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Abstract—Motion prediction is a key factor towards the full
deployment of autonomous vehicles. It is fundamental in order to
assure safety while navigating through highly interactive complex
scenarios. In this work, the framework IAMP (Interaction-
Aware Motion Prediction), producing multi-modal probabilistic
outputs from the integration of a Dynamic Bayesian Network and
Markov Chains, is extended with a learning-based approach. The
integration of a machine learning model tackles the limitations of
the ruled-based mechanism since it can better adapt to different
driving styles and driving situations. The method here introduced
generates context-dependent acceleration distributions used in a
Markov-chain-based motion prediction. This hybrid approach
results in better evaluation metrics when compared with the
baseline in the four highly-interactive scenarios obtained from
publicly available datasets.

Index Terms—motion-prediction, interaction-aware, learning-
based

I. INTRODUCTION

The anticipation of possible dangerous driving situations
is fundamental to take preventive actions and to minimize
potential risks accordingly. Indeed, in order to perform safe
and efficient motion planning, autonomous vehicles need to
predict the evolution of other traffic participants. However,
the behavior of the surrounding agents is full of uncertainties
in the real world and depends on the layout of the driving
scene and on their interactions with others [1]. As a result,
a reliable and robust mechanism for intention estimation and
motion prediction is critical for autonomous vehicles.

The motion prediction problem has a multi-modal nature
since a vehicle has many possible trajectories while navigating
through the layout. To solve the multi-modal motion prediction
problem, two categories of solutions are usually applied:
model-based and learning-based. Model-based methods try
to mathematically formalize the dynamics of the problem,

This work has been partially funded by the Spanish Ministry of Science
and Innovation with the National Project NEWCONTROL (PCI2019-103791),
the Community of Madrid through SEGVAUTO 4.0-CM Programme (S2018-
EMT-4362), and by the European Commission and ECSEL Joint Undertaking
through the Project NEWCONTROL (826653).

whereas in learning-based approaches, the interactions and
dynamics of the system are learned from data.

Model-based approaches include stochastic filters. In [2],
the author predicts the probabilistic future states of the sur-
rounding vehicles and the uncertainty of these predictions via
a self-adaptive motion predictor. He does so by considering a
kinematic model of the vehicles’ motion and a Kalman filter
to estimate the uncertainty. [3] proposed a motion prediction
scheme based on an Interactive Multiple Model Kalman Filter
that is able to infer the intentions and generate interaction-
aware non-colliding predictions of multiple vehicles consid-
ering a priority list. Due to the uncertainty produced by the
Kalman Filter, these methods should only be used to predict
short prediction horizons. To analyze the interaction between
vehicles and predict their route and maneuver intentions, the
authors in [4] employed a Dynamic Bayesian Network with
a particle filter. An action, indicated by acceleration and yaw
rate values, is derived from these intentions, and the motion
prediction is computed. This technique evaluates just the most
likely action for the whole prediction horizon, which may have
a detrimental impact on the motion planning search space in
complicated scenarios.

In previous works from the authors [5], [6], they introduced
a framework based on the combination of a Dynamic Bayesian
Network to infer intentions and a Markov chain-based motion
prediction to estimate the motion of the surrounding vehicles.
Although the multi-modal model-based framework previously
implemented can be successfully applied to any driving situ-
ation or scenario, it cannot adapt to different driving styles.

In recent years, many neural network architectures have
been employed to model the surrounding context and inter-
actions among traffic agents in motion prediction. [7] use a
sparse context encoder to extract agent and map attributes, a
dense goal encoder to retrieve the goal probability distribution,
and a goal set predictor to provide predicted trajectories based
on the goal probability distribution. [8] describes a cooperative
multi-agent trajectory prediction system that uses a graph
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encoder and a grid decoder to make goal-based predictions.
It takes the agents’ history and a lanelet map as inputs and
generates a heatmap of potential ending locations, from which
K trajectories are created by decoding K end points and
generating the path with a fully connected neural network. [9]
presents a network architecture based on a stacked transformer
for modeling multi-modal predictions using predetermined
trajectories collected from traffic data as input. [10] predicts
the route of the target vehicles using a hierarchical graph neu-
ral network, which receives vector representations of agents
and maps as input and retrieves interactions between agents
via a fully-connected graph. [11] employs trajectory anchors
from the training dataset to model intent uncertainty using
a Gaussian Mixture Model whose parameters are generated
using a deep neural network. Notice that despite the very
promising prediction results of most of these methods, data-
driven approaches rely on a vast amount of data, and the results
obtained with them can degrade when applied to different
scenarios from those selected for their training. Furthermore,
these methods are usually based on complex machine learning
systems that have limited interpretability.

In this paper, the previous work [5], [6] used to infer
intentions and compute the motion prediction of the sur-
rounding vehicles is extended to consider a learning-enabled
motion prediction. The neural network model implemented
provides personalized acceleration profiles from the most
relevant information about the vehicle and its interactions with
the layout and with other vehicles. These profiles serve as
input to the Markov chain-based motion prediction, resulting
in a hybrid approach that combines both model- and learning-
based techniques. It can be applied to urban scenarios with
high interactions where the autonomous vehicle needs accurate
predictions in order to safely navigate, such as roundabouts
and intersections. The extended framework is compared with
the baseline in four situations obtained from publicly available
datasets.

The outline of this paper is organized as follows: Section II
presents a review of IAMP framework. Section III introduces
the model implemented to generate the acceleration profiles.
Section IV presents the scenarios being used and shows the
results for the 4 driving environments. Finally, Section V
provides some concluding remarks.

II. INTERACTION-AWARE MOTION PREDICTION

The interaction-aware motion prediction uses a combination
of Dynamic Bayesian Network (DBN) and Markov chains to
infer the intentions and predict the motion of the surrounding
vehicles. It explicitly considers interactions, road layout, and
traffic rules.

At each time step, the vehicle-to-vehicle and vehicle-to-
layout interactions are taken into account to infer the prob-
ability to stop or to cross the intersections, the probability to
change lanes, as well as the probability of being in each of the
possible navigable corridors. These intentions are fused with
the motion predictions computed with a kinematic model to

Relations

Intention estimation

Motion prediction

Corridors

Poses/Velocities (PV)

List of corridors (LC)

Corridors dependencies (CD)
Distance to intersections (DI)
Lateral relation (LR)

Longitundinal intentions (LI)
Corridors probabilities (CP)

Motion grid (MG)

Map

Fig. 1. Interaction-aware motion prediction flowchart.

result in a motion grid used by the ego vehicle to navigate
through the scene.

The grid-based representation of the predictions takes into
account the uncertainties both in the motion model and in the
input data, resulting in a more reliable and robust prediction
when compared with a point-based trajectory prediction.

The framework can be divided in four main blocks:
Corridors, Relations, Intentions and Motion Prediction. An
overview of the framework is presented in Figure 1 where the
data entering and leaving each block is shown. Each block
will be briefly described below. For more details, the reader
is referred to [5], [6].

A. Maps

The maps are loaded at the beginning of the simulation.
They are made up of lanelets [12], which are interconnected
driveable segments geometrically represented by a left and a
right bound. The regulatory elements, which are linked to the
lanelets, can indicate which lanelets have right of way, which
must yield, and the exact placement of the stop lines in the
case of an unsignalized intersection.

B. Corridors

A corridor is a lanelet sequence that represents a possible
route a vehicle might take. They are obtained from the physical
and relational layers extracted from the lanelets. The extension
of these corridors is limited to the distance that the vehicle can
travel in a given time interval at its current velocity, assuming
constant acceleration.
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Fig. 2. Bayesian network for two consecutive time steps.

C. Relations

The interactions obtained from the list of corridors and
the map are threefold: lateral relation, corridor-to-intersection
(distance to intersections) and corridor-to-corridor (corridors
dependencies);

• lateral relation: for each target vehicle, a search of the
surrounding vehicles is performed, and the bumper-to-
bumper distance and velocities are stored.

• corridor-to-intersection: the intersections each corridor
goes through are determined by intersecting the lanelet’s
identifiers. For all intersections a corridor goes through,
the distance to the intersection is computed in the Frenet
frame. The entrance through which the corridor passes is
also determined.

• corridor-to-corridor: determine which corridor will influ-
ence the predictions of the other acting as an obstacle
ahead. The centerlines of all corridors are pairwise in-
tersected, generating a list of possible collisions. Based
on a set of rules, one (if any) corridor is selected as the
corridor influencing the motion of a vehicle in a given
corridor.

D. Intentions

The Dynamic Bayesian Network (DBN) described in [13]
and implemented in [5], [6] is used to estimate the intention
of traffic participants. The network represented in Figure 2 is
instantiated for all vehicles present in the scene, where bold
arrows represent the influences of the other vehicles on vehicle
n through some key variables (En

t , Int , Rn
t , Φn

t , Zn
t ).

• Expected maneuver En
t : reflects the expected behavior of

the vehicle n at moment t in accordance with traffic laws.
• Intended maneuver Int : reflects the intention of the vehi-

cle.
• Route Rn

t : estimated route the vehicle is following.
• Physical vehicle state Φn

t : represents the pose, curvature,
and speed of the vehicle. They are determined at each
instant based on the vehicles’ intentions.

• Measurements Zn
t : represents the real measurements of

the physical state of the vehicle, obtained directly from

exteroceptive sensors of the EV or via V2X communica-
tions [14].

The relationships between the variables in Fig. 2 allow the
following generalized distribution to be used to model the
driving scene:

P (E0:T , I0:T ,R0:T ,Φ0:T ,Z0:T ) = P (E0, I0,R0,Φ0,Z0)×
T∏

t=1

×
N∏

n=1

[P (En
t |Rt−1,Φt−1)× P (Int |Int−1, E

n
t )×

P (Φn
t |Φn

t−1, R
n
t , I

n
t )× P (Zn

t |Φn
t )]

(1)
Since an exact inference of (1) is generally impractical, a

particle filter is employed to estimate the hidden states Et, It,
Rt and Φt, given the observed variables Zt.

E. Motion Prediction

The computation of the predictions of the surrounding
vehicles is inspired by the method proposed by [15]. The
system dynamics are abstracted into Markov chains, where the
state space X and input space U are discretized into intervals.
The state space consists of longitudinal position s and velocity
v, and the input space represents the potential acceleration.

The transition probability matrices of the Markov chains for
a time step Υ(τ), and for a time interval Υ([0, τ ]), where τ
is the time increment, are computed offline with reachability
analysis [15], using the following differential equation as the
vehicle’s longitudinal dynamics:

ṡ = v

v̇ =

{
amaxu, 0 < v < vmax

0, v ≤ 0 ∨ v ≥ vmax
(2)

where amax and vmax are the maximum allowed acceleration
and velocity, respectively, and u is sampled for the discretized
input space U .

The states probability distributions for future time steps
p(tk+1) and time intervals p(tk, tk+1) are computed as fol-
lows:

p(tk+1) = Γ(tk)Υ(τ)p(tk)

p(tk, tk+1) = Υ([0, τ ])p(tk)
(3)

where tk is the discrete time step and Γ(tk) is the input
transition matrix that represents the transition probabilities
between the input states. This matrix is computed for each
prediction step, considering two parts: a matrix Ψ that depicts
the vehicle’s inherent behavior when there are no priorities for
certain input values (all inputs will eventually have the same
probability) and a priority vector λ that takes into account
the dependencies between corridors, the road layout, and
the velocity limitations. The dependencies between corridors
are computed considering an interaction matrix that contains
the probability of collision between two states given two
acceleration inputs, one for each state. When this matrix is
multiplied with the predictions of the corridor causing the
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dependency, it results in a probability vector that represents
the percentage that an acceleration input is allowed at a given
state. It is a costly operation since the interaction matrix is
dense and its size depends on the number of states and inputs.

The predictions of each corridor are fused together with
their probabilities, inferred with the DBN, to generate a motion
grid. An example of the generated grid for the last instant of
the time horizon is shown in Figure 5a.

III. LEARNING MODEL

In this work, the aforementioned architecture is enhanced
with the integration of a learning approach. This implemen-
tation tackles the limitation of the current motion prediction
module, since it cannot adapt to different driving styles and
driving scenarios. To do so, the priority vector λ for the accel-
eration input is replaced by an acceleration profile generated as
the output from a neural network model. These acceleration
profiles take into account vehicle-to-vehicle and vehicle-to-
layout interactions, as well as the history data from the target
vehicle.

The replacement of the acceleration input greatly reduces
the computational time of the system. Besides the time com-
ponent, machine learning approaches can increase the accuracy
of the predictions since the acceleration profile generated can
self-adapt to different driving contexts and driver styles.

For the aforementioned task, an Auto-Regressive (AR)
neural network [16] was selected due to its ability to describe
time-varying processes and to predict future behavior based
on past behavior. The AR model has been used in monitoring
systems [17], financial time series [18] and chemistry [19].

The model takes as input the history of 4 s containing the
acceleration ain, the curvature of the path, the distance to the
next intersection dtargetint , the distance to the leading vehicle
dlead and its velocity vlead, and the two vehicles that the most
influence the path of the corridor in the next intersection (if
exist), represented by their distance to the intersection dnint,
their velocity vnint and their priority pnint with respect to the
target vehicle. These inputs are represented in Figure 3 and
the variables are described in Table I. To obtain the curvature
of the path, the centerline is equally divided into 6 segments
and the positive and negative values of the curvature of each
segment are integrated resulting in 12 discrete values (κi

p, κi
n),

with i ∈ {1, . . . , 6} [20].
To train the model, the Pytorch Lightning framework was

used. For the optimization, the Adam algorithm [21] was
selected, considering mean square error (MSE) and mean
average error (MAE) as the losses. The learning rate was
annealed in the form of a cosine curve every 10 epochs during
the training procedure.

The basic principle of the model is expressed in the follow-
ing equation:

yt = Wxt−1 + b+ ϵt (4)

where ϵt is the white noise at timestamp t, xt−1 is the input
state in timestamp t− 1, W and b are the weight matrix and

TABLE I
INPUT FEATURES VARIABLES.

Parameter Variable

target vehicle’s acceleration ain

distance to leading vehicle dlead

leading vehicle’s velocity vlead

target vehicle’s distance

to the intersection

dtargetint

curvature parameters (κi
p, κ

i
n), i ∈ {1, . . . , 6}

intersection parameters (djint, v
j
int, p

j
int), j ∈ {1, 2}

TABLE II
INFORMATION ABOUT THE SCENARIOS

Situation Number of vehicles Duration
A 8 15.1 s
B 6 19.8 s
C 18 34.2 s
D 15 28.4 s

bias, respectively, that are needed to be updated. The output
yt from the model is an acceleration time series representing
4 s into the future discretized at 0.1 s.

The datasets openDD [22] and inD [23] were used to
generate the input data to train the model. The whole dataset
has been processed with the framework from Figure 1 to
generate the input for the training.

IV. RESULTS

A. Scenarios

From the datasets inD [23] and INTERACTION [24], 4
situations were extracted following the procedures described
in [5]. Table II contains the information regarding the number
of vehicles and duration of each situation followed by a brief
description of each of them.

• Situation A: four-armed intersection with two center left-
turn lanes. The crossroad contains a lane with the right
of way.

• Situation B: four-armed intersection where no lane has
the right of way over the other.

• Situation C: T-junction intersection where the main road
has the right of way and there is a left turn lane into the
side road.

• Situation D: single-lane roundabout containing 3 en-
trances and 3 exits.

B. Evaluation metrics

For the comparison with the physical-base model, two
evaluation metrics have been implemented to evaluate the
quality of the predictions: ADE (Average Displacement Error)
and FDE (Final Displacement Error). Since the predictions are
multi-modal, these metrics are used in the min form, which
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means that for k given corridors for the same vehicle, the
minimum value is selected.

• ADE: average L2 distance between the ground truth posi-
tions and the weighted average position of the predictions.

ADEk =
1

n

n∑
i=1

√
(xGT

i − x̂i)2 + (yGT
i − ŷi)2

mADE = argmink ADEk

• FDE: L2 distance between the last ground truth position
and the weighted average position of the last prediction.

FDEk =
√

(xGT
n − x̂n)2 + (yGT

n − ŷn)2

mFDE = argmink FDEk

where (xGT
i , yGT

i ) is the ground truth position obtained from
the dataset, (x̂i, ŷi) is the estimated position computed as the
weighted average of the predictions and n is the number of
predictions.

C. Comparison with baseline

The model was evaluated in the situations described in
Section IV-A. It was executed three times to take into account
the stochastic nature of the framework, and the results here
presented are the average of the executions.

In order to use the outputs from the model in the Markov
chain-based motion prediction, the acceleration time series is
converted into n normal acceleration distributions. To repre-
sent the 4 s prediction horizon, 10 distributions are defined,
each representing 0.4 s. These distributions are obtained by
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Fig. 4. Example of acceleration distribution obtained from the output of the
model.

TABLE III
COMPARISON METRICS FOR THE INSTANT FROM FIGURE 5B.

Metric
Model hybrid-IAMP Baseline

mADE 1.30 m 2.10 m
mFDE 3.73 m 5.74 m

the evaluation of the input intervals (ranging from -3 m/s2

to 2 m/s2) using a mean and a standard deviation obtained
from the equally divided profile, as illustrated in Figure 4. In
this figure, the blue line is the ground truth acceleration of the
target vehicle, the red line represents the output yt from the AR
model, and the black intensity corresponds to the probability
of having this acceleration interval in a given prediction step
inside the prediction horizon. Notice that this distribution is
repeated in every state of the state space.

An example of the predictions generated with the AR
model (hybrid-IAMP) is presented in Figure 5a. In this figure,
each footprint is the prediction for the last time step of the
prediction horizon and corresponds to a vehicle with the same
color. Notice that the prediction for the vehicle arriving from
the right entrance respects the priority of the vehicle inside
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(a)

Baseline

hybrid-IAMP

Ground truth

(b)

Fig. 5. (a) Motion grid representing the predictions at 4.0 s in a given time step of the situation with hybrid-IAMP. (b) Comparison of the predictions:
hybrid-IAMP (blue), baseline (red) and ground truth (black). The intensity of the predictions represents the probability of the corridor.

TABLE IV
QUANTITATIVE RESULTS.

Situation
Model Hybrid-IAMP Baseline

A
time 0.97 s

mADE 1.18 m
mFDE 2.75 m

time 3.83 s
mADE 1.43 m
mFDE 3.22 m

B
time 1.14 s

mADE 1.62 m
mFDE 4.49 m

time 5.96 s
mADE 1.92 m
mFDE 4.83 m

C
time 0.80 s

mADE 1.49 m
mFDE 3.75 m

time 5.60 s
mADE 1.58 m
mFDE 3.73 m

D
time 1.22 s

mADE 1.43 m
mFDE 3.75 m

time 3.18 s
mADE 1.96 m
mFDE 5.23 m

the roundabout and stays behind its prediction. The black
vehicle is the ego vehicle. It also correctly predicts that the
vehicle coming from the top left entrance can safely enter the
roundabout.

The whole prediction horizon for this same instant is
compared with the baseline and with the ground truth in Figure
5b. As mentioned in Section IV-B, the predictions in each time
step are converted to the most probable position by computing
a weighted average of the probabilistic footprint. Only vehicles
having the ground truth position contained in the dataset are
considered. As can be seen, the hybrid-IAMP can better adapt
to different driving styles, and in general, generate a prediction
closer to the ground truth when compared with the baseline.
The metrics for this instant are presented in Table III.

Table IV presents the prediction metrics for the hybrid-
IAMP and for the baseline. These metrics are the average for
the whole simulation time. It also includes the average time it

took to compute the predictions. As can be seen, the hybrid
implementation outperformed the baseline in both metrics, as
well as in computational time.

V. CONCLUDING REMARKS

In this paper, the framework IAMP was extended to include
a learning mechanism able to generate personalized acceler-
ation profiles that are used to compute the motion prediction
of the surrounding vehicles. The hybrid-IAMP provided better
performance in the predictions metrics and reduced computa-
tional cost when applied to four use cases extracted from the
publicly available datasets inD and INTERACTION, proving
that a hybrid approach can adapt better to different driving
styles and driving scenarios.

As future work, more complex models will be implemented
at this and other stages of the framework, always trying to
improve the adaptability to the context while guaranteeing its
interpretability.
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