection, the

influences of the state variation related terms on closed-loop system stability will be discussed. The second subsection
discusses the system robustness to regular and singular perturbations.
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A. Stability Analysis
In this section, the stability of the origin z = 0 of closed-loop system given by Eq. (13) under INDI control will be

analyzed. Similar conclusions can be drawn for systems modeled by Eq. (19) and Eqs. (23, 24) without disturbances.
The closed-loop system with external disturbances and model uncertainties will be analyzed in the next subsection.
The proofs in this section also assume ideal actuator and perfect sensing. The actuator dynamics, nonlinear limits of
actuators and the sensing issues will be discussed in the next subsection.

Design the pseudo-control ν = −Kξ such that Ac − BcK is Hurwitz, Eq. (13) results in

Ûη = f 0(η, ξ)
Ûξ = (Ac − BcK )ξ + Bcδ(z,∆t) (25)

where the output equation is dropped since it plays no role in the stabilization problem.
Remark: The term δ(z,∆t) in Eq. (10) or the term δ(ξ,∆t) in Eq. (22) are often directly omitted in literature [9–17]

by claiming that the ∆ξ related term is smaller than the ∆u related term when the sampling frequency is high, which
is referred to as the time scale separation principle. This statement is not mathematically rigorous and is especially
deficient for unstable nonlinear plants because the plant simplifications are made before designing the INDI control
inputs. Besides, although these terms are dropped out for the convenience of the controller design, they should be kept
in the closed-loop system equations and remain influencing the closed-loop system stability and performance, which has
been overlooked in literature.

Referring the following system as the nominal system

Ûη = f 0(η, ξ)
Ûξ = (Ac − BcK )ξ (26)

whose stability has been extensively proved in literature, and is listed here for completeness.

Lemma A.1 The origin of Eq. (26) is asymptotically stable if the origin of Ûη = f 0(η, 0) is asymptotically stable.

Ûη = f 0(η, 0) is referred to as the zero dynamics, and the nonlinear system is said to be minimum phase if its zero
dynamics has an asymptotically stable equilibrium point.

Lemma A.2 The origin of Eq. (26) is globally asymptotically stable if the system Ûη = f 0(η, ξ) is input-to-state stable.

The proofs of Lemma A.1 and Lemma A.2 can be found in [2]. After the stability analyses of the nominal system,
the stability of the perturbed system given by Eq. (25) is considered. Recall Eq. (11), the norm value of the perturbation
term is

‖δ(x,∆t)‖2 = ‖δ(z,∆t)|z=T (x)‖2 = ‖
∂[α(x) + B(x)u]

∂x

����
0
∆x + O(∆x2)‖2 (27)

Assume that all order partial derivatives of α(x) and B(x) with respect to x are bounded. Due to the continuity of
x, lim∆t→0 ‖∆x‖2 = 0. Therefore, the perturbation term satisfies

lim
∆t→0

‖δ(z,∆t)‖2 = 0, ∀z ∈ Rn (28)

which means the norm value of this perturbation term become negligible for sufficiently high sampling frequency.
Eq. (28) also indicates that ∀ δ̄ε > 0, ∃ ∆t̄ > 0, s.t . for all 0 < ∆t ≤ ∆t̄, ‖δ(z,∆t)‖2 ≤ δ̄ε, ∀z ∈ Rn, ∀t ≥ t0. In other
words, there exists a ∆t that guarantees the boundedness of δ(z,∆t). Also, this bound can be further diminished by
increasing the sampling frequency.

Lemma A.3 If ‖δ(z,∆t)‖2 ≤ δ̄ε is satisfied for all z ∈ Rn, and Ûη = f 0(η, ξ) is input-to-state stable, then the state z of
Eq. (25) is globally ultimately bounded by a class K function of δ̄ε .

Proof : Choose the candidate Lyapunov function as V(ξ) = ξTPξ , where P = PT > 0 is the solution of the
Lyapunov equation P(Ac − BcK ) + (Ac − BcK )TP = −I , then V(ξ) is positive definite and also satisfies

α1(‖ξ ‖2) ≤ V(ξ) ≤ α2(‖ξ ‖2)
α1(‖ξ ‖2) , λmin(P)‖ξ ‖22, α2(‖ξ ‖2) , λmax(P)‖ξ ‖22 (29)
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λmin(P), λmax(P) are the minimum and maximum eigenvalues of the P matrix. α1, α2 belong to the class K∞
functions. The partial derivative of the candidate Lyapunov function is calculated as

ÛV = ξT [P(Ac − BcK ) + (Ac − BcK )TP]ξ + 2ξTPBcδ(z,∆t)
≤ −‖ξ ‖22 + 2‖ξ ‖2‖PBc ‖2δ̄ε

≤ −θ1‖ξ ‖22, ∀‖ξ ‖2 ≥ 2‖PBc ‖2δ̄ε
1 − θ1

, µ1δ̄ε (30)

with constant θ1 ∈ (0, 1). Consequently, for ∀ ξ(t0) ∈ Rρ, there exists a class KL function β and finite T1 ≥ 0
independent of t0 such that ‖ξ(t)‖2 satisfies [2]

‖ξ(t)‖2 ≤ β(‖ξ(t0)‖2, t − t0), t0 ≤ ∀ t ≤ t0 + T1

‖ξ(t)‖2 ≤ α−1
1 (α2(µ1δ̄ε)), ∀ t ≥ t0 + T1 , t ′0 (31)

The above equations indicate that the external state ξ is bounded for all t ≥ t0 and ultimately bounded with the
ultimate bound Γδ̄ε , α−1

1 (α2(µ1δ̄ε)) =
√
λmax(P)/λmin(P)µ1δ̄ε .

Moreover, by the definition of input-to-state stability, there exists a class KL function β0 and a class K function γ0
such that for ∀ η(t ′0) ∈ Rn−ρ and bounded input ξ , the internal state η satisfies

‖η(t)‖2 ≤ β0(‖η(t ′0)‖2, t − t ′0) + γ0( sup
t′0≤τ≤t

‖ξ(τ)‖2)

= β0(‖η(t ′0)‖2, t − t ′0) + γ0(Γδ̄ε) (32)

In addition, because β0 belongs to class KL functions, then β0(‖η(t ′0)‖2, t − t ′0) ≤ θ2δ̄ε , for some finite T2 > 0 and
θ2 > 0. Hence, the state z satisfies

‖ z(t)‖2 ≤ ‖ξ(t)‖2 + ‖η(t)‖2 = (Γ + θ2)δ̄ε + γ0(Γδ̄ε), ∀t ≥ t0 + T1 + T2 (33)

which proves that z(t) is globally ultimately bounded by a class K function of δ̄ε . �
Lemma A.3 has no restriction on the values of the initial state and the perturbation bound δ̄ε . However, when the

internal dynamics Ûη = f 0(η, ξ) is not input-to-state stable, but only the origin of the zero dynamics Ûη = f 0(η, 0) is
exponentially stable, then there will be restriction on the initial state, also the perturbations cannot be too large. These
phenomena are presented in the next Lemma.

Lemma A.4 If ‖δ(z,∆t)‖2 ≤ δ̄ε is satisfied for all z ∈ Rn, and the origin of Ûη = f 0(η, 0) is exponentially stable, then
there is a neighborhood Dz of z = 0 and ε∗ > 0, such that for every z(0) ∈ Dz and δ̄ε < ε∗, the state z of Eq. (25) is
ultimately bounded by a class K function of δ̄ε .

Proof : According to the converse Lyapunov theorem [2], because the origin of Ûη = f 0(η, 0) is exponentially stable,
there exists a Lyapunov function V2(η) defined in Dη = {η ∈ Rn−ρ | ‖η‖ < rη} satisfies the inequalities

c1‖η‖22 ≤ V2(η) ≤ c2‖η‖22,
∂V2
∂η

f 0(η, 0) ≤ −c3‖η‖22, ‖ ∂V2
∂η
‖2 ≤ c4‖η‖2 (34)

for some positive constants c1, c2, c3, c4. Denote

α′1(‖η‖2) , c1‖η‖22, α′2(‖η‖2) , c2‖η‖22 (35)

then α′1, α
′
2 belong to class K∞ functions. Besides, because f 0 is continuous and differentiable, there exists a Lipschitz

constant L of f 0 with respect to ξ such that

‖ f 0(η, ξ) − f 0(η, 0)‖2 ≤ L‖ξ ‖2, ∀‖η‖ < rη (36)

Choose V2(η) as the candidate Lyapunov function for Ûη = f 0(η, ξ), with derivative

ÛV2(η) =
∂V2
∂η

f 0(η, 0) +
∂V2
∂η
[ f 0(η, ξ) − f 0(η, 0)]

≤ −c3‖η‖22 + c4L‖η‖2‖ξ ‖2

≤ −c3(1 − θ3)‖η‖22,
c4L‖ξ ‖2

c3θ3
≤ ∀‖η‖2 ≤ rη (37)
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with constant θ3 ∈ (0, 1). Denote

µ ,
c4L
c3θ3
( sup
t′0≤τ≤t

‖ξ(τ)‖2) , θ5( sup
t′0≤τ≤t

‖ξ(τ)‖2) (38)

then
ÛV2(η) ≤ −c3(1 − θ3)‖η‖22, µ ≤ ∀‖η‖2 ≤ rη, ∀t ≥ t ′0 (39)

Since the conditions for the external states ξ are the same as compared to Lemma A.3, Eqs. (29, 30, 31) also hold
true in this Lemma. From Eq. (31), the supremum of the external state is given by

sup
t′0≤τ≤t

‖ξ(τ)‖2 = α−1
1 (α2(µ1δ̄ε)) (40)

Take 0 < r < rη such that Dr ⊂ Dη , according to the boundedness theories [2], if

µ < α′−1
2 (α

′
1(r)), ‖η(t

′
0)‖2 ≤ α

′−1
2 (α

′
1(r)) (41)

then there exists a class KL function β′0 such that

‖η(t)‖2 ≤ β′0(‖η(t
′
0)‖2, t − t ′0) + α

′−1
1 (α

′
2(µ)), ∀t ≥ t ′0 (42)

Eq. (41) proposes requirements on both the initial condition and the perturbation bound. Using Eqs. (38, 40, 41),
the maximum perturbation that the system can sustain is given by

δ̄ε < ε∗ , (1/µ1)α−1
2 (α1((1/θ5)α′−1

2 (α
′
1(r)))) (43)

From Eqs. (38, 40, 42), the normal value of the internal state yields

‖η(t)‖2 ≤ β′0(‖η(t
′
0)‖2, t − t ′0) + α

′−1
1 (α

′
2(θ5α

−1
1 (α2(µ1δ̄ε))))

≤ θ6δ̄ε + θ5α
′−1
1 (α

′
2(α
−1
1 (α2(µ1δ̄ε)))), ∀t ≥ t0 + T1 + T3 (44)

for some finite T3 > 0 and θ6 > 0. Hence, state z satisfies

‖ z(t)‖2 ≤ ‖ξ(t)‖2 + ‖η(t)‖2
= (Γ + θ6)δ̄ε + θ5α

′−1
1 (α

′
2(α
−1
1 (α2(µ1δ̄ε)))), ∀t ≥ t0 + T1 + T3 (45)

which proves the z(t) is ultimately bounded by a class K function of δ̄ε . �

B. Robustness Analysis

1. Disturbance Rejection
The INDI control method has shown promising disturbance rejection ability in reference tracking problems and was

verified by both simulations [15] and quad-rotor flight tests [13, 14]. It can also be designed to alleviate the structure
loads and improve the ride quality in the presence of atmospheric turbulence and gusts [15]. However, by far, there
lack of theoretical proof for the stability and boundedness of the closed-loop system using INDI control under the
perturbation of external disturbances, these issues will be discussed in this subsection.

Normally, the external disturbances are bounded in real life, denote

d̄ , sup{‖d(t)‖2, d ∈ Rn}, ∀t ≥ t0 (46)

which is independent of the sampling interval ∆t. Different from the continuousness condition for x, there is no
requirement on the continuity of d, it can be atmospheric turbulence or a sudden bird strike. When ∆t → 0, ‖∆d‖2 does
not necessarily verge to zero. However, for a given sampling rate, the supremum of ‖∆d‖2 exists, denote

d̄ε(∆t) , sup{‖∆d(t)‖2, ∆d ∈ Rn}, ∀t ≥ t0 (47)

As a function of ∆t, d̄ε(∆t) can be reduced by increasing the sampling frequency. Recall the system modeled by
Eqs. (23, 24), and design the pseudo-control as ν = −Kξ to stabilize the origin z = [η; ξ] = 0, the closed-loop system
is then given by

Ûη = f d(η, ξ, d)
Ûξ = −Kξ + H∆d + δ(ξ,∆t) (48)
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Proposition B.1 If ‖δ(ξ,∆t)‖2 ≤ δ̄ε is satisfied for all ξ ∈ Rρ, Ûη = f d(η, ξ, d) is continuously differentiable and
globally Lipschitz in (η, ξ, d), and the origin of Ûη = f d(η, 0, 0) is globally exponentially stable, then the external state ξ
and internal state η of Eq. (48) are globally ultimately bounded by a class K function of δ̄ε, d̄ε and a class K function
of d̄, δ̄ε, d̄ε respectively.

Proof : The norm value of the perturbation term in Eq. (48) satisfies

‖H∆d + δ(ξ,∆t)‖2 ≤ ‖H ‖2‖∆d‖2 + ‖δ(ξ,∆t)‖2 = d̄ε + δ̄ε (49)

where ‖H ‖2 = 1 since H is a Boolean selection matrix. Similar to the proof of Lemma A.3, choose the candidate
Lyapunov function as V(ξ) = ξTPξ , where P = PT > 0 is the solution of the Lyapunov equation PK + KTP = I , then
the time derivatives of V(ξ) satisfies

ÛV ≤ −θ1‖ξ ‖22, ∀‖ξ ‖2 ≥ 2‖P‖2(δ̄ε + d̄ε)
1 − θ1

, µ2(δ̄ε + d̄ε) (50)

Therefore, ∀ ξ(t0) ∈ Rρ, there exists a class KL function β and T4 ≥ 0 independent of t0 such that ‖ξ(t)‖2 satisfies

‖ξ(t)‖2 ≤ β(‖ξ(t0)‖2, t − t0), t0 ≤ ∀ t ≤ t0 + T4

‖ξ(t)‖2 ≤ α−1
1 (α2(µ2(δ̄ε + d̄ε))), ∀ t ≥ t0 + T4 (51)

In other words, the external states ξ is bounded for all t ≥ t0 and ultimately bounded with the ultimate bound
Γξ , α

−1
1 (α2(µ2(δ̄ε + d̄ε))), which is a class K function of δ̄ε and d̄ε .

On the other hand, perturbations directly acting on the internal dynamics. Because the origin of Ûη = f d(η, 0, 0) is
globally exponentially stable, Eq. (34) is satisfied globally. Besides, since Ûη = f d(η, ξ, d) is continuously differentiable
and globally Lipschitz in (η, ξ, d), there exists a globally Lipschitz constant L such that

‖ f d(η, ξ, d) − f d(η, 0, 0)‖2 ≤ L(‖ξ ‖2 + ‖d‖2), ∀η ∈ Rn−ρ (52)

Analogous to the proofs of Lemma A.4, Eq. (39) is satisfied for ∀‖η‖2 ≥ µ′ with µ′ , θ5(supt0+T4≤τ≤t (‖ξ(τ)‖2 +
‖d(τ)‖2)), and the internal state ‖η‖2 satisfies

‖η(t)‖2 ≤ β′0(‖η(t0 + T4)‖2, t − t0 − T4) + θ5α
′−1
1 (α

′
2(Γξ + d̄)), ∀t ≥ t0 + T4 (53)

without restriction on the initial values and the disturbances bound. Due to the attenuation property of β′0

‖η(t)‖2 ≤ [θ7d̄ + θ5α
′−1
1 (α

′
2(d̄))] + θ5α

′−1
1 (α

′
2(α
−1
1 (α2(µ2(δ̄ε + d̄ε))))) , Γη, ∀t ≥ t0 + T4 + T5 (54)

for some θ7 > 0 and finite T5 > 0. The above equation indicates that η is globally ultimately bounded by a class K
function of d̄, δ̄ε, d̄ε . �

Remark: The estimation of the ultimate bounds could be conservative for a given perturbation term H∆d + δ(ξ,∆t),
because the term 2ξTPBcδ(z,∆t) in Eq. (30) could be either positive or negative. Worse case analyses are done in
Eq. (30) and Eq. (49) by taking the inequality constraints, which may lead to a conservative estimation of the ultimate
bounds. The accurate ultimate bounds of a perturbed nonlinear system can be obtained via numerical simulations.

The disturbance rejection capability of a control method can be evaluated by the values of the ultimate bounds under
prescribed disturbance perturbations. In view of Eqs. (51, 54), the ultimate bounds Γξ and Γη are correlated to

1) System dynamics: Γξ and Γη are functions of δ̄ε , which is a gauge of the variation speed of the system dynamics
as can be seen from Eq. (27). When the system dynamics are fast, which indicates ‖ ∂[α(x)+B(x)u]∂x |0‖2 is large,
the sampling frequency should be higher to ensure a desired ultimate bound. This has been verified by many
application cases, for rigid airplane control, normally fs = 100 Hz is enough [9, 11, 12, 15], while fs = 1000 Hz
is needed when the elastic modes of flexible aircraft are included. The sampling frequency used by quad-rotor
UAV is fs = 512 Hz [13, 14]. For the applications on hydraulic systems, fs = 5000 Hz is desirable for controlling
the hydraulic forces [16, 17].

2) Disturbance intensity: This can be seen from the expressions for Γξ , Γη and definitions of d̄, d̄ε , that stronger
disturbances result into larger ultimate bounds.
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3) K gains: As shown in Eqs. (51, 54), both Γξ and Γη are monotonically increasing functions of µ2. From Eq. (50)
and the Lyapunov equation, it can be seen that larger K gains lead to smaller µ2, and resulting in smaller ultimate
bounds. Therefore, increasing K gains is beneficial for releasing the requirement on sampling frequency. As
discussed before, the K gains are constrained by actuation system limits. High gain control would also amplify
the measurement noise.

4) Sampling frequency: Recall Eqs. (28, 47), both d̄ε and δ̄ε can be reduced by increasing the sampling frequency.
When the sampling interval ∆t is sufficiently small, ‖∆d‖ ≤ ‖d‖. The main part of the disturbances d0 and the
model information can be reflected by the measurement of Ûξ0 and compensated by the controller, thus resulting
in marginal ultimate bounds. This is one feature that INDI distinguishes from Linear-Quadratic Regulator (LQR),
Proportional-Integral (PI) and NDI control methods, where normally the disturbances can only be reflected in
the measurement of states ξ , which is a integration of Ûξ0. Consequently, these control methods show inferior
disturbance rejection ability as compared to the INDI method. In practice, the sampling frequency is constrained
by the hardware.

5) Internal dynamics: It can be seen that the first term of Eq. (54) cannot be reduced by increasing the sampling
frequency, and is a function of d̄. This is because the internal dynamics are uncontrolled by the INDI method.
Moreover, being inspired by Lemma A.4, when only the origin of Ûη = f d(η, 0, 0) is ensured to be exponentially
stable or f d is not globally Lipschitz, constrains on both the initial condition and the disturbance intensity need
to be imposed to ensure the boundedness of states. This is presented as Corollary B.1. Therefore, the property of
internal dynamics are important for the stability and robustness of the system.

Corollary B.1 If ‖δ(ξ,∆t)‖2 ≤ δ̄ε is satisfied for all ξ ∈ Rρ, and the origin of Ûη = f 0(η, 0, 0) is exponentially stable,
then there is a neighborhood Dz of z = 0 and ε∗ > 0, such that for every z(0) ∈ Dz and (δ̄ε + d̄ε) < ε∗, the external
state ξ and internal state η of Eq. (48) are ultimately bounded by a class K function of δ̄ε, d̄ε and a class K function of
d̄, δ̄ε, d̄ε respectively.

The proof of Corollary B.1 is similar to the proofs of Proposition B.1 and Lemma A.4.

2. Robustness to Model Uncertainties
The model uncertainties considered in this section are classified into the regular perturbations, which are defined in

the nonlinear system perturbation theory as the perturbations that do not change the order of the nominal system, such
as negligible nonlinearities, parametric dispersions and variations. [5, 19].

There were few attempts on proofing the robustness of the INDI control method to aerodynamics model uncertainties,
where it was proved by using linear transfer functions derived from block diagrams that the model mismatches of the
control effectiveness matrix G(x) (or the generalized B(x)) can be eliminated [9]. However, the assumption of Ûx = Ûx0
is made in the block diagram, which is obviously incorrect since otherwise there will be no ∆u term. Besides, the
δ(z,∆t) term did not show up at all in previous proofs [9, 10, 13]. In view of these reasons, the robustness of INDI to
model uncertainties will be rediscussed here.

Considering the nonlinear system with relative degree ρ ≤ n transformed into internal and external dynamics given
by Eqs. (7, 8). The nominal NDI control to stabilize the system origin is given by

un = B−1(x)(ν − α(x)) = B−1(x)(−KT 2(x) − α(x)) (55)

which requires the model knowledge of α,B,T 2 (defined in Eq. (7)). When the control law is applied using the
approximated model as α̂, B̂, T̂ 2, the control input is given as

undi = B̂−1(x)(−KT̂ 2(x) − α̂(x)) (56)

and resulting in a closed-loop system as

Ûη = f 0(η, ξ)
ξ = Acξ + Bc[α(x) + B(x)B̂−1(x)(−KT̂ 2(x) − α̂(x))]
= [Acξ − BcKT̂ 2(x)] + Bc(α(x) − α̂(x)) + Bc(B(x)B̂−1(x) − I )(−KT̂ 2(x) − α̂(x))
= (Ac − BcK )ξ + BcK (T 2 − T̂ 2) + Bc(α − α̂) + Bc(BB̂−1 − I )(−KT̂ 2 − α̂) (57)
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where I ∈ Rm×m is an identity matrix. As compared to the nominal system given by Eq. (26), this closed-loop system
has three perturbation terms. Using Eq. (12), the nominal INDI control for stabilization is given by

∆uin = B(x0)−1(−KT 2(x) − y
(ρ)
0 ) (58)

when applied using estimated model as

∆uindi = B̂(x0)−1(−KT̂ 2(x) − y
(ρ)
0 ) (59)

The closed-loop system under INDI control is

Ûη = f 0(η, ξ)
ξ = (Ac − BcK )ξ + BcK (T 2 − T̂ 2) + Bcδ(z,∆t) + Bc(BB̂−1 − I )(−KT̂ 2 − y

(ρ)
0 ) (60)

The perturbation term BcK (T 2 − T̂ 2) is identical to the first perturbation term in Eq. (57). Since INDI control
based on the measurements or estimations of y(ρ)0 instead of the dynamic model α(x), then the model uncertainty term
Bc(α(x) − α̂(x)) is replaced by Bcδ(z,∆t) in INDI control. The influences of δ(z,∆t) become negligible when the
sampling frequency is high as indicated by Eq. (28).

The last term of Eqs. (57, 60) are mainly caused by the multiplicative uncertainties of the B(x) matrix. The last
term of Eq. (60) was incorrectly omitted in literature [9, 10, 13, 14], so the present paper will show that although this
term is a nonvanishing perturbation, its norm value is smaller than the norm value of the perturbation term under NDI
control. Moreover, its influences can be further weakened by decreasing ∆t.

Using the expression of ∆uindi , the last term in Eq. (60) is given by

Bc(BB̂−1 − I )(−KT̂ 2 − y
(ρ)
0 ) = Bc(BB̂−1 − I )B̂∆uindi = Bc(B − B̂)∆uindi (61)

with norm value ‖B − B̂−1‖‖∆uindi ‖, which can be reduced by increasing the sampling rate. On the contrary, using the
expression for undi , the last term in Eq. (57) is given by

Bc(BB̂−1 − I )(−KT̂ 2 − α̂) = Bc(BB̂−1 − I )B̂undi = Bc(B − B̂)undi (62)

with norm value ‖B − B̂‖‖undi ‖, which is independent of ∆t and normally larger than ‖B − B̂‖‖∆uindi ‖.
In summary, in the presence of model uncertainties, the norm value of the perturbation terms in the closed-loop

system under INDI control is smaller than that under NDI control, and can be further diminished by increasing the
sampling frequency. As a result, according to Lemma A.3, when the internal dynamics Ûη = f 0(η, ξ) is input-to-state
stable, the system using INDI control will result in smaller ultimate bounds. Besides, when only the origin of
Ûη = f 0(η, 0) is exponentially stable, system under the INDI control is easier to fulfill the boundedness condition δ̄ε < ε∗

as demonstrated by Lemma A.4.

3. Sensing and Singular Perturbations
The presented INDI control has shown promising inherent robustness to disturbances and the regular perturbations

without using any robust or adaptive control technique. There are other sources of perturbations that increase the order
of the system, such as actuator dynamics and higher-order elastic dynamics. These perturbations are classified into
Singular perturbations [5, 19]. Consider the singularly perturbed system model as [2]

Ûx = f (t, x, zp, ε), ε Ûzp = gz(t, x, zp, ε) (63)

where the perturbed dynamics are decomposed into reduced (slow) and boundary-layer (fast) dynamics. According
to the Tikhonov’s theorem [2], when the null (quasi) equilibrium states of both the fast and slow dynamics are
exponentially stable, there exists a constant εmax > 0 such that the null equilibrium of the singularly perturbed system is
exponentially stable for all ε < εmax . This parameter εmax > 0 is referred to as the Singular Perturbation Margin (SPM)
in literature [19], and is an equivalent to the Phase Margin (PM) of the Linear Time Invariant (LTI) systems in the sense
of bijective function [19].

Regarding the applications of INDI to aerospace system angular rate control problems, the sensing of angular
accelerations is needed. The angular accelerometer is already available in market, and a commonly used alternative
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way to obtain the angular accelerations is by differentiating the filtered angular rate signals [10–17]. There have been
legitimate concerns about the stability issue of this approach, and based on the above discussions, the system is able to
sustain sufficiently small lags caused by filtering and actuator dynamics. This proposes an interesting research question
of enlarging the SPM of the closed-loop system. Possible solutions could be using predictive filters [9] or actuator
compensator [20]. This research question will be further studied in future work.

IV. Numerical Example
Since there have been extensive numerical applications of aircraft [9, 15], helicopter [10], micro air vehicle [13]

and spacecraft [12] angular velocity control using INDI as the inner loop controller, this control structure will not be
repeated here. The numerical example in this section consider a rigid aircraft Gust Load Alleviation (GLA) problem,
where the vertical velocity is included in the inner loop INDI controller, provided the symmetrical aileron deflection
is available. This idea originated from [15], but this old INDI derivation also has the blemishes mentioned before.
Therefore, this problem will be resolved here.

The six Degrees of Freedom (6DoF) rigid aircraft dynamic equations of motion defined in the body frame is given by

ÛV f = −ω × V f +
F

m
, Ûω = −J−1ω × Jω + J−1M (64)

where V f = [Vx,Vy,Vz]T indicates the velocity of the aircraft c.g. relative to the inertial axis expressed in the body axis,
and ω = [p, q, r]T represents the angular velocity. m is the total mass and J is the inertia matrix. F and M are the
total forces and moments, which include the thrust, gravitational, control and aerodynamic forces and moments. The
aerodynamic forces and moments are perturbed by the atmospheric disturbances. Considering an aircraft flying through
a 2D symmetrical moderate vertical von Kármán turbulence field, with the turbulence velocity on each aerodynamic
strip independently given by Vw . The aircraft is flying through the turbulence field gradually, so that the gust velocities
on the tail is delayed as compared to the gust velocities on the wing, expressed as VgH = e−τsVgw , this setup allows the
gust penetration effect to be included. The configuration and parameters of this aircraft can be found in [15].

The state vector is given as x = [Vx,Vy,Vz, p, q, r]T with control inputs u = [δe, δr, δar, δal]T denoting the elevator,
rudder, right and left aileron deflections respectively. Define the outputs as y = [Vz, p, q, r]T and consider the output
tracking problem. Based on the derivations in Sec. II, the system is decoupled into four control channels with relative
degree one for each channel. Using Eqs. (18, 19, 23, 24) the INDI control law and resulting closed-loop system under
external disturbance perturbations is given by

∆u = B(x0)−1[−Ke − y
(ρ)
0 + r (ρ)]

Ûη = f d(η, e +R, d), Ûe = (Ac − BcK )e + H∆d + Bcδ(z,∆t) (65)

External states ξ = y according to Eq. (21) and there are two dimensional internal dynamics in this closed-loop
system. Although the input-to-state stability of the internal dynamics is not easy to prove, the analysis of the origin
stability of f d(η, 0, 0) is practical. The two dimensional submanifold for the zero dynamics is given by

Z∗ = {x ∈ R6, Vz = p = q = r = 0} (66)

Define A(t) = ∂f d

∂η |η=0, then η = 0 is an exponentially stable equilibrium point of f d if and only if it is an
exponentially stable equilibrium point of the linear system Ûη = A(t)η [2]. This allows the origin stability of the zero
dynamics been easily tested via linearization. The origin of Ûη = f d(η, 0, 0) has been tested to be exponentially stable
for this model, otherwise, additional thrust control loop with velocity feedback and side-slip angle control loop using
rudder can guarantee the stability of η for 6DoF aerospace systems.

According to Corollary B.1, the η and reference tracking error e can then be concluded to be ultimately bounded
under small perturbations. Moreover, the ultimate bounds have been proved to be monotonically decreasing functions of
K gains and the sampling frequency in Sec. III. The following simulation will test the fidelity of these conclusions when
actuator dynamics and limits are considered.

Set the references for [Vz, p, r]T to be their trim values [V∗z , 0, 0]T , and the reference signal for q is designed as a
sinusoid single with magnitude of 1.5◦/s and frequency of 1.5 Hz. Setting the initial condition as x(t = 0) = [0.5
m/s, 0◦/s, 2◦/s, 0◦/s]T , and design the gain matrix as K = a · I4×4. All the control surfaces are modeled as first order
systems with transfer function A(s) = 20

s+20 . The deflection limits of ailerons, elevator and rudder are ±35◦,±25◦,±25◦
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respectively. The rate limit for ailerons is 100◦/s and is 60◦/s for elevator and rudder. The simulation frequency
(difference from sampling frequency) is 2000 Hz, which is chosen to be sufficiently high to simulate the property of the
continuous dynamics in the real life. There are three sampling processes in this control law, namely the measurement of
the outputs Ûy0, y0 and the actuator position u0. The sampling frequency varies in the subsequent analyses. The block
diagram illustrate this control law considering the actuator dynamics is given by Fig. 1. The simulation results are
shown as Figs. 2-5.

Reference 
model




( )A s

1Z 

u
1B

u
K

[ ]r 

R

 
[ ]y 





1Z 





Fig. 1 The block diagram for reference tracking problem applied with actuator dynamics.
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Fig. 2 Pitch rate tracking responses and turbulence input.

As can be seen from Fig. 2, under all sets of controller parameters, the aircraft is able to track the pitch rate command.
When a = 3, the ultimate bounds for ∆t = 0.01 s is |eVz | = 0.23 m/s, |eq | = 0.30◦/s and degrade into larger ultimate
bounds of |eVz | = 0.68 m/s, |eq | = 0.85◦/s when the sampling interval increased into ∆t = 0.2 s, these phenomena
are illustrated by Fig. 3. Under the same sampling interval ∆t = 0.01 s, when the outer loop gains increased from
K = 3 · I4×4 to K = 8 · I4×4, the closed-loop system responses faster to the errors, and results into smaller ultimate
bounds, as shown in Fig. 2 and Fig. 3. The control surface deflections are illustrated by Fig. 4.

Fig. 5 shows the ultimate bounds of eVz and eq using various controller parameters. The tested sampling intervals
varies from ∆t = 0.001 s to ∆t = 0.2 s. As can be seen from Fig. 5, in general, for a given gain matrix K = a · I4×4, the
ultimate bounds decrease as the sampling interval decreases. This trend of decrease becomes slower around ∆t = 0.12 s
as the contour lines become sparser. Further decreasing the sampling interval does improve the performance but would
impose higher requirements on the hardware.

On the other hand, for a given ∆t, as a increases from a = 1 to a = 13, the ultimate bounds decreases first, reaches
a minimum around a ≈ 8, then shows a trend of increase as a further increases. As analyzed before, the ultimate
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Fig. 3 Tracking error responses.
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Fig. 4 Control surface deflections.

bounds will be smaller for larger K gains when ideal actuators are applied. However, larger gains would amplify the
measurement noise and lead to control surfaces saturations in practice, which degrade the performance for a > 8 and
potentially lead to divergence.

This simulation verified the ultimate boundedness of the states especially when the actuator dynamics and limits are
considered. The influences of K gains and the sampling frequency on the ultimate bounds are also verified.

V. Conclusions
In this paper, the INDI control law is reformulated without using the time scale separation principle. Three

problems, namely the input-output linearization, output tracking and input-to-state linearization in the presence of
external disturbances are considered, where INDI is generalized into not necessarily relative-degree-one problem with
consideration of the internal dynamics.

Using Lyapunov methods and nonlinear system perturbation theory, the stability of the closed-loop system using
INDI is then analyzed. It is proved that the norm value of the INDI perturbation term converges to zero when the
sampling interval trends to zero. The state of the closed-loop system is proved to be ultimately bounded by a class K
function of the perturbation bounds. There is no restriction of the perturbation value and the initial condition if the
internal dynamics is input-to-state stable (Lemma A.3). Otherwise, corresponding restrictions would appear as shown
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Fig. 5 The influences of sampling interval and outer loop gains on the ultimate bounds.

in Lemma A.4.
Moreover, in the presence of external disturbances, both the internal and external states of the closed-loop system

are proved to be ultimately bounded by class K functions (Proposition B.1, Corollary B.1). Disturbances are shown to
directly perturb the internal dynamics while perturb the external dynamics only by their increments, which is the reason
for the better disturbance rejection capability of the INDI method. The influences of the system dynamics, disturbance
intensity, K gains, sampling frequency and the internal dynamics property on the values of ultimate bounds are also
analyzed.

Besides, the robustness of the closed-loop system to regular and singular perturbations are analyzed. The INDI
control method was proved to have better robust performance under regular perturbations as compared to NDI without
using any robust or adaptive techniques. It can also resists certain region of singular perturbations.

Finally, the reformulated INDI control law is numerically verified by a rigid aircraft Gust Load Alleviation (GLA)
problem. The reference tracking errors are shown to be ultimately bounded when the INDI control law is applied
considering actuator dynamics and limits. The influences of the K gains and sampling frequency on the values of the
ultimate bounds are also demonstrated.

In conclusion, this reformulated INDI control law is promising for solving aerospace system control problems. The
way to enlarger the Singular Perturbation Margin (SPM [19]) of INDI can be recommended as future work.
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