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Abstract

Increased capabilities of additive manufacturing technologies have opened up numerous possibilities
in mandibular reconstruction surgery. For example, 3D scans can be used to design patient-specific
reconstruction plates, resulting in designs that are tailored to prevent plate fracture, wound dehiscence,
and malocclusion. However, screw loosening as a result of stress shielding is still an issue. This
phenomenon is caused by the mismatch in stiffness between the bone and implant material. The stiff-
ness of the titanium in these reconstruction plates can be reduced by using porous microstructures
in the proximity of the remaining mandible. However, this makes intuition-based design impossible.
This work applies computational tools to optimize the design of a mandibular reconstruction plate with
varying microstructure porosity. To achieve this, Topology Optimization (TO) is used that accurately re-
solves boundaries utilizing the Interface-enriched Generalized Finite Element Method (IGFEM), which
results in a smooth representation of the design. In this work, this methodology is enhanced to result in
an even smoother and more accurate boundary. Moreover, additions are made to account for varying
material properties in the analytical sensitivities of the compliance objective. The functionally graded
designs exhibit significantly higher compliance that should reduce stress shielding. Also, they feature a
more porous microstructure near the bone, providing a basis for bone ingrowth. Thus, it is established
that enriched TO can be used to optimize the design of mandibular reconstruction plates made out of
functionally graded materials that could reduce the risk of screw loosening.
Keywords— enriched finite element methods, topology optimization, level sets, functionally graded materials,
mandibular reconstruction
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1
Introduction

Oral and oropharyngeal cancer occurs in more than 450,000 cases worldwide [114] and the subsequent resection
surgery has a far-reaching influence on the lives of patients, both physically andmentally. Physically, because it can
lead to impaired masticatory function [42], which in turn could have a detrimental effect on the digestive system [83,
84]. Also mentally, because this condition and the subsequent surgery often alter the facial contour, making it less
symmetric. This side effect can lead to increased stress and anxiety levels and reduced self-confidence [108, 79].
Some patients even consider becoming a normal member of society again even more important than successful
resection of the tumour and the possibility of recurrences [66].

During the Second World War much experience was gained on mandibular reconstruction. For example, the
application of bone grafts originating from different bones in the body, like ribs, the fibula or the ilium [9] was first
proposed in this period. In 1989 the first work was submitted on sourcing a part of the fibula with surrounding soft
tissue to bridge a defect in the mandible, calling it a free flap instead of a bone graft [44]. This would later become
the “golden standard” in mandibular reconstruction [117, 29]. Using the fibular bone is desirable because of the
amount of available material and its quality. Also, both the vascularization in the surrounding soft tissue and the
nearby peroneal artery can provide nutrients to help osseointegration [37]. These favourable conditions all lead to
a high success rate, which in this case means there is no loss of the graft material. This success rate has been
reported to be up to 95% [20, 60, 107, 18]. However, this type of surgery is not always possible because of the
health of the patient [80]. Donor site morbidity and subsequent pain during walking have also been reported [4,
37, 61]. Furthermore, the slender form of the fibula means there is a discrepancy in the shape as compared to
the intact mandible. This makes the placement of dental implants more complex [3], in some cases even requiring
“double-barreling”, where two parts of the fibula are stacked on top of each other [62].

If, because of the reasons above, a reconstruction with tissue from the patient is not possible, titanium Arbeitsge-
meinschaft für Osteosynthesefragen (AO) mandibular reconstruction plates or Titanium Hollow Osseointegrating
Reconstruction Plates (THORP) are an established alternative that have been used since the 1980’s [61]. These
slender plates bridge the defect in the mandible and offer multiple holes for rigid fixation to the mandible using
screws. The type of screws represents the main difference between these two, with the THORP system using
perforated hollow screws in combination with an expansion bolt in the screw head. In contrast, the AO system
uses conventional titanium screws. The hollow screw heads allow bone to grow into them, resulting in a more
rigid fixation and not requiring the Reconstruction Plate (RP) to be pressed against the bone, which can lead to
pressure-induced bone necrosis [123]. Both systems are one-size-fits-all solutions. This not only makes them
reasonably affordable, but it also allows for stock-keeping, which results in less time required before an operation.
However, because these plates are not specifically manufactured to fit the patient, they need to be bent during
the operation by a surgeon to fit the remaining bone and to preserve the preoperative facial contour. This bending
results in residual stresses [78, 105], which combined with the fixation holes in the plate that cause stress con-
centrations [56, 80], can lead to failure of the plate by means of fracture. This type of mechanical failure occurs
in 3.6% to 10.7% of patients [56, 53, 105, 103]. Other modes of failure of an RP are screw loosening and wound
dehiscence and infection, while asymmetry, malocclusion and heat sensitivity have been reported as other com-
plications after this type of mandibular reconstruction surgery [90]. This is reflected by failure rates of RPs, which
have been reported to be anywhere in the range from 7% to 37% [53, 79, 105, 51].
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With increased capabilities in the field of small-scale manufacturing of parts made from biocompatible materials,
such as Selective Laser Melting (SLM) 3D printers that can use titanium alloys, possibilities have opened for
research on patient-specific solutions [81, 68, 63]. These custom-made parts improve on the conventional RPs
in cases where fibular free flap surgery is not an option. They can be designed to fit the shape of a 3D scan of
the patient’s remaining mandible and manufactured before the surgery. Because of this, no bending is required
during the operation, reducing both operation time and failure rate of the RP by means of plate fracture [130].
This reduced failure rate is due to the design only having holes at the required screw locations and fewer features
that cause stress concentrations. It also allows under-contouring of the design near locations with risk of wound
dehiscence [80] and a patient-specific fit that minimizes the risk of asymmetry and malocclusion. However, the
issue of screw loosening is still unsolved.

The key to solving the remaining issue of screw loosening is to analyze the stresses and strains acting in the RP
and the surrounding bone during typical mastication tasks. This is possible by means of Finite Element Analysis
(FEA) on a discretized model of the plate and the mandible, allowing the designer to predict the behaviour of a
design [80, 86, 85]. By using FEA, it was found that the introduction of a titanium RP significantly alters the stress
distribution in the mandible [94, 82]. In this changed situation, stresses are concentrated around the RP’s fixation
screws, removing local mechanical stimuli from other regions in the mandible [39]. This phenomenon is called
stress shielding [75, 113, 49, 86] and leads to increased bone porosity and resorption [119], which causes screw
loosening [32, 78]. Stress shielding is caused by a mismatch between bone and implant material [17, 21]. This
mismatch indeed occurs for mandibular RPs, as biocompatible titanium’s Young’s modulus is 116GPa [73, 36].
This is more than eight times that of cortical bone, which has a Young’s modulus of 13.7GPa. The discrepancy is
even larger when comparing it with cancellous bone at 0.4GPa [93]. This means there is a risk of stress shielding
and subsequent screw loosening in RPs, supported by accompanying failure rates ranging from 4.3% to 5%
accounted to screw loosening for conventional RPs [53, 79]. Failure rates of patient-specific plates due to screw
loosening have not been sufficiently studied.

A solution to this stress shielding problem can be found in nature, where a jump in stiffness occurs, for example
in the attachment of muscles to bone. The tendons that connect the two create a smooth transition in stiffness.
This happens by means of the microstructure of the tendon, where the shape and alignment of the collagen fibres
gradually change, influencing its stiffness [118, 96]. This variation is combined with the shape of the tendon,
widening at the connection point to the bone to maximize contact area yields optimal distribution of muscle forces
to the bone. Also, inspiration can be drawn from the structure of bone itself. During bending and torsion loads,
the outer shell of the bone experiences the majority of typical loads. This shell consists of the stiffer cortical bone
while the middle consists of the porous cancellous bone with lower stiffness and weight. This spatial variation of
the microstructure results in optimal stiffness while minimizing mass [41].

Designs similar to those found in nature have been proposed and used in the design of RPs for multiple bones in
the body. Various microstructures have been proposed to reduce the effective stiffness of implant material used
in bone reconstruction [124, 15, 45]. Also, a variable microstructure was used in a hip head replacement [58] to
distribute stresses along the bone-implant interface more evenly. The reduction of stiffness of the material is not
the only advantage that a porous microstructure brings, it also is more permeable to nutrients that are crucial for
bone regrowth [50, 8]. It can also aid osseointegration, where newly generated bone grows into the voids of the
structure, thus further improving the stability of the plate and load transfer during recovery [55, 129].

However, the balance that this functionally graded design needs to strike is very fine, as it needs to withstand typi-
cal loads while being flexible enough to prevent stress shielding [47, 67]. The complexity of this problem makes it
impossible to design a functionally graded RP purely on intuition. An alternative is to apply computational design
tools such as Topology Optimization (TO) to survey the design space. TO has been used to design mandibular
RPs to ensure mechanical stability [73, 68]. Research has been done on using TO structures with varying mi-
crostructures [132, 112], showing it can be used to obtain an optimal distribution of material for such a problem.
However, to the best of our knowledge, TO has not been used to design functionally graded mandibular RPs to
reduce stress shielding. Using this approach could result in a design that not only can sustain the forces during
mastication, but also prevent wound dehiscence, asymmetry and stress shielding that lead to screw loosening,
thus inhibiting the most prevalent modes of plate failure.

The goal of this work is to apply TO to design a RP that bridges a mandibular defect, using a functionally graded
material. To achieve this, TO based on the Interface-enriched Generalized Finite Element Method (IGFEM) is
used. This method uses local subdivision of elements and an enriched definition of the Finite Element Method
to yield a smooth description of the material boundary [109]. It has been used for compliance minimization [12],
but also for fields where a smooth boundary representation is crucial, such as bandgap maximization in phononic
crystals [13], designing nanophotonic devices [7], and for tailoring fracture resistance in brittle materials [131].

This work builds on that of van den Boom et al.[12] and uses the same FEA, objective function, and geometry
description. To enhance the framework, we introduce a quadratic approximation for the boundary location along
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element edges. This, in combination with regularization by means of periodic reinitialization of the level set function,
results in an even smoother boundary representation. Since these improvements focus on the representation of the
boundary, they can be implemented on any type of enriched TO. Also, a functionally graded material is introduced
that represents variations in microstructure porosity and geometry. Such a material results in a more compliant RP
with the material being distributed towards the remaining bone. The resulting design provides nearby bone with a
porous basis that promotes bone ingrowth.



2
Work

2.1. Improving on IGFEM level set-based TO
2.1.1. Representation of a design by the level set function
In TO, there are different ways in which to connect the design variables to the actual design that one tries to
optimize. In density-based TO, the design variables are, as the name suggests, related to a density field. This
density field determines whether an element is part of the design domain or not, like for example with the Solid
Isotropic Material with Penalization (SIMP) method [6]. However, in this work the design is represented by a Level
Set Function (LSF) ϕ(x) [104, 121]. This function varies through the design domain and can be both positive and
negative, dividing the design domain Ω as follows:


ϕ(x) = 0, if x ∈ Γm ,

ϕ(x) < 0, if x ∈ Ωs ,

ϕ(x) > 0, if x ∈ Ωv .

(2.1)

The zero contour represents a material boundary Γm, where the material domain Ωs is in contact with the void
domain Ωv. This allocation into different domains is visualized in Figure 2.1. At the start of every design iteration
of the optimization, the value of the LSF at each node in the mesh is stored in a vector ϕ. After the initialization
of these nodal level set values, every element edge is analyzed to check for a sign change in the LSF. If this is
indeed the case, the element edge and thus the element is crossed by Γm.

It is possible to represent the design directly via nodal level set values ϕ and interpolate the LSF between these
nodes. However, an alternative is to place design variables more sparsely across the design domain and construct
the LSF as a superposition of basis functions [100], for example, Radial Basis Functions (RBFs) [65, 24]. In this
work, a compactly supported RBF is used [122]. How this function spreads the influence of design variables can
also be seen in Figure 2.1. The equation for the compactly supported RBF is defined as

θi(ri) = (1− ri)
4(4ri + 1) , (2.2)

where the radius ri is the normalized Euclidian distance between the location at which the function is analyzed
and the base of the RBF xi:

ri(x,xi) =

√
∥x− xi∥
rs

, (2.3)

and rs is the radius of the support. Equation (2.2) shows some desirable behaviour, as its output ranges between
0 and 1 by definition and its region of influence can be adjusted as desired. By increasing the region of influence,
one design variable influences a larger part of the design domain. This can allow for the optimizer to take larger
steps, which leads to quicker convergence of the optimization [12]. The RBFs also give control over the complexity
of designs [12]. Moreover, this method decouples the mesh from the design variables. This means that a finer
discretization can be used if desired, resulting in a reduced design space. With these definitions, the value of the

4
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si

x →ϕ
→

Ωs

Ωv

Γm

ϕ(x)
ϕi

Figure 2.1: One-dimensional representation of the design domain Ω, decomposed into Ωs, Ωv and Γm by means of the LSF,
as described in Equation (2.1). In this figure, the black lines are the RBFs that span the influence of design variables si. The

LSF is represented by the solid red line. However, during most computational procedures only the nodal level set values ϕi are
known, as depicted by the red dots.

LSF at any location x in the design domain can be found by adding the contribution of every design variable whose
corresponding RBF is nonzero at x, represented by index set ιs:

ϕ(x) =
∑
i∈ιs

θi(x)si . (2.4)

To reduce computational cost during the optimization, the contribution of each RBF on every mesh node in the
analysis can be calculated in advance and stored in a matrix θ. This calculation needs to be carried out only once,
after which the level set values can be found using the simple matrix multiplication:

ϕ = θ⊺s , (2.5)

where s is a vector with all the design variables. Note that the calculation of the contributions of each RBF in
advance is only possible if there is no remeshing done during the optimization. Remeshing can move and add
mesh nodes and hereby change the influence that nodes encounter from each RBF in matrix θ. This circumvention
of remeshing is possible by using the Interface-enriched General Finite Element Method (IGFEM) to solve the finite
element problem, which is discussed in more detail in Section 2.1.2.

Note the smoothing behaviour of the RBFs in Figure 2.1. Also note that equation (2.5) clearly shows the decoupling
of the nodal level set values of the mesh with respect to the design variables. For any set of design variables s
combined with RBFs with a radius rs, any mesh can be used to discretize this design. To do this, the matrix
θ⊺ needs to be calculated to connect s and ϕ for this combination of mesh and RBFs. This means that a finer
mesh can lead to a more accurate approximation of Γm, like increasing the number of nodal level set values ϕi

in Figure 2.1. This interaction can be done while keeping the same number of design variables and only requires
the recalculation of θ.

2.1.2. The Interface-enriched Generalized Finite Element Method
Now that the design can be represented, an elastostatics problem such as the one described in the schematic in
Figure 2.2 needs to be solved to find displacements, stresses σ and strains ϵ in the material. The weak form of
such a problem can be written as

B(u,w) = L(w), ∀w ∈ E , (2.6)

where the bilinear form B is defined as

B(u,w) =

∫
Ω

ϵ(w) : σ(u) dΩ , (2.7)
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ΩvΩsΓm

ΓN

ΓD

Figure 2.2: A mechanics potato to depict all relevant domains in the design domain Ω. Material domain Ωs, void domain Ωv ,
and material interface Γm are defined as stated in equation (2.1). Essential and natural boundary conditions, ΓD and ΓN

respectively, are prescribed on sections of the boundary of Ω

and the linear form L as

L(w) =

∫
Ω

w · b dΩ +

∫
Γ⊺
w · t̄ dΓ . (2.8)

In these equations, u is the displacement and E is a test function space that satisfies the essential boundary
condition. Furthermore, σ(u) follows from Hooke’s law for linear elastic materials, σ(u) = D : ϵ(u), where D is
the constitutive tensor and ϵ(w) = (∇w + ∇u⊺) is the linearized strain tensor. Finally, b and t̄ represent body
forces and boundary tractions on the domain Ω.

To solve Equation (2.6), the correct displacement field and test functions u and w need to be found. To make
this more practical, the problem can be transformed into a finite-dimensional problem using a Galerkin projection.
The solution to this new problem may not be exact any more. However, the domain can now be discretized and
described by means of a Finite Element (FE) mesh. The resulting finite-dimensional problem is now

∑
i=m,w

∫
Ωi

ϵi(wi) : σi(ui) dΩ =
∑

i=m,w

∫
Ωi

wi · bi dΩ +

∫
Γ

wi · t̄ dΓ . (2.9)

The trial solution to this problem can be written as

uh(x) =
∑
i∈ιh

Ni(x)Ui , (2.10)

with shape functions Ni that interpolate the value of the solution between mesh nodes that correspond to degrees
of freedom (DOFs) Ui, which for an elastostatics problem represent nodal displacements. However, there is
a problem with the solution given by Equation (2.10). This solution assumes the displacement field U can be
accurately interpolated using shape functions Ni, which are in this case linear. But as stated in Section 2.1.1,
there will be no remeshing to enable the use of a static representation of θ. This means the material interface Γm

will cross the mesh in elements with the corresponding index set ιc. At this crossing, there will be a discontinuity
in the gradient of the displacement field, which cannot be represented by just the linear shape functions. Using
this method would result in reduced accuracy of the solution to Equation (2.6).

This is where IGFEM offers an elegant solution [109]. For the elements in the index set ιc, the location at which
Γm crosses the element edges can be found by finding the zero of the LSF. At these locations, new nodes are
placed that are part of index set ιw, which are shown as blue circles in Figure 2.3. These nodes are associated
with enriched DOFs αi and enrichment functions ψi. The behaviour of such a function is also illustrated in Fig-
ure 2.3. These enrichment functions are local by construction, so their contribution is only nonzero in these crossed
elements. They can also describe the discontinuity in the gradient of the displacement field across Γm.

Every enriched node is placed along the FE mesh edges where ϕ(x) = 0. To ensure correct integration of the
newly added enrichment functions, each crossed element in index set ιc is subdivided into integration elements
that do conform to Γm, while not moving the original FE mesh nodes. This means that the calculation of nodal
level set values from Equation (2.5) can now be used. The enriched approximation that replaces the trial solution
in Equation (2.10) is
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αi

ψi

Γm

Figure 2.3: Enrichment function ψi in an element that is crossed by a material interface Γm, represented by the blue line. This
function is multiplied with enriched DOF αi, which corresponds to enriched node i that is represented by the blue circle. Note

that the crossed element is subdivided into three integration elements that conform to Γm

uh(x) =
∑
i∈ιh

Ni(x)Ui +
∑
i∈ιw

ψi(x)αi . (2.11)

Now that the form of the solution is known, the elastostatic problem is transformed into a system of equations
KU = F for ease of computation. In this equation, U is a vector with the nodal displacements and values of
the enriched DOFs. The stiffness matrix K and force vector F can be assembled using standard finite element
assembly:

K = A
i∈ιA

ki , (2.12)

and

F = A
i∈ιA

fi , (2.13)

respectively. Here, A denotes the standard finite element assembly operator and ιA is the index set of all inte-
gration elements and all original elements in the FE mesh that are not intersected by Γm. For the integration
elements, assembly of ki and fi happens using an isoparametric procedure to map it onto its parent element that
was intersected by Γm. In this case, the integration element’s local stiffness matrix is defined as

ke =

∫
△
jeB

⊺DB dξ . (2.14)

In this equation, △ is the integration element’s reference triangle, je is the determinant of the Jacobian of the
isoparametric mapping of the integration element and D is the material constitutive matrix. Also, B is the strain-
displacement matrix that is defined asB = [∆N1 ∆N2 . . . ∆Nn ∆ψ1 ∆ψ2 . . . ∆ψm] and ξ is the referencemaster
coordinate of the parent element. Note thatB is comprised two parts, one is from the n linear shape functions and
the other from the m enrichment functions, the differential operator ∆ is defined as

∆⊺
ξ =

[
∂
∂x

0 ∂
∂y

0 ∂
∂y

∂
∂x

]⊺
, (2.15)

for 2D and

∆⊺
ξ =


∂
∂x

0 0 0 ∂
∂z

∂
∂y

0 ∂
∂y

0 ∂
∂z

0 ∂
∂x

0 0 ∂
∂z

∂
∂y

∂
∂x

0


⊺

, (2.16)

for 3D. The integration element’s local force vector is defined as

fe =

∫
△
je

[
N
ψ

]
b dξ +

∫
△∩ΓN

je

[
N
ψ

]
t dξ , (2.17)
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where b is the body force on the integration element and t are the tractions working on the sides of the integration
elements that intersect ΓN . In conclusion, by using this enriched formulation, the solution of an elastostatic problem
can be found with no need for remeshing of the domain to make the discretization conform to Γm. For more detail
on the IGFEM formulation, the reader is referred to [109].

2.1.3. Topology optimization procedure with IGFEM
With a method to find the displacements, and subsequently the stresses and strains in the domain by solving
KU = F, the design should be optimized using TO. In order to do this efficiently, a gradient-based optimization
scheme is used [12]. In short, the following problem needs to be solved to minimize the compliance C = U⊺KU
of a structure:

s∗ = argmin
s

U⊺KU ,

subject to KU = F ,

|s| ≤ 1 ,

Vs / VΩ ≤ Vc .

(2.18)

For this problem, the maximum allowed magnitude of the design variables is set to 1 and a constraint is set to
keep the volume fraction of the material domain in Ω, i.e. Vs / VΩ, below or equal to Vc. To find the optimal design
step, the derivative of the compliance objective and volume constraint with respect to the design variables s must
be found. Since the compliance objective is self-adjoint [98], the sensitivity of C with respect to design variables s
can easily be found by applying the chain rule

∂C

∂s
= −U⊺ ∂K

∂s
U+ 2U⊺ ∂F

∂s
. (2.19)

However, finding ∂K/∂s and ∂F/∂s is more involved. One can think of it like this: if one were to change one design
variable, this would influence level set values in the vicinity of its corresponding RBF, represented by ∂ϕj/∂si.
These changed level set values move Γm and thus the locations of enriched nodes that are nearby, described
in the term ∂xn/∂ϕj . This finally changes connected integration elements’ stiffness matrices and force vectors,
∂ke/∂xn and ∂fe/∂xn. By applying this reasoning, the sensitivity of the compliance can be written as

∂C

∂si
=
∑
j∈ιi

∑
e∈ιj

∑
n∈ιn

(
−u⊺

e
∂ke

∂xn

∂xn

∂ϕj
ue + 2u⊺

e
∂fe
∂xn

∂xn

∂ϕj

)
∂ϕj

∂si
. (2.20)

In this equation, a summation is done over every conventional mesh node j where the RBF corresponding to design
variable si is nonzero, represented by index set ιi. For each of these nodes, a summation is done over every
integration element e that is connected to node j, which corresponds to index set ιj . Finally, for every integration
element e, a summation is done over index set ιn, which represents every enriched node in the connectivity of
integration element e.

Note that the sensitivity of the objective is nonzero only in the neighbourhood of Γm because this is where enriched
nodes are placed. A consequence of this is that all initial designs in an optimization problem must have enriched
nodes, which means the void domain Ωv may not be empty. Also, ∂ϕj/∂si is the value of the RBF corresponding
to design variable si at node j. This value can be found in matrix θ from Equation (2.5). This value, as stated
before, is calculated in advance.

From Equation (2.20), the derivative of the integration element’s stiffness matrix ke can be found by applying the
chain rule to Equation (2.14), assuming that D is constant through Ωs, resulting in

∂ke

∂xn
=

∫
△

(
∂je
∂xn

B⊺DB+ je
∂B⊺

∂xn
DB+ jeB

⊺D
∂B

∂xn

)
dξ . (2.21)

The derivative of the local force vector can be found similarly, which leads to

∂fe
∂xn

=

∫
△

(
∂je
∂xn

[
N
ψ

]
b+ je

[
∂N/∂xn

0

]
b

)
dξ +

∫
△∩ΓN

(
∂je
∂xn

[
N
ψ

]
t+ je

[
∂N/∂xn

0

]
t

)
dξ . (2.22)
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Figure 2.4: Example of the linear shape functions and the resulting linear approximation of the LSF along an element edge,
compared with ϕ(x) itself along the same edge. The locations at which both ϕ̄ and the LSF change signs are depicted by black

crosses.

Note that in the second term of each integral, the contribution of the enrichment functions is zero. This is due to
the local construction of the enrichment functions, which means they are not influenced by the enriched node’s
location in global coordinates.

2.1.4. Linear interpolation of the LSF
The last term in Equation (2.20), is ∂xn/∂ϕj , which is also known as the design velocities. This term describes
the movement of an enriched node on material interface Γm due to a change in a nodal level set value. The value
of this derivative depends on the location of the enriched nodes, which are placed along every edge of elements
in index set ιc that is intersected by Γm. One may consider one such edge between FE mesh nodes i and j. On
this edge, a normalized coordinate τ = ∥x− xi∥/∥xj − xi∥ is defined that is zero at node i and one at node j. By
using linear shape functions to interpolate between nodal level set values ϕi and ϕj , an approximation of the LSF
can be made along this edge:

ϕ̄(τ) = (1− τ)ϕi + τϕj . (2.23)

Since this element edge is intersected by Γm, the signs of ϕi and ϕj are opposite. At the location where the LSF
is zero, an enriched node must be placed. According to the linear approximation ϕ̄(τ) from Equation (2.23) the
normalized coordinate of the enriched node is

τn = − ϕi

ϕj − ϕi
. (2.24)

This approach is visualized in Figure 2.4. The global coordinate of this enriched node can be found with the inverse
mapping between τ and x, which is

xn = xi −
ϕi

ϕj − ϕi
(xj − xi) . (2.25)

Note that only after placing the enriched nodes at these locations, the discretization of the problem is complete
and the representation of Γm can be made. This linear approximation means that differentiation of this location
with respect to the nodal level set value of node i is straightforward:

∂xn

∂ϕi
= − ϕj

(ϕj − ϕi)2
(xj − xi) . (2.26)

With all terms in Equation (2.20) defined, there is gradient information for the optimizer to try and find a solution
to Problem (2.18). The optimizer uses the Method of Moving Asymptotes (MMA) [115] to find the next design
iteration. For this MMA, the Lagrange multiplier that is used in the subproblem to force the constraints is set to a
value of 10 and a move limit is set to prevent Γm from moving too fast. This approach was also used by van den
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Figure 2.5: Initial design of the MBB problem. The white circular inclusions are part of Ωv . The elements in this domain are not
shown in the figure, but they are analyzed in the FEA. On the left side, a symmetry condition is applied and the same is done

for a downward force t̄ on the top-left corner. The bottom-right corner is vertically supported.

Figure 2.6: Optimized design of the MBB beam problem while using IGFEM level set-based TO, with a magnified view of the
zigzagging behaviour in the representation of Γm. The interface should be smooth because of the use of RBFs.

Boom et al. [12] and resulted in a smoother representation of the geometry compared to density-based methods.
However, their work also stated a problem regarding the surface of designs. If the number of design variables was
not sufficiently reduced compared to the number FE mesh nodes, zigzagging of the material interface was visible.
This zigzagging was attributed to an approximation error, with the mesh being too coarse to accurately describe
the deformations and stresses in the structure. This inconsistency in the surface was, among other examples,
shown for the well-known MBB beam problem.

We study this problem on a domain of size 3L× L. On the left side of the domain, there is a symmetry condition,
while on the top-left corner a downward pointing force t̄ is applied. The bottom-right corner of the domain is
vertically supported and for the optimization problem, the maximum allowed volume Vc = 55% of the domain. The
material in Ωs has a Young’s modulus Es = 1 and a Poisson’s ratio νs = 0.3. The void domain Ωv has a Young’s
modulus Ev = 10−6 and the same Poisson’s ratio. The mesh consists of 150× 50× 2 triangular elements. Since
the problem is most prominent when the number of design variables is not reduced, an RBF is placed at each FE
mesh node. Each RBF’s support radius is rs =

√
2a and the move limit set for the MMA is 0.001. The initial design

is depicted in Figure 2.5. The optimized design and the reported zigzagging can be seen in Figure 2.6.

2.1.5. Improved location approximation of zeros of the LSF
By plotting the LSF along the element edges, a possible cause other than a coarse mesh can be found. As the
RBFs spanning the LSF are nonlinear, the linear approximation of this function can give difficulties if the diameters
of the RBFs are not sufficiently large. This can be seen by the discrepancy between the zeros of ϕ(x) and ϕ̄ in
Figure 2.4. The use of larger RBF diameters rs could solve this, but this approach would result in a loss of fine
detail in possible designs.

A solution to this incorrect node placement could be to apply a minimization problem on |ϕ(x)| along the crossed
element edges. Since the definition of the LSF in Equation (2.4) is smooth, this minimization problem is viable. As
a proof of concept, the final design in Figure 2.6 was used to interact with the same mesh of 150× 50× 2 triangles.
However, this time the enriched nodes were not placed at the location described by Equation (2.25). Instead, the
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Figure 2.7: The same optimized design of the MBB problem from Figure 2.6. However, for this figure, the enriched nodes were
placed at the location where |ϕ(x)| is minimized using the bisection method. Note the absence of the zigzagging effect. This
shows that the representation of Γm using spanning design variables with RBFs is indeed smooth. The blue magnified view

also shows a hole that has nucleated during the optimization. This hole, although smaller, is also present in Figure 2.6

bisection method was used to find the minimum of |ϕ(x)| along every crossed edge and an enriched node was
placed at this location. The result of this approach is depicted in Figure 2.7 and it shows that indeed the new
representation of the material interface Γm is smoother than before.

However, an approach based on minimization methods is not differentiable with respect to a nodal level set value
and thus design velocities cannot be calculated this way. An alternative is to add an extra control point k at
the midpoint of each element edge to set up a quadratic approximation of the LSF instead of the linear one in
Equation (2.23). The value of the LSF at these locations follows from Equation (2.4). Moreover, because the
locations of these midpoints are fixed, the relation between their level set value and the design variables can be
stored in a matrix in the same manner as in Equation (2.5). With this extra control point and corresponding ϕk, a
new normalized coordinate ζ is introduced that now is −1 at node i while it still is 1 at node j. This new mapping
is defined as

ζ(x) = 2
|x− xi|
|xj − xi|

− 1 . (2.27)

With the new mapping, quadratic shape functions can be used to interpolate the nodal level set values, so that the
quadratic approximation of the LSF along the element edge is

ϕ̂(ζ) =
ζ(ζ − 1)

2
ϕi − (ζ + 1)(ζ − 1)ϕk +

ζ(ζ + 1)

2
ϕj . (2.28)

Note that this can be expressed in the form aζ2 + bζ + c, the zeros of which are ζn =
(
−b±

√
b2 − 4ac

)
/ (2a).

Moreover, this quadratic approximation can have at most two of these zeros. If ϕi and ϕj have opposite signs,
there can only be one zero along the element edge. As before, if there is a sign change detected along an element
edge, an enriched node must be placed. This time the enriched node is placed at the location where ϕ̂(ζ) = 0,
which is at the locations

ζn =
−ϕi + ϕj ±

√
8ϕk (−ϕi − ϕj + 2ϕk) + (ϕi − ϕj) 2

2 (−ϕi − ϕj + 2ϕk)
. (2.29)

Since only one of these zeros is on the element edge, i.e. −1 ≤ ζn ≤ 1, the enriched node is placed at the location
that satisfies this condition. The global location of this enriched node xn and its partial derivatives with respect to
the nodal level set values ϕi, ϕj and ϕk are trivial to find, and are stated in Appendix A. A problem that arises is
that the extra derivative ∂xn/∂ϕk cannot be added directly to the sensitivity of the objective. The midpoints do not
correspond to shape functions in the mesh, which means ιj in Equation (2.20) is empty and there are no integration
elements in the support of these nodes. However, every midpoint k is by definition on the edge between nodes i
and j. Thus the integration elements in the support of point k, represented by index set ιm, can be considered to
be the intersection of the supports of nodes i and j (i.e., ιm = supp(Ni) ∩ supp(Nj)). To add the contribution of
the new control point to the sensitivities, a summation must be done over every midpoint in index set ιk at which
the RBF corresponding to design variable si is nonzero. For every midpoint m in this set, a summation is done
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Figure 2.8: The quadratic shape functions and the resulting quadratic approximation ϕ̂ of the LSF along an element edge,
compared with ϕ(x) along the same edge. The zeros of both the LSF and ϕ̂ are again depicted by black crosses. However, the
new location of the enriched node is closer to the exact zero compared to the linear approximation of the same element edge in

Figure 2.4.

over all integration elements e in index set ιm. With this reasoning, the compliance objective’s sensitivity when
using a more quadratic approximation of the LSF to place enriched nodes is

∂C

∂si
=
∑
j∈ιi

∑
e∈ιj

∑
n∈ιn

(
−u⊺

e
∂ke

∂xn

∂xn

∂ϕj
ue + 2u⊺

e
∂fe
∂xn

∂xn

∂ϕj

)
∂ϕj

∂si
+

∑
m∈ιk

∑
e∈ιm

∑
n∈ιn

(
−u⊺

e
∂ke

∂xn

∂xn

∂ϕm
ue + 2u⊺

e
∂fe
∂xn

∂xn

∂ϕm

)
∂ϕm

∂si
.

(2.30)

2.1.6. Verification of the analytical sensitivities
To verify the implementation of this new enriched node placement and the subsequent addition to the objective
sensitivities, the analytically computed sensitivities ∂C/∂si are compared to numerically computed central finite
differences C

′
i . This comparison is done by finding the relative differences δi between the two. This is done for

multiple design variables with nonzero sensitivities and a range of step sizes. The relative differences are defined
as

δi =
C′

i − ∂C/∂si
∂C/∂si

. (2.31)

This comparison is conducted on a simple problem that was also used by van den Boom et al. [12]. In this problem,
a 2L × L domain is optimized, the domain is visualized in Figure 2.9. This domain is fixed on the left side and
a downward pointing force t̄ is applied to the bottom right corner. The FE mesh consists of 12 × 6 × 2 triangular
elements that are placed in a point-symmetric manner around the middle of the domain. The initial design’s void
domain consists of 3 circular holes. The RBF’s support radius is rs =

√
2a, where a is the diameter of the largest

circle that can fit inside any of the triangular elements. The material in Ωs has a Young’s modulus Es = 1 and a
Poisson’s ratio νs = 0.3. The void domain Ωv has a Young’s modulus Ev = 10−6 and the same Poisson’s ratio.

The result of this finite difference analysis with the new enriched node placement can be seen in Figure 2.10. It
is visible that this new method of enriched node placement yields sensitivities that have a region of step sizes
where these sensitivities converge to their counterpart that are found by means of central finite differences. This
means that the sensitivities introduced in Equation (2.30) to the objective sensitivities yield correct results and this
improved method of enriched node placement can be used for TO in combination with level set-based IGFEM.

2.1.7. Application to the MBB beam problem
Following this result, the new approach is applied to the same MBB beam problem, so that the final design can be
compared to the one shown in Figure 2.6. The final design of this optimization problem with the new enriched node
placement can be seen in Figure 2.11. It shows that the representation of Γm is indeed smoother than before.
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Figure 2.9: Simple problem for comparing the analytically computed sensitivities ∂C/∂si with the central finite differences C′
i .

Nodes on the left edge of Ω are fixed, while a downward pointing force is applied on the bottom-right corner of the domain. The
elements that are light grey are part of the void domain Ωv .
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Figure 2.10: Relative differences δi as a function of the step size ∆si for the numerically computed central finite differences
C

′
i . The definition of δi can be found in Equation (2.31).

Figure 2.11: Final design of the MBB beam problem with the improved method of enriched node placement using a quadratic
approximation of the LSF. Included is a magnified view of the reduction of the zigzagging behaviour in the representation of Γm.
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Figure 2.12: The convergence behaviour of optimizations with the linear and quadratic methods of enriched node placement
applied to the MBB beam problem. Note that the optimization that uses a linear approximation of the LSF converges slightly

quicker and has a slightly lower compliance C. Gradients
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Figure 2.13: Magnitude of the gradient of the LSF for the design in Figure 2.11. The uneven colouring indicates the existence
of peaks and valleys in the LSF.

However, there is still some zigzagging visible in the optimized design. Even the proposed, more advanced ap-
proximation of the location at which enriched nodes need to be placed, can be insufficient on some FEmesh edges
in Ω. This suggests that in some regions the LSF still behaves too erratic. The convergence behaviour for this
optimization problem with both linear and quadratic enriched node placement can be seen in Figure 2.12. It is
worth mentioning that the initial design in Figure 2.5 occupies almost exactly 55% of the design. This means that
for both optimizations, the volume fraction is almost constant. One can also see that the newly proposed method
is converging slightly slower towards the minimized compliance. Moreover, the final compliance with this quadratic
enriched node placement is slightly higher than its linear counterpart. This can be seen in the magnified view in
the bottom-right corner of the figure.

2.1.8. Regularization of the LSF
Apart from the remaining, although reduced, zigzagging, there is another problem that remains. During the opti-
mization process, sometimes new holes are nucleated, which can be seen in Figure 2.7 and has been reported in
literature as a feature in some level set methods [76]. However, in the method used in this work should not be able
to create these new holes [12]. This is supported by Equation (2.20), where the sensitivity is dependent on the
derivative of the location of enriched nodes with respect to nodal level set values. This implies that sensitivities are
only nonzero in the vicinity of Γm. Thus the interface can only be moved and not created in the domain without the
use of for example topological derivatives [2]. This means that the nucleation of these holes is a numerical artefact.
A cause of this behaviour can be found when analyzing the magnitude of the gradient of the nodal level set values
∇ϕ = [∂ϕ/∂x, ∂ϕ/∂y] in the final design from Figure 2.11. This plot of |∇ϕ| which can be seen in Figure 2.13.

The patches in |∇ϕ| indicate variations in the field, which correspond to peaks and valleys in the LSF itself. These
local extrema push or pull the material interface, which is undesired. When comparing this figure to Figure 2.14,
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Figure 2.14: Magnitude of the gradient of the LSF for the initial design of the MBB beam problem in Figure 2.5. Note that all
values of |∇ϕ| in the neighbourhood of Γm are equal to 1, indicating a more well-posed problem.

where the same field has been plotted for the initial design of the MBB beam, one can see that this is not initially
the case. Here, one can see the LSF in another light. |∇ϕ| = 1 through the whole domain, except in the middle
of the initial voids and in locations that are equidistant to multiple void centres. This constant gradient indicates
that the magnitude of the LSF keeps increasing when moving away from the material interface Γm. Because of
this property, ϕ(x) can also be seen as the signed distance from any location x to Γm. However, as the MMA
starts changing the design variables to minimize the objective function, the LSF appears to lose this property. This
irregular gradient has been reported to cause problems during the optimization, like convergence to suboptimal
local minima [24] and numerical artifacts [121]. Furthermore, the gradient of the LSF along the zero-level contour
can heavily influence the convergence rate of the optimization process [1, 23].

One solution that has been suggested is the application of a regularization scheme on the LSF or its sensitivities.
A range of these methods have been reported in literature [40, 24, 74]. In this work, regularization by means of
reinitialization of the LSF is used to maintain the physical meaning of nodal level set values and make it a signed
distance function with |∇ϕ| = 1 again [125]. One exception to this is further away from the material interface. The
signed distance function is clipped above and below the threshold of ±4a, where a is again the diameter of the
largest circle that can fit inside any of the triangular elements. This clipping prevents excessively large nodal level
set values, thus avoiding design variables outside the bounds set in Problem (2.18) and keeping the MMA from
having to enforce this constraint.

Because of the IGFEM formulation, this method is fairly straightforward to implement. During the subdivision of
elements that are crossed by Γm into integration elements, lower dimensional elements are created that conform to
the material interface. These elements can be used to apply immersed boundary conditions [11]. Because of these
elements, the updated nodal level set value at every FE mesh node can be defined as the smallest distance from
this node to its projection on any lower-dimensional element along Γm. This updated set of level set values can
then be updated into design variables by solving Equation (2.5) while using the newly updated vector ϕ. Although
this method of regularization is relatively straightforward, it is computationally expensive. Because of this reason,
the decision was taken to reinitialize the LSF only periodically. Another reason to take this approach is to change
the interface as little as possible. If the number of design variables is less than the number of FE mesh nodes,
not every combination of level set values can be represented by the design variables. This means there is a risk
of not preserving the zero-level set contour. Reducing the frequency of reinitialization steps minimizes the risk of
negative effects that it could cause.

To test this method of regularization of the LSF, the same MBB beam problem from Figure 2.5 was solved while
applying different reinitialization frequencies. Reinitialization happened every 5, 10, 15 and 20 iterations and, as
before, the optimization was terminated after 100 iterations. For these final designs in Figure 2.15, another ad-
vantage can be seen: the material interface is even smoother than that seen in Figure 2.11. This indicates that
the regularization results in a smoother LSF, which means that enriched nodes can be placed more accurately
along element edges that are intersected by the zero contour of the LSF. However, Figure 2.15a also shows that
reinitializing the LSF too frequently can have a detrimental effect as well. During this optimization, an extra strut
is added to the structure on the left side of the domain. On the other hand, Figure 2.15d shows the uncontrolled
nucleation of a new hole again, which is also visible in Figure 2.7. This indicates that a reinitialization interval of
20 iterations is too large to prevent the nucleation of new holes.

From the convergence behaviour of these optimizations, as seen in Figure 2.16, it can be concluded that reinitializa-
tion of the LSF does indeed result in quicker convergence. Moreover, when this regularization method is combined
with the enriched node placement that was introduced in Section 2.1.5, the result is a very smooth representation
of Γm. This is the case even for problems for which an RBF is placed at every FE mesh node, although this could
help in smoothing out the material interface even further. Although the designs in Figure 2.15b and Figure 2.15c
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Figure 2.15: Final results of the MBB beam problem from Figure 2.5 while using regularization by means of periodic
reinitialization of the LSF. All optimizations used the improved method of enriched node placement. (a) shows that an interval of

5 iterations results in an additional strut in the design. (b) and (c) depict the optimized design with an interval of 5 and 10
iterations, respectively. Both of these designs look similar with a smooth material interface and no traces of newly nucleated
holes. (d) shows that a reinitialization interval of 20 iteration is not enough to prevent the nucleation of new holes. This new

hole is highlighted in the magnified view in red.

are very similar, because of computational cost, a reinitialization interval of 15 iterations is used as a valid choice
for this problem. Although it is problem-dependent, this interval is also used for other other optimization problems
that are solved in this work.

To prove that the LSF of the optimized design is indeed more smooth with the proposed regularization, |∇ϕ| of the
design in Figure 2.15c is visualized in Figure 2.17. This figure shows the impact of the reinitialization scheme on
the LSF. As before in Figure 2.14, |∇ϕ| = 1 everywhere in the neighbourhood of the discontinuity, except at points
that are equidistant to multiple material interfaces. Also, ∇ϕ = 0 at points where ϕ has been clipped, which is at
locations that are further away from Γm. Because this happens at locations far from the material interface, it will
not influence the sensitivities in any way.

2.1.9. Application to a 3D cantilever beam
Now that the correct implementation of this improved representation of the material interface in two-dimensional
problems has been proven, this same approach is applied to a three-dimensional problem. The compliance mini-
mization problem given by Equation (2.18) is solved on a 2L×L×0.5L cantilever beam. This domain is discretized
using a mesh consisting of 40× 20× 10× 6 tetrahedral elements, which are placed so that the mesh is symmetric
across its yz plane. Also, the influence of 1848 design variables is spanned by 22 × 12 × 7 RBFs with a radius
rs =

√
2a. Here, a is the diameter of the largest sphere that can be placed in any of the tetrahedral elements.

The displacements of all nodes at x = 0 are set to zero and a distributed line load with |t̄| = 0.2 per unit length
is applied to the nodes at x = 2 × L ∩ y = 0. All elements in Ωs were given a Young’s modulus Es = 1 and
a Poisson’s ratio νs = 0.3. Similar to the two-dimensional problems before, the material properties in the void
domain are Ev = 10−6 and νv = 0.3. The maximum allowed volume in the material domain Ωs is Vc = 40% of the
design domain Ω. The voids in the initial design of this problem are shown in Figure 2.18. The move limit of the
MMA is set to 0.001 and the optimization was terminated after 100 iterations.

This optimization problem was solved twice. As a reference, it was first solved while placing enriched nodes using
a linear approximation of the LSF. The resulting optimized design can be seen in Figure 2.19. In the magnified view
of this figure, one can see a large number of small indentations in this section of the material interface. Contrary
to the zigzagging in Figure 2.6, these dimples appear periodically. Also, note the presence of a spike at the top
of the magnified view. This is caused by the error in the enriched node placement, which results in erroneous
sensitivities in the second to last design iteration. Because of this, the nodal level set value at the tip of the spike
is negative in the final design. Because of errors in the enriched node placement, this negative level set value
is interpreted as a spike. These errors in the approximation of the material interface in Figure 2.19 are similar to
those in the 2D designs. An important difference, however, is that this occurs while the number of design variables
is already smaller than the number of FE mesh nodes.
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Figure 2.16: The convergence behaviour of the MBB beam problem that is described in Figure 2.5, optimized with different
intervals between reinitialization. All optimizations in this plot used the placement of enriched nodes according to the improved

quadratic approximation of the LSF. Note that the reinitialization scheme has a positive effect on the convergence of the
objective C. The convergence behaviour of the volume constraint is not shown, since it behaves the same as in Figure 2.12.
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Figure 2.17: Magnitude of the gradient of the LSF for the final design of the MBB beam problem in Figure 2.5. Note that all
values of |∇ϕ| in the neighbourhood of Γm are equal to 1. This not only makes the optimization more well-posed, it also makes

reliable enriched node placement easier.

t̄

Figure 2.18: Initial design of the three-dimensional cantilever beam design problem. On the right side, at x = 0, the beam is
fixed. On the bottom-left edge, where x = 2× L ∩ y = 0, a downward load is applied.
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Figure 2.19: Optimized design for the three-dimensional cantilever beam problem, while using a linear approximation of the
LSF to place the enriched nodes. The magnified view shows small indentations on the slanted section of the design. Also

visible at the top of the magnified view is a spike that is a result of the error in the placement of enriched nodes, which in turn
results in erroneous sensitivities.

Figure 2.20: Optimized design for the problem that was shown in Figure 2.18. This geometry is the result of a quadratic
approximation of the LSF along crossed element edges, while the LSF was reinitialized every 15th iteration. The magnified
view shows that the slanted section that had indentations in Figure 2.19 is completely smooth with this improved approach.
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Figure 2.21: Convergence behaviour of the compliance C and volume ratio Vs/VΩ of the optimizations with final designs
shown in Figures 2.19 and 2.20. These use linear enriched node placement and quadratic enriched nodes placement in

combination with a reinitialization that was executed every 15th iteration, respectively.

The second time the problem was solved, the improved quadratic method to approximate Γm was used in combi-
nation with reinitialization of the LSF that occurred every 15th iteration. The optimized design with this approach is
shown in Figure 2.20. Contrary to the geometry in Figure 2.19, this design is very smooth in all regions of the design.
This indicates that the indentations and spikes in Figure 2.19 were indeed caused by an error in the approximation
of the zero of the LSF along element edges. The convergence behaviour of both optimization problems can be
seen in Figure 2.16 and shows that the progression of both the objective and the volume is very similar for both
approaches. In conclusion, the improvements by using a quadratic approximation of the LSF to place enriched
nodes in combination with a periodic reinitialization of the same function result in significant improvements. Not
only is the material interface approximated more accurately and thus becomes smoother. Also, the optimization
scheme is also more reliable since the LSF now has a constant gradient in the neighbourhood of Γm, making the
optimization problem more well-posed.

2.2. Applying IGFEM level set-based TO on the mandible
2.2.1. Voxelization of irregularly-shaped domains
All design domains Ω up to this point have been rectangular. This means that the meshes that discretized these
domains could be composed of rectangles or cuboids, which can be divided into triangles or tetrahedra, respec-
tively. Because the corners of these geometries are spaced very regularly, this type of mesh is very suitable as
a basis from which to span RBFs. These types of meshes are suitable for this purpose since the centre of each
RBF must be placed relatively regularly. This is needed to ensure an accurate approximation of the field that is
spanned [34], which for this work, is the LSF. However, for many practical problems, Ω cannot be represented
using a cuboid or rectangle. To form a mesh that does conform to Ω in such a shape, the elements in this mesh
will be of different shapes and sizes. The resulting set of irregularly spaced nodes in such a mesh is thus less
suitable as a basis for the RBFs.

In the definition of the sensitivities of IGFEM-based level set topology optimization in this work, there lies another
problem in the use of irregularly spaced RBFs. In Equations (2.20) and (2.30), the derivative of the objective with
respect to a nodal level set value is found. This value ∂C/∂ϕj is then multiplied with ∂ϕj/∂si, which corresponds
to the relevant value in matrix θ⊺ from Equation (2.5). This results in the sensitivity of the compliance with respect
to design variable si. Note that in Equations (2.20) and (2.30), a summation is done over index set ιi, which
represents every mesh node j where the RBF corresponding to design variable si is nonzero. In a region where
the mesh that discretizesΩ is finer, this index set will be larger than in other locations, thus increasing the sensitivity
in such an area. The full extent of this problem can be visualized by applying such a situation to a simple problem. In
Figure 2.22, the MBB beam problem is shown again. The exception is, this time the top-right corner of the domain
is rounded. Moreover, the mesh is refined in the proximity of the bottom-right corner, this could be required to
more accurately describe stresses and strains near the support in this corner. The resulting mesh consists of 8403
triangular elements and 4350 nodes. As before, the radius of each RBF is

√
2a where a is the diameter of the

largest circle that can be fitted in the largest element of the mesh



2.2. Applying IGFEM level set-based TO on the mandible 20

t̄

3L

LEs

Ev

Figure 2.22: Initial design of the MBB problem, now with the top-right corner of the domain being rounded. The same
boundary conditions as in Figure 2.5 are applied. Also, the domain is discretized with a variable mesh size, with the elements

becoming smaller near the bottom-right corner.
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Figure 2.23: The derivative of the compliance objective C with respect to the nodal level set values.

In Figure 2.23, the derivative of the compliance with respect to the nodal level set values is shown, which appears
to be independent of the element size in the region. However, the multiplication with ∂ϕj/∂si from Equation (2.30)
transforms this to ∂C/∂si, which can be seen in Figure 2.24.

In Figure 2.24, it can be seen that the concentration of RBFs in the refined region of the mesh has a significant
influence on the sensitivity of the compliance objective. If this gradient information were to be used by the MMA
it would change the design variables according to these sensitivities. However, since each design variable in the
bottom right corner influences more FE mesh nodes than elsewhere in the mesh, the LSF is changed even more
in this region. This will result in the material interface being moved more rapidly in regions where the mesh is finer.
However, this does not result in an optimal update strategy of the design variables for this problem.

To correct this exaggerated movement of the material interface, Ω is turned into a discrete grid of rectangles, which
are called pixels and voxels in 2D and 3D, respectively. However, for the purposes of this work, the term voxels
will be used in 2D as well. As discussed before, the corners of rectangles and cuboids form a very suitable basis
for the RBFs. To voxelize the mesh efficiently, all nodes of the FE mesh are used as a point cloud. Around this
cloud, a bounding box is created which in turn is subdivided into voxels of a specified size. However, if there are
no FE mesh nodes in the vicinity of a voxel, it can be eliminated because the RBFs corresponding to its corners
are zero at these nodes. To reduce the computational cost of this disposal of empty voxels, a k-dimensional tree
is used to partition the design domain [31]. The resulting voxelized mesh that represents Ω with a voxel size of
0.1L and subsequently 328 design variables can be seen in Figure 2.25. Although the concentration of FE mesh
nodes results in a local maximum in the compliance sensitivity in the bottom-right corner of the domain, there is
no concentration of RBFs in this region. This means that, contrary to before, the subsequent change in the design
variables will not result in an even larger change in the LSF.

The final design of the problem described in Figure 2.22 can be seen in Figure 2.26. To obtain this result, the
nodes from the voxelized mesh in Figure 2.25 were used as a basis for the RBFs. The diameter was again

√
2a,

where a is the largest circle that can be fitted in this voxelized mesh. Regularization of the LSF occurred every
15th iteration and the optimization was terminated after 100 iterations. The final design in Figure 2.26 is different
from other results in this work, since for this example only 328 design variables were used. This is a lot less than



2.2. Applying IGFEM level set-based TO on the mandible 21
Gradients Magnitude

0.000e+

4.125

2.75

1.375

5.500e+
dCds

-1.402e+

700.78

462.51

224.25

9.390e+0

−15.0

∂C/∂s

1000

Figure 2.24: Sensitivity of the compliance objective C when RBFs are placed at every FE mesh node in a mesh with varying
element sizes. Note the sudden peak in sensitivity that was not present in Figure 2.23
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Figure 2.25: Sensitivity of the compliance objective C for a voxelized RBF mesh. Note that the field looks similar to that in
Figure 2.24. However, there will be no concentration of RBFs to exaggerate the movement of the material interface in the

bottom-right corner.

the 7701 design variables that were used for the final designs of Figure 2.15, resulting in a design with fewer fine
details. However, the design does look similar and it also corresponds to results that were found with a similar
number of design variables [12]. This means the approach of voxelizing Ω can be used as a basis for RBFs to
optimize any domain in either two or three-dimensional problems.

2.2.2. Meshing of the mandible
With the optimization scheme having been validated, improved upon, and made suitable for design domains of any
shape, it can be applied to the elastostatic problem of the mandible during typical clenching tasks. The starting
point of this problem is a 3D scan of a damaged mandible, as depicted in Figure 2.27a. As highlighted, this
mandible has a defect on the right side that compromises its structural integrity. The damaged section has to be
removed with extra margins by means of resection, the cutting planes of which will connect the bone to the design
domain. The resulting defect is shown in Figure 2.27b, which has a width of at least 71.33mm.

Since Ω describes boundaries for possible designs of the reconstruction plate, this volume should be designed
with care. For this work, the focus was put on the possibility of maintaining symmetry of the facial contour. Thus the

Figure 2.26: Optimized design of the problem in Figure 2.22, while using the nodes from the voxelized mesh in Figure 2.25 as
a basis from which to span the RBFs.
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(a) (b) (c)

Figure 2.27: The approach that is taken to yield the design domain, shown in multiple steps. (a) shows a scan that represents
the damaged mandible with the defect due to pressure-induced bone necrosis highlighted in red. (b) depicts the cleaned up
scan and the osteotomy sites. In dark grey, the new (already discretized) design domain is shown which retains the symmetry
of the facial contour. (c) shows the discretized domain in Figure (b) again with its voxelized representation with a voxel size of

3mm from which the RBF’s will be spanned.

design domain constrains volume from being added outside the jawline. On the upper section ofΩ, no replacement
of the coronoid process on the right side was added, leaving more space to the boundaries of the original mandible.
This was done to prevent possible wound dehiscence inside the oral cavity, which has been reported to be a risk
in mandibular reconstruction plates [80]. The result of the design process to form the design domain can also be
seen in Figure 2.27b. Note that for the sake of simplicity, no connecting flanges were added to Ω. The result is
that a perfect bond is assumed between Ω and the remaining mandible. The three resulting geometries were then
exported to Gmsh [35] and discretized into a mesh consisting of three parts: the computational domain Ω and the
right and left sides of the remaining mandible. These three domains were then discretized in 30 025, 16 804 and
110 930 tetrahedral elements, respectively.

However, the shape and size of the elements in this mesh vary to make the mesh conform to the shape of each
domain. As discussed before, the nodes in such a mesh are not suitable as a basis for RBFs from which to span
the LSF. The solution is using a voxelized representation, which is depicted in Figure 2.27c. This voxelized mesh
with a voxel size of 3mm is used as the new basis for the RBFs. It consists of 1256 nodes and thus as many
design variables are used to represent the topology of the design in the following optimizations. This voxel size
and subsequent number of design variables were chosen to obtain a similar number of FE mesh elements per
design variable as the problem in Figure 2.18.

2.2.3. Applied forces on the mandible
With the mandible and Ω discretized, boundary conditions need to be applied to the model. However, unlike most
engineering problems, there is uncertainty in these boundary conditions. Since these consist of muscle forces and
reaction forces, they can vary significantly between patients depending on, for example, sex, body weight, and
clenching task [30, 27, 87]. To account for these variations and make the reconstruction plate truly patient-specific,
careful deliberation should be made before deciding which forces should be applied.

In total, 13muscles are attached to an intact mandible [128]. Of these muscles, 6 are considered principal muscles,
namely the superficial masseter (SM), the deep masseter (DM), medial ptygeroid (MP), anterior temporalis (AT),
middle temporalis (MT), and posterior temporalis (PT) [87], the attachment points of which are depicted in Fig-
ure 2.28. Each of these muscles can apply different forces, depending on the clenching task. The most dominant
of these tasks are incisal clenching (INC), left or right unilateral molar clenching (MOL), and left or right group func-
tion clenching (GF) [87, 64]. In addition to these muscles, the condylar heads and teeth also apply reaction forces
on the mandible during clenching tasks to achieve static equilibrium. The condylar heads oppose all translational
movement and the teeth apply vertical reaction force while clenching.

Although TO can be conducted for structures that are subject to multiple load cases, left unilateral molar clenching
(LMOL) was chosen as the only applied clenching task in this work for the sake of simplicity. This combination
of muscle forces was chosen since it has been reported to result in the largest reaction forces on the teeth [87,
48]. This suggests that this task will also yield the highest stresses in the mandible and will thus be the most
critical of the dominant clenching tasks. The net muscle forces that correspond to left molar clenching are shown
in Table 2.1. However, to make RP truly patient-specific, these forces should be replaced by values that follow
from measurements conducted on the actual patient.

With the set of applied forces known, the net reaction forces of both condyles and the teeth can be calculated.
After solving for static equilibrium in the whole mandible, the net force of the left and right condyles are found to
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Figure 2.28: The discretizations of Ω and the mandible, combined with a representation of all the attachment points of muscles
that are used to apply a force in this work. Note that the mandible is fixed at the condyles and a reaction force in the z-direction

is applied to the teeth.

Right Left
x y z x y z

SM -16.99 -34.49 72.72 20.45 -41.33 87.26
DM -19.22 12.60 26.71 23.11 15.12 32.04
MP 36.72 -28.15 59.76 -51.41 -39.46 83.59
AT 12.38 -3.67 82.08
MT 10.08 22.68 38.02
PT 6.70 27.43 15.19

Table 2.1: Muscular forces in N in each direction corresponding to the axes in Figure 2.28, according to the left molar
clenching task from [87].
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(a)

LMOL
x y z

Fright -14.25 7.94 55.70
Fleft 14.25 -7.94 -55.70
Mright -3.95 -0.86 -0.02
Mleft 0.59 -1.13 -0.55

(b)

Figure 2.29: The forces that are applied to Ω. (a) shows the initial design of the reconstruction plate. The arrows depict the
equivalent forces and moments that are applied on the osteotomy sites. (b) states the magnitudes of the internal forces in N

and moments in Nm in each direction that are stated in (a).

be
[
−7.06 11.29 −169.35

]
N and

[
−14.76 57.98 −103.49

]
N, respectively. Meanwhile, the vertical reaction

force of the teeth that are used during the LMOL clenching task is −224.54 N. Note that, for this specific mandible,
the coronoid process on the right side could not be retained during the resection. This means that on this side,
the three temporalis muscles also had to be resected and will not apply a force on the mandible. Thus, the
corresponding entries in Table 2.1 are empty. A similar approach could be required for the masseter muscles on
the right side. Sometimes, the attachment points of these muscles need to be relocated to place the RP or be
resected altogether [38]. The required approach depends on the location of the osteotomy sites. However, for this
work, it was assumed that the masseter muscles remain intact.

2.2.4. Boundary conditions on the domain
To increase computational efficiency, the domains that represent the remaining parts of the mandible will not be
analyzed during the optimization. To still yield the correct boundary conditions on Ω, the applied muscle and
reaction forces on each side of the mandible were projected onto the two osteotomy sites. The result of this
approach is the internal forces and moments that act on the osteotomy sites. A schematic representation of this
situation can be seen in Figure 2.29a. The moments in this load case are applied uniformly about the centroid
of both osteotomy sites while the forces are applied uniformly over the same surfaces. This application of loads
happens in the form of a Neumann boundary condition on the nodes that lie on the osteotomy site so that the net
forces and moments will be equivalent to the internal forces and moments in the osteotomy sites.

In Table 2.29b, these internal forces and moments are stated. Logically, the forces on the left and right cancel
each other out in order to retain a static equilibrium of the domain. However, because of the bent shape of Ω,
the magnitudes and directions of the moments vary significantly between both sides of the domain. This means
that these applied forces and moments will be very specific to the location and size of the defect in the mandible
and thus specific to each patient. In the case shown in Figure 2.27b, on the right, the moment works mostly in
bending. Meanwhile, on the other side, the applied moment is smaller in magnitude and applies torsion on Ω. This
difference in applied load would be expected to influence the shape of the reconstruction plate in later optimized
designs and thus will be used to check whether optimized designs are logical or not.

Finally, to prevent solid body rotations and translations ofΩ, extra boundary conditions should be applied. Because
of its proximity to the teeth, the top of the left osteotomy site of the domain is fixed in the z-direction. However, a
fixation in the other directions was not placed here, since the applied moments are expected to be at a maximum
this far from the centroid. Thus, at the centroid of this face, the movement in x and y-direction was set to zero
using a Dirichlet boundary condition. Of course, this method of preventing solid body translations is incorrect, since
the fixed locations would move when the RP is attached to the mandible. However, since fixation flanges were
omitted, these boundary conditions were considered adequate for the purposes of this work. With this addition, the
whole set of boundary conditions is complete, as visualized in Figure 2.29a. In the same figure, the initial design
of the reconstruction plate is also depicted. It consists of a grid of spherical holes, similar to the initial design in
Figure 2.18. However, because of the irregular shape of Ω, the ordered grid of holes does not appear as ordered.

2.2.5. Optimized designs of a solid titanium reconstruction plate
With all information on the elastostatic problem of the mandible known, the optimization scheme can finally be
applied to the design of a patient-specific mandibular reconstruction plate. The material properties that were
assigned to the elements in Ωs are a Young’s modulusEs = 116GPa and Poisson’s ratio νs = 0.34, corresponding
to the values of titanium in literature [73]. The elements in the void domain Ωv have a Young’s modulus Ev = 10−6

and a Poisson’s ratio νv = 0.3.
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(a) (b) (c)

Figure 2.30: Optimized designs of the mandibular reconstruction plate after 150 iterations if it were to be made from solid
titanium. (a) shows the optimized design for a maximum volume fraction of 10%. (b) depicts the optimized design that is
allowed to use 30% of Ω. Note a similar structure on the left of the figure compared to (a), although also more material is

distributed towards the right as well to resist torsion. (c) shows the final design for optimization with the volume constrained to
50% of the design domain. However, this design does not show a lot of detail, since it is made hollow. This is shown by making

part of the design transparent. The elements in red are part of the void domain.

As a move limit for the MMA, a value of 0.0002 was set. As before, the LSF was regularized using reinitialization
every 15th iteration of the optimization process and the quadratic method was used to place enriched nodes. Also,
the optimization was terminated after 150 iterations. The maximum volume of the plate was set to 10%, 30%
and 50% of Ω, which means the optimization problem was solved three times. The final designs of these three
problems can be seen in Figure 2.30.

In Figure 2.30a, where the maximum allowed volume is 10% of Ω, the design is very slender. On the left of the
figure, where the reconstruction plate connects to the right of the mandible, it is clear that the structure is optimized
for a bending load since a triangular structure is formed. However, on the other side of the domain, the design
looks illogical. Only two elements are connected to the left osteotomy site, while this section of the design would
be expected to be under a torsion-dominated load. Upon further investigation, the cause of this incorrect design
is the use of an insufficient number of design variables. Since the design variables are spaced in a voxelized grid,
each nearest neighbour of any RBF centre is 3mm away. This distance, combined with the radius of each RBF
that has a smoothening effect on the LSF, results in a minimal thickness of features. However, when the maximum
volume of the design is only allowed to be a small portion of Ω, this minimal feature thickness is problematic since
it forces the MMA to reduce the number of strut-like elements in the design. This is visible in Figure 2.30a and can
only be solved by reducing the space between the RBFs and thus increasing the number of design variables.

In contrast to the design that only displaces 10% of Ω, the design in Figure 2.30b shows a structure that would be
expected as a result to the boundary conditions that were applied according to Section 2.2.4. On the side near
the right osteotomy site, the design forms a structure that resembles a triangle, which looks similar in shape to the
structure in Figure 2.30a. However, on the other side of the design, the structure is more logical than the design
with the lowest allowed volume. This design consists of two vertical sections that are parallel to each other, in order
to maximize resistance to torsion. In the middle of the optimized design in Figure 2.30b, the design still appears to
be bending-dominated. This is expected sinceMright, which is mainly a bending moment, is larger in magnitude
thanMleft, which is a torsion-dominant moment.

The designs discussed up to this point have a smooth surface, which follows from the formulation of the LSF that is
spanned by the RBFs. Also, there is no sign of zigzagging of the material interface, since that is solved by applying
a quadratic approximation to the location of enriched nodes. The optimized design that is allowed to use 50% of Ω,
depicted in Figure 2.30c, appears to fill the entire domain. Upon further investigation, this only appears to be the
case, since the final design is mostly hollow. In essence, it consists of two vertical members that are connected at
some places in the middle. This can be seen by making the design semi-transparent.

The convergence behaviour of the objective function and the volume constraint related to the designs in Figure 2.30
can be seen in Figure 2.31. The volume constraints behave as expected, with the fraction that is Vs/VΩ converging
smoothly to the prescribed value. After this value has been reached, the volume fraction remains at this value
during the rest of the optimization process. The behaviour of the objective function tells a different story, however.
For the problem with a maximum volume fraction of 10%, a lot of oscillations occur during the optimization process.
This is also caused by the restriction in the minimum feature thickness that was discussed before. For the domain
Ω and its voxelized representation in Figure 2.27c, the RBFs clearly have problems in representing a design that
displaced less than 30% of Ω. This is the case, as the objective function already starts oscillating when the volume
fraction gets below this point. This further supports the assumption that the final design in Figure 2.30a is not
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Figure 2.31: The convergence behaviour of the problem of the mandibular reconstruction plate. Note that the behaviour of the
compliance C of the design with the smallest allowed volume fraction shows undesired oscillations. The two optimizations with

a higher maximum allowed volume on the other hand, show a smooth convergence.

viable. However, the other designs do show a smooth converging behaviour of the objective, suggesting that
these designs are indeed viable and the compliance of these structures has successfully been minimized.

2.3. Application of functionally graded materials
2.3.1. The best choice of a functionally graded material
Now that there are optimized designs for a mandibular reconstruction plate, these geometries could be used as
a guide for designing the actual reconstruction plate. This is possible since the material near the resection sites
gives a good indication of the locations where fixation flanges and screws are required. Moreover, the resulting
geometries give an indication of the dominant types of load in each region of the plate. However, the final designs
in Figure 2.30 were optimized with the sole objective of minimizing compliance by using solid titanium. This means
that the designs presented up to this point will not have any possible means of reducing the risk of stress shielding
in the bone surrounding the reconstruction plate. Thus, the focus shifts to improve on the results that were found
up to now. To reduce the discrepancy between the stiffness of the bone and that of the reconstruction plate,
a functionally graded material could be of use for this objective [59, 111]. To obtain a variation in the material
properties depending on the location of Ω, the choice of microstructure to achieve this is very important. There is
a range of types of microstructures, each having numerous advantages and disadvantages [46, 50].

One option is to use lattice structures, which have been used to designmandibular reconstruction plates [72, 33, 88].
In these structures, the strut diameters were optimized to, for example, homogenize stresses in the reconstruction
plate. However, this does not allow for control over the macroscopic topology of the plate. Foam-like structures can
also be used [5, 99], but these lack fine control over material properties throughout the design domain. Moreover,
this type of microstructure is irregular and thus the structural integrity of the design cannot be accurately predicted
using FEM.

A third option is the use of periodically repeating cells that, contrary to lattice structures, do not consist of struts.
The most commonly used of these are Triply Periodic Minimal Surfaces (TPMS). These types of microstructures
can be found in nature, for example, butterfly wings and beetle shells [59, 54]. These porous structures have
several favourable properties that could be useful in mandibular reconstruction plates. One such property is the
possibility to combine a low stiffness with a high fatigue strength. This means the stiffness can be adapted to
approach that of trabecular bone while still retaining structural integrity [10, 43]. Also, research shows that the
porosity of these structures allows them to be sufficiently permeable, which allows oxygen and nutrients to travel
to cells growing in the microstructure [10]. This will aid the healing of the tissue around the plate and promote bone
ingrowth. Another advantage is themean curvature of the pores in the structures, which is approximately zero. This
value is comparable to that of trabecular bone, which has also been described to promote bone ingrowth [101, 52].
Because of these advantages, TPMS microstructures have widely been used in the field of tissue engineering [22,
25, 57].

There are many different types of TPMS structures, of which the most common are primitive, diamond, and gy-
roid [110], each of which have distinct mechanical properties. Research has shown that the gyroid structure shows
favourable properties concerning its strength-to-weight ratio [71], while crucially showing good control over its stiff-



2.3. Application of functionally graded materials 27

ness by changing porosity [127, 126]. Moreover, this type of microstructure also showed favourable bone ingrowth
compared to other TPMS structures [77].

The overall size of each unit cell of the microstructure is also very important. This is not only determined by
the requirements of the human body but also by the capabilities of the SLM 3D printers that will manufacture
the reconstruction plate. This technical constraint is set by the average size of the Ti6Al4V powder particles of
which the plate will be produced, which leads to every powder layer having a thickness of at least 50µm [116, 16].
Each unit cell of the TPMS microstructure must be accurately manufactured, which means that features should be
sufficiently larger than this layer thickness. Also, the pore size of the microstructure should have a specific size
to provide optimal conditions for bone ingrowth. In vitro and in vivo experiments have shown that a pore size of
approximately 300µm are optimal for this purpose [116, 10, 55, 89], which gives an even bigger lower bound to
the size scale of the microstructure. The use of unit cells with a size of 1.5mm x 1.5mm x 1.5mm has already
been shown to exhibit favourable conditions for bone ingrowth in reconstruction plates [10]. This makes the use
of gyroid TPMS unit cells with the same size a good choice of microstructure in this work.

However, using one type of microstructure would mean that the material has the same, more flexible, properties
throughout the whole domain. Although this could reduce the discrepancy between the stiffness of the reconstruc-
tion plate and the bone in the mandible, it would not result in an optimal design. In the middle of the domain, where
there is no bone in the proximity, the benefits of a porous microstructure would not outweigh those of a solid ma-
terial. The increased strength of solid material would allow for a more slender cross-section of the reconstruction
plate in this region, reducing the risk of wound dehiscence.

To combine the desired effects of a compliant microstructure in the proximity of the remaining mandible and the
stiffness of solid titanium in the middle of the reconstruction plate, a function is constructed that represents this.
This function describes the desired Young’s modulus throughout the design domain as

E(x) = E0 + α min(|x− xref|) . (2.32)

This equation describes an increasing Young’s modulus when moving away from xref, which can be any set of
reference geometries. At the location of these reference geometries, Young’s modulus is set to the value of
E0, while α represents the gradient in the elastic modulus with respect to the distance to xref. In the case of
a mandibular reconstruction plate, xref contains the two osteotomy sites. To find a material microstructure that
follows the desired behaviour that is described by Equation (2.32), another design problem needs to be solved.
The Young’s modulus that is prescribed can be achieved by changing, for example, the thickness of the membrane
in the unit cells [22]. There has been some work on obtaining the required geometrical properties to obtain the
desired mechanical properties [69, 70].

2.3.2. Analytical sensitivities of a functionally graded material
Because of this variation of the microstructure, the material constitutive matrix will also vary through every ele-
ment in the mesh. This variation will need to be taken into account when computing sensitivities. However, in
Equation (2.21),D was assumed to be constant in the derivative of the integration element’s stiffness matrix with
respect to the location of enriched node xn. In the case of a functionally graded material, D is differentiable with
respect to the location of enriched node xn:

∂ke

∂xn
=

∫
△

(
∂je
∂xn

B⊺DB + je
∂B⊺

∂xn
DB + jeB

⊺ ∂D
∂xn

B + jeB
⊺D

∂B

∂xn

)
dξ . (2.33)

In this equation, the third term, jeB⊺(∂D/∂xn)B, is new as compared to Equation (2.21). This extra term de-
scribes the change in the integration element’s material constitutive matrix with respect to the enriched node
placement. This can be visualized by looking at an element that is crossed by Γm, as depicted in Figure 2.32. It
shows that a movement of the interface results in movement of integration points. This in turn changesD, which
should be taken into account in design sensitivities.

The field that represents the Young’s modulus in the elements is described by interpolating the Young’s modulus
Ei at the parent element’s nodes using the parent shape functions N , i.e., E =

∑
iNiEi = NE. When enriched

node xn is moved towards node 1, as visualized in Figure 2.32, the shapes of integration elements in the support
of xn are changed. This influences the previously mentioned interpolation since the values of the parent element’s
shape functions at the integration points are dependent on the location of enriched node xn. This can be written
down as the following chain rule of derivatives:

∂D

∂xn
=
∂D

∂E

∂(N ·E)

∂xn
. (2.34)
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Figure 2.32: An element that is crossed by material interface Γm, which is moved from the light blue to the dark blue
configuration. This movement changes the shape of the integration elements, which in turn moves the integration points of the
integration elements. At these points, the material constitutive matrix is evaluated, which will as a result also change when

using a functionally graded material.

The nodal Young’s moduliE are defined for the nodes of the parent element and independent of xn, which means
that ∂E/∂xn is zero. This in turn means that only the derivative of values of the parent element’s shape functions
at the integration points with respect to the enriched node location is nonzero, which was defined in [13] as

∂N

∂xn
=
∂N

∂ξp
A−1 ∂xe

∂xn
Ne . (2.35)

In this equation, A is the isoparametric mapping matrix and ξp is the location of the integration point in the parent
reference coordinate system. Finally, Ne are the linear Lagrange shape functions associated with the nodes of
the integration element, and xe are the global coordinates of the integration element’s nodes.

Following this, the correct implementation of this addition to the derivative of the integration element’s stiffness
matrix with respect to the location of enriched nodes must be proven. To do this, the analytically computed sen-
sitivities ∂C/∂si were compared to central finite differences C′

i for the same problem shown in Figure 2.9. The
circular inclusions in the initial design again have a Young’s Modulus Ev = 1 × 10−6. Contrary to before, the
material in Ωs shows the behaviour described by Equation (2.32). The only reference geometry is the right plane,
where E0 = 1. Moreover, α = 99, which means the Young’s modulus will be equal to 100 on the left side of the
domain. As before, Poisson’s ratio is equal to 0.3 for elements in both Ωv and Ωs.

The relative differences of the nonzero design variable sensitivities follow from the same definition as Equa-
tion (2.31) and the resulting values of the relative differences δi are plotted for a range of finite step sizes ∆si.
Figure 2.33b shows that δi converges to zero for a range of step sizes, even for a domain that is made from a
functionally graded material. As a reference, Figure 2.33a depicts the relative differences while using the definition
of ∂ke/∂xn from Equation (2.21). These values of δi are off by large values, which means they appear constant for
varying step sizes. This proves the importance of the additional term in ∂ke/∂xn which accounts for the variation
in the material constitutive matrix and its correct implementation. Thus the IGFEMmethod used for level set-based
TO in this work can indeed be applied to materials with varying material properties through Ω.

2.3.3. Optimizing the MBB beam problem with a functionally graded material
In order to investigate the influence of a functionally graded material, the MBB beam problem illustrated in Fig-
ure 2.5 was revisited. However, this time the material in Ωs was assigned a Young’s modulus according to Equa-
tion (2.32) with E0 = 1. This is the case for nodes on the right of the domain. When moving to the left from this
reference geometry the material becomes less compliant. The circular inclusions in the initial design again have
Young’s modulus Ev = 1×10−6 and Poisson’s ratio of 0.3. As before, an RBF was placed at every FE mesh node,
with each of these RBFs having a support radius of rs =

√
2a. The move limit for the MMA again was set at 0.001,

with the optimization being terminated after 100 iterations.

The final designs of these problems for a varying value of α are shown in Figure 2.34. Note that, as a reference,
the top design in this figure uses α = 0, which is identical to the design in Figure 2.15 with a reinitialization interval
of 15 iterations. When comparing this design with designs for which α ̸= 0, one can see the difference in allocation
of the material through Ω. When α is increased, material is moved towards the right of Ω, thickening the struts in
this region while making the structure thinner on the left side. Moreover, in the design for which α = 1, the third
from the top in Figure 2.34, extra strut-like elements are added to the right of the domain. These results agree with
what was expected with the addition of functionally graded materials. Thus this approach can be used in more
complex problems, such as a mandibular reconstruction plate.
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Figure 2.33: Relative differences δi as a function of the step size ∆si for the numerically computed central finite differences
C

′
i . while using a functionally graded material in Ωs. The Young’s modulus follows the behaviour described in Equation (2.32).
(a) shows the relative differences when using the derivative of the integration element’s stiffness matrix with respect to the

enriched node placement from Equation (2.21). This approach results in incorrect analytical sensitivities, which would result in
incorrect design updates. (b) depicts the same relative differences with the improved definition in Equation (2.33), which shows

a range of step sizes for which δi converges to zero

(a) (b)

(c) (d)

Figure 2.34: Optimized designs while using a functionally graded material according to Equation (2.32). For all designs, xref is
the right of Ω, at which E0 = 1. (a) shows the design when α = 0, thus the design is the same as shown in Figure 2.15c.

(b) displays the final design for α = 1/3, which means that the Young’s modulus is 2 at the left of the domain. The design is
very similar to (a). (c) depicts the optimized design for α = 1, where extra struts are used to reinforce the right of the domain.
(c) shows the final design when α = 3, so that the Young’s modulus is 10 on the left of Ω. One can see the distribution of extra

area towards the right side of the domain, where the prescribed Young’s modulus indicates a more porous and compliant
microstructure.
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Figure 2.35: The convergence behaviour of both the compliance objective and volume constraint of the MBB beam problem,
while using functionally graded materials with different values of α. Note that the final compliance decreases for an increasing

value of α.
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Figure 2.36: Visualizations of material distribution along the x-direction of the MBB beam for the designs in Figure 2.34. (a)
shows the distribution of area for every design, not accounting for microstructure porosity. The increased area on the right
shows that parts with a weaker microstructure are reinforced. (b) depicts the mass distribution in the designs in Figure 2.34.
Contrary to Figure (a), microstructure porosity is taken into account. This shows that even though the designs appear to
reinforce the right of the domain, material is actually moved towards the left, since the microstructure in that location is

significantly less porous when using an FGM.

The convergence behaviour of the objective and volume fraction Vs/VΩ is shown in Figure 2.35. The convergence
of the compliance objective shows a logical behaviour. Since an increased value of α leads to an increase in the
overall stiffness of the beam, the compliance should be lower when using the functionally graded material used in
this problem. This behaviour indeed is visible, while no difference is discernible on the convergence behaviour of
the volume fraction.

For more insight into the influence of a gradient in Young’s modulus through the domain, Figure 2.36a shows the
distribution of area in the design as a function of the x-coordinate. By plotting this for every design in Figure 2.34, a
clear comparison can bemade between final designs with different values of α. The result clearly shows that for the
case of α = 0, the majority of the area in the design is distributed towards the left of the domain. When increasing
α, this distribution changes and an increasing amount of area is moved towards the right of the domain, where
the Young’s modulus is the lowest. However, when taking the porous microstructure into account the result is very
different. This is depicted in Figure 2.36b and shows that mass is actually moved towards the left when increasing α.
To achieve a microstructure is 1/10 of that of a solid material, the porosity of a typical TPMS microstructure should
be 90% [120]. This relationship between porosity between porosity and Young’s modulus is linear and it heavily
influences the results shown in Figure 2.36.
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(a) (b) (c)

Figure 2.37: Optimized designs of the mandibular reconstruction plate made out of a functionally graded material after 150
iterations. (a) shows the optimized design for a maximum volume fraction of 10%. Note the changed shape of the elements

that are attached to the right osteotomy site. Material was moved to reinforce sections with a more flexible microstructure, thus
flattening the triangular structure in Figure 2.30a. (b) depicts the optimized design that is allowed to take up 30% of Ω. This
design also shows material being moved from the middle towards the sides of the reconstruction plate. (c) shows the final

design for an optimization with a volume constrained to 50% of the design domain. However, as before with the same volume
fraction, this design does not show a lot of detail, since it is made hollow. This is again shown by making part of the design

transparent, showing a cross section with the red void domain.

2.3.4. Optimized designs of a functionally graded reconstruction plate
With functionally graded materials correctly implemented, the same problems that were solved in Section 2.2.5
were optimized. However, the material properties assigned to the elements in Ωs are now different. Namely, a
varying Young’s modulus is used that follows the behaviour described in Equation (2.32), where E0 = 14GPa.
This is the Young’s modulus that is used in the design at both osteotomy sites. It is very compliant compared
to the value of 116GPa that was used in the designs shown in Figure 2.30 and possible thanks to the use of
a microstructure with an estimated porosity of 86%. In the middle of Ω, however, the desired value of Young’s
modulus is equal to 116GPa, corresponding to solid titanium. To achieve this, α was set to 102× 109 Pa/38.86×
10−3 m = 2.62GPa/mm, where the denominator is the maximum distance from any node in the mesh to the two
reference geometries, which is 38.86mm. As before, Poisson’s ratio νs = 0.34, corresponding to titanium. The
material properties of elements in the void domain are the same as before.

As stated in Section 2.2.5, the move limit of the MMA was set to 0.0002 and three optimizations were done for
the maximum allowed volume fractions of 10%, 30% and 50% of Ω. Also, regularization of the LSF occurred
every 15th iteration using reinitialization. The optimizations were again terminated after 150 iterations, and the
resulting geometries can be seen in Figure 2.37. The optimized design with the lowest volume fraction of 10% in
Figure 2.37a shows a similar problem to its counterpart in Section 2.2.5. This design is mostly reduced to one beam
that connects the two osteotomy sites; the cause of this suboptimal design is again an insufficient number of design
variables, which limits the minimal size of features in the design. However, because of the variable microstructure
that reduces stiffness in the proximity of bone, the design is different from the one depicted in Figure 2.30a. The
optimized design has more material in the regions with the more compliant microstructure. The most material is
added on the osteotomy site on the right. On this side, one can also note the disappearance of the triangular
structure that could be seen before. In Figure 2.37a, this feature that resulted from the bending moment that is
applied is drastically changed in shape in order to stiffen the more compliant microstructure near the osteotomy
site.

The optimized design in Figure 2.37b paints a similar picture, although again with a more realistic design thanks
to the increased volume that the design is allowed to occupy. This design shows a heavy correlation with the
design that was optimized under the assumption that solid titanium would be used. On the left of this figure, the
triangular structure that was shown in Figure 2.30b can be seen again. However, this time the lower part of this
section is reinforced by an additional structure. All this comes at the cost of more slender struts in the middle of
the reconstruction plate. On the right of the figure, not much difference can be seen, since the structure is again
mostly hollow in order to resist the applied torsion. The same can be said about the final design of the optimization
problem where 50% of Ω is allowed to be used. Since this design in Figure 2.37c again appears to entirely fill Ω,
not much can be seen in this figure. However, by making part of the design semi-transparent, it can be seen that
the design is indeed mostly hollow.

When analyzing the convergence behaviour of the compliance and volume fraction of the three optimization prob-
lems, shown in Figure 2.38, one can again see the problem that a low maximum allowed volume fraction poses.
This constraint is smoothly approached and maintained during the later parts of the optimization. However, as a
result, the compliance of the structure that is only allowed to occupy 10% of Ω fluctuates significantly and reaches
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Figure 2.38: The convergence behaviour of the problem of the mandibular reconstruction plate, while using a functionally
graded material. Note that the behaviour of the compliance C of the design with the smallest allowed volume fraction shows
undesired oscillations again, just like Figure 2.31. The two optimizations with a higher maximum allowed volume on the other
hand show a smooth convergence. However, when using an FGM, the compliance of the final designs is significantly higher.

Right Middle Left
0%

5%

10%

15%

location

co
nt
rib

ut
io
n
to

vo
lu
m
e

solid FGM
30%

50%

(a)

Right Middle Left
0%

5%

10%

15%

location

co
nt
rib

ut
io
n
to

m
as
s

solid FGM
30%

50%

(b)

Figure 2.39: Visualizations of material distribution in the optimized designs for the mandibular reconstruction plate beam for
the designs in Figures 2.30 and 2.37, divided into 20 sections. For readability, the designs with a maximum volume have been
left out. (a) shows the distribution of volume for every design, not accounting for microstructure porosity. In this figure, the

volume appears to be moved out of the middle towards the sides, where the material Young’s modulus is weaker. (b) depicts
the mass distribution in the designs in Figure 2.34. Contrary to Figure (a), microstructure porosity is taken into account. This
again shows that even though material appears to be moved towards the sides in Figure 2.37, because of the high porosity in

these regions, material is actually moved towards the middle.

values that could be avoided if more design variables were to be used. The convergence behaviour of the optimiza-
tions for the two other maximum allowed volume fractions, however, is as expected. The compliance increases
while the volume decreases towards the specified fraction, after which the compliance is minimized while retaining
the volume fraction that was set as a constraint. Also, compared to Figure 2.31, the compliance of the designs
shown in Figure 2.37 are significantly more compliant.

To analyze the designs more objectively, the material distribution of the designs in Figures2.30 and 2.37 was an-
alyzed. The volume of the elements in each design with a maximum allowed volume fraction of 30% and 50%
is shown in Figure 2.39a. Without accounting for microstructure porosity, it appears that material is distributed
towards the osteotomy sites for the designs that use an FGM. This is to reinforce sections where the Young’s mod-
ulus is prescribed to be lower than in the middle of the plate. This behaviour is similar to that seen in Figure2.36a.
But again, the picture changes when the varying microstructure porosity is taken into account. For Figure2.37,
solid titanium is used in the middle of the plate and a microstructure with a porosity of 86% at both sides. This
results in the actual mass being moved towards the middle when using an FGM, as shown in Figure2.39b. Note
that the lines in Figure2.39b are the same when using solid titanium, since the porosity is 0% through the whole
design.



3
Conclusion and recommendations

In some ways, the majority of this work can be seen as a continuation of the work by van den Boom et al. [12] on
IGFEM level set-based TO. The zigzagging in the aforementioned work was initially attributed to an approximation
error in the deformations and stresses of the structures that were optimized. This work found the underlying
cause of this zigzagging of the material interface and proposed a solution in the form of an improved quadratic
approximation of the location of enriched nodes along the interface. Moreover, the introduction of a reinitialization
scheme of the level set function transforms the problem into one that is more well-posed and less likely to converge
to suboptimal local minima. Following these improvements, the topology optimization framework was applied to
both two and three-dimensional compliance minimization problems, which indeed showed a smoother and more
accurate representation of the inherently smooth zero contour of the level set function spanned by RBFs. Since
these improvements focus on the representation of the design, they are not limited to compliance minimization
and can be applied to any problem that uses IGFEM level set-based TO.

Moreover, this work also made a starting point on IGFEM level set-based TO on unstructured meshes. This offers
an alternative to immersed domains, allowing for more control over the boundaries of the domain. The introduction
of amethod to voxelize domains of any shapemeans that the RBFs fromwhich the level set function will be spanned
are uniform. By doing this, meshes with local refinements can be used to find more accurate approximations of
deformations and stresses in critical regions, such as bearing surfaces and screw holes.

Finally, this work introduced the possibility to perform compliance minimization with IGFEM on structures made
out of functionally graded materials. This was done by adding an extra term to the derivative of the stiffness
matrix of integration elements with respect to the location of enriched nodes. This approach uses interpolation of
the material’s Young’s modulus using linear shape functions. While it is not implemented in this work, the same
approach can be taken in order to account for a variation in Poisson’s ratio.

These improvements allow for the application of this structural optimization method on the elastostatic problem
of a mandibular reconstruction plate. Moreover, the influence of a functionally graded material was examined to
find a way to reduce the risk of stress shielding and subsequent bone resorption. Although a reduction of stress
shielding was not proved in this work, the plates using an FGM did show a significantly lower compliance than the
designs made out of solid titanium. Also, because of the gradient in the material property in the reconstruction
plate, it appeared that more volume was moved towards the osteotomy sites in the optimized designs. However,
when accounting for microstructure porosity, it was shown that mass actually moved away from the bone. This
means that the functionally graded designs supply substantial porous material near the bone to form a good basis
for osseointegration when used in vivo.

The regions in which this work has developed new knowledge can also be used as a basis for new research. Below
is a summary with just a few alleys in which research could be focused:

• Improvements in the smoothness of the material interface proposed in this work further augment the advan-
tages that IGFEM level set-based TO provides. Thus, the applications that have previously been explored
with this technology should be revisited. Examples of these fields are the band gap maximization in the
design of phononic crystals [13], the maximization of fracture resistance of structures made out of brittle
materials [131] and electromagnetic scattering and eigenvalue problems [7]. The incorrect placement of
enriched nodes in these problems influence design updates. Because of this, fluctuations in the objective
function can occur which could be solved by the improved approximation of the LSF in this work.
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• The introduction of functionally graded materials shows that structures constructed of these types of mate-
rials can be optimized with this method. These materials with a gradual change in properties fulfill a desire
in a multitude of fields where dissimilar materials need to be connected. One logical field is of course in
the field of bone reconstruction, where stress shielding is not just a problem for mandibular reconstruction
plates. The same phenomenon has been reported in hip joint replacements, tibial, and dental implants [95,
26, 106]. Another example can be found in the field of thermodynamics, where functionally graded materials
fill a critical role in reducing thermal stresses in multi-material structures that are subjected to high temper-
atures [102]. The definitions established in this work can easily be adapted to optimize heat conductivity
issues on materials with varying properties.

• The new possibility of using locally refined meshes in combination with IGFEM level set-based optimization
increases the window of possibilities to which this technique can be applied. In the field of mandibular
reconstruction plates, the region around screws has been reported to be crucial in terms of stresses [92, 14].
Further research could improve on the optimizations in this work by adding a focus on the flanges with which
the reconstruction plate will be fixed to the remaining mandible. By using a refined mesh in the areas in the
proximity of these sources of stress concentrations, a more realistic design of a mandibular reconstruction
could be obtained.

• The designs in this work focused on achieving a reduction in stress shielding in bone connected to the
RP. Although the compliance was shown to be reduced, more work should be put into actually proving a
reduction in stress shielding. Multiple metrics in literature have been reported to predict screw loosening,
such as the strain energy density transfer parameter (SEDTP) [97, 19] and shear stresses at the bone-
implant interface [91, 28]. These metrics should be used to verify later designs that use more realistic means
of plate fixation or even as an objective function for optimization problems to more effectively minimize stress
shielding.

• This work focused on the optimization of mandibular reconstruction plates that are made of a functionally
graded material with decreasing Young’s modulus in the vicinity of bone. This could be the starting point
of more elaborate research on the influence of the prescribed properties of the material on the optimized
design. In this work, solid titanium was only used exactly in the middle of the reconstruction plate, resulting in
the lowest spatial gradient in Young’s modulus possible for the used domain. However, using a larger region
with solid titanium could increase the structural integrity of the design. To the knowledge of the author, no
research has been done on the dimensions of the region at which a functionally graded material reduces
the effects of stress shielding on bone.



References

[1] Gr Egoire Allaire, Franc ßois Jouve, and Anca-Maria Toader. “Structural optimization using sen-
sitivity analysis and a level-set method q”. In: (). DOI: 10.1016/j.jcp.2003.09.032. URL:
www.elsevier.com/locate/jcp.

[2] Samuel Amstutz and Heiko Andrä. “A new algorithm for topology optimization using a level-set
method”. In: Journal of Computational Physics 216 (2 Aug. 2006), pp. 573–588. ISSN: 0021-
9991. DOI: 10.1016/J.JCP.2005.12.015.

[3] Bodard Anne-Gaëlle et al. “Dental implant placement after mandibular reconstruction by mi-
crovascular free fibula flap: Current knowledge and remaining questions”. In: Oral Oncology 47
(12 Dec. 2011), pp. 1099–1104. ISSN: 13688375. DOI: 10.1016/j.oraloncology.2011.07.
016.

[4] James P. Anthony et al. “Donor Leg Morbidity and Function after Fibula Free Flap Mandible
Reconstruction”. In: Plastic and Reconstructive Surgery 96 (1 July 1995), pp. 146–152. ISSN:
0032-1052. DOI: 10.1097/00006534-199507000-00022.

[5] M. F. Ashby. “The properties of foams and lattices”. In: Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering Sciences 364 (1838 Nov. 2005), pp. 15–30.
ISSN: 1364503X. DOI: 10.1098/RSTA.2005.1678. URL: https://royalsocietypublishing.
org/doi/10.1098/rsta.2005.1678.

[6] M. P. Bendsøe. “Optimal shape design as a material distribution problem”. In: Structural opti-
mization 1 (4 Dec. 1989), pp. 193–202. ISSN: 09344373. DOI: 10.1007/BF01650949.

[7] Steven van Bergen, Richard A. Norte, and Alejandro M. Aragón. “An interface-enriched gen-
eralized finite element method for the analysis and topology optimization of 2-D electromag-
netic problems”. In: Computer Methods in Applied Mechanics and Engineering 421 (Mar. 2024),
p. 116748. ISSN: 00457825. DOI: 10.1016/j.cma.2024.116748.

[8] Reena A. Bhatt and Tamara D. Rozental. “Bone Graft Substitutes”. In: Hand Clinics 28 (4 Nov.
2012), pp. 457–468. ISSN: 0749-0712. DOI: 10.1016/J.HCL.2012.08.001.

[9] T. G. BLOCKER and ROY A. STOUT. “MANDIBULAR RECONSTRUCTION, WORLD WAR II”.
In: Plastic and Reconstructive Surgery 4 (2 Mar. 1949), pp. 153–156. ISSN: 0032-1052. DOI:
10.1097/00006534-194903000-00004.

[10] F. S.L. Bobbert et al. “Additively manufactured metallic porous biomaterials based on minimal
surfaces: A unique combination of topological, mechanical, and mass transport properties”. In:
Acta Biomaterialia 53 (Apr. 2017), pp. 572–584. ISSN: 1742-7061. DOI: 10.1016/J.ACTBIO.
2017.02.024.

[11] S ; Van Den Boom et al. “A stable interface-enriched formulation for immersed domains with
strong enforcement of essential boundary conditions.” In: International Journal for Numerical
Methods in Engineering Citation 120 (10 2019), pp. 1163–1183. DOI: 10.1002/nme.6139. URL:
https://doi.org/10.1002/nme.6139.

[12] S. J. van den Boom et al. “An interface-enriched generalized finite element method for level
set-based topology optimization”. In: Structural and Multidisciplinary Optimization 63 (1 2021),
pp. 1–20. ISSN: 16151488. DOI: 10.1007/s00158-020-02682-5.

[13] Sanne J. van den Boom et al. “A level set-based interface-enriched topology optimization for
the design of phononic crystals with smooth boundaries”. In: Computer Methods in Applied
Mechanics and Engineering 408 (Apr. 2023). ISSN: 00457825. DOI: 10.1016/J.CMA.2023.
115888.

[14] Pter Bujtr et al. “Finite element analysis of the human mandible at 3 different stages of life”. In:
Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontology 110 (3 2010),
pp. 301–309. ISSN: 10792104. DOI: 10.1016/j.tripleo.2010.01.025.

35

https://doi.org/10.1016/j.jcp.2003.09.032
www.elsevier.com/locate/jcp
https://doi.org/10.1016/J.JCP.2005.12.015
https://doi.org/10.1016/j.oraloncology.2011.07.016
https://doi.org/10.1016/j.oraloncology.2011.07.016
https://doi.org/10.1097/00006534-199507000-00022
https://doi.org/10.1098/RSTA.2005.1678
https://royalsocietypublishing.org/doi/10.1098/rsta.2005.1678
https://royalsocietypublishing.org/doi/10.1098/rsta.2005.1678
https://doi.org/10.1007/BF01650949
https://doi.org/10.1016/j.cma.2024.116748
https://doi.org/10.1016/J.HCL.2012.08.001
https://doi.org/10.1097/00006534-194903000-00004
https://doi.org/10.1016/J.ACTBIO.2017.02.024
https://doi.org/10.1016/J.ACTBIO.2017.02.024
https://doi.org/10.1002/nme.6139
https://doi.org/10.1002/nme.6139
https://doi.org/10.1007/s00158-020-02682-5
https://doi.org/10.1016/J.CMA.2023.115888
https://doi.org/10.1016/J.CMA.2023.115888
https://doi.org/10.1016/j.tripleo.2010.01.025


References 36

[15] Vivien J. Challis et al. “Prototypes for Bone Implant Scaffolds Designed via Topology Optimiza-
tion and Manufactured by Solid Freeform Fabrication”. In: Advanced Engineering Materials 12
(11 Nov. 2010), pp. 1106–1110. ISSN: 14381656. DOI: 10.1002/adem.201000154.

[16] Kangjie Cheng et al. “A personalized mandibular implant with supporting and porous structures
designed with topology optimization – a case study of canine”. In: Rapid Prototyping Journal
25 (2 Mar. 2019), pp. 417–426. ISSN: 1355-2546. DOI: 10.1108/RPJ-11-2017-0231. URL:
https://www.emerald.com/insight/content/doi/10.1108/RPJ-11-2017-0231/full/html.

[17] Agnieszka Chmielewska and David Dean. “The role of stiffness-matching in avoiding stress
shielding-induced bone loss and stress concentration-induced skeletal reconstruction device
failure”. In: Acta Biomaterialia 173 (Jan. 2024), pp. 51–65. ISSN: 17427061. DOI: 10.1016/j.
actbio.2023.11.011.

[18] GColletti et al. “Technical refinements inmandibular reconstruction with free fibula flaps: outcome-
oriented retrospective review of 99 cases.” In: Acta otorhinolaryngologica Italica : organo uffi-
ciale della Societa italiana di otorinolaringologia e chirurgia cervico-facciale 34 (5 Oct. 2014),
pp. 342–8. ISSN: 1827-675X.

[19] . “Computational simulations of stress shielding and bone resorption around existing and computer-
designed orthopaedic screws”. In: Med. Biol. Eng. Comput 40 (2002), pp. 311–322.

[20] C Copelli et al. “Management of free flap failure in head and neck surgery.” In: Acta otorhino-
laryngologica Italica : organo ufficiale della Societa italiana di otorinolaringologia e chirurgia
cervico-facciale 37 (5 Oct. 2017), pp. 387–392. ISSN: 1827-675X. DOI: 10.14639/0392-100X-
1376.

[21] P.D. Diegel, A.U. Daniels, and H.K. Dunn. “Initial effect of collarless stem stiffness on femoral
bone strain”. In: The Journal of Arthroplasty 4 (2 Jan. 1989), pp. 173–178. ISSN: 08835403.
DOI: 10.1016/S0883-5403(89)80071-3.

[22] Anna Diez-Escudero et al. “Porous polylactic acid scaffolds for bone regeneration: A study of ad-
ditively manufactured triply periodic minimal surfaces and their osteogenic potential”. In: Journal
of Tissue Engineering 11 (2020). ISSN: 20417314. DOI: 10.1177/2041731420956541.

[23] N P van Dijk et al. “Level-set methods for structural topology optimization: a review”. In: 48
(2013), pp. 437–472. DOI: 10.1007/s00158-013-0912-y.

[24] N.P. van Dijk, M. Langelaar, and F. van Keulen. “Explicit level�set�based topology optimization
using an exact Heaviside function and consistent sensitivity analysis”. In: International Journal
for Numerical Methods in Engineering 91 (1 July 2012), pp. 67–97. ISSN: 0029-5981. DOI:
10.1002/nme.4258.

[25] Zhifei Dong and Xin Zhao. “Application of TPMS structure in bone regeneration”. In: Engineered
Regeneration 2 (2021), pp. 154–162. ISSN: 26661381. DOI: 10.1016/j.engreg.2021.09.004.

[26] B. Eidel et al. “Tibial implant fixation in TKA worth a revision?—how to avoid stress-shielding
even for stiff metallic implants”. In: Computer Methods in Biomechanics and Biomedical En-
gineering 24 (3 Feb. 2021), pp. 320–332. ISSN: 1025-5842. DOI: 10.1080/10255842.2020.
1830274.

[27] T. M.G.J. Van Eijden. “Biomechanics of theMandible”. In: http://dx.doi.org/10.1177/10454411000110010101
11 (1 Jan. 2000), pp. 123–136. ISSN: 10454411. DOI: 10.1177/10454411000110010101. URL:
https://journals.sagepub.com/doi/10.1177/10454411000110010101.

[28] Samira Faegh and Sinan Müftü. “Load transfer along the bone–dental implant interface”. In:
Journal of Biomechanics 43 (9 June 2010), pp. 1761–1770. ISSN: 00219290. DOI: 10.1016/j.
jbiomech.2010.02.017.

[29] Bader Fatani, Jumana A Fatani, and Omar A Fatani. “Approach for Mandibular Reconstruction
Using Vascularized Free Fibula Flap: A Review of the Literature.” In: Cureus 14 (10 Oct. 2022),
e30161. ISSN: 2168-8184. DOI: 10.7759/cureus.30161.

[30] V. F. Ferrario et al. “Single tooth bite forces in healthy young adults”. In: Journal of Oral Reha-
bilitation 31 (1 Jan. 2004), pp. 18–22. ISSN: 0305-182X. DOI: 10.1046/j.0305-182X.2003.
01179.x.

https://doi.org/10.1002/adem.201000154
https://doi.org/10.1108/RPJ-11-2017-0231
https://www.emerald.com/insight/content/doi/10.1108/RPJ-11-2017-0231/full/html
https://doi.org/10.1016/j.actbio.2023.11.011
https://doi.org/10.1016/j.actbio.2023.11.011
https://doi.org/10.14639/0392-100X-1376
https://doi.org/10.14639/0392-100X-1376
https://doi.org/10.1016/S0883-5403(89)80071-3
https://doi.org/10.1177/2041731420956541
https://doi.org/10.1007/s00158-013-0912-y
https://doi.org/10.1002/nme.4258
https://doi.org/10.1016/j.engreg.2021.09.004
https://doi.org/10.1080/10255842.2020.1830274
https://doi.org/10.1080/10255842.2020.1830274
https://doi.org/10.1177/10454411000110010101
https://journals.sagepub.com/doi/10.1177/10454411000110010101
https://doi.org/10.1016/j.jbiomech.2010.02.017
https://doi.org/10.1016/j.jbiomech.2010.02.017
https://doi.org/10.7759/cureus.30161
https://doi.org/10.1046/j.0305-182X.2003.01179.x
https://doi.org/10.1046/j.0305-182X.2003.01179.x


References 37

[31] Jerome H Friedman et al. “An Algorithm fQr Finding Best in Logarithmic Expected Time”. In:
ACYL Transactions on Mathematical Software 3 (3 1977), pp. 209–226.

[32] Harold M. Frost. “Bone’s Mechanostat: A 2003 Update”. In: Anatomical Record - Part A Dis-
coveries in Molecular, Cellular, and Evolutionary Biology 275 (2 2003), pp. 1081–1101. ISSN:
0003276X. DOI: 10.1002/AR.A.10119.

[33] Hui Gao et al. “Mechanobiologically optimization of a 3D titanium-mesh implant for mandibular
large defect: A simulated study”. In: Materials science & engineering. C, Materials for biological
applications 104 (Nov. 2019). ISSN: 1873-0191. DOI: 10.1016/J.MSEC.2019.109934. URL:
https://pubmed.ncbi.nlm.nih.gov/31500061/.

[34] A. Gelas et al. “Radial basis functions collocation methods for model based level-set segmen-
tation”. In: Proceedings - International Conference on Image Processing, ICIP 2 (2007). ISSN:
15224880. DOI: 10.1109/ICIP.2007.4379136.

[35] Geuzaine, Christophe and Remacle, Jean-Francois.Gmsh. Version 4.12.2. Feb. 22, 2023. URL:
http://http://gmsh.info/.

[36] Armin Omidvar Ghaziani, Reza Soheilifard, and Sara Kowsar. “The effect of functionally graded
materials on bone remodeling around osseointegrated trans-femoral prostheses”. In: Journal of
the Mechanical Behavior of Biomedical Materials 118 (June 2021), p. 104426. ISSN: 17516161.
DOI: 10.1016/j.jmbbm.2021.104426.

[37] Bee Tin Goh et al. Mandibular reconstruction in adults: a review. July 2008. DOI: 10.1016/j.
ijom.2008.03.002.

[38] Andreas Gravvanis, Dimitrios Anterriotis, and Despoina Kakagia. “Mandibular Condyle Recon-
struction With Fibula Free-Tissue Transfer: The Role of the Masseter Muscle”. In: Journal of
Craniofacial Surgery 28 (8 Nov. 2017), pp. 1955–1959. ISSN: 1049-2275. DOI: 10.1097/SCS.
0000000000003998.

[39] Kristina Haase and Gholamreza Rouhi. “Prediction of stress shielding around an orthopedic
screw: Using stress and strain energy density as mechanical stimuli”. In: Computers in Biology
and Medicine 43 (11 Nov. 2013), pp. 1748–1757. ISSN: 00104825. DOI: 10.1016/j.compbiom
ed.2013.07.032.

[40] R B Haber, C S Jog, and M P Bendsoe. “A new approach to variable-topology shape design
using a constraint on perimeter”. In: Structural Optimization 11 (1996), pp. 1–12.

[41] Ridha Hambli and Nour Hattab. “Application of Neural Network and Finite Element Method
for Multiscale Prediction of Bone Fatigue Crack Growth in Cancellous Bone”. In: Studies in
Mechanobiology, Tissue Engineering and Biomaterials 14 (2013), pp. 3–30. ISSN: 18682014.
DOI: 10.1007/8415_2012_146. URL: https://www.researchgate.net/publication/2792
72770_Application_of_Neural_Network_and_Finite_Element_Method_for_Multiscale_
Prediction_of_Bone_Fatigue_Crack_Growth_in_Cancellous_Bone.

[42] Sandra Hamlet et al. “Mastication and swallowing in patients with postirradiation xerostomia”.
In: International journal of radiation oncology, biology, physics 37 (4 Mar. 1997), pp. 789–796.
ISSN: 0360-3016. DOI: 10.1016/S0360-3016(96)00604-9. URL: https://pubmed.ncbi.nlm.
nih.gov/9128953/.

[43] R. Hedayati et al. “How does tissue regeneration influence the mechanical behavior of additively
manufactured porous biomaterials?” In: Journal of the Mechanical Behavior of Biomedical Ma-
terials 65 (Jan. 2017), pp. 831–841. ISSN: 17516161. DOI: 10.1016/j.jmbbm.2016.10.003.

[44] D A Hidalgo. “Fibula free flap: a new method of mandible reconstruction.” In: Plastic and recon-
structive surgery 84 (1 July 1989), pp. 71–9. ISSN: 0032-1052.

[45] S J Hollister, R D Maddox, and J M Taboas.Optimal design and fabrication of scaffolds to mimic
tissue properties and satisfy biological constraints. 2002.

[46] Scott J. Hollister. “Porous scaffold design for tissue engineering”. In: Nature Materials 2005 4:7
4 (7 2005), pp. 518–524. ISSN: 1476-4660. DOI: 10.1038/nmat1421. URL: https://www.
nature.com/articles/nmat1421.

https://doi.org/10.1002/AR.A.10119
https://doi.org/10.1016/J.MSEC.2019.109934
https://pubmed.ncbi.nlm.nih.gov/31500061/
https://doi.org/10.1109/ICIP.2007.4379136
http://http://gmsh.info/
https://doi.org/10.1016/j.jmbbm.2021.104426
https://doi.org/10.1016/j.ijom.2008.03.002
https://doi.org/10.1016/j.ijom.2008.03.002
https://doi.org/10.1097/SCS.0000000000003998
https://doi.org/10.1097/SCS.0000000000003998
https://doi.org/10.1016/j.compbiomed.2013.07.032
https://doi.org/10.1016/j.compbiomed.2013.07.032
https://doi.org/10.1007/8415_2012_146
https://www.researchgate.net/publication/279272770_Application_of_Neural_Network_and_Finite_Element_Method_for_Multiscale_Prediction_of_Bone_Fatigue_Crack_Growth_in_Cancellous_Bone
https://www.researchgate.net/publication/279272770_Application_of_Neural_Network_and_Finite_Element_Method_for_Multiscale_Prediction_of_Bone_Fatigue_Crack_Growth_in_Cancellous_Bone
https://www.researchgate.net/publication/279272770_Application_of_Neural_Network_and_Finite_Element_Method_for_Multiscale_Prediction_of_Bone_Fatigue_Crack_Growth_in_Cancellous_Bone
https://doi.org/10.1016/S0360-3016(96)00604-9
https://pubmed.ncbi.nlm.nih.gov/9128953/
https://pubmed.ncbi.nlm.nih.gov/9128953/
https://doi.org/10.1016/j.jmbbm.2016.10.003
https://doi.org/10.1038/nmat1421
https://www.nature.com/articles/nmat1421
https://www.nature.com/articles/nmat1421


References 38

[47] Scott J. Hollister. “Scaffold Design and Manufacturing: From Concept to Clinic”. In: Advanced
Materials 21 (32-33 Sept. 2009), pp. 3330–3342. ISSN: 1521-4095. DOI: 10.1002/ADMA.200
802977. URL: https://onlinelibrary.wiley.com/doi/full/10.1002/adma.200802977%
20https : / / onlinelibrary . wiley . com / doi / abs / 10 . 1002 / adma . 200802977 % 20https :
//onlinelibrary.wiley.com/doi/10.1002/adma.200802977.

[48] Heng Li Huang et al. “Biomechanical analysis of a temporomandibular joint condylar prosthe-
sis during various clenching tasks”. In: Journal of Cranio-Maxillofacial Surgery 43 (7 2015),
pp. 1194–1201. ISSN: 18784119. DOI: 10.1016/j.jcms.2015.04.016.

[49] R Huiskes, H Weinans, and B van Rietbergen. “The relationship between stress shielding and
bone resorption around total hip stems and the effects of flexible materials.” In: Clinical or-
thopaedics and related research (274 Jan. 1992), pp. 124–34. ISSN: 0009-921X.

[50] Dietmar Werner Hutmacher et al. “State of the art and future directions of scaffold-based bone
engineering from a biomaterials perspective”. In: Journal of tissue engineering and regenerative
medicine 1.2 (4 2007), pp. 245–260. ISSN: 1932-6254. DOI: 10.1002/TERM.24. URL: https:
//pubmed.ncbi.nlm.nih.gov/18038415/.

[51] Jonathan C. Irish et al. “Primary Mandibular Reconstruction with the Titanium Hollow Screw
Reconstruction Plate”. In: Plastic and Reconstructive Surgery 96 (1 July 1995), pp. 93–99. ISSN:
0032-1052. DOI: 10.1097/00006534-199507000-00014.

[52] H Jinnai et al. “Surface curvatures of trabecular bone microarchitecture”. In: Bone 30 (1 Jan.
2002), pp. 191–194. ISSN: 87563282. DOI: 10.1016/S8756-3282(01)00672-X.

[53] P. W. Kämmerer et al. “Local and systemic risk factors influencing the long-term success of an-
gular stable alloplastic reconstruction plates of the mandible”. In: Journal of Cranio-Maxillofacial
Surgery 42 (5 2014), e271–e276. ISSN: 18784119. DOI: 10.1016/j.jcms.2013.10.004.

[54] Sebastian C. Kapfer et al. “Minimal surface scaffold designs for tissue engineering”. In: Bioma-
terials 32 (29 Oct. 2011), pp. 6875–6882. ISSN: 0142-9612. DOI: 10.1016/J.BIOMATERIALS.
2011.06.012.

[55] Vassilis Karageorgiou and David Kaplan. “Porosity of 3D biomaterial scaffolds and osteogene-
sis”. In: Biomaterials 26 (27 Sept. 2005), pp. 5474–5491. ISSN: 0142-9612. DOI: 10.1016/J.
BIOMATERIALS.2005.02.002.

[56] Akira Katakura et al. “Material Analysis of AO Plate Fracture Cases”. In: Oral and Maxillofacial
Surgeons J Oral Maxillofac Surg 62 (2004), pp. 348–352. DOI: 10.1016/j.joms.2003.05.009.

[57] Oraib Al-Ketan, Reza Rowshan, and Rashid K. Abu Al-Rub. “Topology-mechanical property
relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials”.
In: Additive Manufacturing 19 (Jan. 2018), pp. 167–183. ISSN: 22148604. DOI: 10.1016/j.
addma.2017.12.006.

[58] Sajad Arabnejad Khanoki and Damiano Pasini. “Multiscale Design and Multiobjective Optimiza-
tion of Orthopedic Hip Implants with Functionally Graded Cellular Material”. In: Journal of Biome-
chanical Engineering 134 (3 Mar. 2012). ISSN: 0148-0731. DOI: 10.1115/1.4006115.

[59] Nikolaos Kladovasilakis, Konstantinos Tsongas, and Dimitrios Tzetzis. “Finite Element Analysis
of Orthopedic Hip Implant with Functionally Graded Bioinspired Lattice Structures”. In:Biomimet-
ics (Basel, Switzerland) 5 (3 Sept. 2020). ISSN: 2313-7673. DOI: 10.3390/BIOMIMETICS50300
44. URL: https://pubmed.ncbi.nlm.nih.gov/32932596/.

[60] Michael Knitschke et al. “Partial and Total Flap Failure after Fibula Free Flap in Head and Neck
Reconstructive Surgery: Retrospective Analysis of 180 Flaps over 19 Years.” In: Cancers 13 (4
Feb. 2021). ISSN: 2072-6694. DOI: 10.3390/cancers13040865.

[61] Wayne M. Koch et al. “Advantages of mandibular reconstruction with the titanium hollow screw
osseointegrating reconstruction plate (THORP)”. In: The Laryngoscope 104 (5May 1994), pp. 545–
552. ISSN: 0023852X. DOI: 10.1002/lary.5541040507.

[62] George Kokosis et al. “Mandibular Reconstruction Using the Free Vascularized Fibula Graft: An
Overview of Different Modifications”. In: Archives of Plastic Surgery 43 (01 Jan. 2016), pp. 3–9.
ISSN: 2234-6163. DOI: 10.5999/aps.2016.43.1.3.

https://doi.org/10.1002/ADMA.200802977
https://doi.org/10.1002/ADMA.200802977
https://onlinelibrary.wiley.com/doi/full/10.1002/adma.200802977%20https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.200802977%20https://onlinelibrary.wiley.com/doi/10.1002/adma.200802977
https://onlinelibrary.wiley.com/doi/full/10.1002/adma.200802977%20https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.200802977%20https://onlinelibrary.wiley.com/doi/10.1002/adma.200802977
https://onlinelibrary.wiley.com/doi/full/10.1002/adma.200802977%20https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.200802977%20https://onlinelibrary.wiley.com/doi/10.1002/adma.200802977
https://doi.org/10.1016/j.jcms.2015.04.016
https://doi.org/10.1002/TERM.24
https://pubmed.ncbi.nlm.nih.gov/18038415/
https://pubmed.ncbi.nlm.nih.gov/18038415/
https://doi.org/10.1097/00006534-199507000-00014
https://doi.org/10.1016/S8756-3282(01)00672-X
https://doi.org/10.1016/j.jcms.2013.10.004
https://doi.org/10.1016/J.BIOMATERIALS.2011.06.012
https://doi.org/10.1016/J.BIOMATERIALS.2011.06.012
https://doi.org/10.1016/J.BIOMATERIALS.2005.02.002
https://doi.org/10.1016/J.BIOMATERIALS.2005.02.002
https://doi.org/10.1016/j.joms.2003.05.009
https://doi.org/10.1016/j.addma.2017.12.006
https://doi.org/10.1016/j.addma.2017.12.006
https://doi.org/10.1115/1.4006115
https://doi.org/10.3390/BIOMIMETICS5030044
https://doi.org/10.3390/BIOMIMETICS5030044
https://pubmed.ncbi.nlm.nih.gov/32932596/
https://doi.org/10.3390/cancers13040865
https://doi.org/10.1002/lary.5541040507
https://doi.org/10.5999/aps.2016.43.1.3


References 39

[63] A. van Kootwijk et al. “Semi-automated digital workflow to design and evaluate patient-specific
mandibular reconstruction implants”. In: Journal of the Mechanical Behavior of Biomedical Ma-
terials 132 (2022), p. 105291. ISSN: 1751-6161. DOI: 10.1016/J.JMBBM.2022.105291.

[64] T.W.P. Korioth and A.G. Hannam. “Deformation of the Human Mandible During Simulated Tooth
Clenching”. In: Journal of Dental Research 73 (1 Jan. 1994), pp. 56–66. ISSN: 0022-0345. DOI:
10.1177/00220345940730010801.

[65] Sebastian Kreissl, Georg Pingen, and Kurt Maute. “An explicit level set approach for generalized
shape optimization of fluids with the lattice Boltzmann method”. In: International Journal for
Numerical Methods in Fluids 65 (5 2011), pp. 496–519. ISSN: 0271-2091. URL: https://www.
academia.edu/18930169/An_explicit_level_set_approach_for_generalized_shape_
optimization_of_fluids_with_the_lattice_Boltzmann_method.

[66] Batchu Pavan Kumar et al. “Mandibular Reconstruction: Overview”. In: Journal of Maxillofacial
and Oral Surgery 15 (4 2016), pp. 425–441. ISSN: 0974942X. DOI: 10.1007/s12663- 015-
0766-5.

[67] Robert Langer and Joseph P. Vacanti. “Tissue engineering”. In: Science (New York, N.Y.) 260
(5110 1993), pp. 920–926. ISSN: 0036-8075. DOI: 10.1126/SCIENCE.8493529. URL: https:
//pubmed.ncbi.nlm.nih.gov/8493529/.

[68] Chia Hsuan Li, Cheng Hsien Wu, and Chun Li Lin. “Design of a patient-specific mandible recon-
struction implant with dental prosthesis for metal 3D printing using integrated weighted topology
optimization and finite element analysis”. In: Journal of the Mechanical Behavior of Biomedical
Materials 105 (October 2019 2020), p. 103700. ISSN: 18780180. DOI: 10.1016/j.jmbbm.2020.
103700.

[69] Dawei Li et al. “Optimal design and modeling of gyroid-based functionally graded cellular struc-
tures for additive manufacturing”. In: Computer-Aided Design 104 (Nov. 2018), pp. 87–99. ISSN:
00104485. DOI: 10.1016/j.cad.2018.06.003.

[70] Zhou Li et al. “Performance-based inverse structural design of complex gradient triply periodic
minimal surface structures based on a deep learning approach”. In: Materials Today Communi-
cations 40 (Aug. 2024), p. 109424. ISSN: 23524928. DOI: 10.1016/j.mtcomm.2024.109424.

[71] Fei Liu et al. “Functionally graded porous scaffolds in multiple patterns: New design method,
physical and mechanical properties”. In: Materials & Design 160 (Dec. 2018), pp. 849–860.
ISSN: 02641275. DOI: 10.1016/j.matdes.2018.09.053.

[72] Renshun Liu et al. “Novel Design and Optimization of Porous Titanium Structure for Mandibular
Reconstruction”. In: Applied Bionics and Biomechanics 2022 (2022). ISSN: 17542103. DOI:
10.1155/2022/8686670.

[73] Yun-Feng Liu et al. “A customized fixation plate with novel structure designed by topological
optimization for mandibular angle fracture based on finite element analysis BioMedical Engi-
neering OnLine”. In: BioMedical Engineering OnLine 16 (2017), p. 131. DOI: 10.1186/s12938-
017-0422-z.

[74] Z Liu, ∙ J G Korvink, and ∙ R Huang. “Struct Multidisc Optim (2005) 29: 407-417 Structure topol-
ogy optimization: fully coupled level set method via FEMLAB”. In: (). DOI: 10.1007/s00158-
004-0503-z. URL: http://www.mscsoftware.com/.

[75] Marc Long and H.J Rack. “Titanium alloys in total joint replacement—a materials science per-
spective”. In: Biomaterials 19 (18 Sept. 1998), pp. 1621–1639. ISSN: 01429612. DOI: 10.1016/
S0142-9612(97)00146-4.

[76] Junzhao Luo et al. “A new level set method for systematic design of hinge-free compliant mech-
anisms”. In: Computer Methods in Applied Mechanics and Engineering 198 (2 Dec. 2008),
pp. 318–331. ISSN: 0045-7825. DOI: 10.1016/J.CMA.2008.08.003.

[77] Ekaterina Maevskaia et al. “Triply Periodic Minimal Surface-Based Scaffolds for Bone Tissue
Engineering: A Mechanical, In Vitro and In Vivo Study”. In: Tissue Engineering Part A 29 (19-20
Oct. 2023), pp. 507–517. ISSN: 1937-3341. DOI: 10.1089/ten.tea.2023.0033.

https://doi.org/10.1016/J.JMBBM.2022.105291
https://doi.org/10.1177/00220345940730010801
https://www.academia.edu/18930169/An_explicit_level_set_approach_for_generalized_shape_optimization_of_fluids_with_the_lattice_Boltzmann_method
https://www.academia.edu/18930169/An_explicit_level_set_approach_for_generalized_shape_optimization_of_fluids_with_the_lattice_Boltzmann_method
https://www.academia.edu/18930169/An_explicit_level_set_approach_for_generalized_shape_optimization_of_fluids_with_the_lattice_Boltzmann_method
https://doi.org/10.1007/s12663-015-0766-5
https://doi.org/10.1007/s12663-015-0766-5
https://doi.org/10.1126/SCIENCE.8493529
https://pubmed.ncbi.nlm.nih.gov/8493529/
https://pubmed.ncbi.nlm.nih.gov/8493529/
https://doi.org/10.1016/j.jmbbm.2020.103700
https://doi.org/10.1016/j.jmbbm.2020.103700
https://doi.org/10.1016/j.cad.2018.06.003
https://doi.org/10.1016/j.mtcomm.2024.109424
https://doi.org/10.1016/j.matdes.2018.09.053
https://doi.org/10.1155/2022/8686670
https://doi.org/10.1186/s12938-017-0422-z
https://doi.org/10.1186/s12938-017-0422-z
https://doi.org/10.1007/s00158-004-0503-z
https://doi.org/10.1007/s00158-004-0503-z
http://www.mscsoftware.com/
https://doi.org/10.1016/S0142-9612(97)00146-4
https://doi.org/10.1016/S0142-9612(97)00146-4
https://doi.org/10.1016/J.CMA.2008.08.003
https://doi.org/10.1089/ten.tea.2023.0033


References 40

[78] Martta Martola et al. “Fracture of titanium plates used for mandibular reconstruction following
ablative tumor surgery”. In: Journal of Biomedical Materials Research - Part B Applied Bioma-
terials 80 (2 2007), pp. 345–352. ISSN: 15524973. DOI: 10.1002/jbm.b.30603.

[79] Peter Maurer et al. “Scope and limitations of methods of mandibular reconstruction: a long-term
follow-up”. In: British Journal of Oral and Maxillofacial Surgery 48 (2 2010), pp. 100–104. ISSN:
0266-4356. DOI: 10.1016/J.BJOMS.2009.07.005.

[80] Bram B.J. Merema et al. “Novel finite element-based plate design for bridging mandibular de-
fects: Reducing mechanical failure”. In:Oral Diseases 26 (6 2020), pp. 1265–1274. ISSN: 1601-
0825. DOI: 10.1111/ODI.13331.

[81] Bram Barteld Jan Merema et al. “Patient�specific finite element models of the human mandible:
Lack of consensus on current set�ups”. In: Oral Diseases 27 (1 2021), p. 42. ISSN: 16010825.
DOI: 10.1111/ODI.13381.

[82] M. Mesnard and A. Ramos. “Experimental and numerical predictions of Biomet® alloplastic
implant in a cadaveric mandibular ramus”. In: Journal of Cranio-Maxillofacial Surgery 44 (5
2016), pp. 608–615. ISSN: 18784119. DOI: 10.1016/j.jcms.2016.02.004.

[83] H. Miura et al. “Chewing ability and quality of life among the elderly residing in a rural community
in Japan”. In: Journal of Oral Rehabilitation 27 (8 Aug. 2000), pp. 731–734. ISSN: 0305-182X.
DOI: 10.1046/j.1365-2842.2000.00590.x.

[84] Papa Ibrahima N’Gom and Alain Woda. “Influence of impaired mastication on nutrition”. In: The
Journal of Prosthetic Dentistry 87 (6 June 2002), pp. 667–673. ISSN: 00223913. DOI: 10.1067/
mpr.2002.123229.

[85] T. Nagasao et al. “Finite element analysis of the stresses around endosseous implants in vari-
ous reconstructed mandibular models”. In: Journal of Cranio-Maxillofacial Surgery 30 (3 2002),
pp. 170–177. ISSN: 10105182. DOI: 10.1054/jcms.2002.0310.

[86] Nathaniel Narra et al. “Finite element analysis of customized reconstruction plates for mandibu-
lar continuity defect therapy”. In: Journal of Biomechanics 47 (1 2014), pp. 264–268. ISSN:
00219290. DOI: 10.1016/j.jbiomech.2013.11.016.

[87] Si Myung Park, Jung Woo Lee, and Gunwoo Noh. “Which plate results in better stability after
segmental mandibular resection and fibula free flap reconstruction? Biomechanical analysis”.
In: Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology 126 (5 2018), pp. 380–389.
ISSN: 22124403. DOI: 10.1016/j.oooo.2018.05.048.

[88] Wen ming Peng et al. “Biomechanical and Mechanostat analysis of a titanium layered porous
implant for mandibular reconstruction: The effect of the topology optimization design”. In: Ma-
terials science & engineering. C, Materials for biological applications 124 (May 2021). ISSN:
1873-0191. DOI: 10.1016/J.MSEC.2021.112056. URL: https://pubmed.ncbi.nlm.nih.gov/
33947550/.

[89] Roman A. Perez and Gemma Mestres. “Role of pore size and morphology in musculo-skeletal
tissue regeneration”. In: Materials Science and Engineering: C 61 (Apr. 2016), pp. 922–939.
ISSN: 09284931. DOI: 10.1016/j.msec.2015.12.087.

[90] Dalia Radwan and Fahmy Mobarak. “Plate-related complications after mandibular reconstruc-
tion: observational study osteotomy”. In: Egyptian Journal of Oral and Maxillofacial Surgery 9
(1 2018), pp. 22–27. ISSN: 2090-097X. DOI: 10.21608/OMX.2018.5623.

[91] Maria Letizia Raffa et al. “Stress shielding at the bone�implant interface: Influence of surface
roughness and of the bone�implant contact ratio”. In: Journal of Orthopaedic Research 39 (6
June 2021), pp. 1174–1183. ISSN: 0736-0266. DOI: 10.1002/jor.24840.

[92] A. Ramos, R. J. Duarte, and M. Mesnard. “Prediction at long-term condyle screw fixation of
temporomandibular joint implant: A numerical study”. In: Journal of Cranio-Maxillofacial Surgery
43 (4 2015), pp. 469–474. ISSN: 18784119. DOI: 10.1016/j.jcms.2015.02.013.

[93] A. Ramos, Yi Nyashin, and M. Mesnard. “Influences of geometrical and mechanical proper-
ties of bone tissues in mandible behaviour–experimental and numerical predictions”. In: Com-
puter Methods in Biomechanics and Biomedical Engineering 20 (9 2017), pp. 1004–1014. ISSN:
14768259. DOI: 10.1080/10255842.2017.1322072.

https://doi.org/10.1002/jbm.b.30603
https://doi.org/10.1016/J.BJOMS.2009.07.005
https://doi.org/10.1111/ODI.13331
https://doi.org/10.1111/ODI.13381
https://doi.org/10.1016/j.jcms.2016.02.004
https://doi.org/10.1046/j.1365-2842.2000.00590.x
https://doi.org/10.1067/mpr.2002.123229
https://doi.org/10.1067/mpr.2002.123229
https://doi.org/10.1054/jcms.2002.0310
https://doi.org/10.1016/j.jbiomech.2013.11.016
https://doi.org/10.1016/j.oooo.2018.05.048
https://doi.org/10.1016/J.MSEC.2021.112056
https://pubmed.ncbi.nlm.nih.gov/33947550/
https://pubmed.ncbi.nlm.nih.gov/33947550/
https://doi.org/10.1016/j.msec.2015.12.087
https://doi.org/10.21608/OMX.2018.5623
https://doi.org/10.1002/jor.24840
https://doi.org/10.1016/j.jcms.2015.02.013
https://doi.org/10.1080/10255842.2017.1322072


References 41

[94] Ant Onio Ramos et al. “Ex-vivo and in vitro validation of an innovative mandibular condyle im-
plant concept”. In: (2018). DOI: 10.1016/j.jcms.2018.11.010.

[95] M.I.Z. Ridzwan et al. “Problem of Stress Shielding and Improvement to the Hip Implant Designs:
A Review”. In: Journal of Medical Sciences 7 (3 Mar. 2007), pp. 460–467. ISSN: 16824474. DOI:
10.3923/jms.2007.460.467.

[96] L. Rossetti et al. “The microstructure and micromechanics of the tendon–bone insertion”. In:
Nature Materials 2017 16:6 16 (6 Feb. 2017), pp. 664–670. ISSN: 1476-4660. DOI: 10.1038/
nmat4863. URL: https://www.nature.com/articles/nmat4863.

[97] GholamrezaRouhi et al. “Prediction of Stress Shielding AroundOrthopedic Screws: Time-Dependent
Bone Remodeling Analysis Using Finite Element Approach”. In: Journal of Medical and Biologi-
cal Engineering 35 (4 Aug. 2015), pp. 545–554. ISSN: 1609-0985. DOI: 10.1007/s40846-015-
0066-z.

[98] G I N Rozvany et al. “Structural Optimization I”. In: (1989), pp. 47–72.
[99] Ap Rubshtein et al. “Porous material based on spongy titanium granules: Structure, mechanical

properties, and osseointegration”. In: (2014). DOI: 10.1016/j.msec.2013.11.020. URL: http:
//dx.doi.org/10.1016/j.msec.2013.11.020.

[100] M.J. de Ruiter and F. van Keulen. “Topology Optimization: Approaching the Material Distribution
Problem using a Topological Function Description”. In: pp. 111–119. DOI: 10.4203/ccp.67.1.
13.

[101] Monika Rumpler et al. “The effect of geometry on three-dimensional tissue growth”. In: Journal
of The Royal Society Interface 5 (27 Oct. 2008), pp. 1173–1180. ISSN: 1742-5689. DOI: 10.
1098/rsif.2008.0064.

[102] Bassiouny Saleh et al. “30 Years of functionally graded materials: An overview of manufacturing
methods, Applications and Future Challenges”. In: Composites Part B: Engineering 201 (Nov.
2020), p. 108376. ISSN: 13598368. DOI: 10.1016/j.compositesb.2020.108376.

[103] Harald Schöning and Rüdiger Emshoff. “Primary temporary AO plate reconstruction of the
mandible”. In: Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics 86
(6 1998), pp. 667–672. ISSN: 1079-2104. DOI: 10 . 1016 / S1079 - 2104(98 ) 90201 - 3. URL:
https://pubmed.ncbi.nlm.nih.gov/9868722/.

[104] J A Sethian. “Evolution, Implementation, and Application of Level Set and Fast Marching Meth-
ods for Advancing Fronts”. In: Journal of Computational Physics 169 (2001), pp. 503–555. DOI:
10.1006/jcph.2000.6657.

[105] Takahiko Shibahara et al. “Fracture of Mandibular Reconstruction Plates Used After Tumor Re-
section”. In: Oral and Maxillofacial Surgeons J Oral Maxillofac Surg 60 (2002), pp. 182–185.
DOI: 10.1053/joms.2002.29817.

[106] H. Asgharzadeh Shirazi, M. R. Ayatollahi, and A. Asnafi. “To reduce the maximum stress and the
stress shielding effect around a dental implant–bone interface using radial functionally graded
biomaterials”. In: Computer Methods in Biomechanics and Biomedical Engineering 20 (7 May
2017), pp. 750–759. ISSN: 1025-5842. DOI: 10.1080/10255842.2017.1299142.

[107] Sunil S Shroff et al. “Versatility of Fibula Free Flap in Reconstruction of Facial Defects: A Center
Study”. In: Journal of Maxillofacial and Oral Surgery 16 (1 Mar. 2017), pp. 101–107. ISSN: 0972-
8279. DOI: 10.1007/s12663-016-0930-6.

[108] Y Sivanagini, Dhanraj Ganapathy, and Ashish R Jain. Mental health status of the patients un-
derwent with mandibular resection. 2018.

[109] Soheil Soghrati et al. “An interface-enriched generalized FEM for problems with discontinuous
gradient fields”. In: International Journal for Numerical Methods in Engineering 89 (8 Feb. 2012),
pp. 991–1008. ISSN: 1097-0207. DOI: 10.1002/NME.3273. URL: https://onlinelibrary.
wiley.com/doi/full/10.1002/nme.3273%20https://onlinelibrary.wiley.com/doi/abs/
10.1002/nme.3273%20https://onlinelibrary.wiley.com/doi/10.1002/nme.3273.

https://doi.org/10.1016/j.jcms.2018.11.010
https://doi.org/10.3923/jms.2007.460.467
https://doi.org/10.1038/nmat4863
https://doi.org/10.1038/nmat4863
https://www.nature.com/articles/nmat4863
https://doi.org/10.1007/s40846-015-0066-z
https://doi.org/10.1007/s40846-015-0066-z
https://doi.org/10.1016/j.msec.2013.11.020
http://dx.doi.org/10.1016/j.msec.2013.11.020
http://dx.doi.org/10.1016/j.msec.2013.11.020
https://doi.org/10.4203/ccp.67.1.13
https://doi.org/10.4203/ccp.67.1.13
https://doi.org/10.1098/rsif.2008.0064
https://doi.org/10.1098/rsif.2008.0064
https://doi.org/10.1016/j.compositesb.2020.108376
https://doi.org/10.1016/S1079-2104(98)90201-3
https://pubmed.ncbi.nlm.nih.gov/9868722/
https://doi.org/10.1006/jcph.2000.6657
https://doi.org/10.1053/joms.2002.29817
https://doi.org/10.1080/10255842.2017.1299142
https://doi.org/10.1007/s12663-016-0930-6
https://doi.org/10.1002/NME.3273
https://onlinelibrary.wiley.com/doi/full/10.1002/nme.3273%20https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.3273%20https://onlinelibrary.wiley.com/doi/10.1002/nme.3273
https://onlinelibrary.wiley.com/doi/full/10.1002/nme.3273%20https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.3273%20https://onlinelibrary.wiley.com/doi/10.1002/nme.3273
https://onlinelibrary.wiley.com/doi/full/10.1002/nme.3273%20https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.3273%20https://onlinelibrary.wiley.com/doi/10.1002/nme.3273


References 42

[110] Baris Sokollu, Orhan Gulcan, and Erhan Ilhan Konukseven. “Mechanical properties comparison
of strut-based and triply periodic minimal surface lattice structures produced by electron beam
melting”. In: Additive Manufacturing 60 (Dec. 2022), p. 103199. ISSN: 22148604. DOI: 10.1016/
j.addma.2022.103199.

[111] Antonella Sola, Devis Bellucci, and Valeria Cannillo. “Functionally graded materials for orthope-
dic applications – an update on design and manufacturing”. In: Biotechnology Advances 34 (5
Sept. 2016), pp. 504–531. ISSN: 07349750. DOI: 10.1016/j.biotechadv.2015.12.013.

[112] Niclas Strömberg. “A new multi-scale topology optimization framework for optimal combinations
of macro-layouts and local gradings of TPMS-based lattice structures”. In: Mechanics Based
Design of Structures and Machines 52 (1 Jan. 2024), pp. 257–274. ISSN: 1539-7734. DOI:
10.1080/15397734.2022.2107538.

[113] D R Sumner and J O Galante. “Determinants of stress shielding: design versus materials versus
interface.” In: Clinical orthopaedics and related research (274 Jan. 1992), pp. 202–12. ISSN:
0009-921X. URL: https://www.researchgate.net/publication/21426792_Determinants_
of_Stress_Shielding_Design_Versus_Materials_Versus_Interface.

[114] Hyuna Sung et al. “Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and
Mortality Worldwide for 36 Cancers in 185 Countries”. In: CA: A Cancer Journal for Clinicians
71 (3 May 2021), pp. 209–249. ISSN: 0007-9235. DOI: 10.3322/caac.21660.

[115] Krister Svanberg. “The method of moving asymptotes—a new method for structural optimiza-
tion”. In: International Journal for Numerical Methods in Engineering 24 (2 Feb. 1987), pp. 359–
373. ISSN: 1097-0207. DOI: 10.1002/NME.1620240207. URL: https://onlinelibrary.wiley.
com/doi/full/10.1002/nme.1620240207%20https://onlinelibrary.wiley.com/doi/
abs/10.1002/nme.1620240207%20https://onlinelibrary.wiley.com/doi/10.1002/nme.
1620240207.

[116] Naoya Taniguchi et al. “Effect of pore size on bone ingrowth into porous titanium implants fabri-
cated by additive manufacturing: An in vivo experiment”. In:Materials Science and Engineering:
C 59 (Feb. 2016), pp. 690–701. ISSN: 0928-4931. DOI: 10.1016/J.MSEC.2015.10.069.

[117] S Testelin. “[History of microsurgical reconstruction of the mandible].” In: Annales de chirurgie
plastique et esthetique 37 (3 June 1992), pp. 241–5. ISSN: 0294-1260.

[118] Stavros Thomopoulos et al. “Collagen fiber orientation at the tendon to bone insertion and its
influence on stress concentrations”. In: Journal of Biomechanics 39 (10 Jan. 2006), pp. 1842–
1851. ISSN: 0021-9290. DOI: 10.1016/J.JBIOMECH.2005.05.021.

[119] HK Uhthoff and ZF Jaworski. “Bone loss in response to long-term immobilisation”. In: The Jour-
nal of Bone and Joint Surgery. British volume 60-B (3 Aug. 1978), pp. 420–429. ISSN: 0301-
620X. DOI: 10.1302/0301-620X.60B3.681422.

[120] Dvina Valainis et al. “Integrated additive design and manufacturing approach for the bioengi-
neering of bone scaffolds for favorable mechanical and biological properties”. In: Biomedical
Materials 14 (6 Sept. 2019), p. 065002. ISSN: 1748-605X. DOI: 10.1088/1748-605X/ab38c6.

[121] Michael Yu Wang, Xiaoming Wang, and Dongming Guo. “A level set method for structural topol-
ogy optimization”. In: Computer Methods in Applied Mechanics and Engineering 192 (1-2 Jan.
2003), pp. 227–246. ISSN: 00457825. DOI: 10.1016/S0045-7825(02)00559-5.

[122] Holger Wendland. “Piecewise polynomial, positive definite and compactly supported radial func-
tions of minimal degree”. In: Advances in Computational Mathematics 4 (1 Dec. 1995), pp. 389–
396. ISSN: 10197168. DOI: 10.1007/BF02123482/METRICS. URL: https://link.springer.
com/article/10.1007/BF02123482.

[123] Frank Wilde et al. “Multicenter study on the use of patient-specific CAD/CAM reconstruction
plates for mandibular reconstruction”. In: International Journal of Computer Assisted Radiology
and Surgery 10 (12 Dec. 2015), pp. 2035–2051. ISSN: 1861-6410. DOI: 10.1007/s11548-015-
1193-2.

[124] Dongming Xiao et al. “An integrated approach of topology optimized design and selective laser
melting process for titanium implants materials”. In: Bio-Medical Materials and Engineering 23
(5 2013), pp. 433–445. ISSN: 09592989. DOI: 10.3233/BME-130765.

https://doi.org/10.1016/j.addma.2022.103199
https://doi.org/10.1016/j.addma.2022.103199
https://doi.org/10.1016/j.biotechadv.2015.12.013
https://doi.org/10.1080/15397734.2022.2107538
https://www.researchgate.net/publication/21426792_Determinants_of_Stress_Shielding_Design_Versus_Materials_Versus_Interface
https://www.researchgate.net/publication/21426792_Determinants_of_Stress_Shielding_Design_Versus_Materials_Versus_Interface
https://doi.org/10.3322/caac.21660
https://doi.org/10.1002/NME.1620240207
https://onlinelibrary.wiley.com/doi/full/10.1002/nme.1620240207%20https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1620240207%20https://onlinelibrary.wiley.com/doi/10.1002/nme.1620240207
https://onlinelibrary.wiley.com/doi/full/10.1002/nme.1620240207%20https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1620240207%20https://onlinelibrary.wiley.com/doi/10.1002/nme.1620240207
https://onlinelibrary.wiley.com/doi/full/10.1002/nme.1620240207%20https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1620240207%20https://onlinelibrary.wiley.com/doi/10.1002/nme.1620240207
https://onlinelibrary.wiley.com/doi/full/10.1002/nme.1620240207%20https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1620240207%20https://onlinelibrary.wiley.com/doi/10.1002/nme.1620240207
https://doi.org/10.1016/J.MSEC.2015.10.069
https://doi.org/10.1016/J.JBIOMECH.2005.05.021
https://doi.org/10.1302/0301-620X.60B3.681422
https://doi.org/10.1088/1748-605X/ab38c6
https://doi.org/10.1016/S0045-7825(02)00559-5
https://doi.org/10.1007/BF02123482/METRICS
https://link.springer.com/article/10.1007/BF02123482
https://link.springer.com/article/10.1007/BF02123482
https://doi.org/10.1007/s11548-015-1193-2
https://doi.org/10.1007/s11548-015-1193-2
https://doi.org/10.3233/BME-130765


References 43

[125] Shintaro Yamasaki et al. “A structural optimization method based on the level set method using a
new geometry�based re�initialization scheme”. In: International Journal for Numerical Methods
in Engineering 83 (12 Sept. 2010), pp. 1580–1624. ISSN: 0029-5981. DOI: 10.1002/nme.2874.

[126] Chunze Yan et al. “Advanced lightweight 316L stainless steel cellular lattice structures fabri-
cated via selective laser melting”. In: Materials & Design 55 (Mar. 2014), pp. 533–541. ISSN:
02613069. DOI: 10.1016/j.matdes.2013.10.027.

[127] A. Yánez et al. “Gyroid porous titanium structures: A versatile solution to be used as scaf-
folds in bone defect reconstruction”. In: Materials & Design 140 (Feb. 2018), pp. 21–29. ISSN:
02641275. DOI: 10.1016/j.matdes.2017.11.050.

[128] Olivia Yost et al. “Masticatory System: Anatomy and Function”. In: (Mar. 2020). Ed. by Enriqueta
C. Bond et al. DOI: 10.17226/25652. URL: https://www.ncbi.nlm.nih.gov/books/NBK5579
88/.

[129] Amir A. Zadpoor. “Bone tissue regeneration: the role of scaffold geometry”. In: Biomaterials
Science 3 (2 Jan. 2015), pp. 231–245. ISSN: 2047-4849. DOI: 10.1039/C4BM00291A. URL:
https://pubs.rsc.org/en/content/articlehtml/2015/bm/c4bm00291a%20https://pubs.
rsc.org/en/content/articlelanding/2015/bm/c4bm00291a.

[130] A. N. Zeller et al. “Patient-Specific Mandibular Reconstruction Plates Increase Accuracy and
Long-Term Stability in Immediate Alloplastic Reconstruction of Segmental Mandibular Defects”.
In: Journal of Maxillofacial and Oral Surgery 19 (4 Dec. 2020), pp. 609–615. ISSN: 0972-8279.
DOI: 10.1007/s12663-019-01323-9.

[131] Jian Zhang, Fred van Keulen, and Alejandro M. Aragón. “On tailoring fracture resistance of
brittle structures: A level set interface-enriched topology optimization approach”. In: Computer
Methods in Applied Mechanics and Engineering 388 (Jan. 2022), p. 114189. ISSN: 00457825.
DOI: 10.1016/j.cma.2021.114189.

[132] Hongming Zong et al. “VCUT level set method for topology optimization of functionally graded
cellular structures”. In: Computer Methods in Applied Mechanics and Engineering 354 (Sept.
2019), pp. 487–505. ISSN: 00457825. DOI: 10.1016/j.cma.2019.05.029.

https://doi.org/10.1002/nme.2874
https://doi.org/10.1016/j.matdes.2013.10.027
https://doi.org/10.1016/j.matdes.2017.11.050
https://doi.org/10.17226/25652
https://www.ncbi.nlm.nih.gov/books/NBK557988/
https://www.ncbi.nlm.nih.gov/books/NBK557988/
https://doi.org/10.1039/C4BM00291A
https://pubs.rsc.org/en/content/articlehtml/2015/bm/c4bm00291a%20https://pubs.rsc.org/en/content/articlelanding/2015/bm/c4bm00291a
https://pubs.rsc.org/en/content/articlehtml/2015/bm/c4bm00291a%20https://pubs.rsc.org/en/content/articlelanding/2015/bm/c4bm00291a
https://doi.org/10.1007/s12663-019-01323-9
https://doi.org/10.1016/j.cma.2021.114189
https://doi.org/10.1016/j.cma.2019.05.029


A
Design velocities for quadratic

enriched node placement

Assuming that ϕk ̸= (ϕi + ϕj)/2, which would mean that a linear interpolation should be used, the zeros of this
function are

ζn =
−ϕi + ϕj ±

√
8ϕk (−ϕi − ϕj + 2ϕk) + (ϕi − ϕj) 2

2 (−ϕi − ϕj + 2ϕk)
. (A.1)

The zero of this function at which an enriched node is placed, is the value of ζn that satisfies −1 ≤ ζn ≤ 1. When
applying the inverse mapping of ζ(x), the global location of the enriched node is

xn = xi +
ζn + 1

2
(xj − xi) . (A.2)

The partial derivatives of this definition with respect to ϕi, ϕj and ϕk are:
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