
Optimizing Matching Time
Intervals in Ride-Hailing and
Ride-Pooling Services Using

Reinforcement Learning
Master Thesis

Yiman Bao (5691648)

Delft University of Technology

December 10, 2024

Optimizing Matching Time Intervals in Ride-Hailing and
Ride-Pooling Services Using Reinforcement Learning

Yiman Bao

December 10, 2024

1

Summary
This study explores a novel approach to address the challenges of matching strategies in ride-hailing

and ride-pooling services by leveraging reinforcement learning (RL) to dynamically adjust matching
time intervals. Ride-hailing and ride-pooling services have become vital components of urban mobility
systems, offering efficient and cost-effective transportation solutions. However, traditional strategies
like real-time matching and fixed-interval matching often fail to adapt to fluctuating supply-demand
conditions, leading to issues such as increased passenger wait times or inefficient driver utilization.
This thesis proposes a dynamic optimization framework based on the Proximal Policy Optimization
(PPO) algorithm to tackle these challenges.

The research begins by framing the problem as a sequential decision-making task within a reinforce-
ment learning (RL) framework. This formulation is particularly suited for dynamic environments like
ride-hailing and ride-pooling systems, where decisions made at one time step influence future states
and outcomes. To model this complexity, a Markov Decision Process (MDP) is employed. The MDP
framework allows the system to capture critical system states such as passenger demand, driver supply,
and the elapsed time since the last matching operation. By representing these dynamics explicitly, the
MDP formulation provides a solid foundation for designing adaptive matching strategies.

One of the significant challenges in this dynamic decision-making context is the sparse reward
problem. In scenarios where meaningful rewards occur infrequently—such as reducing total passenger
waiting times after a match—agents often struggle to learn effectively due to the lack of regular
feedback. To address this, a Potential-Based Reward Shaping (PBRS) mechanism is integrated into
the framework. This approach introduces intermediate reward signals that guide the agent toward
better policies during training. By shaping the rewards using a carefully designed potential function,
PBRS accelerates convergence, enabling the RL agent to identify high-quality solutions more efficiently.
This innovation is crucial for improving the feasibility and performance of RL in large-scale dynamic
systems.

The RL-based methodology involves the design of an agent capable of making adaptive matching
decisions in response to real-time supply-demand conditions. The agent’s state representation is
designed to be both compact and informative, focusing on metrics such as the current time, passenger
demand, and driver availability. These metrics are chosen to ensure that the model remains com-
putationally efficient while capturing essential information for decision-making. The compact state
representation reduces the complexity of the input space, allowing the RL model to scale effectively
to larger systems without compromising its ability to make informed decisions.

In addition to the state representation, the action space is carefully designed to allow the agent to
dynamically adjust matching intervals. At each time step, the agent can choose between performing
a matching operation or waiting to accumulate more passengers and drivers before matching. This
flexibility enables the RL framework to balance short-term goals, such as minimizing immediate wait
times, with long-term objectives, such as improving overall system efficiency. By adjusting matching
intervals dynamically, the agent ensures that the system remains responsive to fluctuating conditions
while optimizing resource allocation.

To evaluate the effectiveness of the proposed RL framework, a high-fidelity simulation environment
is developed to emulate the real-world dynamics of ride-hailing and ride-pooling systems. This simu-
lator incorporates key elements such as fluctuating demand patterns, spatial constraints, and realistic
passenger and driver behaviors. For instance, passenger orders and driver locations are generated
based on calibrated Poisson distributions to mimic urban transportation conditions. The simulation
also accounts for spatial constraints, such as driver-passenger proximity and traffic patterns, ensuring
that the RL agent operates in a realistic and challenging environment.

The simulator supports a wide range of experimental scenarios, enabling a thorough evaluation of
the RL-based matching strategy. By replicating dynamic supply-demand fluctuations, the simulation
tests the adaptability and robustness of the RL framework under diverse conditions. This comprehen-
sive evaluation demonstrates the framework’s ability to consistently outperform traditional matching
strategies, offering a practical solution for optimizing shared mobility systems in dynamic urban envi-
ronments.

Extensive experiments were conducted to evaluate the performance of the proposed RL-based
matching strategy against traditional fixed-interval and real-time matching approaches. The results
consistently demonstrate that the RL strategy significantly reduces passenger waiting times across var-

2

ious scenarios. By dynamically adjusting matching intervals, the RL framework is able to optimize the
timing of passenger-driver assignments, ensuring that matches occur at the most opportune moments.
This adaptability allows the system to respond effectively to fluctuating demand, maintaining high
levels of service efficiency even during periods of imbalance.

For ride-hailing services, one of the key advantages of the RL-based approach is its ability to
address supply-demand imbalances. Traditional strategies like fixed-interval matching are rigid and
cannot adapt to changes in real-time conditions, often leading to either excessive driver idling dur-
ing low-demand periods or increased passenger wait times during peak hours. In contrast, the RL
framework dynamically extends matching intervals during low-demand periods to aggregate more re-
quests, thereby improving resource utilization. Similarly, during high-demand periods, the framework
shortens matching intervals to process accumulated passenger requests promptly, ensuring a smoother
passenger experience and reducing overall system congestion.

In ride-pooling scenarios, the RL strategy showcases its robustness by effectively balancing multi-
passenger needs while minimizing detour delays. Unlike ride-hailing, ride-pooling involves additional
complexity due to the need to coordinate multiple passengers with overlapping routes. Traditional real-
time approaches often struggle to find optimal matches, leading to excessive detours or unbalanced
resource allocation. The RL framework, however, dynamically adjusts matching intervals based on
real-time demand patterns and supply availability. This allows the system to group passengers more
efficiently, reducing both the average detour time and the total travel cost for passengers. As a
result, the RL-based strategy improves overall service quality and passenger satisfaction in ride-pooling
operations.

The comparative analysis further highlights the flexibility and adaptability of the RL-based ap-
proach across different service modes and demand scenarios. Under scenarios of severe supply-demand
imbalance, such as a driver-to-passenger ratio of 0.5:1, the RL framework demonstrates remarkable
resilience by prioritizing passengers with longer waiting times and dynamically reallocating available
drivers to high-demand regions. Conversely, in oversupply scenarios, the framework extends matching
intervals to maximize vehicle utilization, minimizing driver idling and optimizing operational efficiency.
These capabilities underline the robustness of the RL strategy in handling a wide range of real-world
challenges.

Moreover, the experiments reveal that the RL-based strategy consistently outperforms both fixed-
interval and real-time matching approaches across key performance metrics, including average pickup
time, average total waiting time, and detour delays. This superiority is particularly evident in scenarios
with rapidly fluctuating demand, where the RL framework’s ability to adapt to real-time conditions
provides a significant advantage. The RL strategy not only improves passenger experience by reducing
waiting times but also enhances system-level efficiency by optimizing resource allocation, making it a
highly effective solution for modern urban mobility systems.

In summary, the experimental results validate the effectiveness and versatility of the RL-based
matching strategy. Its ability to dynamically adapt to diverse conditions and service modes highlights
its potential for widespread application in ride-hailing and ride-pooling services. By addressing the
limitations of traditional approaches, the proposed RL framework provides a robust and scalable
solution for optimizing shared mobility systems in dynamic urban environments.

This thesis makes several key contributions. It introduces a dynamic matching optimization frame-
work using RL to enhance service efficiency and passenger satisfaction. The incorporation of PBRS
addresses the challenges of sparse rewards, accelerating learning and improving the quality of derived
policies. The research also advances multi-passenger matching strategies in ride-pooling environments,
reducing detour delays and optimizing vehicle utilization. Finally, the development of a realistic sim-
ulation environment enables robust evaluation and provides a foundation for future research.

The findings of this study emphasize the potential of RL-driven dynamic matching strategies to
enhance shared mobility systems. By reducing passenger wait times, improving vehicle utilization,
and adapting to fluctuating demand, the proposed framework offers a promising solution for modern
urban transportation challenges. Future work could explore more sophisticated state representations or
incorporate real-time information through advanced machine learning models such as Recurrent Neural
Networks (RNNs), paving the way for even greater adaptability and scalability in shared mobility
services.

3

Acknowledgments
As this journey of my master’s study draws to a close, I would like to express my heartfelt gratitude

to everyone who has supported and guided me along the way. Without their invaluable assistance,
this thesis would not have been possible.

First and foremost, I would like to thank the members of my thesis committee for their guidance
and support. Prof. Cats provided insightful and constructive feedback on the design of my simulator,
greatly enhancing its realism. Prof. Oliehoek offered valuable suggestions from his expertise in rein-
forcement learning, which helped refine my training approach. I am especially grateful to Dr. Gao
and Jinke. Dr. Gao has been a constant source of encouragement and direction, guiding me through
every stage from topic selection and research design to thesis writing, and introducing me to the world
of reinforcement learning. Her rigorous academic standards and sharp insights have been a tremen-
dous inspiration on my academic journey. Jinke provided invaluable technical advice throughout the
project. Whenever I encountered technical challenges, he was always there to offer timely assistance,
significantly enhancing my technical skills in the process.

I would also like to extend my deep appreciation to my family. Their unwavering support has been
the foundation that has allowed me to pursue my studies and goals. No matter where I was, their
encouragement and care were a constant source of warmth, enabling me to devote myself fully to my
work. Thank you for your understanding and sacrifices, which have made it possible for me to pursue
my dreams.

To my girlfriend, Qu Na, my deepest gratitude. She has perhaps borne the greatest burden from my
commitment to this thesis, as I was often preoccupied with my research—even during our conversations.
Yet, during times when I hit roadblocks, she was always there to offer encouragement and stand by
my side. No matter the challenges I faced, she supported me unconditionally, sharing in both my joys
and frustrations. Her patience and understanding have been invaluable, and I am incredibly grateful
for her presence in my life.

Lastly, I want to thank my friends who have been by my side throughout this journey. Your
companionship, support, and laughter have filled my life with countless moments of joy, making this
path far less lonely. Thank you for your encouragement and friendship, which have given me the
strength to reach the finish line.

4

Contents

1 Introduction and Research Questions 7
1.1 Introduction . 7
1.2 Research Question . 10

2 Literature Review 10
2.1 Existing Work on Matching in Ride-hailing . 10
2.2 Research Gap . 13

3 Methodology 14
3.1 Problem Description . 14
3.2 Reinforcement Learning Framework . 17

3.2.1 Modeling the Problem . 17
3.2.2 Action Space . 19
3.2.3 State design . 19
3.2.4 Reward Design . 20

3.3 Simulator . 24
3.3.1 Assumptions of the Simulator . 25
3.3.2 Passenger and Driver Data Generation . 25
3.3.3 Spatial Matching Algorithm . 27
3.3.4 Verification Of the Simulator . 31

3.4 The Proximal Policy Optimization (PPO) Algorithm . 34

4 Result 35
4.1 Experimental Setup and Metrics . 35
4.2 Training Performance . 38
4.3 Comparison of Strategies . 41
4.4 Ride-Hailing vs. Ride-Pooling . 47

5 Conclusion 50
5.1 Research Contributions . 50
5.2 Key Findings and Implications . 51
5.3 Limitation and Future Work . 52

References 54

Appendix 57
A Ride-Hailing Simulator Working Flow . 57
B Ride-Pooling Simulator Working Flow . 58
C Developing Environment . 59
D Parameters of PPO . 61
E Map of Pick-up and Drop-off Points . 63
F Distribution of Passenger Orders in the Experiment . 64
G Comparison of System Strategy Performance Metrics . 65
H Metrics of Ride-Hailing vs. Ride-Pooling . 67

5

List of Figures
1 Impact of Batched Matching in Ride-Hailing Services . 15
2 Impact of Batched Matching in Ride-Pooling Services 16
3 Components of Passenger Waiting Time in Ride-Hailing and Ride-Pooling Services . . . 21
4 State transition diagram of matching process . 23
5 Comparison of Rewards Before and After PBRS . 24
6 All possible pickup and drop-off sequences for two passenger orders 28
7 Visualization of Passenger-Driver Match results . 32
8 Visualization of Passenger-Passenger Match results . 33
9 Fixed Time Interval Strategy in the Ride-Hailing Simulator 34
10 Fixed Time Interval Strategy in the Ride-Pooling Simulator 34
11 Training curve of Traditional Ride-Hailing Service . 39
12 Training Curve of Ride-Pooling Service . 40
13 Comparison of Average Total Waiting Time with Standard Error Across Different Strate-

gies in Ride-Hailing and Ride-Pooling . 42
14 Comparison of Metrics Across Training Episodes and Baseline Strategy for Ride-Hailing

Services . 43
15 Comparison of Metrics Across Training Episodes and Baseline Strategy for Ride-Pooling

Services . 44
16 Distribution of Dynamic Time Intervals . 46
17 Matching Interval Dynamics with Order and Driver Counts 46
18 Average Total Waiting Time in 8 Scenarios . 50
19 Map of Pick-up and Drop-off Points . 63
20 Distribution of Passenger Orders in the Experiment . 64
21 Comparison of System Waiting Times Across Training Episodes and Baseline Strategy

for Ride-Hailing Services . 65
22 Comparison of System Waiting Times Across Training Episodes and Baseline Strategy

for Ride-Pooling Services . 66

List of Tables
1 Research Comparison . 13
2 Comparison of Existing Literature and Contributions of This Study 14
3 Experimental Scenario Design . 48
4 Comparison of Metrics Across Different Ride-Hailing Scenarios 49
5 All Metrics of Ride-Hailing vs. Ride-Pooling . 67

6

1 Introduction and Research Questions

1.1 Introduction
In recent years, ride-hailing services, such as Uber and Lyft, have become a core component of

urban transportation systems worldwide. Compared to traditional taxi services, ride-hailing platforms
offer greater convenience and flexibility to passengers. With mobile applications, users can request a
vehicle anytime and anywhere, and track the driver’s location and estimated arrival time, significantly
reducing wait times [1]. This seamless user experience has substantially increased reliance on this mode
of service. In addition to enhancing individual travel convenience, ride-hailing services also play a
crucial role in urban traffic management. By optimizing vehicle dispatch and real-time supply-demand
matching, they effectively alleviate traffic congestion [2]. Compared to conventional taxi services,
ride-hailing platforms intelligently match nearby idle vehicles with passengers, reducing unnecessary
driving distances and minimizing idle time on the road [3]. Moreover, ride-hailing services contribute
to environmental protection. By improving vehicle utilization—especially during peak hours—these
services maximize the efficiency of each trip, thereby reducing carbon emissions [4].

In recent years, ride-pooling has emerged as a significant development within the ride-hailing in-
dustry, gaining increasing attention for its potential benefits. Unlike traditional single-passenger rides,
ride-pooling enables multiple passengers to share a single vehicle journey when their origins and desti-
nations are relatively close. This model retains the convenience of ride-hailing while further enhancing
vehicle utilization and cost efficiency by combining multiple trips into one [5]. One of the main advan-
tages of ride-pooling is its potential to significantly reduce travel costs for users. By grouping multiple
passengers in the same vehicle and allowing them to share portions of their journey, ride-hailing plat-
forms can offer lower fares [6]. Furthermore, ride-pooling decreases the total driving distance for each
vehicle, reduces the frequency of empty rides, and helps to minimize passenger wait times as well as
road congestion [7]. From a traffic management and environmental perspective, ride-pooling is even
more beneficial than traditional ride-hailing. By lowering the number of vehicles on urban roads,
ride-pooling helps alleviate traffic congestion and reduces carbon emissions, especially during peak pe-
riods when many passengers are traveling simultaneously [8]. These advantages make ride-pooling an
essential strategy in the pursuit of sustainable urban transportation, as it improves vehicle efficiency
without significantly extending passengers’ travel time.

Despite the notable success of ride-hailing and ride-pooling in enhancing urban mobility, sustain-
ing these services over the long term has become a critical challenge, especially as urban populations
and transportation demands continue to grow. For ride-hailing and ride-pooling models to remain
competitive in the future, they must consistently deliver increasingly convenient and efficient ser-
vice experiences. In this regard, optimizing matching strategies—efficiently pairing passengers with
available drivers—is essential for supporting the long-term growth and sustainability of these services.

In traditional ride-hailing services, passenger wait times and driver idle times are two major factors
that affect both service experience and operational efficiency. If passengers wait too long, user satisfac-
tion will drop, which can negatively impact the platform’s market share. On the other hand, excessive
driver idle times increase operational costs, reduce driver earnings, and may even affect driver engage-
ment levels [9]. Therefore, designing an efficient matching strategy that minimizes both passenger wait
times and driver idle times is crucial for the platform’s sustainable growth. For ride-pooling services,
the complexity of matching strategies is further elevated, as they not only need to match passengers
with drivers, but also optimize carpooling among multiple passengers. In this case, an effective match-
ing strategy must consider passengers’ real-time locations and destinations while minimizing detours
and trip delays to maximize vehicle utilization [10]. During peak hours, ride-pooling services can reduce
the number of vehicles on the road by matching several passengers to the same vehicle, thereby easing
traffic congestion. However, the actual ride-pooling experience is often constrained by the efficiency
of the matching algorithms. If these algorithms fail to optimize pooling effectively, passengers may
experience extended detours or longer wait times, which ultimately reduces user satisfaction [11].

Thus, optimizing matching strategies is crucial for enhancing the overall efficiency of both ride-
hailing and ride-pooling services, reducing resource waste, and improving user satisfaction. As fluc-
tuations in urban transportation demand become more pronounced, imbalances between supply and
demand are common. Platforms must be able to respond quickly during peak demand periods by
intelligently dispatching vehicles, while efficiently managing driver resources during off-peak times to

7

avoid idle vehicles. Addressing these issues requires more flexible and intelligent matching strategies
[12]. In the long run, the sustainable development of ride-hailing and ride-pooling depends on the con-
tinuous optimization of matching strategies. By designing algorithms that can dynamically respond
to complex supply and demand fluctuations, platforms can not only improve operational efficiency but
also provide users with more convenient and reliable travel experiences. This win-win situation will
enable ride-hailing and ride-pooling services to continue growing and innovating in the future market.

However, most current matching strategies focus primarily on optimizing spatial distance to improve
efficiency, such as minimizing the distance between passengers and drivers to make matching decisions
[13]. These strategies provide certain advantages in reducing passenger wait times and minimizing
driver idle times, particularly in areas with a high density of vehicles. Spatial matching can quickly
pair nearby drivers with passengers, thus improving service response times. However, these approaches
often overlook the temporal dimension, specifically the optimization of matching time intervals. In
reality, the supply-demand relationship between passengers and drivers is not static, and both passenger
requests and driver availability can fluctuate significantly over short periods of time. If matching
decisions are based solely on real-time spatial information, optimal matching opportunities may be
missed. For example, by accumulating more passenger requests and available drivers over a short
period, the system could perform a batch matching later, leading to a more optimal overall outcome
[12]. Ignoring the temporal dimension in matching can lead to suboptimal decisions, as it fails to fully
leverage dynamic supply-demand information, ultimately decreasing overall service efficiency.

Some existing matching strategies, such as those used by Uber, attempt to address the challenges of
real-time matching by adopting fixed time interval matching, which is called batched matching. In this
approach, the system accumulates a certain number of passenger requests and available drivers over
fixed intervals, then performs batch matching [14]. This batch matching approach improves overall
system dispatch capabilities to some extent, particularly during peak hours, effectively reducing long
passenger wait times and high driver idle rates. However, fixed interval matching lacks the necessary
flexibility to adapt to real-time changes in supply and demand. Fixed time windows may result in
unnecessary waiting during periods of low demand, while during periods of high demand, a long time
interval could cause the system to miss optimal matching opportunities [15]. For instance, during peak
hours, when passenger requests and driver availability fluctuate rapidly, fixed interval matching could
cause the system to miss the best matching opportunities, leading to longer passenger wait times and
increased driver idle rates. Therefore, fixed interval matching strategies are often inadequate when
dealing with complex fluctuations in supply and demand.

In summary, whether relying too heavily on real-time spatial matching or using fixed interval
matching, current matching strategies exhibit significant shortcomings. To further improve the overall
efficiency of ride-hailing and ride-pooling systems, it is essential to introduce more flexible match-
ing strategies that optimize both spatial and temporal dimensions, thereby achieving truly dynamic
matching.

Given the limitations of existing matching strategies, particularly the emphasis on spatial optimiza-
tion while neglecting dynamic adjustments to time intervals and the lack of flexibility in fixed interval
strategies, adopting more intelligent optimization methods is essential. Reinforcement Learning (RL),
a method that learns optimal strategies through continuous interaction with the environment, can
autonomously discover the best matching decisions in complex and dynamic supply-demand environ-
ments [16]. Unlike traditional fixed or real-time matching strategies, RL can leverage historical and
real-time data to progressively learn and improve decision-making processes. The system does not need
predefined matching rules; instead, it gradually learns how to flexibly adjust matching strategies un-
der various supply and demand conditions, thereby optimizing overall system performance [17]. This
adaptability is particularly suited to dynamic demand adjustments in ride-hailing and ride-pooling
scenarios, where supply and demand fluctuate significantly across both time and space. Traditional
static or semi-static matching methods struggle to cope with such complexity. Specifically, RL can
effectively address the challenge of optimizing matching time intervals. By observing the outcomes of
matching decisions at different moments, the RL model can gradually learn when to execute matches
and when to delay them, allowing actions to be taken at the most optimal time. More importantly,
the RL model can automatically adjust matching intervals based on system conditions, overcoming
the inflexibility of fixed interval strategies.

Although reinforcement learning can learn optimal matching strategies in dynamic environments,
its application also faces challenges, particularly in highly complex state spaces. The state space in

8

ride-hailing and ride-pooling environments is highly dimensional and complex due to factors such as
the geographic distribution of passengers and drivers, as well as the temporal dynamics of passenger
demand [18]. Deep Reinforcement Learning (DRL), which combines the strengths of deep learning
and reinforcement learning, can effectively solve decision-making problems in high-dimensional state
spaces [19]. By incorporating deep neural networks, DRL can handle large amounts of input data and
can learn complex nonlinear relationships, enabling the system to make better matching decisions in
complex scenarios. In the context of ride-hailing and ride-pooling, DRL can solve the pain points of
optimizing matching strategies in response to dynamic supply and demand changes. It can learn how
to adjust matching strategies in real-time under conditions of high variability and uncertainty, ensuring
the system continues to operate efficiently even in complex supply-demand conditions. Compared to
traditional reinforcement learning, DRL’s deep neural networks allow it to model complex spatiotem-
poral patterns, making it better suited for handling the intricate passenger pooling combinations in
ride-pooling and for optimizing matching time intervals. Therefore, DRL becomes the ideal solution for
optimizing matching strategies in ride-hailing and ride-pooling systems. It can autonomously learn op-
timal spatiotemporal matching strategies while coping with the dynamic fluctuations and uncertainties
of the environment, making it particularly effective for optimizing large-scale, complex transportation
systems and improving overall service quality and resource utilization.

In conclusion, under the current dynamic supply-demand environment, traditional matching strate-
gies, especially those using fixed time intervals, exhibit clear limitations and struggle to effectively
address the complexities caused by fluctuations in supply and demand. To tackle these challenges, this
paper proposes a dynamic matching time interval optimization method based on Deep Reinforcement
Learning (DRL), aiming to further improve the efficiency of ride-hailing and ride-pooling services. By
using the DRL model, the system can adaptively adjust matching time intervals, optimize the match-
ing of passengers and drivers, reduce passenger wait times, increase vehicle utilization, and minimize
detour delays during ride-pooling.

This study introduces several innovations in optimizing the matching strategies of ride-hailing
and ride-pooling services, addressing the inherent issues in traditional methods and enhancing overall
system efficiency. The main innovations of this paper are as follows:

1. Dynamic Optimization of Matching Time Intervals: Traditional matching strategies typ-
ically rely on fixed time intervals, lacking the flexibility to adapt to real-time fluctuations in
supply and demand. This study develops a dynamic optimization strategy for matching time
intervals based on reinforcement learning (RL), allowing the system to adjust in real-time accord-
ing to supply and demand changes. This dynamic optimization enables the system to balance
matching efficiency and passenger wait times under varying conditions, significantly improving
overall system performance.

2. Introducing Potential-Based Reward Shaping (PBRS): Traditional RL methods tend
to perform poorly in sparse reward environments. This study introduces a reward mechanism
using potential-based reward shaping (PBRS), which significantly accelerates model convergence
and improves learning efficiency. With PBRS, the model can quickly learn optimal strategies,
effectively reducing total wait times and enhancing system response speed.

3. Addressing the Complexity of Multi-Passenger Matching: In the context of ride-pooling,
the complexity of matching multiple passengers is significantly higher. This study proposes an
efficient algorithmic framework that takes into account the similarity of passenger origin and
destination points, optimizing the matching process and reducing detour times. During periods
of high demand, the system can dynamically match passengers, effectively minimizing detour
delays and enhancing overall passenger satisfaction.

4. Development and Validation of an Efficient Simulator: To validate the proposed strategy,
this study designs and develops an efficient simulator capable of accurately simulating real-world
supply-demand fluctuations and dynamically adjusting matching strategies. The simulator can
generate realistic passenger order and driver distribution data, providing a testing platform for
researchers to evaluate and optimize different matching methods before actual implementation.

Through these innovations, this paper presents a more flexible and adaptive optimization method
for matching strategies, improving system efficiency, reducing passenger wait times, and providing a
solid theoretical and practical foundation for future smart mobility services.

9

1.2 Research Question
The rapid growth of ride-hailing and ride-pooling services has significantly improved urban mobility.

However, ensuring the long-term efficiency and sustainability of these services remains a challenge,
especially as urban populations increase and transportation demands fluctuate. As identified in the
introduction, optimizing the matching time intervals is crucial to addressing these issues, particularly
when reinforced by advanced reinforcement learning techniques. This study seeks to explore how
reinforcement learning can dynamically adjust matching intervals to reduce passenger wait times and
improve overall service efficiency.

The primary objective of this study is summarized in the following main research question:

How can reinforcement learning techniques be used to dynamically optimize matching time
intervals in both ride-hailing and ride-pooling services to reduce passenger wait times?

To address the main question comprehensively, this study is further guided by the following sub-
research questions:

• How can reinforcement learning adjust matching strategies to respond effectively to changing
supply and demand in a dynamic environment?

• What methods can be applied to manage detour delays in ride-pooling services, minimizing
additional travel time for passengers?

• Compared to ride-hailing services, how much additional delay does ride-pooling introduce when
serving the same market demand?

By answering these questions, this study aims to develop a deeper understanding of how rein-
forcement learning can enhance the operational efficiency and user experience in ride-hailing and ride-
pooling services. This exploration of dynamic optimization seeks to provide both theoretical insights
and practical solutions for the sustainable development of urban transportation.

2 Literature Review

2.1 Existing Work on Matching in Ride-hailing
Ride-hailing services have quickly become essential components of urban public transportation sys-

tems in the digital age. Wang et al.[20] found that in Chicago, ride-hailing usage is significantly higher
than traditional taxis—six times more on weekdays and eleven times more on weekends. Additionally,
ride-hailing services have a wider coverage area compared to traditional taxis, Olayode et al.[21] an-
alyzed the effects of ride-hailing on public road transportation, revealing both positive and negative
impacts. On the positive side, ride-hailing improves environmental sustainability, reduces traffic con-
gestion, and enhances accessibility. However, it also increases competition with public transportation,
reduces funding for public transit, and may negatively affect driver working conditions. ride-pooling,
an extension of ride-hailing services, refers to a mode of transportation where multiple passengers
share the same vehicle for trips to different destinations. This mode maximizes vehicle utilization
by optimizing routes and matching passenger demand, thereby reducing the cost of individual rides,
alleviating traffic congestion, and mitigating environmental pollution. Alisoltani et al.[22] found that
in large urban transportation networks, especially during periods of high demand density, dynamic
ride-pooling systems can significantly improve traffic conditions and alleviate urban road congestion,
particularly during peak hours. Ride-sharing compensates for the additional travel distance required
to operate these services by distributing trips among multiple passengers. In conclution, it can be seen
that ride-hailing and ride-pooling service have a huge impact on today’s urban public transportation
system, and their efficient operation will also bring greater convenience to people.

While ride-hailing and ride-pooling services have brought significant benefits to urban transporta-
tion, their efficiency largely depends on the effectiveness of matching algorithms. Most research has
focused on optimizing spatial matching—how to allocate vehicles to passengers based on location—
while less attention has been given to optimizing matching time intervals, which are essential for

10

balancing passenger wait times and vehicle utilization. However, insights from spatial matching al-
gorithms can aid in developing a simulation framework that includes spatial matching to explore the
optimization of matching time intervals.

The matching algorithms used in ride-hailing services fundamentally is the issue of supply-demand
matching, with the ultimate goal of dynamically balancing both sides to minimize passenger wait times
and reduce idle driving for drivers. Feng et al.[23] proposed a block-matching strategy, where the service
area is divided into several blocks, and demand is matched within each block simultaneously. They
modeled this block-matching ride-hailing system using the M/M/c queuing model. Similarly, Guo et
al.[24] introduced the matching-integrated vehicle rebalancing (MIVR) model, which aims to improve
rebalancing decisions by accounting for demand uncertainty. This model integrates driver-customer
matching into vehicle rebalancing strategies at an aggregate level, with the objective of minimizing a
generalized cost that includes total vehicle miles traveled (VMT) and the number of unfulfilled requests.
Dong et al.[25] proposed a mixed network equilibrium model to capture the interplay between freelance
drivers’ self-directed movements and the centralized repositioning of contracted drivers to satisfy the
balance of supply and demand in ride-hailing.

The matching algorithms for ride-pooling services are more complex than for standard ride-hailing,
as they must consider not only driver-passenger matching but also the optimization of routes for mul-
tiple passengers with different destinations. Meshkani et al.[26] proposed a decentralized heuristic
algorithm based on vehicle-to-infrastructure (V2I) communication, which, when applied to Toronto’s
road network, increased service rate by 24% and improved speed by 25.53 times compared to IBM’s al-
gorithm[27]. Long et al.[28] considered travel time uncertainty and explored the impact of variable costs
and travelers’ values of time (VOT) on ride-pooling cost savings. Wang et al.[29] developed a math-
ematical model to predict matching probabilities and expected ride distances, integrating seeker and
taker states into a system of nonlinear equations to calculate these values dynamically. Meshkani[30]
introduced GMOMatch, a graph-based many-to-one ride-matching algorithm that efficiently handles
traffic congestion with high service quality. Guo et al.[31] proposed a real-time framework using a dy-
namic timeframe and heuristic graph search methods to enhance ride-pooling efficiency. Alonso-Mora
et al.[10] presented a scalable model for real-time ride-sharing, starting with a greedy assignment and
improving routes through constrained optimization to quickly converge to optimal solutions.

Some more complex models simultaneously consider both normal ride-hailing and ride-pooling
services. Qin et al.[32] developed a multi-objective integer linear programming model with three
modes: ride-pooling (RP), non-ride-pooling (NP), and a “bundled”option combining both. They
used a two-stage Kuhn-Munkres (2-KM) algorithm to solve the passenger-vehicle matching problem
through iterative matching. Beojone et al.[33] integrated both services by predicting the number of
requests drivers might encounter and optimizing driver repositioning to match passengers with closer
drivers.

The above literature mainly focuses on optimizing spatial matching in ride-hailing and ride-pooling
services, aiming to achieve the optimal solution at a given point in time. These studies primarily
address how to allocate vehicles to passengers based on their current locations, or how to reposition
drivers closer to passenger requests through various dispatch strategies. However, they do not take
into account the temporal dimension, where the movement of drivers and passengers over time could
lead to better results. This gap in research, particularly in considering matching time intervals, opens
up an opportunity to explore how dynamic adjustments in time intervals could impact the efficiency
of both ride-hailing and ride-pooling services. Yang et al.[34] found that by adjusting the matching
time intervals, ride-hailing platforms can accumulate more waiting passengers and available drivers
within a certain period, enabling more optimal matches. A moderate increase in the matching time
interval can reduce the expected pick-up distance, improve vehicle utilization, and enhance passenger
satisfaction. The study also modeled how to adjust matching time intervals under different supply and
demand conditions to optimize system performance. The results indicated that shorter matching time
intervals are more beneficial when demand exceeds supply, while extending the matching time interval
when supply exceeds demand can effectively reduce pick-up distances and improve matching rates.
In practice, Uber also implements a similar approach through its Batched Matching system, where
requests from multiple passengers are accumulated within a fixed time interval before matching them
to available drivers. This allows Uber to optimize the allocation of drivers by considering more requests
in a given area, leading to better matches and improved vehicle utilization. By delaying matching for
a short period, Uber’s batched system reduces the need for immediate assignments, allowing for

11

the pooling of passengers with similar routes in ride-pooling scenarios, and minimizing overall detour
times. The fixed interval used in batched matching helps manage fluctuations in supply and demand,
ensuring that during peak times more passengers can be grouped together for more efficient rides. This
strategy is particularly effective in busy urban environments where both passenger demand and driver
availability change rapidly[14].

Matching at fixed time intervals has indeed been shown to have advantages over real-time matching,
as it allows for more optimized pairings by accumulating available drivers and passengers. However, the
fixed interval strategy can be overly rigid, requiring extensive historical data to support its effective-
ness. Moreover, it lacks flexibility and adaptability, making it less transferable to new environments
or changing conditions. However, reinforcement learning (RL), with its adaptability and dynamic
decision-making capabilities, has become an ideal tool for optimizing matching time intervals. RL
continuously learns from changes in supply and demand, dynamically adjusting the matching time
intervals—shortening the interval during peak demand periods and extending it during off-peak times.
This approach enhances vehicle utilization and reduces passenger wait times. Additionally, RL can
handle unforeseen situations in uncertain environments, optimizing the overall system performance.
Its scalability and transferability make it capable of quickly adapting to new scenarios. Several studies
have already applied RL to ride-hailing and ride-pooling services. For example, Qiao et al.[35] proposed
a three-in-one multi-agent reinforcement learning-based online algorithm called ERPM, designed for
intelligent ride-hailing demand prediction. ERPM addresses the challenge of convergence in traditional
RL models, caused by the high dimensionality of input and output data when service areas are divided
into grids. Using the Actor–Critic strategy, it optimizes on-demand ride-hailing dispatch actions, ef-
ficiently predicting demand in grid areas. Similarly, Mao et al.[36] developed a novel model-free deep
reinforcement learning framework to solve the taxi dispatching problem. This framework reallocates
vehicles in transportation networks when there is a spatial or temporal imbalance between demand and
supply. The algorithm converges to within 4% of the theoretical upper bound, regardless of whether
system dynamics are deterministic or stochastic. Additionally, when considering user priorities, the
learned strategy effectively balances fairness, cancellation rates, and service levels, resulting in superior
dispatch policies.

Despite the focus of the aforementioned studies on developing better dispatching strategies using
RL, they also demonstrate that RL is well-suited for highly dynamic ride-hailing and ride-pooling
environments. RL’s adaptability to changing conditions makes it an effective approach for determining
the optimal timing for matching drivers with passengers. By continuously learning from real-time
supply and demand fluctuations, RL-based systems can dynamically adjust their matching intervals,
leading to better system performance and user satisfaction. This not only improves vehicle utilization
and reduces passenger wait times but also ensures that the system can respond efficiently to unexpected
changes in traffic conditions or demand surges.Moreover, the ability of RL to optimize timing for
matching actions in both ride-hailing and ride-pooling services is crucial, as it balances operational
efficiency with the need to provide timely service. As a result, RL can offer significant improvements
over static or pre-defined matching strategies, providing a flexible solution that can evolve with the
complexities of urban transportation networks. In light of these advantages, further exploration of
RL’s potential in optimizing matching time intervals specifically remains an open and promising area
of research, particularly for ride-pooling, where the challenge lies not only in matching passengers with
drivers but also in coordinating multiple passengers with different destinations.

Qin et al.[37] have explored the use of reinforcement learning (RL) to optimize the matching time
intervals in conventional ride-hailing. However, when attempting to reproduce their findings, this study
identified issues in their reward design. Specifically, Qin et al. acknowledged the problem of reward
sparsity and attempted to address it through reward shaping. Nevertheless, their reward shaping
approach—particularly in terms of the reward component related to the time all matched passengers
wait to be picked up by drivers—does not decrease with delayed matching as expected but rather
continues to increase. This flawed design logic leads to alterations in the total reward after reward
shaping, which does not align with real-world dynamics.

12

Table 1: Research Comparison

Researchers Ride-Hailing Ride-Pooling Spatial Matching Temporal Matching RL
Feng et al.[23] ✓ ✓
Guo et al.[24] ✓ ✓
Meshkani et al.[26] ✓ ✓
Long et al.[28] ✓ ✓
Wang et al.[29] ✓ ✓
Guo et al.[31] ✓ ✓
Alonso-Mora et al.[10] ✓ ✓
Qin et al.[32] ✓ ✓ ✓
Beojone et al.[33] ✓ ✓ ✓
Yang et al.[34] ✓ ✓
Uber [14] ✓ ✓
Qiao et al.[35] ✓ ✓
Mao et al.[36] ✓ ✓
Qin et al.[37] ✓ ✓ ✓
This Research ✓ ✓ ✓ ✓ ✓

2.2 Research Gap
While extensive research has been conducted on optimizing spatial matching in ride-hailing and

ride-pooling services, a critical dimension remains overlooked—the temporal optimization of matching.
Existing studies predominantly focus on static strategies, such as fixed-interval or real-time matching,
which fail to adapt to dynamic supply-demand fluctuations. This rigidity often results in suboptimal
performance, manifesting as increased passenger wait times and degraded system efficiency.

Moreover, while reinforcement learning (RL) has demonstrated its potential in dynamic decision-
making for ride-hailing, its application to the temporal aspect of matching remains largely unexplored.
Current RL-based studies primarily address spatial optimization or vehicle dispatch, overlooking the
significant benefits that dynamic adjustments to matching intervals could bring to system adaptability
and performance.

The challenge becomes even more pronounced in ride-pooling scenarios, where the complexity of
coordinating multiple passengers with different origins and destinations introduces additional ineffi-
ciencies. Existing approaches inadequately address these challenges, often leading to longer detours
and reduced passenger satisfaction

To address these pressing gaps, this research introduces a novel framework with the following key
innovations:

1. Dynamic Temporal Optimization: Moving beyond static fixed-interval or real-time match-
ing, this study proposes a reinforcement learning-based approach to dynamically optimize match-
ing time intervals, enabling the system to adapt to fluctuating supply-demand conditions.

2. RL-Driven Adaptive Strategies: Harnessing reinforcement learning, the proposed method
autonomously adjusts matching decisions in real-time, enhancing overall efficiency and respon-
siveness.

3. Advanced Multi-Passenger Coordination: Specifically targeting ride-pooling, the frame-
work dynamically optimizes multi-passenger matching strategies, minimizing detour delays while
balancing efficiency and service quality.

4. High-Fidelity Simulation Environment: A spatio-temporal simulator is developed to rigor-
ously evaluate the proposed methods, ensuring their applicability in realistic urban transportation
scenarios.

5. Potential-Based Reward Shaping: To address the sparse reward problem, a novel reward-
shaping mechanism accelerates learning convergence and improves the quality of the derived
policies.

13

Research Dimension Existing Literature Contribution of This Study
Optimization of Matching Time Intervals Fixed or real-time matching strategies, lacks flexibility Dynamic optimization using reinforcement learning
Application of Reinforcement Learning Spatial matching or dispatching focus, neglects time dimension Adjusts matching time intervals dynamically
Ride-Pooling Matching Complex multi-passenger matching, insufficient dynamic optimization Improves service quality with dynamic optimization strategies
Simulator Static simulators used, struggles with spatio-temporal variations Develops a high-efficiency spatio-temporal simulator
Reward Design Sparse reward problem, challenge remains in current research Potential-based reward shaping resolves the issue

Table 2: Comparison of Existing Literature and Contributions of This Study

By bridging these critical gaps, this research establishes a foundation for more adaptive, efficient,
and robust matching algorithms. The proposed innovations offer substantial contributions to the field
of ride-hailing and ride-pooling, addressing both spatial and temporal challenges in real-world dynamic
environments.

3 Methodology
This chapter introduces the methods and model design used in this study. First, it provides a de-

tailed description of the batched matching problem in ride-hailing and ride-pooling services, analyzing
the impact of different matching strategies on system efficiency and passenger experience. Then, the
chapter presents a reinforcement learning-based solution, specifically focusing on how the Proximal
Policy Optimization (PPO) algorithm is used to dynamically optimize the matching time window,
thereby improving matching efficiency in complex supply-demand environments. Additionally, this
chapter thoroughly explains the construction of the simulation environment, including the generation
of passenger and driver data, the design of the state and action spaces, and the definition of the reward
function, ensuring that the model can operate effectively in realistic scenarios.

3.1 Problem Description
Batched matching is an important strategy for improving the efficiency of matching in ride-hailing

and ride-pooling services. In these services, the system must quickly find suitable drivers after a
passenger places an order to reduce waiting times and maximize vehicle utilization. However, in
dynamic and fluctuating supply-demand environments, real-time matching often struggles to achieve
optimal results, especially when there is an imbalance between passenger orders and available drivers.
To address this challenge, batched matching accumulates multiple passenger orders and driver resources
within a fixed time window and then performs centralized matching at the end of that window to achieve
overall optimization.

The key to batched matching lies in delaying the matching decision, allowing the system to make
more comprehensive choices based on a larger set of information. Unlike real-time matching, which
often reacts to individual orders and available drivers, batched matching reduces the impact of short-
term fluctuations in supply and demand. For example, when the system receives an order and there
is only one available driver nearby, real-time matching would instantly assign the driver, even if they
may not be the best choice. Batched matching, on the other hand, accumulates multiple orders and
driver resources and waits until the time window closes to optimize the overall matching, reducing
randomness and suboptimal decisions.

In ride-hailing services, batched matching significantly reduces idle driving and improves overall
passenger satisfaction. By accumulating more orders within a fixed time window, the system can
match drivers with passengers located closer to them, thereby reducing passenger wait times and
improving matching efficiency. At the same time, batched matching optimizes the system’s overall
dispatch strategy, avoiding unnecessary idle driving and increasing vehicle utilization. As shown in the
Figure 1, the left illustration presents the results of real-time matching at time t, where the average
pick-up distance is 4. Due to the limited matching options, passengers have longer pick-up distances.
In contrast, the right illustration shows the results when matching is delayed until time t+n. By
accumulating more passenger requests, the system can optimize matches, reducing the average pick-up
distance to 2. This process significantly reduces idle driving and improves matching efficiency, making
batched matching a more stable and efficient solution for ride-hailing services in environments with
fluctuating supply and demand.

In ride-pooling services, batched matching becomes even more critical. The system not only needs to
match passengers with drivers but also has to match passengers with other passengers for ride-pooling.

14

Figure 1: Impact of Batched Matching in Ride-Hailing Services

Under the batched matching framework, the system can accumulate multiple ride-pooling requests
within a time window and match passengers based on similarities in their starting points, destinations,
and travel routes. This strategy effectively reduces detour delays caused by ride-pooling and improves
the overall efficiency of shared trips. As shown in the Figure 2, the left illustration presents the results
of real-time matching at time t. At this point, due to limited matching options, the average detour
distance is 2.5, leading to longer travel routes and higher detour costs. The right illustration, however,
shows the results when matching is delayed until time t+n, allowing the system to accumulate more
passenger requests and optimize the matching combinations to reduce detour distances. Here, the
average detour distance is reduced to 0.5, significantly improving matching efficiency and reducing
delays. This illustration clearly demonstrates the advantages of batched matching in enhancing the
efficiency of ride-pooling services.

One of the core advantages of batched matching is its ability to smooth short-term fluctuations in
the system, especially under rapidly changing supply-demand conditions. Real-time matching can be
easily affected by short-term demand spikes. For instance, during peak hours or after large events, the
system may receive a large number of passenger orders in a short period, and real-time matching might
suffer from reduced efficiency due to the inability to handle the sudden influx of orders simultaneously.

15

Figure 2: Impact of Batched Matching in Ride-Pooling Services

Batched matching improves the overall matching efficiency by accumulating these orders within a time
window and processing them centrally, preventing excessive waiting times caused by order backlogs.

At the same time, the length of the time window in batched matching is a key factor that influences
system performance. A window that is too short may lead to insufficient orders being accumulated,
reducing the effectiveness of batched matching. On the other hand, a window that is too long increases
passenger waiting times and negatively affects user experience. Therefore, determining the optimal
window length is an important challenge in batched matching design. Dynamically adjusting the
window length according to different demand scenarios and supply conditions can further enhance the
system’s flexibility and matching efficiency.

In summary, by accumulating more passenger orders and driver information within a fixed time
window, batched matching allows for more optimal matching decisions in ride-hailing and ride-pooling
services. It can reduce passenger waiting times, increase vehicle utilization, and optimize the overall
service quality of shared rides through efficient pooling strategies. Batched matching presents a unique
advantage in balancing real-time responsiveness with matching precision, particularly in environments
with fluctuating supply and demand, offering a more stable and efficient solution for ride-hailing
systems.

While batched matching presents clear advantages in improving the efficiency of ride-hailing and
ride-pooling services, several challenges arise when applying this strategy in dynamic and fluctuating
environments. The key difficulty lies in determining the optimal matching time window, which directly
impacts both passenger satisfaction and vehicle utilization.

One of the main challenges in dynamic environments is balancing supply and demand. In real-

16

world ride-hailing systems, the supply of available drivers and the demand for rides are rarely in
perfect balance. These conditions fluctuate throughout the day, with high demand during peak hours
and lower demand during off-peak times. During peak demand periods, if the time window is too
short, the system may not accumulate enough orders to optimize matching, resulting in less efficient
matches and longer detour times in ride-pooling scenarios. Conversely, if the time window is too long,
passengers will experience excessive waiting times, negatively affecting the user experience.

In addition to determining the optimal time window length, spatial distribution imbalances of
passengers and drivers introduce further complexity. In high-density urban areas, such as city centers,
a short batched matching window might still result in high matching efficiency due to the large volume
of available drivers and passengers in close proximity. However, in suburban or less densely populated
areas, longer matching windows might be necessary to accumulate sufficient orders and available drivers
to create an efficient match. The challenge lies in dynamically adjusting the matching strategy to
account for these varying conditions across different geographic zones.

Another critical challenge, especially in ride-pooling services, is managing the detour delays caused
by ride-pooling. While batched matching is designed to reduce these delays by accumulating ride
requests with similar origins and destinations, it is essential to ensure that the detour costs remain
acceptable for all passengers involved. Matching passengers with similar routes within the optimal
time window is difficult, particularly when dealing with high demand variability and differing passenger
preferences.

Lastly, implementing an efficient batched matching system requires high computational efficiency.
Processing large volumes of orders and driver information within the time window, while simultaneously
optimizing matches across a broad geographic area, demands significant computational power. The
system must be capable of handling this complexity in real time, ensuring that the optimization process
does not delay the matching decisions themselves.

In summary, the core challenge in optimizing batched matching lies in dynamically adjusting the
matching time window to account for fluctuating demand and supply conditions, while simultaneously
minimizing passenger wait times, managing detour costs in shared rides, and ensuring computational
efficiency. Addressing these challenges is critical to realizing the full potential of batched matching
in improving the overall performance of ride-hailing systems. This motivates the need for advanced
optimization techniques, such as reinforcement learning, which can automatically learn and adapt to
these dynamic conditions.

3.2 Reinforcement Learning Framework
This subsection introduces the reinforcement learning framework developed to optimize matching

intervals in ride-hailing and ride-pooling services. The framework leverages reinforcement learning to
dynamically adjust matching time intervals in response to fluctuating supply-demand conditions. The
problem is first modeled as a finite Markov Decision Process (MDP), followed by a detailed design of
the state and action spaces, capturing critical spatiotemporal features of the system such as current
time, passenger request volume, average waiting time, and driver availability. To address the challenge
of sparse rewards, the framework incorporates a potential function, providing more frequent reward
signals during training and accelerating convergence. Through continuous interaction with the dynamic
environment, the deep reinforcement learning agent autonomously learns optimal matching strategies,
effectively minimizing passenger wait times and improving service efficiency and passenger satisfaction
under varying demand scenarios.

3.2.1 Modeling the Problem

The process of determining the matching timing in ride-hailing and ride-pooling services can be
formulated as a finite Markov Decision Process (MDP), which provides a mathematical framework for
sequential decision-making under uncertainty. The finite MDP is defined by a tuple (S,A, P,R, γ, T),
where:

• S: The state space, representing the set of all possible system states. Each state s ∈ S describes
the conditions or environment of the system at a specific time.

• A: The action space, representing the set of all actions available to the agent. Each action a ∈ A
influences the transition of the system state.

17

• P (s′|s, a): The state transition probability, which defines the probability of transitioning to a
new state s′ ∈ S from the current state s ∈ S after taking action a ∈ A.

• R(s, a): The reward function, specifying the immediate reward received when the agent takes
action a in state s. This reflects the desirability of a particular action in a given state.

• γ ∈ [0, 1]: The discount factor, used to balance the importance of future rewards relative to
immediate rewards. A value closer to 1 gives more weight to future rewards (set to 1 in this
study).

• t: The time step, indicating the current point in the decision-making process. Typically, t =
0, 1, 2, . . . , T , where T is the total duration of the process.

• T : The horizon, representing the total number of time steps in the decision-making process for
a finite MDP.

• st: The current state at time t, representing the observed conditions of the system at this specific
time step.

• at: The current action at time t, chosen by the agent based on the observed state st.

• st+1 or s′: The next state, representing the state to which the system transitions after the agent
takes action at in state st.

In this context, the agent represents the decision-making entity responsible for dynamically deter-
mining whether and when to perform matching operations. The environment comprises the ride-hailing
or ride-pooling system, which evolves based on the agent’s actions and stochastic supply-demand con-
ditions.

The agent’s objective is to maximize the cumulative discounted reward:

G = E

[
T∑

t=0

γtR(st, at)

]
, (1)

The process of determining the matching timing can be mapped to the finite MDP components as
follows:

• The state space S encodes the key attributes of the system that influence matching decisions,
such as the number of unmatched passengers, the number of available drivers, and passenger
waiting times.

• The action space A defines the available decisions, such as whether to perform matching or
wait for additional passengers and drivers to accumulate.

• The transition dynamics P (s′|s, a) capture the stochastic nature of passenger arrivals, driver
availability, and the impact of matching operations on system state.

• The reward function R(s, a) reflects the trade-offs between minimizing passenger wait times
and reducing detour delays (for ride-pooling).

Formulating the problem as an MDP provides several benefits:

• It captures the sequential nature of decision-making, where each action influences not only the
immediate outcome but also the future system state.

• It allows for dynamic and adaptive strategies that respond to real-time fluctuations in supply
and demand, rather than relying on static or pre-defined rules.

• It provides a solid mathematical foundation for leveraging reinforcement learning algorithms to
solve the problem efficiently.

In summary, process of determining the matching timing can be effectively framed as a finite MDP,
enabling the use of reinforcement learning to develop adaptive and dynamic strategies. The following
sections will detail the specific design of the state space, action space, and reward function within this
MDP framework.

18

3.2.2 Action Space

The action space in this model is designed to be simple yet effective, consisting of a binary variable
that controls the matching process. At each time step, the agent can take one of two possible actions:
either perform a matching operation between the available passenger orders and drivers, or not.

Formally, the action at at time step t is defined as:

at ∈ {0, 1} (2)

Where:

• at = 1: The agent performs matching at the current time step. This triggers the spatial matching
algorithm, which allocates available drivers to passengers based on their current locations.

• at = 0: The agent skips matching at the current time step, allowing more passengers and drivers
to accumulate, potentially leading to more efficient matches in the future.

The rationale behind this binary action space is to give the agent the flexibility to decide whether
immediate matching is beneficial or if delaying the matching process could result in better overall
system performance. This decision-making allows the agent to optimize the trade-off between passenger
wait times and vehicle utilization. By learning from different states of the system, the agent can
dynamically adjust its actions to ensure optimal matching throughout the service area.

In summary, this simple action space enables the agent to control the timing of matches, which is
a critical factor in improving the efficiency of the ride-hailing and ride-pooling systems.

3.2.3 State design

As mentioned above, the goal of this study is to optimally determine when to perform matching
to maximize efficiency in ride-hailing and ride-pooling services. Ideally, this decision-making problem
can be formulated as a finite MDP, where the agent has complete information about the environment’s
state and can make decisions based on this full knowledge.

In real-world ride-hailing and ride-pooling systems, the following information is typically available:

• Current time and system clock (Tt).

• Passenger-related data, such as the number of active orders, average waiting time, maximum
waiting time and their geographic distribution.

• Driver-related data, such as the number of available drivers (Nd(t)) and their geographic distri-
bution.

• Historical data on past matching decisions and system performance.

• Real-time geographic information, such as traffic conditions, distance between passengers and
drivers, and demand patterns across regions.

Theoretically, an MDP assumes that the future state depends only on the current state and the
action taken, implying that the state contains all relevant information about the system dynamics.
However, in practice, the information listed above may not fully satisfy this requirement. For instance:

• Real-time geographic information and traffic data may be incomplete or delayed.

• The system lacks visibility into future passenger requests or driver availability.

• The decision-making process may depend on unobserved variables, such as individual passenger
behavior or market dynamics.

• It is difficult to represent complex passenger orders and drivers’geographical distribution using
low-dimensional vectors.

19

These limitations mean that the problem inherently becomes a Partially Observable Markov Decision
Process (POMDP), where the agent does not have full visibility of the true system state.

While a complete state representation might include all available information, utilizing such a
comprehensive state is often infeasible due to practical constraints, such as computational resources,
real-time data accessibility, and the high dimensionality of the input space. In this study, a simpli-
fied state representation is adopted, focusing on critical observable elements that significantly impact
matching decisions. This simplification allows the framework to remain computationally efficient while
retaining decision-making effectiveness.

The state at each time step t is represented as:

st =
[
Tt,∆Tt, Np(t),W p(t),Wmax(t), Nd(t)

]
, (3)

where:

• Tt: Current system time, providing context for time-of-day variations.

• ∆Tt: Time elapsed since the last matching operation.

• Np(t): Number of unmatched passenger requests in the system.

• W p(t): Average waiting time of unmatched passenger requests.

• Wmax(t): Maximum waiting time among unmatched passenger requests.

• Nd(t): Number of available drivers in the system.

While this simplified state representation balances computational efficiency and decision-making
accuracy, it does not fully capture all system dynamics or leverage the available information. Future
work should consider two possible directions to enhance the state representation:

1. Incorporate additional information, such as driver geographic distribution, traffic conditions, or
historical patterns, into the state representation to improve decision-making accuracy.

2. Leverage Recurrent Neural Networks (RNNs) or similar architectures to process sequential data,
allowing the agent to infer unobserved system dynamics and handle partial observability more
effectively.

By addressing these limitations, future research could further enhance the adaptability and robustness
of reinforcement learning-based matching strategies in real-world scenarios.

3.2.4 Reward Design

Natural Reward Design

The reward function in this study is designed to optimize the agent’s decision-making in selecting
the ideal matching time in ride-hailing and ride-pooling service. The reward design should accurately
reflect the length of the passengers’ waiting time, which consists of the components illustrated in
Figure 3. In ride-hailing services, the total waiting time is divided into two parts: the waiting time
to be matched, which is the time from when a passenger places an order until a driver is successfully
assigned, and the waiting time to be picked up, which is the time from when a driver is assigned until
they arrive at the passenger’s location. In ride-pooling services, the total waiting time also includes
the detour delay, which refers to the additional time caused by shared routes, as multiple passengers
share a single vehicle. Therefore the primary components of the reward function of ride-hailing are the
waiting time for passengers to be matched and the time passengers wait for the driver to pick up after
being matched. For ride-pooling, the reward function should also include the detour delay. The agent
is incentivized to minimize the total waiting times, thus improving the system’s overall efficiency and
passenger satisfaction.

The reward Rh(st, at) at state st after taking action at for ride-hailing is defined as:

Rh(st, at) = −(ϕRm(st, at) +Rw(st, at)), (4)

20

Figure 3: Components of Passenger Waiting Time in Ride-Hailing and Ride-Pooling Services

Rm(st, at) = ∆tNunmatch
p (st, at) (5)

Rw(st, at) =

{
0, at = 0

fpick(st), at = 1
(6)

• Rm(st, at) represents the incremental waiting time for all unmatched passengers at the current
state st, after taking action at. This value is calculated at each time step, regardless of the action
taken. Over time, the waiting time accumulates for unmatched passengers, meaning the sum of
all previous Rm(st, at) values ultimately represents the total waiting time for a passenger before
being matched. Once a passenger is matched, the cumulative sum of Rm(st, at) becomes their
final waiting time;

• ∆t represents the length of the time step;

• Nunmatch
p (st, at) represent the number of unmatched passenger orders at state st after taking

action at;

• Rw(st, at) represents the waiting time for matched passengers to be picked up by drivers at the
current statest, after taking action at;

• fpick(st) represents the function to calculate the sum of the waiting time for matched passengers
to be picked up by drivers at the current statest, assuming a matching decision is made. The
specific calculation method will be detailed in the Spatial Matching Algorithm section;

• ϕ is a weighting coefficient reflecting passengers’ higher tolerance for waiting for the driver to
arrive compared to the time spent waiting to be matched [38].

This weighting coefficient ϕ adjusts the significance of pre-match waiting time in the reward func-
tion, as passengers are generally more tolerant of waiting for a driver after being matched than waiting
to be matched [38].

The reward structure for ride-pooling services is more complex compared to conventional ride-
hailing services. This is because, in addition to the standard considerations, the system must account
for the detour delays caused by combining two passenger orders into a single shared trip. This detour
may result in increased delays for both passengers. Thus, the reward function Rp(st, at) for the ride-
pooling service at state st is defined as:

Rp(st, at) = −(ϕRm(st, at) +Rd(st, at) +Rw(st, at)) (7)

Rd(st, at) =

{
0, at = 0

fdetour(st), at = 1
(8)

Where:

21

• Rd(st, at) represents the detour delay caused by ride-pooling for all matched passengers at state
st, after taking action at;

• fdetour(st) represents the function to calculate the sum of the detour delay for matched passengers
at the current statest, assuming a matching decision is made. The specific calculation method
will be detailed in the Spatial Matching Algorithm section.

Reward Shaping with Potential-Based Mechanism

A key challenge arises because Rw(st, at)) and Rd(st, at) are only calculated when the agent chooses
to initiate a matching action (i.e., at = 1). When the agent decides to wait (i.e., at = 0), it does not
receive any immediate feedback regarding Rw(st, at) and Rd(st, at). This leads to a sparse reward
problem, where the agent tends to repeatedly choose waiting as it lacks feedback on the effectiveness
of matching.

To tackle this issue, Potential-based Reward Shaping is employed. This method was proposed by
Marthi et al.[39]. This technique adjusts the immediate reward R(s, a) of RL based on a potential
function Φ(s), providing additional learning signals that help the agent converge faster to an optimal
policy:

R′(st, at) = R(st, at) + γΦ(st+1)− Φ(st) (9)

Where:

• Φ(s) is the potential function, designed to reflect the desirability of the state.

This adjustment allows the agent to receive intermediate reward signals during waiting periods,
helping it better navigate the trade-offs between waiting and matching. However, the introduction of
Potential-based Reward Shaping can affect the total return for the entire episode:

G = R(s0, a0) + γR(s1, a1) + · · ·+ γT−1R(sT−1, aT−1) (10)

=

T−1∑
t=0

γtR(st, at) (11)

G′ =

T−1∑
t=0

γt (R(st, at) + γΦ(st+1)− Φ(st)) (12)

= G+ γ

T∑
t=1

γt−1Φ(st)− Φ(s0)−
T−1∑
t=0

γtΦ(st) (13)

= G− Φ(s0) +

(
γ

T∑
t=1

γt−1Φ(st)−
T∑

t=1

γt−1Φ(st)

)
(14)

= G− Φ(s0) + γT−1Φ(sT) (15)

Where G represents the original total return, and G′ is the total return after introducing Potential-
based Reward Shaping. The difference between the original and shaped total returns lies in the
potential function value Φ(st) at the initial state. This value is a constant and does not depend on the
agent’s behavior. Therefore, during the optimization process, this shaping reward does not affect the
quality of the strategy or the selection of the optimal strategy.

While Potential-based Reward Shaping helps mitigate the sparse reward problem and provides
additional learning signals, it only causes a shift in the total return based on the potential values at
the initial and terminal states, as shown in equation (15). This bias term introduces a certain degree
of error in finite episodes, but it does not affect policy selection or the quality of the optimal policy.
Therefore, PBRS can still ensure that the difference in potential values between consecutive states
maintains consistency with the original reward structure, enhancing the learning process by providing
more frequent reward signals.

22

In order to apply Potential-based Reward Shaping, the matching process can be viewed as a se-
quence of several actions, as shown in Figure 4. Instead of providing all the reward at the matching
step, the reward is distributed over each action in the sequence.

S(0) S(1) S(n) S(n+ 1) S(n+ 2)
a(0) = 0 a(1) = 0 a(n) = 0 a(n+1) = 1

Figure 4: State transition diagram of matching process

The rewards for ride-hailing and ride-pooling after applying PBRS,R′h(st, at) and R′p(st, at), are
as follows:

R′h(st, at) = Rh(st, at) + γΦh(st+1)− Φh(st) (16)

Φh(st) = −fpick(st) (17)

R′p(st, at) = Rp(st, at) + γΦp(st+1)− Φp(st) (18)

Φp(st) = −(fpick(st) + fdetour(st)) (19)

Where:

• Φh(st) represents the potential function at state st for ride-hailing;

• Φp(st) represents the potential function at state st for ride-pooling.

When at = 0:

R′h(st, at = 0) = Rh(st, at = 0) + γΦh(st+1)− Φh(st) (20)
= −(ϕRm(st, at = 0) +Rw(st, at = 0)) + γΦh(st+1)− Φh(st) (21)
= −ϕRm(st, at = 0)− γfpick(st+1) + fpick(st) (22)

R′p(st, at = 0) = Rp(st, at = 0) + γΦp(st+1)− Φp(st) (23)
= −(ϕRm(st, at = 0) +Rw(st, at = 0) +Rd(st, at = 0) + γΦp(st+1)− Φp(st) (24)
= −ϕRm(st, at = 0)− γfpick(st+1)− γfdetour(st+1) + fpick(st) + fdetour(st) (25)

When at = 1

R′h(st, at = 1) = Rh(st, at = 1) + γΦh(st+1)− Φh(st) (26)
= −(ϕRm(st, at = 1) +Rw(st, at = 1)) + γΦh(st+1)− Φh(st) (27)
= −ϕRm(st, at = 1)− fpick(st)− γfpick(st+1) + fpick(st) (28)
= −ϕRm(st, at = 1)− γfpick(st+1) (29)

R′p(st, at = 1) = Rp(st, at = 1) + γΦp(st+1)− Φp(st) (30)
= −(ϕRm(st, at = 1) +Rw(st, at = 1) +Rd(st, at = 1)) + γΦp(st+1)− Φp(st) (31)
= −ϕRm(st, at = 1)− fpick(st)− fdetour(st)− γfpick(st+1)− γfdetour(st+1)+ (32)
fpick(st) + fdetour(st) (33)
= −ϕRm(st, at = 1)− γfpick(st+1)− γfdetour(st+1) (34)

23

Figure 5: Comparison of Rewards Before and After PBRS

At the final time step t = T , the reward will also compensate for the return loss caused by PBRS
to ensure that the total return remains unchanged.

Figure 5 illustrates the change in reward values before and after applying Potential-Based Reward
Shaping. The gray line represents the rewards before PBRS, while the orange line shows the rewards
after PBRS. As observed, the reward signals before PBRS are sparse, with large negative fluctuations
at certain time steps. This sparse reward pattern can hinder the model’s ability to converge quickly
during training. However, after applying PBRS, the reward signals become smoother and more fre-
quent, effectively alleviating the sparse reward issue and allowing the model to receive feedback more
consistently.

This design ensures that the reward is distributed across the entire process, providing the agent with
more frequent and consistent feedback. By doing so, the agent is encouraged to make more informed
decisions throughout the waiting and matching process, ultimately improving the performance of the
ride-hailing and ride-pooling systems.

3.3 Simulator
Following the design of the reinforcement learning framework, the next step is to create a realistic

and dynamic environment in which the proposed matching time interval optimization strategy can be
tested and validated. Deep reinforcement learning agents will also be trained in this environment. To
achieve this, we construct a comprehensive simulator that replicates the complex dynamics of ride-
hailing and ride-pooling services. The simulator serves as a critical tool for evaluating how the deep
reinforcement learning (DRL) model performs in various real-world-like scenarios, where the supply of
drivers and demand from passengers fluctuate over time and across different geographic regions.

The primary functionality of the simulator is to generate realistic passenger order data and driver
distribution data, thereby modeling the actual supply and demand conditions in urban settings. By
leveraging real historical data, the simulator captures both the spatial and temporal fluctuations
in passenger demand, while also simulating driver-related variables such as their initial locations,
availability, and movement patterns. This creates a robust and dynamic service network that mimics
real-world complexities.

In addition to simulating the environment, the simulator incorporates a spatial matching algorithm
that dynamically allocates vehicles to passengers based on factors such as geographic proximity, waiting
times, and vehicle statuses. This allows the DRL-based model to be trained and tested under different
matching time intervals, helping it to learn optimal matching strategies that minimize passenger wait

24

times and maximize vehicle utilization. Through this simulation, the system can be evaluated under
various conditions, enabling the identification of the best-performing matching strategies that enhance
the overall operational efficiency of both ride-hailing and ride-pooling services.

3.3.1 Assumptions of the Simulator

To construct a realistic yet computationally efficient simulation environment, several assumptions
have been made in the design of the simulator. These assumptions help simplify the complex dynamics
of ride-hailing and ride-pooling services, enabling the model to focus on the core aspects of the matching
process. Below are the key assumptions implemented in the simulator:

• Fixed Vehicle Speed
Due to lack of traffic data, all vehicles are assumed to travel at a constant speed of 40 km/h
throughout the simulation. This assumption helps simplify the calculation of travel times be-
tween pick-up and drop-off locations. While real-world traffic conditions may cause variations in
vehicle speeds, this fixed-speed assumption provides a reasonable approximation for evaluating
the matching strategies.

• Fixed Pick-up and Drop-off Points
All passenger orders are assumed to be picked up and dropped off at designated fixed points.
These points serve as hubs where passengers and drivers meet. By using fixed locations, the
simulator avoids the complexity of dynamically determining pick-up and drop-off locations, which
streamlines the matching process and reduces computational overhead.

• Order Cancellation Policy
If a passenger’s order is not matched with a driver within 5 minutes, the passenger will cancel
the order. This assumption reflects the real-world impatience of passengers, who may switch
to alternative transportation options if their wait time exceeds a reasonable threshold. The
5-minute window is set to balance passenger satisfaction with system efficiency.

• Idle Driver Behavior
Drivers who are not currently matched with a passenger will wait at the fixed pick-up points for
a maximum of 10 minutes before they begin to roam or reposition themselves within the service
area. This assumption models typical driver behavior in ride-hailing services.

• Ride-Pooling Limitation
ride-pooling is restricted to trips involving only two passenger orders. This simplification re-
duces the complexity of the ride-pooling process, making it easier to calculate detour times and
matching efficiency. While real-world ride-pooling services may accommodate more than two
passengers, limiting the simulator to two orders allows for a more focused study of ride-pooling
dynamics and detour management.

These assumptions serve to balance the need for a realistic representation of ride-hailing operations
with the computational constraints of simulating large-scale systems. Although they simplify certain
aspects of the real-world system, they still capture the essential dynamics needed for evaluating and
optimizing the matching process.

3.3.2 Passenger and Driver Data Generation

The simulator utilizes the publicly available historical ride-hailing order dataset (including ride-
pooling order) for the Manhattan area, released by the New York City government, to generate the
necessary data. This dataset includes specific details for each order, such as request time, pickup time,
drop-off time, and the origin and destination zones.

Based on the dataset, a comprehensive analysis of historical data was conducted to examine the
distribution patterns of driver availability and passenger demand over various time intervals and across
different geographical zones. This analysis aimed to uncover temporal and spatial trends that could
inform the development of a realistic simulation environment. The results showed that the occurrence
of ride requests and the availability of idle drivers in any given minute is relatively infrequent within
most zones. This observation suggests that such events are sporadic and do not follow a uniform

25

distribution throughout the day, particularly in regions with lower passenger density or outside peak
hours.

To effectively model this randomness, the Poisson distribution was chosen, as it is well-suited for
representing the probability of discrete events—such as ride requests or driver availability—occurring
independently over a fixed time or spatial domain. The Poisson distribution is widely used in scenarios
where events happen at random but at a known average rate, which aligns closely with the character-
istics of the ride-hailing scenario. The sporadic nature of ride requests and driver appearances makes
the Poisson distribution an ideal fit, as it can capture the unpredictable yet pattern-driven dynamics
of these occurrences, particularly when confined to narrow time windows and low probabilities.

In this simulation, it is assumed that each geographical zone follows its own distinct Poisson
distribution for every minute across the 24-hour period. This reflects the reality that different areas
in a city, such as commercial centers, residential neighborhoods, and less dense suburbs, experience
varying levels of demand and driver availability throughout the day. The parameters of the Poisson
distribution, specifically the average event rate (λ), are calibrated using historical data to ensure that
the simulator accurately reflects real-world conditions. This λ value dictates the expected frequency
of ride requests and idle driver occurrences in each zone, adjusting dynamically based on the time of
day and location.

By leveraging these calibrated Poisson distributions, the simulator can generate a realistic number
of new passenger orders and idle drivers for each zone every minute. For each new event, the simu-
lator randomly assigns them to one of the predefined pickup points within the zone, simulating the
randomness of real-world ride-hailing scenarios.

Moreover, by adjusting the λ parameter, the simulator can also replicate different urban settings
and test how the ride-hailing system performs under various conditions. For example, during peak
demand hours, the event rate for passenger orders in commercial areas would increase, reflecting the
real-world surge in ride requests, while in off-peak hours, the event rate would decrease, simulating
quieter periods. Similarly, driver availability can be adjusted based on the patterns observed in the
historical data, ensuring that the supply of drivers fluctuates in a realistic manner.

This combination of spatial and temporal event generation ensures that the simulator is not only
dynamic but also closely mimics the real-world complexity of ride-hailing systems, where demand and
supply constantly shift throughout the day and across different zones.

In addition to the origin information, accurate modeling of the destination data for passenger orders
is crucial for creating a realistic simulation of ride-hailing services. Passenger trips are inherently direc-
tional, meaning that where a ride begins and ends plays a significant role in shaping both the demand
patterns and the operational efficiency of the system. To account for this, a transition probability
matrix was developed based on an in-depth analysis of the historical order data.

The transition probability matrix captures the likelihood of passengers traveling from one geo-
graphical zone to another within the city. Each entry in the matrix represents the proportion of trips
that originate in a specific zone and end in another zone, calculated as the ratio of trips between these
two zones relative to the total number of trips from the origin zone. This approach not only reflects the
spatial distribution of demand but also incorporates the varying popularity of different destinations,
such as high-demand commercial districts, transportation hubs, or residential areas.

By analyzing the historical data, trends such as common commuting routes, frequent trips to
business districts during peak hours, or popular evening destinations can be identified and encoded
within the matrix. The matrix allows for the assignment of probability-weighted destinations to
each newly generated passenger order in the simulation, ensuring that the movement patterns of
passengers mirror those observed in the real-world dataset. For example, if a specific origin zone has a
higher probability of trips ending in a neighboring commercial area, that likelihood is reflected in the
destination assigned to each new ride request originating from that zone. This transition probability
matrix thus enables the simulator to generate realistic destination data for each passenger order,
ensuring that the flow of traffic in the simulation mirrors real-world patterns.

Furthermore, the simulation accounts for the dwell time of idle drivers at pickup points and the
waiting time of passenger orders. This helps simulate the roaming behavior of idle drivers in search
of passengers and the possibility of order cancellations due to extended wait times. In the current
iteration of the simulator, the idle driver dwell time is assumed to be 10 minutes, while passenger
orders have a waiting time of 5 minutes.

The final generated passenger data includes the precise order request time, the potential future

26

cancellation time, the specific pickup point, and the designated destination. Driver data includes the
current location, the exact time of arrival at that location, and the expected time the driver will
become unavailable.

This data generation method equips the reinforcement learning algorithm with a dynamic and
uncertain environment, which is critical for optimizing decision-making models. The simulator provides
second-by-second data on orders and drivers, creating continuous decision points based on fluctuating
supply and demand conditions. This allows the reinforcement learning algorithm to be trained and
evaluated under various scenarios. Additionally, by adjusting parameters, this setup creates a rich
array of demand-supply fluctuation scenarios, facilitating the testing and evaluation of the algorithm’s
adaptability to real-world conditions.

3.3.3 Spatial Matching Algorithm

This study will address the spatial matching problems for both conventional ride-hailing and ride-
pooling services, with distinct matching algorithms employed for each. In ride-pooling, compared to
conventional ride-hailing, the challenge lies in matching passenger orders that have similar origins and
destinations, whereas conventional ride-hailing only focuses on matching a single passenger order with
a nearby driver. Therefore, the ride-pooling process is divided into two stages in this study: passenger-
passenger matching and passenger-driver matching. The passenger-driver matching stage is consistent
with the process used in conventional ride-hailing and will be described uniformly in the subsequent
sections.

Passenger-Passenger Match (ride-pooling)

In this phase of the simulation, the algorithm enumerates all viable matches between passenger
orders within the current time step. The primary objectives are twofold: to maximize the number
of successfully matched passenger orders while minimizing the negative impact of detours caused by
shared rides on passenger satisfaction. The feasibility of matching two distinct passenger orders is
evaluated based on two key criteria.

Firstly, the intersection of their respective time windows must include the current time step, as
defined by the simulator. This ensures that both passengers are available for pickup and that the
timing aligns for a feasible ride-sharing arrangement. If the time windows do not overlap sufficiently,
the match will be deemed unfeasible, as it would either result in excessive wait times or missed pickups.

Secondly, the algorithm assesses the additional delay that would be introduced due to detouring for
ride-sharing purposes. In ride-pooling systems, a key challenge is managing the additional travel time
introduced by detouring to accommodate multiple passengers. Minimizing this added travel time is
essential, as significant detours can lead to passenger dissatisfaction, particularly if the detour results
in a much longer trip than originally anticipated. To effectively measure the efficiency of a ride-sharing
arrangement, the Detour Delay Rate (DDR) is introduced. This metric quantifies the additional
delay caused by detouring in relation to the direct travel distance that would have been taken without
sharing the ride. The DDR is calculated using the following formula:

DDR =
Distance without detour

Distance after detour
In this formula, the ”Distance without detour” represents the total distance the vehicle would have

traveled if it had only served one passenger without any additional stops, while the ”Distance after
detour” refers to the actual distance traveled with multiple passengers, considering the detours required
to pick up and drop off each passenger.

The DDR value inversely reflects the efficiency of the detour:

• A higher DDR value indicates a favorable detour scenario, where the added travel distance
is minimal. In this case, the detour has a relatively low impact on the passengers’ overall trip
time, making the shared ride experience more efficient and less disruptive. This generally leads
to higher passenger satisfaction, as the detour minimally impacts their expected arrival time.

• A lower DDR value suggests that the detour has introduced a significant additional travel
distance. This can result in longer delays for one or more passengers, making the ride-sharing

27

experience less attractive. Such matches are less efficient, as the detour negatively affects the
passengers’ experience.

The DDR serves as a guiding metric for the ride-sharing algorithm, allowing it to prioritize matches
that result in higher DDR values. This ensures that the system focuses on minimizing the negative
effects of detouring while still maximizing the benefits of ride-sharing, such as reduced costs and lower
vehicle emissions. By optimizing for high DDR values, the algorithm effectively balances operational
efficiency with passenger satisfaction. Utilizing the DDR metric enables the ride-sharing system to
intelligently manage detours, ensuring that the added travel time remains within acceptable limits for
passengers while optimizing the overall efficiency of the service.

The passenger-passenger matching process in the simulation follows a series of structured steps,
designed to ensure that potential matches are systematically evaluated and optimized. The steps
include:

Figure 6: All possible pickup and drop-off sequences for two passenger orders

a. Extract Relevant Passenger Orders: At the beginning of the passenger-passenger matching pro-
cess, all active passenger orders whose time windows encompass the current timestep, as defined
by the simulator, are extracted from the passenger order database. Along with each order, the
relevant details—such as the origin, destination, requested pickup time, and current passenger
location—are also retrieved. This ensures that only passengers who are available for a feasible
match during the current simulation cycle are considered, optimizing computational efficiency
and ensuring real-time responsiveness.

b. Once the relevant passenger orders are identified, the algorithm generates all possible passenger-
passenger pairings within this set. For each pair, the Detour Delay Rate (DDR) is calculated
to evaluate both the feasibility and the efficiency of the shared ride.
The DDR value helps to assess how much additional travel distance a detour will introduce when
combining two passenger orders. Lower DDR means greater detour distance, while a higher DDR
indicates that the two shared passenger orders have similar routes. To determine whether the
detour remains within acceptable limits, the DDR is calculated based on the distances involved
in different potential routes. DDR can be categorized into four distinct scenarios, evaluated
based on the relative positions of passengers and their destinations, to determine the pickup and
drop-off routes between two orders (as shown in Figure 6).
The formula for calculating DDR is as follows:

DDR((O1, D1), (O2, D2)) = max
(

min
(

d(O1, D1)

d(O1, O2, D1)
,

d(O2, D2)

d(O2, D1, D2)

)
,

d(O1, D1)

d(O1, O2, D2, D1)
,

d(O2, D2)

d(O2, O1, D1, D2)
,

min
(

d(O1, D1)

d(O1, D2, D1)
,

d(O2, D2)

d(O2, O1, D2)

)) (35)

28

Where:

• O1 and D1 represent the origin and destination of passenger 1, and O2 and D2 represent
the origin and destination of passenger 2.

• d(·) represents the total shortest path distance between these points, depending on the
sequence of the pick-up and drop-off locations.

Each part of the formula evaluates a different potential route for the shared ride. Below are the
specific considerations for each case:

(a) Situation A: The first part of the equation, min
(

d(O1,D1)
d(O1,O2,D1)

, d(O2,D2)
d(O2,D1,D2)

)
, compares the

detour incurred when the vehicle first picks up passenger 1 and then passenger 2, followed
by completing both trips. It measures how efficiently the route minimizes detour for both
passengers.

(b) Situation B: The second term, d(O1,D1)
d(O1,O2,D2,D1)

, evaluates the efficiency of a route where
passenger 2’s destination is visited before completing passenger 1’s trip. This sequence
assesses how much delay is introduced if passenger 2 is dropped off first.

(c) Situation C: d(O2,D2)
d(O2,O1,D1,D2)

, similarly evaluates the situation where passenger 1’s destination
is reached before completing passenger 2’s trip.

(d) Situation D: Finally, the min
(

d(O1,D1)
d(O1,D2,D1)

, d(O2,D2)
d(O2,O1,D2)

)
term compares the detour incurred if

the two trips follow a different sequence of drop-offs, where each route attempts to minimize
the detour for one passenger relative to the other.

Once the DDR value is calculated, the algorithm can evaluate whether the detour is reasonable,
ensuring that both passengers experience minimal additional delay. If the DDR value is too low,
it indicates that the detour introduces significant inefficiencies, and the ride-pooling match may
not be feasible. The goal is to select passenger pairs with high DDR values to ensure that the
shared ride remains efficient and satisfactory for both passengers.
For each selected pair, the simulator records the optimal sequence of pick-up and drop-off points,
the shared time window, and the calculated DDR value. This information is then used in
subsequent steps to finalize the matching and optimize the overall route for the shared ride.

c. The enumeration of all feasible passenger-passenger pairs inevitably leads to situations where
certain passenger orders can be matched with multiple other orders. In such cases, it is crucial
to ensure that as many passengers as possible are successfully paired while also prioritizing the
pairs with higher DDR values, as these represent more efficient and satisfactory ride-sharing
arrangements. This challenge can be formulated as an integer linear optimization problem.
The set of enumerated feasible passenger-passenger pairs can be represented as a larger undirected
graph G = (P,E), where P denotes the set of vertices corresponding to passenger orders, and E
represents the set of edges, corresponding to the feasible passenger-passenger pairs. Each edge is
assigned a weight ω(e), which corresponds to the DDR value of the passenger pair. The objective
of the optimization is to decompose the undirected graph into as many edge pairs as possible
while maximizing the total weight of the selected edges, ensuring that the most efficient matches
(with the highest DDR values) are prioritized.
To achieve this, we introduce a binary decision variable x(e) for each edge e. If the edge e is
selected as part of the decomposition, then x(e) = 1; otherwise, x(e) = 0. The optimization
problem is thus focused on maximizing the total weight of the selected edges while ensuring that
no passenger order is matched more than once.

29

The specific mathematical model is as follows:

max
∑
e∈E

ω(e) · x(e) (36)∑
e∈δ(v)

x(e) ≤ 1, (37)

x(e) ∈ {0, 1}, (38)
∀v ∈ P, ∀e ∈ E (39)

The solution result is all the optimal passenger-passenger pairs PP. The detour delay for each
passenger’s order within the passenger-passenger pairs will also be calculated, and their sum
constitutes the output of the fdetour() function.

The Passenger-Passenger Match algorithm ultimately outputs the matching results for all ride-
pooling services at the current time step, identifying all possible pairs of passenger orders that can
be matched. For each successful match, the algorithm records the detour delay experienced by the
passengers due to sharing the trip. This detour delay is a key metric that helps evaluate the overall
efficiency of the ride-sharing process and ensures that the additional time incurred is within acceptable
limits.

Moreover, the resulting passenger-passenger pairs are treated as single entities and will proceed to
the next stage, the Passenger-Driver Match phase, where they will be matched with available drivers.
In this phase, each passenger pair is treated as a single request, with their combined origin and
destination considered in the driver matching process. This ensures that the algorithm can seamlessly
integrate the results from the passenger matching phase into the larger ride-hailing system, optimizing
the overall efficiency of both shared and individual rides.

Passenger-Driver Match

This phase encompasses the entire matching process for regular ride-hailing services and serves as
the second stage of ride-pooling. The primary objective of this phase is to efficiently assign passengers
(or passenger pairs, in the case of ride-pooling) to the nearest available driver, minimizing the wait
time for passengers. The challenge of matching passengers to drivers in real-time is formulated as an
Integer Linear Programming (ILP) problem, which seeks to optimize the spatial allocation of available
drivers to waiting passengers.

In this phase, the algorithm aims to match each passenger or passenger pair to the most suitable
driver based on proximity, considering factors such as the travel distance between the driver and the
pickup location and the availability of drivers in nearby zones. By framing the problem as an ILP,
the algorithm can systematically evaluate multiple possible driver-passenger assignments, selecting
the one that results in the most efficient spatial distribution of resources. This approach allows the
system to account for real-world complexities, such as the dynamic nature of supply and demand,
traffic fluctuations, and varying trip lengths, ensuring that the ride-hailing service operates smoothly
even in high-demand scenarios.

The specific formulation of this optimization problem is presented as follows:

min
n∑

i=1

n∑
j=1

Tij · xij (40)

n∑
i=1

xij ≤ 1, ∀j ∈ P (41)

n∑
j=1

xij ≤ 1, ∀i ∈ D (42)

xij ∈ {0, 1}, i ∈ D, j ∈ P (43)

where Tij is the pickup time between driver i ∈ D and passenger (passenger pair) j ∈ P , estimated
by their Manhattan distance divided by the average pickup speed v. xij is a binary decision variable.
When driver i is selected to pick up passenger (passenger pair) j, xij = 1; otherwise, xij = 0. The
optimized result,

∑n
i=1

∑n
j=1 Tij · xij , represents the output of the fpick() function.

30

3.3.4 Verification Of the Simulator

This study will visualize both Passenger-Passenger Match (ride-pooling in ride-pooling services)
and Passenger-Driver Match to verify the spatial matching algorithm’s correctness and effectiveness
under different scenarios.

Firstly, for the Passenger-Driver Match, visualizing the matching results between passengers and
drivers can intuitively display the spatial relationship between matched passengers and their corre-
sponding drivers. Using a map or two-dimensional coordinate system, the initial locations of passengers
and drivers will be represented by different symbols, and the matching results will be connected by
lines. This visualization clearly illustrates the distances and distributions between the two during the
matching process, helping to verify the algorithm’s correctness.

Secondly, for the Passenger-Passenger Match (ride-pooling in ride-pooling), the visualization will
further demonstrate the situation where multiple passengers share the same vehicle. By visualizing the
routes of ride-pooling passengers, not only can the pick-up and drop-off points of each passenger be
displayed, but the detours caused by ride-pooling can also be clearly seen. The focus of ride-pooling
matching visualization includes:

• Ride-pooling route rationality: By displaying the travel paths of multiple passengers, the
system can be verified to determine whether it has selected the optimal ride-pooling combination
and whether passengers with similar destinations have been reasonably matched to reduce detour-
related delays.

• Detour costs: After visualizing the ride-pooling route, the extra delay caused by the detour
can be intuitively observed, and it can be checked whether this delay falls within an acceptable
range.

These visualized results will intuitively reveal the spatial layout of matching decisions, thereby ver-
ifying the algorithm’s effectiveness and correctness in both ride-hailing and ride-pooling environments.

The visualization of the Passenger-Driver Match (as shown in Figure 7) provides clear evidence
of the spatial matching algorithm’s effectiveness in optimizing ride-hailing services. The results show
that passengers are matched with geographically proximate drivers, minimizing the initial distance
between them and reducing both passenger wait time and driver idle time. The red routes connecting
passengers and drivers demonstrate efficient path planning, with no significant detours or excessive
travel distances, indicating that the algorithm optimally selects routes to further improve system effi-
ciency. The even distribution of matched pairs across the map suggests that the algorithm can handle
varying demand across different geographic regions effectively. Overall, the visualization supports the
algorithm’s capability to deliver efficient, real-time matching in dynamic urban environments.

The visualization of the Passenger-Passenger Match (as shown in Figure 8) illustrates the effec-
tiveness of the ride-pooling algorithm in combining two passenger trips into a single, efficient route.
The blue and orange markers represent the origins and destinations of the two passengers. The red
line shows the shared route connecting both trips. The visualization indicates that the algorithm has
successfully minimized detours by selecting passengers with similar travel patterns. The proximity
between the origins and destinations demonstrates the algorithm’s efficiency in matching passengers
whose trips align spatially. Furthermore, the shared route is relatively direct, suggesting that the ride-
pooling process added minimal extra travel distance, ensuring an efficient and cost-effective ride for
both passengers. Overall, the visualized route confirms the algorithm’s capability to optimize shared
trips by reducing detour times and enhancing route efficiency.

To validate the feasibility of the simulator, the next step is to implement a fixed time interval
strategy within the simulator. The performance of the simulator will be evaluated by calculating and
analyzing several key metrics: the total waiting time for all passenger orders to be matched, the total
waiting time for passengers to be picked up by drivers, and, in the case of ride-pooling services, the
total detour delay caused by ride-sharing. These metrics will be compared against real-world data
to assess whether the simulator can accurately represent the dynamic conditions of both ride-hailing
and ride-pooling services. By comparing the calculated values with actual operational data, it will
be possible to determine if the simulator accurately reflects real-world scenarios, thus validating its
feasibility as a research tool.

In particular, the fixed time interval strategy will accumulate passenger orders and available drivers
over a set time period before performing the matching process. This allows for the collection of

31

Figure 7: Visualization of Passenger-Driver Match results

sufficient data to compute the total matching wait time, the time passengers spend waiting for their
drivers after being matched, and, in ride-pooling scenarios, the additional delay due to detours when
multiple passengers share the same vehicle. By ensuring that the simulation outputs align closely with
real-world data, the simulator’s ability to model complex ride-hailing systems can be confirmed. This
process will demonstrate that the simulator is not only capable of generating realistic matching and
detour outcomes but is also a valid platform for testing and optimizing different ride-hailing strategies.

The results from Figures 9 and 10 show how different fixed time intervals for matching impact key
performance metrics in both ride-hailing and ride-pooling simulations.

For ride-hailing (Figure 9), the simulator results show gradual changes in total waiting time across
different matching time intervals, reflecting the simulator’s dynamic response to the supply-demand
relationship in ride-hailing services. As seen in the figure, the impact of matching intervals on waiting
time follows the expected trend: as the matching interval increases, the system can accumulate more
orders, thereby reducing fluctuations in total waiting time. This suggests that the simulator can, to
some extent, replicate the optimization processes found in real ride-hailing services under dynamic
supply-demand conditions, aligning with real-world operational logic. The figure also shows that as
the matching interval increases, the waiting time to be matched gradually rises, consistent with the
order accumulation process in real scenarios. Meanwhile, the waiting time for a driver to arrive de-
creases, although this decline gradually slows with longer intervals, which is also in line with actual
service dynamics. This reasonable distribution of waiting times demonstrates the simulator’s ability
to accurately represent different components of waiting time in a dynamic ride-hailing environment,
validating its capability to handle complex waiting time distributions. Overall, the ride-hailing simu-
lator effectively replicates real-world dynamic ride-hailing scenarios, including the impact of matching

32

Figure 8: Visualization of Passenger-Passenger Match results

intervals on waiting time and the reasonable distribution of waiting times. These features confirm the
simulator’s capability to accurately model dynamic ride-hailing services.

For ride-pooling (Figure 10), the simulator results show that as the matching time interval increases,
the total waiting time generally decreases, with a particularly noticeable effect in the initial few seconds
of interval adjustment. This aligns with the dynamics of real ride-pooling services, where increasing the
time interval allows the system to accumulate more orders, resulting in better matches through batch
processing. As the matching interval increases, the waiting time to be matched gradually rises, while
the waiting time to be picked up shows a gradual downward trend, and the detour delay, specific to
ride-pooling, also decreases. These trends are consistent with real-world logic. The figure further shows
that as the matching interval increases, the total waiting time gradually stabilizes, reaching an optimal
saturation point around 16 seconds. This reflects the marginal optimization effect observed in real
ride-pooling scenarios: initially, increasing the matching interval significantly improves efficiency, but
beyond a certain threshold, the gains diminish. This pattern suggests that the simulator’s matching
strategy optimization closely aligns with real-world needs, balancing efficiency with passenger waiting
experience. In sum, the ride-pooling simulator effectively replicates real-world dynamic ride-pooling
scenarios, including dynamic responses to supply-demand fluctuations, a reasonable distribution of
waiting times, marginal optimization effects, and realistic detour delays. These features demonstrate
the simulator’s strong capability to accurately model supply-demand changes and optimization effects
in dynamic ride-pooling services.

Overall, the results confirm that the simulator realistically models both ride-hailing and ride-pooling
services. The fixed matching time intervals can indeed reduce passengers’ total waiting time to some
extent.

33

Figure 9: Fixed Time Interval Strategy in the Ride-Hailing Simulator

Figure 10: Fixed Time Interval Strategy in the Ride-Pooling Simulator

3.4 The Proximal Policy Optimization (PPO) Algorithm
The Proximal Policy Optimization (PPO) algorithm is employed in this study to address the opti-

mization of matching time intervals in (shared) ride-hailing services. PPO is a reinforcement learning
algorithm proposed by Schulman et al.[40]. PPO is chosen due to its balance between simplicity,
computational efficiency, and robust performance, making it particularly suitable for dynamic and
complex environments such as ride-hailing systems.

PPO is a reinforcement learning algorithm that provides several key advantages. First, it ensures
stability through its clipped objective function, which prevents overly large updates to the policy.
This feature is crucial in highly dynamic environments like ride-hailing services, where rapid changes
in supply and demand conditions require stable learning. Second, PPO promotes efficient exploration
while controlling risk, enabling the learning agent to adapt its decisions to a wide range of scenar-
ios and achieve optimal performance under varying conditions. Additionally, PPO’s simplicity in
implementation, combined with its ability to scale to large problems, makes it a practical choice for
optimizing large-scale simulations such as those involving ride-hailing services.

In the context of this study, PPO is used to train the agent to optimize the decision-making process
for determining the best matching time intervals. The agent operates in a dynamic environment where
it adjusts its actions based on real-time information about passenger demand, driver availability, and

34

system delays. The goal is to minimize passenger wait times, reduce driver idle time, and handle the
complexities introduced by ride-pooling, such as additional detour delays.

The implementation of PPO in this study is based on a neural network architecture within the actor-
critic framework, forming a deep reinforcement learning model that facilitates both policy learning and
evaluation simultaneously. By integrating PPO with a deep neural network, the agent can effectively
handle high-dimensional and complex spatiotemporal features, making it well-suited for optimizing
the dynamic environment of ride-hailing and ride-pooling services. The neural network architecture
enables the agent to approximate both the policy (actor) and value function (critic) more accurately,
capturing intricate patterns in supply-demand fluctuations.

The agent’s neural network consists of two primary components: an actor network and a critic
network, both structured as multi-layer perceptrons (MLPs) with three hidden layers of 64 units each,
activated by the Tanh function. The critic network estimates the value function for a given state,
outputting a single scalar value that represents the expected cumulative reward. The actor network
outputs a probability for the agent’s actions, which is derived from a sigmoid activation function and
then bounded between a minimum and maximum threshold to avoid extreme values. This probability
determines the action distribution, where the agent samples its actions from a Bernoulli distribution
to choose dynamically between waiting and matching actions.

In this setup, the agent’s probabilistic action selection enables it to make robust decisions at each
decision point by exploring various policies and adjusting its actions based on observed outcomes. The
actor-critic framework ensures that policy updates remain stable and efficient, with the critic providing
feedback to guide the actor’s policy improvements, while PPO’s clipped objective ensures controlled
updates to the policy for stable learning.

Furthermore, performance metrics are tracked using tools like Weight & Bias to monitor the evolu-
tion of the agent’s policy over time. This tracking not only enables observation of key metrics, such as
the reduction in passenger delays，but also ensures that the model continuously balances trade-offs and
achieves higher system efficiency. By combining PPO with this neural network architecture, this deep
reinforcement learning approach is able to learn optimal matching strategies that adapt to dynamic
changes, offering a significant advantage over traditional reinforcement learning methods.

Overall, PPO Combined with MLPs is well-suited for optimizing dynamic and large-scale prob-
lems like ride-hailing, where the goal is to enhance system efficiency by learning adaptive, real-time
strategies.

The basic flow of the PPO algorithm as implemented in this study is outlined in the following
pseudocode:

This pseudocode highlights the overall structure and flow of the PPO algorithm, illustrating how
it operates within the dynamic environment of ride-hailing services. The combination of policy opti-
mization, value estimation, and gradient updates enables the agent to effectively learn strategies for
optimizing matching time intervals and improving system efficiency.

4 Result

4.1 Experimental Setup and Metrics
To validate the practical effectiveness of the proposed reinforcement learning-based dynamic match-

ing time interval optimization strategy, three experiments were designed, each addressing distinct
research objectives and system performance evaluations:

Experiment 1: Training Performance Evaluation of the RL Strategy
This experiment aims to assess the training performance of the reinforcement learning (RL) strategy
under different service modes (Ride-Hailing and Ride-Pooling). By analyzing learning curves and
comparing final strategy outcomes, the role of Potential-Based Reward Shaping (PBRS) in accelerating
convergence and enhancing strategy performance is examined. The detailed experimental setup and
results for this experiment are presented in Section 5.2.

Experiment 2: Comparison with Baseline Strategies
To demonstrate the superiority of the RL strategy in practical scenarios, this experiment compares
the performance of three matching strategies: fixed-time interval matching, real-time matching, and
the RL strategy. Key performance metrics are analyzed to explore how the RL strategy significantly

35

Algorithm 1 PPO Algorithm
1: for episode = 1 to E do
2: Reset the ride-hailing simulator and get initial state s0 = {ND

t , NR
t }

3: Initialize episode return R = 0 and done = False
4: Compute noise factor p = episode

max_episodes
5: for t = 1 to T do ▷ Action selection
6: at = p · µθ(st) + (1− p) · noise ▷ Compute primal action
7: rescaled_at = scale_action(at) ▷ Re-scale action
8: Pass rescaled_at to simulator

▷ Ride-matching logic
9: Create matching pool with rescaled_at

10: Execute matching
11: Transition to next state st+1 = {ND

t+1, N
R
t+1}

12: Observe reward rt and done status dt
▷ Store transitions

13: Normalize states st and st+1

14: Store (st, at, rt, st+1, dt) in replay buffer R
15: if rt > good_action_threshold then
16: Store (st, at, rt, st+1, dt) in good replay buffer R′

17: end if
▷ Training logic

18: if memory size > warm-up size then
19: Sample minibatches from R and R′

20: Update critic network by minimizing value loss
21: Update actor network using policy gradient
22: Update target networks:
23: θ′ ← τ · θ + (1− τ) · θ′
24: ω′ ← τ · ω + (1− τ) · ω′

25: end if
26: if done then
27: break
28: end if
29: end for
30: Reset noise
31: end for

36

improves system efficiency. The experimental setup and results for this experiment are elaborated in
Section 5.3.

Experiment 3: Cross-Comparison of Ride-Hailing and Ride-Pooling
This experiment focuses on comparing the efficiency and user experience of the two service modes.
Using several experimental scenarios (based on driver-to-order ratios and travel modes), the unique
characteristics of the two services and the RL strategy’s effectiveness in optimizing their matching
efficiency are analyzed. The primary goal is to conduct a cross-comparison of Ride-Hailing and Ride-
Pooling while evaluating the generalizability of the RL strategy, particularly under imbalanced supply-
demand conditions. The details of this experiment are provided in Section 5.4.

Through these three experiments, this study aims to comprehensively evaluate the performance
of the RL strategy, verify its advantages in dynamic supply-demand environments, and explore its
adaptability to different service modes.

A baseline strategy based on an optimal fixed time interval is employed in all above three ex-
periments to compared with the RL strategy. In the traditional ride-hailing simulator, the baseline
strategy has a fixed matching interval of 15 seconds, while in the ride-pooling simulator, the interval
is set to 20 seconds. These intervals were determined through testing within the simulator, ensuring
that the baseline strategy is representative across performance metrics.

In the traditional ride-hailing service, model performance is evaluated using the following metrics:

• Average Pickup Time: The average pick-up waiting time per passenger after being matched.

• Average Matching Time: The average waiting time from request to successful matching per
passenger.

• Average Total Waiting Time: The overall average waiting time per passenger.

• Total Pickup Time: The total time spent waiting for drivers to pick up passengers.

• Total Matching Time: The total time spent waiting for matching to occur across all passengers.

• Total Waiting Time: The cumulative waiting time of all passengers, measuring overall waiting.

In the ride-pooling service, two additional metrics are introduced to account for the extra impact
of ride-pooling:

• Average Detour Delay: The average delay time per passenger due to detours, evaluating the
effectiveness of ride-pooling strategies.

• Total Detour Delay: The total delay caused by detours in ride-pooling.

These evaluation metrics allow a comprehensive analysis and comparison of the model performance
under different reward designs, revealing how the batched matching strategy optimizes system efficiency
and improves user experience in both traditional ride-hailing and ride-pooling environments.

In all reinforcement learning experiments described in this study, an episode refers to a single
simulation cycle that begins from an initial system state and ends upon meeting predefined termination
conditions. For the ride-hailing and ride-pooling scenarios examined in this research, an episode spans
a fixed simulation period representing 10 minutes of real-world ride-hailing or ride-pooling service,
during which there are 600 discrete time steps. Throughout the episode, the RL agent interacts with
the simulated environment, making decisions on whether and when to perform matching operations.
The agent’s performance in each episode is evaluated using the metrics outlined earlier.

The concept of an episode is fundamental to training RL agents. The agent learns optimal strategies
by repeatedly interacting with the environment across multiple episodes. Each episode provides the
agent with new opportunities to explore and refine its decision-making policies, with the ultimate
goal of maximizing system performance under varying supply-demand conditions. When testing the
strategies developed during training, the agent’s performance is assessed over multiple episodes to
ensure robustness and generalizability.

To introduce variability and randomness, different experiments generate distinct datasets of pas-
senger orders and driver distributions, creating diverse episodes for the agent to interact with based on
specific experimental requirements. This variability ensures that the agent is exposed to a wide range
of supply-demand conditions, enabling it to develop robust and generalized decision-making strategies.

37

Furthermore, by evaluating the agent’s performance across multiple episodes, the experiments provide
insights into the consistency and reliability of the learned policies, ensuring that the strategies are not
only effective in isolated cases but also adaptable to diverse and dynamic environments.

4.2 Training Performance
The experiments in this study simulate traditional Ride-Hailing and Ride-Pooling services in Man-

hattan during peak traffic hours (8:30–8:40 a.m.). Each service mode is trained separately over 4,800
episodes (equivalent to 2,880,000 steps). This time period and episode length were chosen to reflect a
highly dynamic supply-demand environment, ensuring the model learns under realistic and challenging
conditions. Passenger requests and idle driver locations are generated based on a Poisson distribution.

During training, the agent experiences variability across episodes. While passenger requests and
driver data are generated based on the Poisson distribution, inherent randomness ensures that no
two episodes are identical, allowing the agent to adapt to different supply-demand conditions. This
variability enhances the robustness of the learned strategy.

To evaluate the impact of Potential-Based Reward Shaping (PBRS) on learning efficiency, two
reward designs are compared: one incorporating PBRS and one without.

To ensure the reliability and generalizability of the results, the training experiments were repeated
five times using different random seeds (10, 20, 30, 40, and 50). The use of random seeds plays a
critical role in mitigating the inherent randomness in ride-hailing environments and reinforcement
learning (RL) training processes. Specifically:

• Reproducibility: By setting random seeds, the environment, data sampling, and initialization
of neural network weights are controlled, ensuring that the same sequence of random numbers is
used during execution. This guarantees that the results can be accurately reproduced, enabling
consistent evaluation of the model’s performance under identical experimental conditions.

• Comprehensive Evaluation: Different random seeds simulate variations in the ride-hailing
system, such as driver and passenger distributions, request times, and other stochastic factors.
These variations reflect real-world dynamics, providing a robust assessment of the model’s adapt-
ability and stability across diverse scenarios.

• Reduction of Bias: Averaging results across multiple random seeds helps mitigate anomalies
or outliers that may arise due to the stochastic nature of RL processes. This provides a more
reliable estimate of the model’s true performance.

At the code level, random seeds are applied in several key areas:

• Environment Initialization: Random seeds are used to initialize the sampling of driver and
passenger data files within the ride-hailing and ride-pooling environments.

• Data Sampling: Functions such as sample and choice leverage the set random seed to ensure
deterministic behavior during data preprocessing and simulation.

• Neural Network Training: Random seeds are employed to initialize neural network weights
and control the stochasticity of learning algorithms, such as random actions during exploration.

The results from repeated experiments are averaged, and confidence intervals are calculated to
provide statistically robust evaluations. This multi-seed approach not only enhances the validity of
the findings but also ensures that the proposed RL strategies perform consistently across a wide range
of simulated conditions.

To provide a comparative reference, the baseline strategy is evaluated over 1,000 random episodes
in the same simulation environment. These baseline episodes are configured identically to those used
for training the agent, including the Poisson-based data generation and randomness. This ensures a
fair and consistent comparison between the RL strategy and the baseline. The number of episodes is
sufficient to generate stable results, serving as a benchmark to highlight the performance improvements
achieved by the RL strategy.

To evaluate the model’s learning progression and effectiveness, this section presents the training
curves for both traditional ride-hailing and ride-pooling services over 4,800 episodes. These curves

38

illustrate how the model’s performance improves over time as it optimizes the matching process
within each service environment. By visualizing the changes in total reward across training iterations,
the training curves offer insight into the model’s convergence behavior and the relative impact of
different reward designs. According to the reward design, the total return of each episode can reflect
the size of the passenger’s total waiting time.

Figure 11: Training curve of Traditional Ride-Hailing Service

Figure 11 illustrates the trend in Total Return for two different reward designs (with and without
PBRS) in the traditional ride-hailing simulator. Each curve represents the average Total Return over
the training process, with the shaded area indicating the confidence interval based on the standard
error, reflecting the model’s variability.

The gray curve represents the reward design without Potential-Based Reward Shaping (PBRS). In
the initial few hundred episodes, the Total Return does not increase with training; instead, it rapidly
decreases before gradually stabilizing at a low level in the later stages. Upon analyzing the actions
taken by the agent, it was observed that due to the issue of sparse rewards, the agent does not receive
Rw(st, at) signals consistently. As a result, in the later stages of training, the agent repeatedly chooses
to wait rather than initiate matching actions, causing the waiting time for all passengers to increase
continuously.

The orange curve shows the performance of the PPO algorithm with PBRS. Compared to the
design without PBRS, the PBRS-enhanced PPO curve demonstrates a faster convergence rate, with a
rapid increase in Total Return during the early episodes. After approximately 600 episodes, the Total
Return rises over the baseline and eventually stabilizes at a significantly lower level (around 186,000).
This result suggests that the PBRS reward design effectively facilitates model learning, enabling the
agent to optimize matching efficiency in a shorter time frame, thereby increasing the total return and
enhancing system performance.

The shaded area surrounding the curves represents the confidence interval based on standard error,
reflecting the variation in total return across different runs. During the initial phase (first 500 episodes),
the shaded area is relatively wide, indicating greater variability as the model has yet to converge. As
training progresses into the middle and later stages, the standard error decreases, and the shaded
area narrows, signaling that the model’s performance is becoming more stable and the strategy is
converging.

Overall, the PBRS reward design yields a strategy that surpasses the non-PBRS design in both

39

learning speed and optimization effectiveness, highlighting the significant role of PBRS in enhancing
the efficacy of reinforcement learning algorithms within the traditional ride-hailing environment. Com-
pared to the baseline, the PBRS-based PPO strategy demonstrates superior performance in increasing
total return, ultimately offering an improved service experience for passengers. Additionally, PBRS
effectively addresses the sparse reward problem, providing more frequent feedback to the agent and
enabling better convergence during the training process.

Figure 12: Training Curve of Ride-Pooling Service

Figure 12 illustrates the training process of the PPO strategy with PBRS compared to the PPO
strategy without PBRS in the ride-pooling environment. In the early stages of training, the Total
Return of the PBRS-enhanced curve exhibits a significant upward trend. Within the first 500 episodes,
the Total Return rapidly rises from a high level, indicating that the strategy is effectively learning
matching methods and quickly adapting to the demands of ride-pooling tasks. After approximately
1,000 episodes, the Total Return stabilizes, reaching a relatively steady level well above the baseline
strategy, marked by the red dashed line at around -520,000. In contrast, the gray curve, which
represents the reward design without PBRS, shows that while the Total Return briefly increases at
the beginning of training, it sharply declines after the 50th episode, eventually falling to around -
1,100,000. Training logs further reveal that the agent frequently opts to wait. This result highlights
the superiority of the PPO strategy with PBRS in the ride-pooling setting.

During the first 500 episodes, the orange curve’s shaded area is relatively wide, indicating con-
siderable variability in model performance as the strategy has not yet fully converged. In this phase,
the strategy is still exploring optimal actions and gradually learning how to efficiently allocate drivers
and passengers, leading to fluctuations in total return. Around episode 1,000, the curve becomes
more stable, and the shaded area narrows. This phenomenon suggests that, as training progresses,
the strategy’s performance across multiple runs converges, with improved stability and consistency.
This stability implies that the model can increase total return consistently across different random
environments.

Compared to the baseline strategy, the PPO strategy with PBRS demonstrates a clear advantage
once it converges. Throughout the training process, the orange curve consistently remains above
the baseline level and eventually stabilizes around a total return of approximately -460,000. Overall,
the PPO strategy with PBRS exhibits strong learning capability and stability in the ride-pooling
environment. It quickly increase total return in the early stages and, in the later stages, converges

40

to a level far below the baseline. The decreasing standard error further indicates the consistency and
robustness of the strategy across different runs.

Comparing the training curves in Figure 11 and Figure 12, the PPO strategy with PBRS consis-
tently demonstrates a rapid convergence rate. In both the traditional ride-hailing and ride-pooling
environments, Total Return increases significantly during the early stages of training, indicating that
the strategy effectively learns to optimize matching and dispatching from the outset. This result sug-
gests that PBRS has a general benefit in enhancing the learning efficiency of the strategy. In both
scenarios, the Total Return of the PBRS-enhanced strategy converges to levels over the baseline. This
indicates that the PBRS reward design not only accelerates the learning process but also significantly
improves final performance, leading to better passenger waiting times and enhanced system efficiency
across both service environments.

In the traditional ride-hailing environment, the PPO curve with PBRS shows a certain level of
fluctuation post-convergence, as evidenced by the relatively wide shaded area. In contrast, the ride-
pooling curve exhibits greater stability, with a narrower confidence interval after convergence. This
difference may be attributed to the increased complexity of ride-pooling, which requires the strategy
to make more careful decisions involving multiple passengers, thereby promoting greater stability
and consistency. In traditional ride-hailing, where matching conditions are more straightforward, the
strategy tends to show more adjustments and fluctuations. Additionally, in the initial training phase,
the Total Return for ride-pooling increases more rapidly than for traditional ride-hailing. This may
be because the ride-pooling strategy optimizes the matching result between passenger orders, which
leads to a swift increase in total return. In contrast, the simpler matching conditions in traditional
ride-hailing result in a comparatively slower increase in waiting time.

4.3 Comparison of Strategies
To further validate the effectiveness of the trained strategy, this study conducted a detailed compar-

ison of the RL strategy enhanced by Potential-Based Reward Shaping (PBRS), the baseline strategy,
and the immediate matching strategy. Subsequently, these strategies were evaluated across 1,000
episodes within the same simulation environment.

During the evaluation phase, each strategy was tested under consistent conditions, where passenger
requests and driver availability were randomly generated based on a Poisson distribution calibrated
for the Manhattan area. While the episode settings were identical to those used for training the
RL strategy in Section 5.2, the data generated differed due to the stochastic nature of the Poisson
distribution. In each episode, the total waiting time for all passengers was recorded, and the average
total waiting time for each strategy was calculated, enabling a comprehensive assessment of their
performance in optimizing matching efficiency and reducing passenger waiting time.

By comparing the performance of these strategies, this section aims to illustrate the impact of
the trained RL strategy on both ride-hailing and ride-pooling services. Such analysis provides critical
insights for selecting the most effective strategy for real-world applications.

In the left-side graph of Figure 13 for the traditional ride-hailing scenario, the trained strategy (blue
point) demonstrates the lowest average total waiting time, approximately 188,000, with a relatively
small standard error. This indicates that the strategy consistently maintains a low waiting time
across various test runs, reflecting high stability and reliability. The small standard error highlights
the trained strategy’s effectiveness in optimizing waiting time under random conditions, significantly
reducing passenger waiting time. In contrast, the baseline strategy (yellow point) has a slightly higher
average total waiting time of around 190,000. This suggests that, while the baseline strategy performs
fairly consistently in the traditional ride-hailing scenario, it lacks the optimization efficiency of the
trained strategy and is less adaptable to variations, resulting in higher waiting times in some cases.
The instant matching strategy (green point) shows the highest average total waiting time, close to
200,000, indicating its limited effectiveness in this context.

In the right-side graph of Figure 13 for the ride-pooling scenario, the trained strategy again performs
well, with an average total waiting time of approximately 475,000 and a small standard error. This
result demonstrates the strategy’s adaptability and consistency in the more complex ride-pooling
environment, where it effectively optimizes matching efficiency and minimizes total waiting time across
multiple test runs. This performance suggests that the trained strategy is robust, even in scenarios
with diverse passenger needs. The baseline strategy in the ride-pooling scenario does not perform as
well as the trained strategy, with an average total waiting time of around 600,000. Although it has

41

Figure 13: Comparison of Average Total Waiting Time with Standard Error Across Different Strategies
in Ride-Hailing and Ride-Pooling

a small standard error, indicating stability, its relatively high waiting time shows its limitations in
handling ride-pooling tasks, likely due to a lack of flexibility in complex shared ride scenarios. The
instant matching strategy, in the ride-pooling scenario, exhibits the highest average total waiting time,
close to 650,000, with a larger standard error, indicating substantial variability. This suggests that
the instant matching strategy has considerable fluctuations in waiting time across different test runs,
reflecting a lack of stability when facing diverse supply and demand conditions. Its high average waiting
time demonstrates its inability to leverage delayed matching windows to optimize trip scheduling in
ride-pooling contexts effectively.

Overall, the trained strategy shows the lowest average total waiting time and the smallest standard
error in both scenarios, highlighting its superior optimization capabilities and strong stability. While
the baseline strategy performs consistently, it is less efficient in the both scenarios. The instant
matching strategy performs poorly in both scenarios, with high waiting times that make it less suitable
for practical applications.

To validate the effectiveness of the training strategy and analyze the evolution of policies during
the training process, this study selected five key strategies from the training curve at episodes 50,
500, 1000, 2000, and 4800. These checkpoints represent different stages of training, capturing the
progression from initial learning to gradual optimization and eventual convergence. By comparing the
performance of these strategies at different stages, the gradual improvements throughout the training
process can be effectively illustrated.

In this experiment, the five checkpoint strategies, along with the baseline strategy, were tested over
1,000 episodes. The episodes were configured consistently with the previous experiments to ensure
fair comparison within the same simulation environment. During the tests, several key metrics were
recorded and analyzed, including Average Pickup Time, Average Matching Time, Average Detour
Delay, and Average Total Waiting Time. These metrics provide detailed insights into the variations in
passenger order waiting times and offer a comprehensive analysis of the performance of each strategy
at different stages of training.

The experimental results clearly demonstrate the performance of traditional ride-hailing and ride-
pooling services, with key metrics for each strategy shown in Figure 14 and Figure 15, respectively.
Additionally, system-wide metrics, including Total Pickup Time, Total Matching Time, Total Detour
Delay, and Total Waiting Time, are presented in the appendix in Figure 21 and Figure 22.

Figure 14 and Figure 21 reveal a clear trend: as the number of training episodes increases, the
Average Pickup Time per Passenger gradually decreases from 258 seconds in the initial stages to
247 seconds by the 4800th episode. This improvement indicates that with more training, the strategy
becomes increasingly effective at reducing the time passengers wait to be picked up after being matched
with a driver. Similarly, the Total Pickup Time for the system follows the same downward trajectory,
decreasing from 156,000 seconds to 150,000 seconds over the same period. While the reduction in
Average Pickup Time (approximately 11 seconds) might appear modest, it is important to consider

42

Figure 14: Comparison of Metrics Across Training Episodes and Baseline Strategy for Ride-Hailing
Services

that this is an average across all passengers. For systems handling large volumes of passengers, even
small per-passenger improvements translate into significant reductions in total system-wide pickup
time. This synchronized decline in both metrics underscores the effectiveness of the trained strategy in
enhancing overall system efficiency by optimizing pickup times for individual passengers. In contrast,
the baseline strategy, although relatively stable in terms of Average Pickup Time, demonstrates limited
capacity to optimize system efficiency or reduce passenger pickup times. This comparison highlights
the superior performance of the trained strategy in addressing key operational inefficiencies.

From Figure 14, it can be observed that the Average Matching Time per Passenger shows a slight
increase as training progresses, rising from 14.4 seconds at the 64th episode to 15.7 seconds at the
4800th episode. Although this increase is minor, it contrasts with the observed decrease in pickup
waiting time. Similarly, the Total Matching Time (Figure 21) increases from approximately 34,500
seconds initially to about 37,100 seconds by the end of training, following a trend consistent with
the average matching time. These metrics suggest that while the trained strategy effectively reduces
pickup waiting time, this improvement comes at the cost of a slight increase in matching time. The
rise in both average and total matching time implies that the system likely prioritizes optimizing the
pickup process during training, which may result in longer delays during the matching phase. However,
it is worth noting that the increase in matching time remains relatively modest and still falls below the
matching time observed in the baseline strategy. Moreover, this trade-off yields significant improve-
ments in pickup waiting time compared to the baseline. As a result, the overall system performance
demonstrates substantial gains, reflecting the effectiveness of the trained strategy in balancing these
competing objectives.

The Average Total Waiting Time per Passenger reflects the average waiting time each passenger
experiences throughout the entire ride process (including matching and pickup). As the number of
training episodes increases, the average waiting time decreases from 270 seconds at the 64th episode to
262 seconds by the 4800th episode. This suggests that the trained strategy performs well in enhancing

43

the overall ride experience by progressively reducing the average waiting time for passengers. The
Total Waiting Time exhibits a similar trend to the average waiting time, decreasing from 191,000
seconds at the 64th episode to 186,000 seconds by the 4800th episode. The baseline strategy’s total
waiting time is around 189,000 seconds, which is higher than the final performance of the trained
strategy. The synchronized decline in both the average waiting time and total waiting time reflects an
improvement in overall system efficiency. Through the optimization of the trained strategy, not only
has each passenger’s waiting experience improved, but the total waiting time across the entire system
has also significantly decreased. This synchronized improvement shows that the trained strategy better
balances individual passenger experience and overall system operational efficiency, minimizing total
waiting time while enhancing service quality.

These analyses indicate that although the trained strategy may involve some trade-offs (e.g., a
slight increase in matching waiting time), overall, it achieves significant improvements in passenger
experience and system efficiency. Especially in large-scale system operations over the long term, the
trained strategy demonstrates strong stability and adaptability.

Figure 15: Comparison of Metrics Across Training Episodes and Baseline Strategy for Ride-Pooling
Services

Figures 15 illustrate that the Average Pickup Time per passenger begins at approximately 31
seconds during the 50th episode but decreases rapidly as training progresses, stabilizing at around 25
seconds by the 500th episode. In contrast, the baseline strategy exhibits a significantly higher Average
Pickup Time of approximately 29 seconds, highlighting its inefficiency compared to the trained strategy.

44

Similarly, the Total Pickup Time shows a substantial reduction with increasing training episodes,
dropping from an initial 365,000 seconds to approximately 310,000 seconds. The baseline strategy,
however, maintains a much higher Total Pickup Time of about 350,000 seconds. This synchronized
downward trend in both metrics underscores the effectiveness of the trained ride-pooling strategy in
improving overall system performance, particularly by reducing passenger wait times after matching.
As training continues and the system becomes more optimized, pickup times not only decrease but also
stabilize, reflecting enhanced efficiency. In contrast, the baseline strategy, reliant on a fixed matching
interval, remains significantly less effective throughout.

In Figure 15, the Average Matching Time per passenger starts at around 6.0 seconds during the
50th episode, then increases with more training, peaking at approximately 20 seconds before stabilizing
around 18.0 seconds. By comparison, the baseline strategy shows a worse performance, with an average
matching time of about 22 seconds. The Total Matching Time follows a similar trend, increasing from
around 18,000 seconds at the 50th episode to about 90,000 seconds by the 4800th episode. The baseline
strategy shows an even higher total waiting time, exceeding 110,000 seconds. The slight increase in
both average and total matching times suggests that while the trained strategy optimizes the pickup
process, the matching process involves longer waiting times. This could be due to the complexity of
decision-making involved in ride-pooling scenarios, where drivers are assigned to multiple passengers.
Nevertheless, the trained strategy still performs better than the baseline, showing greater adaptability
in handling complex scenarios.

The Average Detour Delay per passenger starts at around 125 seconds during the 50th episode but
rapidly decreases through further training, reaching around 55 seconds by the 4800th episode. This
indicates that the system becomes more efficient at reducing detour times as the strategy evolves.
The Total Detour Delay follows a similar pattern, dropping from 160,000 seconds to around 6,000
seconds. The baseline strategy, however, shows a much higher total detour delay of about 130,000
seconds. These two metrics demonstrate that the trained ride-pooling strategy significantly reduces
detour times, which is crucial in ride-pooling services. As training progresses, the system becomes
more effective at route optimization, substantially lowering both individual detour delays and the
total detour delay for the system as a whole, contributing to improved passenger satisfaction.

The Average Total Waiting Time per passenger decreases steadily from approximately 440 seconds
during the 64th episode to around 330 seconds by the 4800th episode. This indicates that passengers’
overall waiting experience improves significantly as training progresses. The baseline strategy, however,
maintains a higher average waiting time of around 420 seconds, showing inferior performance. The
Total Waiting Time decreases from an initial 550,000 seconds to around 460,000 seconds by the 4800th
episode, whereas the baseline strategy’s total waiting time remains higher, at approximately 540,000
seconds.

Overall, the trained ride-pooling strategy shows significant improvements in both passenger ex-
perience and system efficiency. Although the matching time slightly increases, the optimizations in
pickup time and detour delays result in excellent overall system performance. The reductions in total
waiting time and improved system performance further demonstrate the effectiveness of reinforcement
learning in ride-pooling scenarios, as the system continues to optimize and perform more efficiently as
training progresses.

An additional validation experiment was designed to demonstrate that the strategy can dynamically
adjust matching time intervals based on the current system state, rather than relying on fixed intervals.
In this experiment, the fully trained RL strategy was deployed in several episodes with the same settings
as in the previous experiments. The distribution of dynamic matching time intervals in both traditional
ride-hailing and ride-pooling scenarios was systematically recorded and analyzed. Additionally, the
number of passenger requests and available drivers at each matching decision was tracked to reveal
the system’s flexibility in responding to varying supply and demand conditions, especially in cases of
imbalance.

Analysis of the matching time interval distribution clearly illustrates how the trained strategy dy-
namically adjusts the intervals based on real-time supply-demand conditions. This finding highlights
the strategy’s ability to adapt to different supply-demand situations without relying on fixed, pre-
determined intervals, thereby improving service efficiency and reducing passenger waiting times. The
results further validate the robustness and adaptability of the trained strategy in dynamic environ-
ments, showcasing its potential effectiveness and applicability in real-world scenarios and providing a
strong theoretical foundation for broader practical deployment.

45

Figure 16: Distribution of Dynamic Time Intervals

Figure 17: Matching Interval Dynamics with Order and Driver Counts

Figure 16 presents the distribution of matching time intervals under the trained strategy for both
traditional ride-hailing and ride-pooling scenarios. The histograms show how the matching time inter-
vals dynamically change, rather than remaining fixed, demonstrating the adaptability of the trained
strategy in adjusting to real-time system conditions.

In the traditional ride-hailing scenario, the distribution of matching intervals is concentrated within
shorter time ranges, with most matches occurring between 10 to 20 seconds. However, there are also
instances where the matching time is longer, extending to around 40 seconds. In the ride-pooling
scenario, the distribution of matching intervals is more dispersed, reflecting the complexity of coordi-
nating multiple passengers with compatible routes. The strategy exhibits a wider range of matching
intervals, frequently extending beyond 30 seconds. This longer interval allows the system to accumu-
late enough passenger requests to identify optimal ride-pooling opportunities and driver matches. By
dynamically adjusting the matching intervals based on the current number of passenger requests and
available drivers, the strategy improves ride-pooling efficiency, reduces detour delays, and shortens
driver pick-up distances, thus enhancing overall system performance.

Figure 17 shows the number of passenger orders (X-axis) and available drivers (Y-axis) at each
matching action, with comparisons for both ride-hailing and ride-pooling scenarios. The color on the
heatmap represents the length of time since the last matching action, with darker colors indicating
longer intervals and lighter colors indicating shorter intervals.

46

In the ride-hailing scenario (left chart), as the number of passenger orders increases, the matching
time interval also extends (darker colors), especially when the number of passenger orders exceeds
30, and the matching interval significantly increases. On the diagonal line, there is obviously longer
matching time interval. This might be because the system chooses to wait for more orders and drivers
to improve matching efficiency. It can be understood that, in a supply-demand balanced situation, the
system delays matching to accumulate more resources and thus make better matching decisions. At
the same time, when the number of available drivers is lower (below 30 on the Y-axis) and close to the
y axis, the matching time interval is shorter, indicating that the system tends to match more quickly
in this case to avoid prolonged passenger wait times. This reflects the system’s preference for shorter
matching intervals when driver supply is tight to reduce passenger wait times. Additionally, when the
number of passenger orders exceeds the number of available drivers, the matching time interval is also
shorter, implying that there are more idle drivers near each passenger request, enabling more efficient
passenger-driver matches. This suggests that when driver supply is abundant, the system also tends
to choose shorter matching intervals.

For the ride-pooling scenario (right chart), the matching intervals are generally longer compared to
the ride-hailing scenario (darker colors), which aligns with the complexity of ride-pooling. As the num-
ber of passenger orders and drivers increases, the matching intervals extend significantly, especially
when the number of passenger orders exceeds 50, with intervals extending beyond 30 seconds. This
indicates that in the ride-pooling scenario, the system needs to wait for more orders to find the optimal
pooling combinations. Therefore, in balanced supply-demand situations, the system intentionally de-
lays matching to accumulate enough passenger orders to make better ride-pooling decisions. However,
in situations where supply and demand are imbalanced, the system, similar to traditional ride-hailing,
chooses shorter matching intervals to quickly process the accumulation caused by the imbalance.

Overall, whether in the ride-hailing or ride-pooling scenario, the system adjusts the matching
intervals based on actual supply and demand conditions. Particularly in situations of imbalance, the
system shortens the matching intervals to handle the accumulated orders and drivers. On the other
hand, in balanced situations, the system extends the matching intervals to accumulate more orders
and drivers for better decisions. This dynamic matching strategy shows that the system can flexibly
adjust the matching intervals according to current conditions, rather than relying on fixed matching
intervals, thus improving the overall efficiency and service quality of the system.

4.4 Ride-Hailing vs. Ride-Pooling
After analyzing the dynamic adjustments in matching time intervals, a further step in this research

involves an experiment designed to compare the performance of ride-hailing and ride-pooling modes
in the same environment. This experiment aims to provide a comprehensive evaluation of these two
transportation modes under varying conditions, focusing specifically on key metrics such as matching
time, pickup time, and detour delays.

One of the primary objectives of this experiment is to compare how ride-hailing and ride-pooling
perform in different scenarios, providing insights into the unique challenges and advantages of each
mode. By analyzing their respective performances, this study aims to highlight the differences in
efficiency, particularly in terms of how effectively each mode handles fluctuating supply and demand
conditions.

Additionally, this experiment evaluates the improvements introduced by the trained matching strat-
egy. The goal is to demonstrate how the dynamic adjustment capabilities of the trained strategy out-
perform fixed-interval matching methods traditionally used in ride-hailing and ride-pooling services.
The comparison will focus on whether the trained strategy can reduce overall waiting times and detour
delays, while also optimizing the matching process by dynamically adjusting to real-time conditions.

Through this comparative analysis, the study seeks to provide a deeper understanding of how
dynamic matching strategies can be applied to both ride-hailing and ride-pooling services, enhancing
system performance and ultimately improving passenger experience. By establishing eight distinct
scenarios, this experiment aims to highlight the advantages and limitations of each service model
under varying resource constraints and matching strategies. Specifically, the goal is to evaluate how
traditional ride-hailing and ride-pooling compare in terms of efficiency metrics, such as passenger wait
times and detour delays. This horizontal comparison offers insights into which model is more effective
under different demand conditions, providing a foundation for optimizing urban mobility solutions and
informing future policy or operational adjustments in shared mobility services.

47

In this experiment, eight scenarios are set up to compare different transportation modes and match-
ing strategies, as shown in Table 3.

Table 3: Experimental Scenario Design

Scenario Service Mode Driver-to-Order Ratio Strategy
A Ride-Hailing 1:1 Baseline
B Ride-Hailing 1:1 RL
C Ride-Hailing 0.5:1 Baseline
D Ride-Hailing 0.5:1 RL
E Ride-Pooling 1:1 Baseline
F Ride-Pooling 1:1 RL
G Ride-Pooling 0.5:1 Baseline
H Ride-Pooling 0.5:1 RL

These eight scenarios provide a systematic framework for evaluating the effects of service modes,
driver-to-order ratios, and matching strategies on system efficiency. Each scenario focuses on either
ride-hailing (matching single-passenger requests) or ride-pooling (matching two passenger orders for
shared rides) and is tested under two supply conditions: a 1:1 driver-to-order ratio (sufficient supply)
and a 0.5:1 ratio (limited supply). This comprehensive approach enables a detailed analysis of strategy
performance across varied resource availability. All scenarios were trained over 250 episodes, with
the passenger order dataset remaining consistent across episodes and representing simulated supply-
demand data for Manhattan from 8:30 AM to 8:40 AM. For scenarios with a 0.5:1 driver-to-order ratio,
only half of the driver dataset used in the 1:1 scenarios was utilized. This design ensures a controlled
comparison of strategy effectiveness under different resource constraints.

Specifically, comparisons between scenarios A and B, C and D, E and F, and G and H highlight the
differences between the baseline and RL strategies. Comparisons between scenarios A and C, B and D,
E and G, and F and H reveal how each strategy performs under different supply-demand conditions.
Finally, comparisons between scenarios A and E, B and F, C and G, and D and H illustrate the
differences between service modes. These distinctions are assessed based on key performance indicators
for each passenger order, including Average Pickup Time, Average Matching Time, Average Detour
Delay, and Average Total Waiting Time, as shown in Table 4. Further details on system performance
metrics can be found in Appendix Table 5.

Figure 18 visually illustrates the differences in Average Total Waiting Time per passenger order
across different scenarios. Under varying supply-demand conditions, regardless of whether the service
mode is ride-hailing or ride-pooling, the RL strategy consistently achieves lower waiting times, demon-
strating its ability to match passengers with drivers more efficiently and thereby reduce waiting time.
Combined with Table 4, the RL strategy also shows significant advantages over the baseline in metrics
such as Average Pickup Time, Average Matching Time, and Average Detour Delay.

There are notable differences between ride-hailing and ride-pooling under the two supply-demand
conditions. When the Driver-to-Order Ratio is 1:1, ride-hailing achieves a supply-demand balance.
However, when the supply is halved to a 0.5:1 ratio, ride-hailing faces a demand surplus, causing a
significant increase in Average Total Waiting Time for passengers. Although the Average Pickup Time
decreases in this situation, it is mainly because drivers prioritize matching with nearby passenger orders,
leaving many passengers unmatched. This leads to a significant increase in Average Matching Time and
a high rate of order cancellations due to prolonged waiting times. Although previous analysis shows
that the RL strategy can optimize performance in unbalanced supply-demand conditions by shortening
the matching interval, this adjustment only brings a slight improvement and does not resolve the issue
of numerous unmatched passenger orders.

The situation is different for ride-pooling. Since each driver can serve two passenger orders, a 1:1
Driver-to-Order Ratio in ride-pooling actually represents an oversupply. In this case, passengers can
be matched with closer drivers, significantly reducing the Average Pickup Time, which also results
in some idle drivers. The RL strategy dynamically adapts by shortening the matching interval, thus
reducing Average Matching Time. When the Driver-to-Order Ratio is 0.5:1, the increase in Average
Total Waiting Time for ride-pooling is less drastic than for ride-hailing, showing only a slight rise. This
is because, in ride-pooling, a 0.5:1 ratio still represents a balanced supply-demand state, and there is
no significant increase in order cancellations due to prolonged matching times. In this case, the RL

48

Table 4: Comparison of Metrics Across Different Ride-Hailing Scenarios

Scenario Metric Mean (s) St. Error

A

Average Pickup Time 282.992 1.601
Average Matching Time 16.6908 0.317
Average Detour Delay - -
Average Total Waiting Time 299.6828 1.322

B

Average Pickup Time 247.176 1.629
Average Matching Time 15.306 0.318
Average Detour Delay - -
Average Total Waiting Time 262.482 1.452

C

Average Pickup Time 54.302 0.611
Average Matching Time 506.124 0.346
Average Detour Delay - -
Average Total Waiting Time 560.426 1.221

D

Average Pickup Time 51.539 0.604
Average Matching Time 449.337 0.344
Average Detour Delay - -
Average Total Waiting Time 500.876 1.225

E

Average Pickup Time 243.534 0.494
Average Matching Time 20.008 0.589
Average Detour Delay 177.47 0.841
Average Total Waiting Time 441.012 1.163

F

Average Pickup Time 203.9952 0.462
Average Matching Time 12.7528 0.235
Average Detour Delay 85.894 0.727
Average Total Waiting Time 302.642 0.917

G

Average Pickup Time 314.614 1.278
Average Matching Time 22.8872 0.374
Average Detour Delay 144.089 1.757
Average Total Waiting Time 481.5902 1.669

H

Average Pickup Time 270.634 0.936
Average Matching Time 21.555 0.436
Average Detour Delay 76.162 0.821
Average Total Waiting Time 368.351 1.249

strategy responds by slightly extending the matching interval, leading to a minor increase in Average
Matching Time while keeping Average Pickup Time and Average Detour Delay relatively stable.

When the Driver-to-Order Ratio is 1:1, ride-hailing indeed has an advantage over ride-pooling,
with both the baseline and RL strategies resulting in lower Average Total Waiting Times compared to
ride-pooling. This is primarily because ride-hailing does not require a passenger-to-passenger matching
phase, which reduces the Average Matching Time and eliminates Detour Delay. However, a comparison
of the metrics between Scenario F and Scenarios A and B reveals that, in the RL-enhanced ride-pooling
scenario, the Average Total Waiting Time is reduced to a level close to that of Scenarios A and B.
This result reflects the adaptability and flexibility of the RL strategy within ride-pooling. Due to the
increased complexity of ride-pooling, where multiple passenger needs must be met simultaneously, the
introduction of RL has evidently enhanced the system’s capability to handle complex scenarios.

With a 0.5:1 Driver-to-Order Ratio, the performance of ride-hailing is less satisfactory. In this
case of constrained supply, ride-hailing struggles to meet demand under limited resources, highlighting
the significant advantage of ride-pooling, particularly in effectively meeting passenger demand when
resources are limited. Notably, even with only half the driver supply of Scenario A, ride-pooling in
Scenarios G and H maintains system efficiency. Specifically, in Scenario H, the trained RL strategy
optimizes resource allocation more effectively. Despite the reduction in driver supply by half, the
Average Total Waiting Time and Average Pickup Time in Scenario H do not double as would be
expected in the traditional ride-hailing model. This demonstrates that the pooling mode, even with
limited driver availability, can effectively match demand by combining multiple passenger trips.

49

Figure 18: Average Total Waiting Time in 8 Scenarios

Overall, the main advantage of ride-pooling lies in its ability to maintain efficient system operation
even with fewer drivers by optimizing algorithms and matching strategies. This efficient resource
utilization not only reduces total system waiting time but also effectively lowers passenger detour
delays. Even when driver supply is tight, the system can meet passenger demand through pooling
combinations. This means that in situations of supply-demand imbalance, ride-pooling can improve
the overall service level of the system by integrating multiple orders without significantly increasing
the waiting time for each passenger.

5 Conclusion

5.1 Research Contributions
The objective of this study is to leverage deep reinforcement learning techniques, specifically a

dynamic strategy based on the Proximal Policy Optimization (PPO) algorithm, to optimize matching
time intervals, thereby reducing passenger wait times and improving vehicle utilization. Additionally,
to address the challenge of sparse rewards, Potential-Based Reward Shaping (PBRS) is employed to
enhance learning efficiency. By dynamically adjusting the matching strategy, this research provides
optimized solutions not only for traditional ride-hailing services but also for the complexity of multi-
passenger matching and detour delays in ride-pooling.

This study introduces several key innovations that improve upon existing matching strategies for
both ride-hailing and ride-pooling services. The specific contributions of this research include the
following:

• Dynamic Optimization of Matching Time Intervals
This study develops a reinforcement learning-based dynamic matching strategy that continu-
ously learns and adjusts matching time intervals according to fluctuations in supply and demand.
Compared to traditional fixed or real-time matching methods, dynamic optimization of match-
ing intervals finds a better balance between matching efficiency and passenger wait time, thus
enhancing overall system performance.

• Introduction of Potential-Based Reward Shaping (PBRS)
This study applies PBRS in reward design to tackle the challenge of sparse rewards. Traditional

50

reinforcement learning methods may struggle with low learning efficiency when faced with sparse
rewards. With the introduction of PBRS, the model converges to the optimal strategy more
quickly, significantly improving the learning performance in the ride-hailing service environment.

• Addressing the Complexity of Multi-Passenger Matching in Ride-Pooling
For the ride-pooling service, this study proposes an efficient algorithm framework to consider
similarities in passengers’origins and destinations during the matching process, thereby reducing
detour time. This optimized strategy not only improves matching efficiency but also reduces
detour delays for passengers, enhancing overall passenger satisfaction.

• Development of an Efficient Simulator for Method Validation
This research designs and builds a realistic simulator for both ride-hailing and ride-pooling ser-
vices to simulate the spatio-temporal dynamics of the system. The simulator can accurately gen-
erate passenger orders and driver distribution data and dynamically adjust matching strategies,
allowing the evaluation of various matching methods under practical conditions. This provides
a reliable testing platform for exploring the application of reinforcement learning in dynamic
mobility services.

Through these contributions, this study introduces a more flexible and adaptive optimization
method to improve existing ride-hailing service matching strategies. It demonstrates the potential
of reinforcement learning to enhance system efficiency, reduce passenger wait times, and optimize
shared mobility experiences in dynamic urban transportation environments.

5.2 Key Findings and Implications
Via a series of experiments and simulations, this study thoroughly analyzed the performance of

different matching strategies in both conventional and ride-pooling services, leading to the following
main conclusions:

• Dynamic Matching Strategy Significantly Reduces Passenger Wait Time
The experimental results indicate that the PPO-based dynamic matching strategy demonstrates
significant advantages over traditional fixed-interval matching in reducing total passenger wait
time. After 4,800 training episodes, the dynamic matching strategy with PBRS successfully
minimized both the total and average matching time for passengers. The findings reveal that
this strategy’s ability to dynamically adjust matching intervals allows it to better accommodate
real-time supply-demand fluctuations, thereby optimizing match quality during high-demand
periods and effectively reducing passenger wait times.

• PBRS Reward Design Enhances Model Learning Efficiency
Compared to models without PBRS, the reinforcement learning model with PBRS exhibited
faster convergence and more stable performance. PBRS provides more frequent reward feedback
in sparse reward environments, enabling the model to learn more effective strategies within the
first few hundred episodes. In the ride-pooling environment, PBRS further improved strategy
stability and reduced training volatility, allowing the model to find strategies that minimize
detour delays more quickly.

• Effectively Managing Detour Delays in ride-pooling Scenarios
This study specifically addresses the multi-passenger matching problem in ride-pooling. The ex-
perimental results show that the dynamic matching strategy not only reduces passenger wait time
but also effectively controls detour delays during multi-passenger matching. Data indicates that
the average detour delay with dynamic matching is significantly lower than with fixed-interval
strategies. During high-demand periods, dynamic matching can aggregate more passenger re-
quests by delaying matching intervals slightly, thus optimizing matching and reducing detour
costs. These results highlight the potential of dynamic matching strategies to enhance service
quality in ride-pooling.

• Ride-Pooling with Dynamic Matching Outperforms Under Limited Resources
The experimental results show that the traditional ride-hailing mode exhibits higher system
efficiency when driver resources are abundant, with significantly lower total waiting and matching

51

times compared to the ride-pooling mode. However, in scenarios with limited driver resources,
the ride-pooling mode effectively reduces the system burden through carpooling. Notably, the
dynamic matching strategy trained with reinforcement learning can still significantly reduce
passenger wait times and detour delays, even in resource-constrained conditions.

• Simulator Validates Practical Effectiveness of Different Strategies
The simulator designed in this study accurately replicates real-world supply-demand fluctuations
and allows for effective evaluation of strategies across various interval settings. Through com-
parative analysis with fixed-interval and random matching strategies, the results demonstrate
that while fixed-interval matching can provide stability, it is unable to adapt to dynamic supply-
demand changes. Conversely, the PPO-based dynamic matching strategy flexibly responds to
varying conditions, thereby improving overall system efficiency.

In conclusion, this study illustrates the potential of reinforcement learning in optimizing matching
time intervals in ride-hailing services. The experimental results suggest that dynamically optimizing
matching intervals not only improves the efficiency of ride-hailing services but also effectively balances
the trade-off between response speed and match quality.

Moreover, the dynamic optimization of matching time intervals offers a valuable improvement
direction for current ride-hailing platforms such as Uber and Lyft. By utilizing reinforcement learning-
based dynamic matching, the system can respond in real time to fluctuations in supply and demand,
thereby reducing passenger wait times and driver idle times. This not only enhances travel efficiency
but also improves overall user satisfaction, fostering greater user dependency on and loyalty to shared
mobility services.

Additionally, this study’s multi-passenger matching strategy for ride-pooling scenarios demon-
strates how to efficiently group passengers during high-demand periods to reduce detour delays. By
matching more passengers with similar routes at appropriate times, the strategy optimizes resource
utilization and helps platforms provide a more sustainable mobility solution. Especially during peak
hours or in congested areas, aggregating multiple passenger requests can help reduce total vehicle miles
traveled, alleviate traffic congestion, and further decrease carbon emissions, contributing to a more
environmentally friendly transportation service.

The efficient simulator developed in this study provides shared mobility platforms with a tool for
testing and validating new strategies. The simulator not only replicates complex dynamic scenarios in
real-world mobility services but also allows researchers and operators to test the impact of different
matching time intervals and strategies on system efficiency. This flexible simulation capability enables
platforms to fine-tune and optimize new strategies before implementation, improving their effectiveness
and reliability and supporting continuous innovation.

In summary, the methods and models proposed in this study offer new technical references for
future intelligent mobility services. In practical applications, combining dynamic optimization with
reinforcement learning models will enable ride-hailing platforms to more accurately predict and re-
spond to supply-demand variations, effectively reducing costs and enhancing service efficiency. This
innovation holds practical significance not only for shared mobility platforms but also for broader
urban intelligent transportation management, supporting the digital transformation and sustainable
development of urban transportation.

5.3 Limitation and Future Work
While this study has made significant strides in developing an effective simulator and applying

reinforcement learning to optimize matching strategies in ride-hailing and ride-pooling services, there
remain several potential avenues for further research and improvement. These areas include enhance-
ments to the simulator, exploration of various reinforcement learning algorithms, and refinement of
state representation. Future research directions are outlined as follows:

• Incorporating Real-Time Traffic Conditions: The current simulator does not account for
real-time traffic data, which affects vehicle speeds and passenger wait times. Integrating real-time
traffic data in future versions of the simulator would allow for a more accurate representation of
dynamic traffic conditions encountered in real-world mobility services. This enhancement would
enable the reinforcement learning algorithm to develop strategies that are more adaptable to
actual traffic scenarios.

52

• Simulating a Hybrid Service Environment: Currently, the simulator models conventional
ride-hailing and ride-pooling services separately. Future work could benefit from integrating
both services within a single simulation environment, allowing for a comprehensive evaluation of
different strategies in a mixed-service setting. This would provide a more accurate assessment of
the model’s efficiency and adaptability within complex urban mobility environments, enhancing
the practical applicability of the research.

• Expanding Ride-Pooling Combinations: At present, the simulator limits ride-pooling to
combinations of two passenger orders. Extending this to allow for more than two passengers per
vehicle would better represent real-world demand patterns and enable analysis of multi-passenger
detour optimizations. This approach could improve detour path selection strategies, ensuring a
balanced experience for passengers while enhancing overall system efficiency.

• Exploring Alternative Reinforcement Learning Algorithms: This study applied the
Proximal Policy Optimization (PPO) algorithm to optimize matching intervals with promising re-
sults. However, future work could explore other reinforcement learning algorithms, such as Deep
Q-Network (DQN), Deep Deterministic Policy Gradient (DDPG), and Advantage Actor-Critic
(A3C), to compare their performance in the context of dynamic matching strategy optimization.
Such comparisons would provide deeper insights into the adaptability and efficiency of various
algorithms.

• Enhancing State Representation: The state representation in this study views the ride-
hailing and ride-pooling processes as a partially observed Markov decision process (POMDP),
which inherently limits the amount of information captured about the system. Future research
could work towards enhancing the state representation by incorporating a graph-based structure
to represent the relative locations of passenger requests and available drivers. Additionally, fea-
ture engineering could be employed to retain critical information while filtering out less relevant
data, enabling more effective decision-making that minimizes wait times and detours.

Overall, advancing the simulator’s capabilities and exploring a variety of reinforcement learning
algorithms could enrich the research findings and provide valuable technical support for future ride-
hailing optimization strategies. These developments would further enhance the practical applicability
and scalability of the study, building a strong foundation for intelligent optimization in next-generation
mobility services.

53

References
[1] A. E. Brown and W. LaValle, “Hailing a change: comparing taxi and ridehail service quality in

los angeles,” Transportation, vol. 48, pp. 1007–1031, 2020.

[2] K. Wei, V. Vaze, and A. Jacquillat, “Transit planning optimization under ride-hailing competition
and traffic congestion,” Transp. Sci., vol. 56, pp. 725–749, 2021.

[3] G. Feng, G. Kong, and Z. Wang, “We are on the way: Analysis of on-demand ride-hailing systems,”
TransportRN: Transportation Modes, 2017.

[4] C. Rodier and J. Michaels, “The effects of ride-hailing services on greenhouse gas emissions,” 2019.

[5] S. Shaheen, “Shared mobility: The potential of ride hailing and pooling,” pp. 55–76, 2018.

[6] J. Jacob and R. Roet-Green, “Ride solo or pool: Designing price-service menus for a ride-sharing
platform,” TransportRN: Transportation Costs (Topic), 2018.

[7] Y. Sun and L. Zhang, “Potential of taxi-pooling to reduce vehicle miles traveled in washington,
d.c.” Transportation Research Record, vol. 2672, pp. 775 – 784, 2018.

[8] J. Ke, H. Yang, and Z. Zheng, “On ride-pooling and traffic congestion,” Transportation Research
Part B-methodological, vol. 142, pp. 213–231, 2020.

[9] G. Feng, G. Kong, and Z. Wang, “We are on the way: Analysis of on-demand ride-hailing systems,”
Manuf. Serv. Oper. Manag., 2021.

[10] J. Alonso-Mora, S. Samaranayake, A. Wallar, E. Frazzoli, and D. Rus, “On-demand
high-capacity ride-sharing via dynamic trip-vehicle assignment,” Proceedings of the National
Academy of Sciences, vol. 114, no. 3, pp. 462–467, 2017. [Online]. Available: https:
//www.pnas.org/doi/abs/10.1073/pnas.1611675114

[11] A. Sundt, Q. Luo, J. Vincent, M. Shahabi, and Y. Yin, “Heuristics for customer-focused ride-
pooling assignment,” ArXiv, vol. abs/2107.11318, 2021.

[12] J. Gao, X. Li, C. Wang, and X. Huang, “Bm-ddpg: An integrated dispatching framework for
ride-hailing systems,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, pp.
11 666–11 676, 2022.

[13] G. Shakya and M. Yokoo, “Balancing fairness and efficiency in 3d repeated matching in rideshar-
ing,” pp. 2121–2128, 2023.

[14] Uber. (2023) How batch matching works. Accessed: October 5, 2024. [Online]. Available:
https://www.uber.com/us/en/marketplace/matching/

[15] M. Baccara, S. Lee, and L. Yariv, “Optimal dynamic matching,” Theoretical Economics, 2020.

[16] B. Zheng, L. Ming, Q. Hu, Z. Lü, G. Liu, and X. Zhou, “Supply-demand-aware deep reinforcement
learning for dynamic fleet management,” ACM Transactions on Intelligent Systems and Technology
(TIST), vol. 13, pp. 1 – 19, 2022.

[17] X. Wang, X. Li, and L. Lai, “On improving the learning of long-term historical information for
tasks with partial observability,” 2020 IEEE Fifth International Conference on Data Science in
Cyberspace (DSC), pp. 232–237, 2020.

[18] S. S. Ramesh, P. G. Sessa, Y. Hu, A. Krause, and I. Bogunovic, “Distributionally robust model-
based reinforcement learning with large state spaces,” ArXiv, vol. abs/2309.02236, 2023.

[19] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. A.
Riedmiller, A. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King,
D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through deep rein-
forcement learning,” Nature, vol. 518, pp. 529–533, 2015.

54

https://www.pnas.org/doi/abs/10.1073/pnas.1611675114
https://www.pnas.org/doi/abs/10.1073/pnas.1611675114
https://www.uber.com/us/en/marketplace/matching/

[20] Z. Wang, Y. Zhang, B. Jia, and Z. Gao, “Comparative analysis of usage patterns and
underlying determinants for ride-hailing and traditional taxi services: A chicago case study,”
Transportation Research Part A: Policy and Practice, vol. 179, p. 103912, 2024. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S0965856423003324

[21] I. O. Olayode, A. Severino, F. Justice Alex, E. Macioszek, and L. K. Tartibu, “Systematic
review on the evaluation of the effects of ride-hailing services on public road transportation,”
Transportation Research Interdisciplinary Perspectives, vol. 22, p. 100943, 2023. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S2590198223001902

[22] N. Alisoltani, L. Leclercq, and M. Zargayouna, “Can dynamic ride-sharing reduce traffic
congestion?” Transportation Research Part B: Methodological, vol. 145, pp. 212–246, 2021.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/S0191261521000114

[23] S. Feng, J. Ke, F. Xiao, and H. Yang, “Approximating a ride-sourcing system with block
matching,” Transportation Research Part C: Emerging Technologies, vol. 145, p. 103920, 2022.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/S0968090X22003333

[24] X. Guo, N. S. Caros, and J. Zhao, “Robust matching-integrated vehicle rebalancing in
ride-hailing system with uncertain demand,” Transportation Research Part B: Methodological,
vol. 150, pp. 161–189, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0191261521001004

[25] T. Dong, Q. Luo, Z. Xu, Y. Yin, and J. Wang, “Strategic driver repositioning in ride-hailing
networks with dual sourcing,” Transportation Research Part C: Emerging Technologies, vol.
158, p. 104450, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0968090X23004400

[26] S. M. Meshkani and B. Farooq, “Centralized and decentralized algorithms for two-to-one
matching problem in ridehailing systems,” EURO Journal on Transportation and Logistics,
vol. 12, p. 100106, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S2192437623000031

[27] A. Simonetto, J. Monteil, and C. Gambella, “Real-time city-scale ridesharing via linear assignment
problems,” Transportation Research Part C: Emerging Technologies, vol. 101, pp. 208–232, 2019.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/S0968090X18302882

[28] J. Long, W. Tan, W. Szeto, and Y. Li, “Ride-sharing with travel time uncertainty,”
Transportation Research Part B: Methodological, vol. 118, pp. 143–171, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0191261518303151

[29] J. Wang, X. Wang, S. Yang, H. Yang, X. Zhang, and Z. Gao, “Predicting the matching probability
and the expected ride/shared distance for each dynamic ridepooling order: A mathematical
modeling approach,” Transportation Research Part B: Methodological, vol. 154, pp. 125–146,
2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0191261521001880

[30] S. M. Meshkani and B. Farooq, “A generalized ride-matching approach for sustainable
shared mobility,” Sustainable Cities and Society, vol. 76, p. 103383, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2210670721006569

[31] Y. Guo, Y. Zhang, and Y. Boulaksil, “Real-time ride-sharing framework with dynamic
timeframe and anticipation-based migration,” European Journal of Operational Research, vol.
288, no. 3, pp. 810–828, 2021. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0377221720305816

[32] X. Qin, H. Yang, Y. Wu, and H. Zhu, “Multi-party ride-matching problem in
the ride-hailing market with bundled option services,” Transportation Research Part
C: Emerging Technologies, vol. 131, p. 103287, 2021. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0968090X21002989

55

https://www.sciencedirect.com/science/article/pii/S0965856423003324
https://www.sciencedirect.com/science/article/pii/S2590198223001902
https://www.sciencedirect.com/science/article/pii/S0191261521000114
https://www.sciencedirect.com/science/article/pii/S0968090X22003333
https://www.sciencedirect.com/science/article/pii/S0191261521001004
https://www.sciencedirect.com/science/article/pii/S0191261521001004
https://www.sciencedirect.com/science/article/pii/S0968090X23004400
https://www.sciencedirect.com/science/article/pii/S0968090X23004400
https://www.sciencedirect.com/science/article/pii/S2192437623000031
https://www.sciencedirect.com/science/article/pii/S2192437623000031
https://www.sciencedirect.com/science/article/pii/S0968090X18302882
https://www.sciencedirect.com/science/article/pii/S0191261518303151
https://www.sciencedirect.com/science/article/pii/S0191261521001880
https://www.sciencedirect.com/science/article/pii/S2210670721006569
https://www.sciencedirect.com/science/article/pii/S0377221720305816
https://www.sciencedirect.com/science/article/pii/S0377221720305816
https://www.sciencedirect.com/science/article/pii/S0968090X21002989
https://www.sciencedirect.com/science/article/pii/S0968090X21002989

[33] C. V. Beojone and N. Geroliminis, “Relocation incentives for ride-sourcing drivers
with path-oriented revenue forecasting based on a markov chain model,” Transportation
Research Part C: Emerging Technologies, vol. 157, p. 104375, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0968090X23003650

[34] H. Yang, X. Qin, J. Ke, and J. Ye, “Optimizing matching time interval and matching radius
in on-demand ride-sourcing markets,” Transportation Research Part B: Methodological, vol.
131, pp. 84–105, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0191261518311731

[35] S. Qiao, N. Han, J. Huang, Y. Peng, H. Cai, X. Qin, and Z. Lei, “An three-in-one
on-demand ride-hailing prediction model based on multi-agent reinforcement learning,” Applied
Soft Computing, vol. 149, p. 110965, 2023. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S1568494623009833

[36] C. Mao, Y. Liu, and Z.-J. M. Shen, “Dispatch of autonomous vehicles for taxi services: A
deep reinforcement learning approach,” Transportation Research Part C: Emerging Technologies,
vol. 115, p. 102626, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0968090X19312227

[37] G. Qin, Q. Luo, Y. Yin, J. Sun, and J. Ye, “Optimizing matching time intervals
for ride-hailing services using reinforcement learning,” Transportation Research Part
C: Emerging Technologies, vol. 129, p. 103239, 2021. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0968090X21002527

[38] S. Guo, Y. Liu, K. Xu, and D. M. Chiu, “Understanding passenger reaction to dynamic prices
in ride-on-demand service,” in 2017 IEEE International Conference on Pervasive Computing and
Communications Workshops (PerCom Workshops), 2017, pp. 42–45.

[39] B. Marthi, “Automatic shaping and decomposition of reward functions,” Proceedings of the 22nd
National Conference on Artificial Intelligence, pp. 601–608, 2007.

[40] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy
optimization algorithms,” arXiv preprint arXiv:1707.06347v2, 2017. [Online]. Available:
https://arxiv.org/abs/1707.06347

56

https://www.sciencedirect.com/science/article/pii/S0968090X23003650
https://www.sciencedirect.com/science/article/pii/S0191261518311731
https://www.sciencedirect.com/science/article/pii/S0191261518311731
https://www.sciencedirect.com/science/article/pii/S1568494623009833
https://www.sciencedirect.com/science/article/pii/S1568494623009833
https://www.sciencedirect.com/science/article/pii/S0968090X19312227
https://www.sciencedirect.com/science/article/pii/S0968090X19312227
https://www.sciencedirect.com/science/article/pii/S0968090X21002527
https://www.sciencedirect.com/science/article/pii/S0968090X21002527
https://arxiv.org/abs/1707.06347

Appendix

A Ride-Hailing Simulator Working Flow

1 # Ride-hailing Simulation Environment (PPO)
2

3 # Initialize environment with seed and directories for data files
4 Initialize environment with `data_directory `, `seed`, `driver_files `, `passenger_files `,

action and observation spaces
5

6 # Load data from driver and passenger files and preprocess
7 load_data():
8 Read driver and passenger data from Parquet files
9 Remove missing values and reset indices for drivers and passengers

10 Load point shapefile and distance matrix for location and distance calculations
11

12 # Reset environment for each new episode
13 reset():
14 Randomly choose a driver and passenger file for the episode
15 Load data and filter drivers and passengers by start and end times
16 Initialize current and historical order and driver dataframes for tracking
17 Set initial time and primary pick-up distance for reward calculation
18 Return initial state and episode info
19

20 # Step through environment based on action taken by the agent
21 step(action):
22 Reset current match dataframes for new step
23 If `action == 1`:
24 Match drivers with passengers using distance matrix
25 Update matched and unmatched orders and drivers
26 Log matched results for rewards and return calculations
27 Else:
28 Increase waiting time for unmatched orders
29 Update `current_time ` by 1 second
30 Retrieve new orders and drivers based on `current_time `
31 Identify canceled orders if their waiting time exceeds threshold
32 Calculate primary pick-up distance for reward calculation
33 Update state, reward, and episode return
34 Return new state, reward, done status, and episode info
35

36 # Calculate reward based on waiting time and matching distance
37 calculate_reward():
38 Calculate reward based on:
39 - Waiting pick-up time reduction
40 - Waiting match penalty for remaining unmatched orders
41 Return total reward, waiting pick reward, and waiting match penalty
42

43 # Get current state representation of the environment
44 get_state():
45 Extract current time, number of orders and drivers , average and max waiting time
46 Return state array for agent input
47

48 # Render environment (print current time)
49 render():
50 Print current simulation time
51

52 # Close environment and release resources
53 close():
54 Print message indicating environment close

57

B Ride-Pooling Simulator Working Flow

1 # Ride-Pooling Simulation Environment (PPO)
2

3 # Initialize environment with seed and directories for data files
4 Initialize environment with `data_directory `, `seed`, `driver_files `, `passenger_files `,

action and observation spaces
5

6 # Load data from driver and passenger files and preprocess
7 load_data():
8 Read driver and passenger data from Parquet files
9 Remove missing values and reset indices for drivers and passengers

10 Assign unique indices to passengers and drivers
11 Load point shapefile and distance matrix for location and distance calculations
12

13 # Reset environment for each new episode
14 reset():
15 Randomly choose a driver and passenger file for the episode
16 Load data and filter drivers and passengers by start and end times
17 Initialize current and historical order and driver dataframes for tracking
18 Set initial time, primary pick-up, and detour distances for reward calculation
19 Return initial state and episode info
20

21 # Step through environment based on action taken by the agent
22 step(action):
23 Reset current match dataframes for new step
24 If `action == 1`:
25 Match drivers with passengers using distance matrix
26 Update matched and unmatched orders and drivers
27 Log matched results for rewards and return calculations
28 Else:
29 Increase waiting time for unmatched orders
30 Update `current_time ` by 1 second
31 Retrieve new orders and drivers based on `current_time `
32 Identify canceled orders if their waiting time exceeds threshold
33 Calculate primary pick-up and detour distances for reward calculation
34 Update state, reward, and episode return
35 Return new state, reward, done status, and episode info
36

37 # Calculate reward based on waiting time, matching distance , and detour
38 calculate_reward():
39 Calculate reward based on:
40 - Waiting pick-up time reduction
41 - Waiting match penalty for remaining unmatched orders
42 - Detour distance reduction
43 Return total reward, waiting pick reward, waiting match penalty , and detour penalty
44

45 # Get current state representation of the environment
46 get_state():
47 Extract current time, number of orders and drivers , average and max waiting time
48 Return state array for agent input
49

50 # Render environment (print current time)
51 render():
52 Print current simulation time
53

54 # Close environment and release resources
55 close():
56 Print message indicating environment close

58

C Developing Environment
This project was developed using Python 3.12.4 as the primary environment, along with several

key Python libraries and tools to support the implementation of the simulator and Proximal Policy
Optimization (PPO) algorithm. The details are as follows:

• Python Version

– Python 3.12.4: This version provides stable and updated language features and is com-
patible with most mainstream machine learning and data science libraries.

• Basic Utility Packages

– os: Used for file path operations.
– random: Provides random number generation, used for randomization in the simulator and

algorithms.
– time: Used for calculating program runtime and adding delays.
– dataclasses: Provides data class support for defining simple data structures.

• Data Processing and Mathematical Computations

– pandas: Mainly used for data import, processing, and storage, facilitating data cleaning,
preprocessing, and analysis.

– numpy: Supports multidimensional arrays, suitable for mathematical and statistical compu-
tations.

• Reinforcement Learning Environment

– gymnasium: Provides a standardized interface for defining and managing reinforcement
learning environments. SyncVectorEnv is used for parallelized environment creation.

– torch and torch.nn: Core modules of PyTorch, used for creating neural network layers
and defining model architecture.

– torch.optim: Contains various optimization algorithms used in training neural network
models.

– torch.distributions.categorical and torch.distributions.bernoulli: Used for defin-
ing the discrete action distribution and Bernoulli distribution in the PPO algorithm.

• Optimization and Graph Theory Analysis

– scipy.optimize: Supports optimization algorithms, including solving linear programming
(linprog) and linear assignment problems (linear_sum_assignment).

– pulp: Used for modeling and solving linear programming problems.
– igraph and networkx: Used for constructing and analyzing graph structures, useful in the

simulator for road network generation and shortest path calculation.
– osmnx: Supports importing road networks from OpenStreetMap and provides visualization

capabilities.

• Geospatial Data Processing and Visualization

– geopandas: Used for handling geospatial data, including reading and manipulating geo-
graphic data files.

– matplotlib.pyplot and seaborn: Used for data visualization, including generating graphs,
scatter plots, and heatmaps.

– wandb: Used for experiment tracking and visualization, allowing for logging of model train-
ing progress and performance metrics.

• Logging and Debugging

59

– SummaryWriter: A PyTorch logging tool used to record and visualize metrics during train-
ing.

– datetime and timedelta: Used for handling and computing time, especially for times-
tamped data processing.

In summary, the Python 3.12.4 environment and the packages listed above form the core of the de-
velopment environment, supporting the simulator’s operation, data processing, reinforcement learning
algorithm implementation, and debugging processes. These libraries not only improve development
efficiency but also enhance the model’s performance and interpretability.

60

D Parameters of PPO
The Proximal Policy Optimization (PPO) algorithm in this project is controlled by a variety of

parameters, which allow for flexible configuration and tuning to optimize performance. Below is a
description of each parameter and its role in the PPO implementation.

• exp_name: The name of this experiment, which defaults to the name of the script.

• seed: Sets the random seed for the experiment, ensuring reproducibility. (Default: 10)

• torch_deterministic: If enabled, sets torch.backends.cudnn.deterministic = False for
deterministic operations in PyTorch. (Default: True)

• cuda: If enabled, CUDA (GPU) will be used by default to accelerate computation. (Default:
True)

• track: Enables tracking of the experiment using Weights and Biases. (Default: True)

• wandb_project_name: Sets the project name in Weights and Biases. (Default: ”cleanRL”)

• wandb_entity: Specifies the entity (team) name for the Weights and Biases project. (Default:
”baoyiman”)

• capture_video: If enabled, videos of the agent’s performance are saved to the videos folder.
(Default: False)

• env_id: Specifies the environment ID, used to load the appropriate environment (Ride_hailing).

• learning_rate: The learning rate for the optimizer, set at 2.5e-4.

• num_envs: Defines the number of parallel game environments. (Default: 4)

• num_steps: The number of steps taken in each environment per policy rollout. (Default:
120)

• anneal_lr: Enables learning rate annealing for both policy and value networks. (Default:
True)

• gamma: The discount factor γ for future rewards. (Default: 1)

• gae_lambda: Lambda for Generalized Advantage Estimation (GAE). (Default: 0.95)

• num_minibatches: Defines the number of mini-batches per update. (Default: 8)

• update_epochs: Specifies the number of epochs (K) to update the policy. (Default: 4)

• norm_adv: Toggles advantage normalization for the PPO update. (Default: True)

• clip_coef : Sets the surrogate clipping coefficient to prevent large policy updates. (Default:
0.2)

• clip_vloss: Enables a clipped loss function for the value function, as specified in the PPO
paper. (Default: True)

• ent_coef : The coefficient for the entropy term to encourage exploration. (Default: 0.01)

• vf_coef : The coefficient for the value function term. (Default: 0.5)

• max_grad_norm: Sets the maximum gradient norm for gradient clipping. (Default: 1)

• target_kl: The target threshold for the Kullback-Leibler (KL) divergence. If exceeded, the
policy update halts. (Default: None)

• batch_size: The batch size, computed at runtime.

• minibatch_size: The mini-batch size, computed at runtime.

61

• num_iterations: The number of training iterations, calculated at runtime.

These parameters enable control over the PPO algorithm’s behavior, including exploration, sta-
bility, and computational efficiency, thereby facilitating effective training of the agent in the specified
environment.

62

E Map of Pick-up and Drop-off Points

Figure 19: Map of Pick-up and Drop-off Points

63

F Distribution of Passenger Orders in the Experiment

Figure 20: Distribution of Passenger Orders in the Experiment

64

G Comparison of System Strategy Performance Metrics

Figure 21: Comparison of System Waiting Times Across Training Episodes and Baseline Strategy for
Ride-Hailing Services

65

Figure 22: Comparison of System Waiting Times Across Training Episodes and Baseline Strategy for
Ride-Pooling Services

66

H Metrics of Ride-Hailing vs. Ride-Pooling

Table 5: All Metrics of Ride-Hailing vs. Ride-Pooling

Scenario Metric Mean (s) St. Error

A

Total Waiting Time 379437.571 836.411
Total Pickup Time 360169.971 989.928
Total Matching Time 19267.600 770.111
Total Detour Delay - -
Average Pickup Time 282.992 1.601
Average Matching Time 16.691 0.317
Average Detour Delay - -
Average Total Waiting Time 299.683 1.322

B

Total Waiting Time 186906.831 911.524
Total Pickup Time 149792.719 997.843
Total Matching Time 37114.112 775.760
Total Detour Delay - -
Average Pickup Time 247.176 1.629
Average Matching Time 15.306 0.318
Average Detour Delay - -
Average Total Waiting Time 262.482 1.452

C

Total Waiting Time 1260031.525 909.419
Total Pickup Time 32902.309 369.068
Total Matching Time 1227129.216 978.789
Total Detour Delay - -
Average Pickup Time 54.302 0.611
Average Matching Time 506.124 0.346
Average Detour Delay - -
Average Total Waiting Time 560.426 1.221

D

Total Waiting Time 1120662.612 912.412
Total Pickup Time 31229.316 365.411
Total Matching Time 1089433.296 975.037
Total Detour Delay - -
Average Pickup Time 51.539 0.604
Average Matching Time 449.337 0.344
Average Detour Delay - -
Average Total Waiting Time 500.876 1.225

E

Total Waiting Time 303618.043 717.689
Total Pickup Time 147588.364 327.914
Total Matching Time 48502.144 15.056
Total Detour Delay 107527.535 501.566
Average Pickup Time 243.534 0.494
Average Matching Time 20.008 0.589
Average Detour Delay 177.470 0.841
Average Total Waiting Time 441.012 1.163

F

Total Waiting Time 206593.257 586.545
Total Pickup Time 123634.231 309.869
Total Matching Time 30900.646 564.160
Total Detour Delay 52058.379 446.713
Average Pickup Time 203.995 0.462
Average Matching Time 12.753 0.235
Average Detour Delay 85.894 0.727
Average Total Waiting Time 302.642 0.917

G

Total Waiting Time 333496.330 1068.749
Total Pickup Time 190680.652 816.571
Total Matching Time 55513.562 909.496
Total Detour Delay 87302.116 1061.663
Average Pickup Time 314.614 1.278
Average Matching Time 22.887 0.374
Average Detour Delay 144.089 1.757
Average Total Waiting Time 481.590 1.669

H

Total Waiting Time 262445.809 840.485
Total Pickup Time 164033.804 617.049
Total Matching Time 52273.424 1062.285
Total Detour Delay 46138.581 493.162
Average Pickup Time 270.634 0.936
Average Matching Time 21.555 0.436
Average Detour Delay 76.162 0.821
Average Total Waiting Time 368.351 1.249

67

	Introduction and Research Questions
	Introduction
	Research Question

	Literature Review
	Existing Work on Matching in Ride-hailing
	Research Gap

	Methodology
	Problem Description
	Reinforcement Learning Framework
	Modeling the Problem
	Action Space
	State design
	Reward Design

	Simulator
	Assumptions of the Simulator
	Passenger and Driver Data Generation
	Spatial Matching Algorithm
	Verification Of the Simulator

	The Proximal Policy Optimization (PPO) Algorithm

	Result
	Experimental Setup and Metrics
	Training Performance
	Comparison of Strategies
	Ride-Hailing vs. Ride-Pooling

	Conclusion
	Research Contributions
	Key Findings and Implications
	Limitation and Future Work

	References
	Appendix
	Ride-Hailing Simulator Working Flow
	Ride-Pooling Simulator Working Flow
	Developing Environment
	Parameters of PPO
	Map of Pick-up and Drop-off Points
	Distribution of Passenger Orders in the Experiment
	Comparison of System Strategy Performance Metrics
	Metrics of Ride-Hailing vs. Ride-Pooling

