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Abstract

During a digital fraud investigation the search for relevant information in mailboxes of custodians is like
finding a needle in a haystack. This time consuming task can, on various levels, be improved and made more
efficient. Technology Assisted Review (TAR) is already one of the available machine learning algorithms that
helps speeding up the process of finding relevant information. In Technology Assisted Review a model is
trained based on the classification of e-mails by expert review. During the review process TAR continuously
gives back the (potentially) most relevant e-mails that still need to be given a classification. The downside
of this algorithm is that a manual expert review is still needed before TAR can give recommendations. This
thesis will focus on introductory research on models that give an initial sorting before the expert review is
done. The hypothesis that will be used is that this sorting (or classification) can be done in a similar manner
as spam e-mails are removed to the junk folder in a mailbox. Three different features have been used (word
frequencies, word occurrences and length of an e-mail) on four different models for each feature (A genera-
tive and discriminative model, each with maximum likelihood estimation or Bayesian estimation). Each of
these 12 different implementations have been tested on three different datasets (TREC, ENRON and a confi-
dential dataset). Based on 5-fold cross validation the Bayesian generative model based on word frequencies
has been shown to perform best on the confidential dataset. This model shows that a classification at the start
of a digital fraud investigation can be helpful. Combining different models, and finding the best parameters
for practical usage of the model is left for further research.

Keywords: classification, fraud, generative model, discriminative model, Naive Bayes, logistic regression,
TAR, e-Discovery
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"Outlier: Observation which deviates so much from other observations
as to arouse suspicion it was generated by a different mechanism."

Hawkins (1980)
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1
Introduction

From time to time a case related to fraudulent activities is presented in the news. Several, at time of writing,
recent examples are the Steinhoff accounting fraud [19], tax fraud in Curacao [18], or interest rate derivative
fraud [17]. Consider that in each of these cases quite a lot of money is involved, but the case itself is only one
of the many fraud related cases that take place every year. According to an article published in 2013 [10], and
based on research done by PwC [12], fraudulent activities are costing the Dutch society 11 billion euro’s per
year. This gives companies and organisations more than enough reasons to try and combat this type of crime.

During an investigation that is related to (suspected) fraudulent activities many different stages must be com-
pleted before any actual evidence can be presented. Figure 1.1 shows an overview of the so called e-Discovery
process, which is one of the means available. e-Discovery is the process related to the identification of rele-
vant information in electronic material. This process includes all steps that are needed from the point of data
collection to the presentation of actual results, but also includes the information governance. This process is
in general done by hand (expert review), and uses different e-Discovery tools to help speed up the process.
One of the parts that is especially time consuming is the investigation of the mailboxes of custodians that are
suspected to have taken part in the case. In Figure 1.1 this part is visualised with the dark blue boxes. The
aim of this thesis is to build a model that classifies the e-mails before the review process begins. This will
be applied alongside the ’processing’ part in Figure 1.1. With this classification beforehand, the number of
e-mails that need to be reviewed before the most important and evidential e-mails are found will be reduced.
In the next section the state of the art for fraud classification is discussed.

Figure 1.1: EDRM Reference model (version July 2018) [16], which summarises all the stages of an e-Discovery process. The investigation
of potential proof of fraudulent activities is represented by the dark blue boxes. This thesis focuses on finding a classification model that
can be applied alongside the ’processing’ part.
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2 1. Introduction

1.1. State of the Art fraud classification
For the classification of fraud-related e-mail in the setting as mentioned in the previous section little to no
research is available. This has partially to do with reason that not a lot of datasets are (publicly) available.
Current methods to detect fraud-related e-mail are based on expert review or based on Technology Assisted
Review (TAR). Furthermore, although not specifically applied in a similar setting, quite some research has
been written on the topic of the classification of fraudulent financial statements.

1.1.1. Current methodology
Currently the methodology used for classification of fraud-related e-mail is, according to Lawton et al. [37]
and the EDRM reference model [16], based on expert judgment. It is part of the e-Discovery process which
is shown in Figure 1.1. During an e-Discovery investigation the aim is to "retrieve information from a digital
archive in a systematic way." This process can be very time consuming, and due to the increasing size of data
this process continues to be even more time consuming. The part of the classification of fraud-related e-mail
in an e-Discovery process is visualised in Figure 1.1 with the box stating "review". As mentioned before, this
research report focuses on classifying e-mails before the review process and therfore focusses on the blue box
with label "processing" in Figure 1.1.

In the current process of expert review it is customary to use keyword based searching as well as using meth-
ods that decrease the size of the dataset (for example by deleting irrelevant e-mails or duplicates) [37].

1.1.2. Technology Assisted Review
Technology Assisted Review is the, currently, most used method to reduce the amount of time needed to re-
view the e-mails in an e-Discovery case. According to the EDRM [15] TAR is "a process of having computer
software electronically classify documents based on input from expert reviewers, in an effort to expedite the
organization and prioritization of the document collection." In other words, TAR helps identifying the poten-
tially most relevant documents, based on expert reviews. The process of Technology Assisted Review can be
summarised in three steps:

1. Expert reviews a batch of documents

2. The TAR model is trained based on the expert reviewed documents and gives an indication of labels
(classification) for the remaining documents

3. The expert reviewer, reviews the classification of its model, this is essentially step 1 repeated on the next
batch.

In comparison with the current basic methodology and this research report, TAR is especially focused on the
three blue boxes in Figure 1.1. It is a continuous training and classification process between those three steps.

1.1.3. Overview research results
The classification of fraud-related e-mail is not discussed in many research articles. Two articles were found
that did conclude that deceptive communication in e-mail can be found by analysing specific word frequency
[33, 34]. Both reports especially looked at first and third person pronouns. Although both of these research
are not very elaborate, they do give us an indication that certain usage of words is more frequent in deceptive
(and thus potentially fraudulent e-mail) compared to ’normal’ e-mails.

More research has been conducted on the analysis of financial statements and annual reports on hidden
fraudulent activities. Humpherys et al. [31] state that people "[...] crafting fraudulent disclosures use more
activation language, words, imagery, pleasantness, group references, and less lexical diversity than non fraud-
ulent ones. Writers of fraudulent disclosures may write more to appear credible while communicating less in
actual content." With models containing various linguistic features they managed to get an accuracy of about
60-70% on the detection of fraud/non-fraud. Comparing these results to the application of classifying e-mails
as fraud/non-fraud gives us also a positive expectation. However, it should be mentioned that financial state-
ments often have a longer length than e-mails, and therefore linguistic features might be less distinctive in
the case of e-mails.
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Glancy and Yadav [26] as well as Chen et al. [9] found that a computational fraud detection model, tested on
management’s discussion and analysis also detected fraud quite well. They both state that their main criti-
cism is that they used a dataset of (only) 69 companies. Glancy and Yadav do give the recommendation to do
additional research of applying deception detection in e-mail.

Fissette [20] concluded that text analysis can contribute to the detection of fraudulent annual statements.
She applied Naive Bayes models as well as Support Vector Machines and a Neural Network model. Although
this is promising, she also concluded that it is desirable to further enhance the performance (about 75% with
the Neural Network model).

Furthermore, as is pointed out in the previous section, Technology Assisted Review is also used nowadays.
However, since most of the models used in TAR and that are applied in e-Discovery cases are developed by
private companies, little can be found about the exact implementation or the used features.

1.2. Hypothesis
It is already concluded that little to no research is available on a similar classification problem as the one that
is discussed in this thesis. This makes the application described in this report almost unique in its field, and
also of importance for future use and research.

A similar problem as the classification of fraud related e-mail messages is the classification of spam e-mails.
For spam classification a lot of research has already been published, and therefore many models that work
well are known. The idea is that there must be unique characteristics of both relevant and not relevant e-mails
as well as of both spam and ham (i.e. not spam) e-mails. Furthermore, the classification of spam is focused
on giving as little ham e-mails as possible the classification spam. In the e-Discovery context the aim is to
give as little relevant e-mails as possible the classification ’not relevant’. Last but not least, for the problem of
classifying spam e-mails as well as for the classification of relevant e-mails in a fraud related case unbalanced
datasets are common.

With this reason the research described in this thesis is based on the hypothesis that the classification of
relevant messages in an e-Discovery case is similar to the well known classification of spam in a mailbox.
Looking at the state of the art applied in the spam classification gives a general idea of potentially useful mod-
els and algorithms. Various models that are mentioned in the following section and that are eventually used
are explained mathematically in Chapter 2.

It is important to state the definitions that have been used for spam and fraudulent activities that are taken
into account. Regarding the spam classification, in Chapter 3 it is stated that the TREC dataset is used. There-
fore, although various definitions for spam are available, for this thesis the definition given by the TREC has
been used: "’unsolicited’, unwanted email that was sent indiscriminately, directly or indirectly, by a sender
having no current relationship with the user".

Regarding the definition of fraudulent e-mails, the definition of the Dutch public prosecutor has been used.
On the website they state that fraud is the intentional act of deceiving or gaining unlawful advantage [47].

1.3. State of the Art spam classification
There has been performed quite a lot of research and various reviews have been written on the classification
of e-mail messages as ham and spam [5, 6, 8, 27, 54, 58, 62]. These reviews all draw almost the same conclu-
sion, namely that the most used and useful classification algorithms for spam detection are (in no particular
order):

• Naive Bayes (NB)

• Support Vector Machines (SVM)

• Logistic Regression (LR)

• Language specific classification
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According to the research of Guzella and Caminhas [27], Zhang et al. [62], Moon et al. [42], C. Lai and M. Tsai
[35], and Blanzieri and Bryl [8] each of the listed classification algorithms perform good in certain situations.
Guzella and Caminhas [27] stated that Logistic Regression was equal to or even better in terms of perfor-
mance if compared to the best known filters. Moreover, Moon et al. [42] stated that SVM used together with
n-gram indexing is superior when compared to others in terms of performance. Whilst Lai and Tsai [35] only
concluded that NB and SVM perform better than the k-Nearest Neighbour algorithm. Furthermore, several
reports and especially Blanzieri and Bryl [8] mentioned that the Naive Bayes classifier works computation-
ally efficient and has good rates of classification. It is therefore often used as benchmark by many researchers.

Moreover, in the spam classification various features are used. According to e.g. Guzella and Caminhas [27]
and Bhowmick and Hazarika [6] the most used features are:

• Word frequencies: takes into account the number of times a word occurs in the e-mail,

• Word occurrences: takes the absence of words into account (checks whether a word is, present)

• E-mail length: the number of words or characters in an e-mail,

• Presence of attachments,

• Content type: MIME type of the message.

Many other features can be thought of and have been studied. According to the earlier cited research papers
these features have been used most (with promising results) in the classification of spam. Based on these
outcomes, three features have been used in this thesis, namely: Word frequencies, word occurrences and
e-mail length. It should be remarked that Naive Bayes classifiers are mostly based and get best results with
word frequencies or word occurrences [40]. Furthermore, Bhowmick and Hazarika mentioned that so called
non-content features (features that are not based on the content of the e-mail) have also led to promising
results. These are the reasons to choose for three different features for the classification of spam and fraud in
this thesis.

1.4. Research questions
Based upon the observation that Naive Bayes is cited in most articles as benchmark performance, it is logical
to start the research on classification of fraud related messages in Section 5.1 from that point. The most sim-
ple forms of Naive Bayes are best starting points, i.e. Multinomial Naive Bayes (word frequencies, see Section
5.1) and Multinomial Naive Bayes with boolean attributes (word occurrences, see Section 5.2), since these are
most often used to benchmark performance.

Furthermore Naive Bayes might be a good alternative to the current used method of detecting fraud-related
messages since it makes a distinction based on the (relative) frequencies of words used in the e-mails, this
has some connection to the keyword searches that are used in an e-Discovery process. Models for detecting
fraudulent financial statements or annual reports have already shown positive results, which makes the pos-
sibility of detecting fraud related e-mail look promising. The question remains whether there is an analogy
between these statements/reports and e-mail messages.

Taking into account the goal of the thesis, the research question can be formulated as follows:

Can spam filtering techniques be used as viable techniques for detecting fraud related (i.e. relevant) e-mails?

Answering the research question is done by taking into account the following subquestions:

• What are similarities/differences between fraud and spam datasets/problems?

• What information is available in an e-mail dataset?

• What techniques have already been used in this setting?

• Are Bayesian models useful for classification purposes?
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The conclusion will be positive if a model (or multiple models) have been found that are able to classify fraud
related e-mail messages with a recall of the category relevant of 100% (whilst also labeling e-mails as not
relevant). There will be potential in a model (or multiple models) if the recall of the category relevant is lower
than 100% but above random (meaning the recall percentage that would be obtained by randomly assigning
labels). In all other cases it will be concluded that the investigated models are not useful for a classification
before the review process.

1.5. Structure of the thesis
At first an explanation of the available and used datasets is given in Chapter 3. After that the required math-
ematical preliminaries are discussed . In Chapter 4 an exploratory analysis of the available data is done, in
order to check which features most likely give the best results. The mathematical background of the models
of the various features is discussed in Sections 5.1-5.3. Each of these sections focuses on one feature, and the
results of the classification based on each feature are stated in Chapter 6. After that an additional model, Ad-
aBoost, is given in Chapter 7. This additional model is added based on the results found. Finally a discussion
and conclusion is given of which feature and model works best, and further research is given as recommen-
dation.

The structure of the thesis, as well as the influence of one chapter on another is visually presented in Figure
1.2.

Figure 1.2: Structure of the report. Arrows indicate influence of one chapter on another.

At the start of the thesis, before the Table of Contents, lists of figures, tables, abbreviations and mathematical
notation can be found. At the end of the thesis, after the bibliography, various appendices have been added.
In these appendices additional results and more detailed mathematical explanations can be found. Reference
to the appendices are given throughout the report. Furthermore, the used code can be found on Github1.

1https://github.com/DKaak/Master-Thesis-TU-Delft/

https://github.com/DKaak/Master-Thesis-TU-Delft/




2
Preliminaries

The previous chapter introduced the problem that is faced and gave the state of the art research on the topic
discussed in this thesis. In this chapter the needed theoretical background information, as well as other the-
ory that is used in the remainder of this research report is given. First the notion of classification is discussed,
after that Bayesian Statistics is introduced. Moreover, Logistic Regression and Maximum Likelihood estima-
tion are explained in Section 2.2.3 and 2.2.6. Finally the background information on various performance
measures are given. A list of all basic background information of the used distributions throughout the report
is given in Appendix A. Most theory discussed in this chapter can be found in more detail in the book written
by Gelman [25] or Bishop [7]. Both these books have been used as reference for the explanations given in this
chapter.

2.1. Classification
For the task of classification features X of a given instance are used in order to predict a label Y . Features
known information about the instance (e.g. frequency of words, letters or whether a word can be found in the
text), the label might for example be a binary variable to indicate whether the instance belongs to the class ’A’
or ’B’. By using classification, it is typical that Y only takes discrete values. In the classification of spam and
fraud related e-mails Y is in this research assumed to be binary.

In mathematical terms the concept of classification is formulated by finding the optimal functionΦ such that
(for 1 ≤ j ≤ J e-mails z ( j ) and its classification y ( j )) if Φ(z ( j )) = y ( j ), it indicates that the e-mail z ( j ) belongs to
the category y ( j ). And the opposite is also true: When Φ(z ( j )) 6= y ( j ), it indicates that the e-mail z ( j ) does not
belong to the category y ( j ). The definition of most optimal function may be based on the context and differ
per situation, i.e. in some cases it is better to have less false positives (spam) while in other cases it is better
to have less false negatives (fraud).

Figure 2.1: Visualisation of the idea of best possible classification. The circles represent e-mails, and the blue and green colour each
represent a different class. The black line shows a possible classification.
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2.2. Models
In the previous chapter various models and features that are mentioned in other research reports have been
stated. Furthermore, in Chapter 5 a few of the features are used to create mathematical models. The math-
ematical theory of all the models mentioned in Section 1.1 are explained in general in this section as well as
theoretical background information that is needed in the remaining chapters.

2.2.1. Generative vs. discriminative models
The two main approaches of statistical classification are generative classification and discriminative classifi-
cation. Both approaches are useful to classify new instances, but the way the model learns to classify differs.

Given a variable X and outcome Y , the generative classification uses a generative model, which is based on
the joint distribution f (x, y). Whilst the discriminative model only uses the conditional distribution f (y | x).
This means that a generative model uses the distribution of the observed variables, and a discriminative
model only uses the observed data.

One of the advantages of a generative model is that it is possible (as the name suggests) to generate new in-
stances of the data which a similar to the existing data. The discriminative models make fewer assumptions,
but are more influenced on the quality of the data. On the other hand it is possible to express a generative
model analytically, whilst a discriminative model should often be approximated.

Examples of discriminative models are:

• Logistic regression

• Support vector machines

• Linear regression

• Neural Networks

Examples of generative models are:

• Naive Bayes

• Hidden Markov Model

• Latent Dirichlet Allocation

2.2.2. Bayesian Statistics
A field within statistics is related to Bayesian statistics. Bayesian statistics interprets probability as the degree
of belief in an event. This belief is based on prior knowledge and update by observations. Bayesian statistics
is based on Bayes’ rule, which can be stated in mathematical notation.

Let X ,Y be random variables. The probability density function of X is denoted as fX (x) or shorthand f (x).The
probability distribution function of X given Y is generally written as fX |Y (x|y) or shorthand f (x|y).
Bayes’ rule can then be expressed as

fX |Y (x|y) = fY |X (y |x) fX (x)

fY (y)
. (2.1)

In Bayesian statistics, to make inference on a parameter θ in the distribution of a random variable X , θ is
assumed to be a random variable itself. A prior distribution g (θ) is assumed on θ. Using Bayes’ formula the
posterior distribution of θ given the data X can be found by:

g (θ|x) = f (x|θ)g (θ)

f (x)
. (2.2)

Bayesian statistics can also be used to predict a new ỹ based on the observed information y . This posterior
predictive distribution is given by

h(ỹ | y) =
∫

f (ỹ | θ)g (θ | y)dθ. (2.3)
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It should be noted that in Bayesian statistics it is common to use Bayesian notation. In Bayesian notation all
densities are denoted by p and the argument denotes both the random variable, as well as the value at which
the density is evaluated, i.e., p(x) = fX (x) and p(y | x) = fY |X (y |x).

Hierarchical models
In a Bayesian context it is possible to create hierarchical models. These type of models involve multiple pa-
rameters that are related to each other. It therefore implies that a joint probability model for these parame-
ters reflects their dependence. In a hierarchical model the observable outcomes are modeled conditionally
on certain parameters, which are specified based on so called hyper-parameters. The above formulation of a
Bayesian model becomes a hierarchical model when in Equation (2.2) the distribution over θ is made depen-
dent on for example hyper-parameter α, this would yield:

g (θ | x,α) = f (x | θ,α)g (θ |α)

f (x |α)
. (2.4)

The distribution of α is called the hyper-distribution.

Conjugate priors
A full Bayesian model makes use of prior distributions on the parameters. The prior is often criticized by
non-Bayesian statisticians, as it can be very subjective.

In order to take away this subjectivity as much as possible, a flat prior can be chosen. A flat prior includes as
little subjective input as possible about the values the parameter should take.

Another possibility is to choose the prior to be a conjugate prior of the distribution over the data X . In
Bayesian statistical models it is customary to use such a conjugate prior, since it simplifies the inference
and therefore in most cases also computational complexity. Conjugate priors can sometimes also be chosen
in such a way that they are flat priors.

Naive Bayes
In literature many researchers use a model to which they refer to as Naive Bayes. Naive Bayes is a generative
classifier based on Bayes’ Theorem:

P(y | u) = P(u | y)P(y)

P(u)
,

in which u represents the vector of features of the document and y represents the to be predicted class to
which the document belongs to.

In the equation above, P(u) is the probability to observe the feature vector and P(y) the prior probability of a
random document to belong to category y . The probability P(u | y) is in Naive Bayes often assumed (hence
the name Naive Bayes) to be

P(u | y) =
|u|∏
i=1

P(ui | y).

With this assumption it is basically assumed that each feature occurs in an e-mail independently of each
other feature, meaning that features do not influence the other features. In applications of Naive Bayes to e-
mails word counts are often taken as feature. Although the assumption of words being independent of each
other is often not true in real world data, various researchers have shown that the classifier performs quite
good [21, 27, 40].

It should be noted that Naive Bayes is often not implemented as a full Bayesian model. Most implementa-
tions of Naive Bayes use a Maximum Likelihood Estimator. The distinction is therefore made between Naive
Bayes implemented as a full Bayesian model and Naive Bayes implemented using a Maximum Likelihood
Estimator. The former is also referred to as Extended Naive Bayes, the latter as Classical Naive Bayes.
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Related Definitions and Theorems
Definitions related to Bayesian statistics that are used are:

Definition 1 (Posterior mean) Let X be a random variable, and θ the parameter which is assumed to be a
random variable itself. Then the posterior mean of θ is defined by:

E[θ | X ] =
∫
θp(θ | x)dθ.

Definition 2 (MAP Estimate) A maximum a posteriori probability (MAP) estimate is an estimate that equals
the mode of the posterior distribution. The MAP estimate can be used to obtain a point estimate of an unob-
served quantity on the basis of empirical data. It is defined as:

θ̂M AP = argmax
θ

f (θ | x).

Definition 3 (Exchangeability) A finite set X1, . . . , Xn of random quantities is said to be exchangeable if every
permutation of (X1, . . . , Xn) has the same joint distribution as every other permutation. An infinite collection is
exchangeable if every finite subcollection is exchangeable.

It should be noted that assuming exchangeability is a weaker assumption than assuming independence.

2.2.3. Logistic Regression
Logistic regression is a discriminative model and uses the following formula to determine the probability of
an e-mail with feature vector x to belong to class y :

p(y |x) = 1

1+exp(w0 +
J∑

j=1
w j x j )

.

The probability of not belonging to class y thus becomes:

1−p(y |x) =
exp(w0 +

J∑
j=1

w j x j )

1+exp(w0 +
J∑

j=1
w j x j )

.

The weights w = (
w1, . . . , w J

)
are based on the available training data, and can be calculated with various

methods.

Available approximation methods are for example [52]:

• liblinear

• lbfgs

• newton-cg

• SAG

Of these approximation methods the first three have the major disadvantage that they are not faster for larger
datasets. SAGA is a incremental gradient algorithm with fast linear convergence rates, and based on SAG. It
has been shown that SAGA is one of the methods that is most efficient for high dimensional data [13], as is the
case in the application described in this thesis. A detailed description of SAGA is given by Defazio et al. [13].

2.2.4. Support Vector Machines
A support-vector machine is a supervised learning algorithm that constructs a hyperplane in a high-dimensional
space. This algorithm can then be used for classification. Support Vector Machines solve an optimization
problem, which can in general be described as finding the hyperplane that has the largest distance to the
nearest training-data point of any class (in general it holds that the larger the margin, the lower error of the
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classifier).

According to Zhang, Zhu and Yao [62] the optimization problem can be written as

min
ω,β,ε

1

2
W T ·W +C

M∑
i=1

εi ,

subject to yi (W Tφ(xi )+β) ≥ 1−εi ,εi ≥ 0. Where {(x1, y1), . . . , (xM , yM )} is given training data. φ is a mapping
function, W a weight vector, εi are slack variables and C ≥ 0 a constant.

Support vector machines give a classification based on the outcome of the SVM. The outcome is the signed
distance between the data point and the hyperplane. If this distance is positive the data point belongs to one
class, if it is negative it belongs to the other class.

2.2.5. Language specific
Many implemented algorithms focus on specific features of the language, for example using N-grams (N-
gram language models are based on the assumption that the probability of a certain word occurring at a
certain position in a sequence depends only on the previous N-1 words), behaviour analysis (e.g. user’s past
activity and recipient frequency) or identifying e-mail authorship.

2.2.6. Maximum Likelihood Estimate
Maximum Likelihood estimation (MLE) is a method of estimating the parameters of a statistical model, given
observations. As the name indicates, a maximization of the likelihood function is done. If the likelihood
function is given byL(θ; x), with θ the parameter and x the given data, then the maximum likelihood estimate
is defined by

θ̂ ∈
{

argmax
θ∈Θ

L (θ; x)

}
.

Often the log-likelihood is used, i.e.

l (θ; x) = ln(L(θ; x)).

Note that the Maximum Likelihood Estimate is a point estimate.

2.3. Performance statistics
For the performance analysis of the classification of the different models there are various statistics available.
The statistics that are used in this research are Bayes Factors and various specific performance measures.

2.3.1. Bayes Factors
In Bayesian statistics Bayes Factor is often used as an alternative to hypothesis testing. With Bayes Factor the
certainty of the classification of one label over another can be expressed.

Bayes Factor (B) is defined by

B = p(y | H0)

p(y | H1)
(2.5)

in which y represents the to be predicted data, H1 the alternative hypothesis and H0 the null hypothesis.

According to Gelman et al. [25] Bayes Factors work well in the decision between models when they are dis-
crete and when it makes sense to consider one model over another as good description of the data. Jeffreys
[32] gave Table 2.1 for the interpretation of a Bayes Factor. Although the interpretations might be disputable,
this interpretation of Bayes factors gives us the possibility to give some ’strength of evidence’ [61].
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Bayes factor B Interpretation

B > 1 Evidence supports H0

1 > B > 10−
1
2 Slight evidence against H0

10−
1
2 > B > 10−1 Substantial evidence against H0

10−1 > B > 10−
3
2 Strong evidence against H0

10−
3
2 > B > 10−2 Very strong evidence against H0

10−2 > B Decisive evidence against H0

Table 2.1: Interpretation of Bayes Factor, which gives the possibility to give ’strength of evidence’ to the outcomes of Bayes Factor.

2.3.2. Measures of performance
Spam, as well as fraud, is in this research dealt with as a binary classification problem. A given e-mail can
either get the classification spam/fraud/relevant (positive) or not spam/not fraud/not relevant/unlabeled
(negative).

Furthermore:

• A true positive is defined as the outcome that should have been positive and is positive

• A true negative is defined as the outcome that should have been negative and is negative

• A false positive is defined as the outcome that is positive but should have been negative

• A false negative is defined as the outcome that is negative but should have been positive

Actual Class
A B

Predicted Class
A True positives False positives
B False negatives True negatives

Table 2.2: Confusion matrix indicating the true/false positives/negatives.

In various research articles the same measures of filtering performance are used. Blanzieri and Bryl have
listed one of the most comprehensive lists that correspond to a binary classification problem [8]. In table
2.3 the most useful performance measures that are used in this report have been summarised. These perfor-
mance measures are first briefly explained. The number of true positives is denoted with nt p , the number of
true negatives with ntn , the number of false negatives with n f n and the number of false positives with n f p .

Important performance measures for binary outcomes are precision and recall. Precision is defined as the
ratio of true positives over the total number of positives:

Precision = nt p

nt p +n f p
.

The recall is defined as the ratio of true positives over the number of outcomes that should have been positive:

Recall = nt p

nt p +n f n
.

Furthermore, the accuracy is defined as the number of true outcomes over the total number of observations:

Accuracy = nt p +ntn

nt p +n f p +n f n +ntn
.

It should be noticed that it is possible to get a good accuracy while having a high number of incorrect predic-
tions for the smaller class.
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The error rate is defined as the number of false outcomes over the total number of observations:

Error rate = n f n +n f p

nt p +n f n +n f p +ntn
.

Note that the error rate is the same as one minus the accuracy.

The F-score considers both the precision and the recall, it is an average of the precision and recall and has its
best value at 1 (and worst at 0).

F-score = 2 · precision · recall

precision+ recall
.

In the case of spam classification the most interesting performance measures are accuracy and ham recall.
The accuracy shows how many e-mails are given a correct classification, and the ham recall shows how many
ham e-mails are correctly given the ham classification. In this case the most interesting performance mea-
sure is the ham recall, because it is considered to be worse to give a ham e-mail the classification spam than
the other way around. Intuitively, missed important information has a bigger impact than having to delete a
spam e-mail manually from time to time.

In the case of fraud related e-mail classification, an interesting performance measure is the accuracy (with the
same reasoning). The most interesting performance measure is, however, the recall of the ’relevant’ e-mails.
This is different to the case of spam classification, since this time the goal is to give a correct classification to
as much relevant e-mails as possible, at first not minding very much if a lot of not relevant e-mails are given
the classification as relevant. This is because it is not preferred to discard any important information, since
there is an ability to go through unimportant information.

Measure Formula

Accuracy
nt p+ntn

nt p+n f p+n f n+ntn

Error rate
n f n+n f p

nt p+n f n+n f p+ntn

Spam/Fraud/relevant recall
nt p

n f n+nt p

Spam/Fraud/relevant precision
nt p

n f p+nt p

Spam/Fraud/relevant F-score 2 · precision·recall
precision+recall

Table 2.3: Performance measures that are used throughout the report, based on the comprehensive list made by Blanzieri and Bryl [8].
The most important performance measure for fraud detection is the recall corresponding to the category relevant.





3
E-mail data

For the classification of spam as well as of fraud related messages, e-mail messages are taken into account as
input data. To get a better overview of the available data and the used datasets, this chapter first focuses on
the primary characteristics of e-mail. After that the used datasets (TREC, ENRON and a confidential dataset)
are introduced. Together with the mathematics described in the previous chapter, the information in this
chapter is used as background information for the analysis in the subsequent chapters.

3.1. E-mail characteristics
For e-mail data a general format is used throughout the Internet. Request for Comments (RFC) documents
are publicly available and often serve as a way to describe standardized internet protocols. As per RFC2822
[49] a standard is described for the syntax of the transmission of electronic text messages. It is noted in the
document that characteristics of the transmission of other structured data is described by Freed in RFC2049
[22]. Although it is out of the scope of this project to discuss all characteristics of the transmission of mes-
sages, various characteristics of e-mails that are used in the research later in the report are touched upon. A
more detailed analysis is for example given in RFC2822 [49] and RFC2049 [22].

Generally e-mail is formatted with a header and body. The header must consist of the date on which the
message was sent and the address of the sender. Other fields such as ‘to’, ‘cc’, ‘bcc’ and ‘subject’ are optional,
but can be valuable for analysis. Fields that are marked as ’informational’, are: ‘subject’, ‘comments’ and
‘keywords’. These are, however, optional and it is noted in RFC2822 that the subject field is the most common
to use. A summary of the way an e-mail message is structured is given in Figure 3.1.

Figure 3.1: Overview of the structure of an e-mail message. The fields that are always available are the mandatory from and date fields as
well as the unstructured set of characters in the body (which might be empty).

15
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If the body is just a text message it contains an unstructured set of ASCII characters. It is, however, possible
that the body is formatted in a different way. For example bodies based on Multipurpose Internet Mail Exten-
sions (MIME) extend the standard kind of message bodies. MIME allows the format of messages to include:

• textual messages

• non-textual messages, i.e. images, audio, video, html, etc.

• multi-part messages: messages that (may) contain multiple different kinds of body. This allows for
parallel display of more objects (e.g. a picture and an audio fragment)

In Figure 3.2 an example e-mail message of text format is shown [49]. Figure 3.3 shows a multi-part MIME
formatted e-mail message [22]. Both figures are taken from the corresponding RFC documents.

Figure 3.2: Sample plain text e-mail message [49]. In this sample all mandatory fields summarised in Figure 3.1 can be seen.

Figure 3.3: Sample multi-part e-mail message based on the MIME format [22]. Especially the way different parts of the multi-part e-mail
message are separated is important to take into account when analysing the e-mail messages.

As can be seen from the two example e-mail messages, the major difference between the plain text e-mail
and the multi-part formatted e-mails is boundary between the various parts of the e-mail. For later analysis
of spam and relevent fraud related e-mail it is good to keep in mind that an e-mail can consist of a plain text
part and a html text part that both contain the same information. Furthermore, if a message has the structure
multi-part any unreadable attachments might have to be discarded.

3.2. Data collection and preparation
As is stated in the Introduction, the research on fraud classification is started by examining the state of the
art spam classification. In the following subsections more details on the used datasets are given, both for the
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spam and fraud related e-mail classification. As is stated earlier, there is more information and data available
corresponding to spam than to fraud. This has mainly to do with the concerns of privacy in fraud-related
cases and private companies doing the research.

3.2.1. Spam
For the analysis of spam already quite a lot of research is done (see also Chapter 1.1). There are various
datasets on which this state of the art research has been based [43], the most cited are:

• Ling-Spam

• SpamAssassin

• PU corpora

• TREC

Each dataset has its own advantages and disadvantages, since each of the datasets are created differently. Us-
ing mails in public analysis threatens privacy, and therefore it is hard to find or create a dataset of a real life
mailbox that includes spam.

Ling-Spam tries to overcome this burden by using messages from the publicly available archives of Linguist
list. There are 2893 messages in the corpus (2412 ham, 481 spam). As Androutsopoulos et al. [40] state the
disadvantage of this dataset is that the ham messages are more specified to certain topics than the messages
in most mailboxes. This might cause a performance that is too optimistic. Furthermore, since the number of
e-mails in the corpus is relatively small, this might also influence results[50].

For the SpamAssassin dataset this disadvantage works the other way around. Since the ham messages are
included from multiple different users, the topics might be too diversified leading to unrepresentative results.

The PU corpora tries to solve the disadvantages of not using a real world mailbox by using encrypted personal
emails [1, 2]. In this way the content is not publicly available, whilst the mails are, to some extent, usable. The
disadvantage with this dataset is that the original words are not available, and therefore no context or length
of documents/words can be used.

The TREC is based on chronically ordered e-mail and is labeled by ’human-adjudicated gold standard’ [11].
This gold standard means that based on human adjudication each e-mail message is labeled spam or not
spam. In general, the gold standard is assumed to be the truth. It should be noted that a human process of
labeling is prone to errors. Since these are real life messages, with the classification of people, this dataset
would be the most representing reality and further information about this dataset is given in the next section.

TREC
As is stated in the previous section, the TREC Public Corpus [57] is one of the best representing reality. It is
also one of the datasets on which the most research is available. Although there are 3 different corpora, the
2007 corpus is the most recent, and thus the most applicable to today’s data. This corpus contains of 75419
messages, of which:

• 25220 ham

• 50199 spam

Furthermore, the corpus is dived into 3 subcorpora:

• Full: all messages

• Delay: contains only the first 10,000 messages

• Partial: contains the 30,388 messages of 1 recipient

For the analysis of spam classification in the subsequent chapters the full TREC 2007 corpora has been used.
The TREC 2007 dataset is based for almost half on one user, therefore the disadvantage of being too specific
might still be in place. However the dataset is larger when compared to the other available datasets.
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TREC data preparation
All the e-mails in the TREC corpora are text files in the MIME format (which is explained in Section 3.1).
Therefore, no decryption or change of file type is needed in order to read these files. However, some prepara-
tion of the documents needed to be done before the analysis can be done or models can be applied.

For the pre-processing the following pre-process specific python modules are used:

• BeautifulSoup [36]

• email [48]

The following list of tasks to each e-mail has been applied (the corresponding code can be found on GitHub),
which is also visually presented in Figure 3.4:

1. Check whether the e-mail contains an ’text/html’ part.

• If this is the case use the html parser from BeautifulSoup, and continue with step 2

• If this is not the case, check if the e-mail contains an ’text/plain’ part.

– If this is the case use that part for the analysis, and continue with step 2

– If this is not the case, the e-mail does not contain any relevant information, and continue
with the next e-mail, step 1.

2. Either from the parsed html text or from the plain text any tabs or enters are removed and all text is
made lower case

3. From the remaining message any characters which have an ASCII number below 97 or above 122 are
removed

4. The remaining message is then split into words (the space is used as split character)

5. The required information (e.g. number of occurrences of each unique word) in the e-mail message is
stored. The used features are listed in Section 1.3

Figure 3.4: Flow diagram of the pre-processing TREC data. The diagram shows how the features are extracted from the e-mail messages.
It is important to note that any characters other than normal letters are removed.

After data preparation the remaining information is randomly assigned to five different batches. These batches
are used for cross validation. Table 3.1 shows the statistics of each of the batches.
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Set 1 Set 2 Set 3 Set 4 Set 5
Spam 65.7% 65.0% 65.9% 66.2% 65.6%
Ham 34.3% 35.0% 34.1% 33.8% 34.4%
Total (amount) 15000 15000 15000 15000 15000

Table 3.1: Information on the five batches used performance checks of the TREC dataset.

3.2.2. Fraud
As is already stated earlier, the number of available datasets for analysis of fraud-related e-mail messages is
low. The only publicly available and most used and cited dataset is the ENRON dataset, which is based on a
major fraud case in 2001 related to the ENRON company. The reason there are not many datasets available
is the nature of the data. Most fraud cases in which an analysis of e-mail messages is done are specifically
focused on only a few number of people, which makes the data not suitable for public analysis due to privacy.
In the following sections the public available ENRON dataset is explained, and as much detail as possible on
the other used datasets is given.

ENRON
The ENRON fraud case is one of the largest fraud scandals in United States history. ENRON was an American
energy company, and has declared bankruptcy in December 2001. Various employees have had trials related
to e.g. fraud, money laundering, inside trading, etc. Two main suspects were Enron’s former chief executive,
Jeffrey Skilling and the ex-chairman Kenneth Lay [38].

Since the Federal Energy Regulatory Commission (FERC) has made the database of mails public, it is one of
the biggest publicly available datasets of real world data. This dataset consists of 517401 documents (e-mails,
calender items and attachments) from 150 different persons [14]. Many researchers have used this database
to analyse behaviour, spam and fraud [4, 28, 39, 51, 55].

Besides the available dataset that consists of the mails of various employees, the United States Department
of Justice has also released numerous document related to the ENRON trials of the chief executive and the
ex-chairman [56, 59]. These available documents have been used to make a labeled ENRON dataset (with
labels indicating if an e-mail is related to fraud, and therefore ’relevant’, or otherwise ’unlabeled’). Every e-
mail that is published on the archive page of the United States Department of Justice webpage [56] is marked
as a relevant e-mail in the ENRON database. This way of labeling is based on the idea that during an e-
Discovery investigation it would be best to label an equal amount or more e-mails as related to fraud than
will eventually be used in a court case. This also means that many more e-mails in the remaining (unlabeled)
part of the dataset might be relevant as well. It should be kept in mind that this (the data quality) can have
influence on the classification performance.

ENRON data preparation
The latest available ENRON dataset has been used from the EDRM [14], which is the v1 data set cleansed of
private, health and financial information. The methodology used in this cleansing process is described in
a report written by Nuix and EDRM [46]. It consists of the mailboxes of 130 ENRON employees (in .msg file
type). It should be noted that ENRON had many more employees, but only these 130 mailboxes are nowadays
publicly available, the reason why other mailboxes are not (any more) available is not known. The available
mailboxes do include the people that were part of the higher management.

As is stated in the previous section, the e-mails published on the United States Department of Justice web-
page [56] have been used to create a labeled dataset. The trials on this webpage are related to Kenneth Lay
and Jeffrey Skilling. The mailboxes of Jeffrey Skilling are unfortunately not part of the public available EDRM
dataset, but the mailbox of various other employees mentioned on this webpage including Kenneth Lay are.
On the webpage of the United States Department of Justice 123 e-mails are published. For each of these e-
mails information of the sender and the addressees of the e-mail have been gathered. The mailboxes of the
people that are in the public EDRM dataset and are on this list of names are used to search for the identified
mails. For clarification purposes, the process described in this paragraph is also visually summarised in Fig-
ure 3.5.
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Figure 3.5: Flow diagram of the pre-processing ENRON trial messages to create a labeled dataset. As has been noted in the text no labeled
ENRON dataset is available. This diagram shows how the labeled dataset is created, based on the trials of Kenneth Lay and Jeffrey Skilling
(former employees of ENRON).

All the e-mails in the useful mailboxes of the ENRON dataset are .msg files with text format (which is explained
in Section 3.1). Therefore, it is again possible to read them directly with the right packages. However, some
preparation of the documents needed to be done before the analysis can be done or models can be applied.

For the pre-processing the python module aspose.email.mapi [3] is used.

The following list of tasks has been applied to each e-mail (the corresponding code can be found on GitHub),
which is also visually presented in Figure 3.6:

1. Check whether the e-mail is empty (except for the final sentence which is added by Nuix and EDRM,
and which is removed from every e-mail in step 3).

• If the e-mail does not contain text it is discarded

• If the e-mail does contain text, continue with step 2

2. From the .msg file any tabs or enters are removed and all text is made lower case. Furthermore remove
the following sentence which is present in all e-mails:
*********** EDRM Enron Email Data Set has been produced in EML, PST and NSF format by ZL Tech-
nologies, Inc. This Data Set is licensed under a Creative Commons Attribution 3.0 United States License
<http://creativecommons.org/licenses/by/3.0/us/> . To provide attribution, please cite to "ZL Technologies,
Inc. (http://www.zlti.com)." ***********

3. From the remaining message any characters which have an ASCII number below 97 or above 122 are
removed

4. The remaining message is then split into words (the space is used as split character)
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5. The needed information (e.g. number of occurrences of each unique word) in the e-mail message is
stored. The used features are listed in Section 1.3

Figure 3.6: Flow diagram of the pre-processing ENRON data. The diagram shows how the features are extracted from the e-mail mes-
sages. It is important to note that any characters other than normal letters are removed.

After data preparation the remaining information is randomly assigned to five different batches. These batches
are used for cross validation. Table 3.2 shows the statistics of each of the batches.

Set 1 Set 2 Set 3 Set 4 Set 5
Relevant 1.7% 1.5% 1.8% 1.0% 1.5%
Not relevant 98.3% 98.5% 98.2% 99.0% 98.5%
Total (amount) 1621 1621 1621 1621 1621

Table 3.2: Information on the five batches used for cross validation of the ENRON dataset.

Confidential dataset
In order to tackle the problem of the limited number of datasets available and to test the method in the "real
world", a confidential dataset provided by KPMG is used. Due to legal rules and privacy concerns not much
information is allowed to be shared. This might not be in favour of academic research, in which results and
methods are presented in a transparent way, but in order to test whether the models will work in real cases
there is no alternative choice at this moment in time.

It can be stated that the labeling of the relevant (fraud-related) e-mails is done based on expert review, i.e.
experts have manually labeled the e-mails in the dataset.

All the e-mails in the useful mailboxes of the confidential dataset are .msg files with text format (which is ex-
plained in Section 3.1). Therefore, it is again possible to read them directly with the right packages. However,
some preparation of the documents needed to be done before the analysis can be done or models can be
applied.

For the pre-processing the python module aspose.email.mapi [3] is used.

The following list of tasks has been applied to each e-mail (the corresponding code can be found on GitHub),
which is also visually presented in Figure 3.7:

1. Check whether the e-mail is empty.
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• If the e-mail does not contain text it is discarded

• If the e-mail does contain text, continue with step 2

2. From the .msg file any tabs or enters are removed and all text is made lower case.

3. From the remaining message any characters which have an ASCII number below 97 or above 122 are
removed

4. The remaining message is then split into words (the space is used as split character)

5. The needed information (e.g. number of occurrences of each unique word) in the e-mail message is
stored. The features used are listed in Section 1.3

Figure 3.7: Flow diagram of the pre-processing confidential data. The diagram shows how the features are extracted from the e-mail
messages. It is important to note that any characters other than normal letters are removed.

After data preparation the remaining information is randomly assigned to five different batches. These batches
are used for cross validation. Table 3.3 shows the statistics of each of the batches.

Set 1 Set 2 Set 3 Set 4 Set 5
Relevant 8.0% 5.0% 7.8% 5.5% 7.8%
Not relevant 92.0% 95.0% 92.2% 94.5% 92.2%
Total (amount) 399 399 399 399 399

Table 3.3: Information on the five batches used for cross validation of the confidential dataset.

Results based on the classified datasets have been included in the report in a similar manner as the results of
ENRON en TREC are presented. However, no word specific analysis, or word specific references are included
due to the confidentiality.
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Exploratory data analysis

In order to test whether the earlier mentioned features (based on literature study, word frequencies, word
occurrences and e-mail length) are feasible, an analysis of the available data has been conducted. In Section
4.1 the data of the TREC dataset has been analysed. In section 4.2 and 4.3 a similar analysis is presented, but
then on the ENRON and confidential dataset respectively.

4.1. Spam analysis
The differences in spam have been modeled most often by using features related to word usage. For example
by looking at the different words used in spam and ham e-mails.

4.1.1. Word counts and occurrences

Although not all unique words that are present in the TREC dataset can be analysed, some statistical analysis
on the words that are highly identifiable for spam and ham has been done. In Table 4.1 the top 10 words
that are identifiable for ham e-mail in the TREC dataset are shown. In this table for both categories both the
unnormalised counts are shown, these are the number of times the word occurs in spam and ham e-mails
respectively. The last column shows a ratio of the normalised counts per message. This ratio is calculated
according to Equation (4.2). This ratio is based on the counts per message (CPM) as explained in Equation
(4.1), in which x(m)

j is the number of times word j occurs in e-mail m. In this equation y indicates the category

for which the counts per message are calculated, J the total number of unique words and n(m) is the number
of words in e-mail m. Intuitively this count per message is the number of times the word occurs on average
per message within the category, and 1 count for every word and J the total number of words is added in
order to avoid division by 0 in Equation (4.2), this modification will also be used in the Maximum Likelihood
Estimation described in Chapter 5.1.

C P M y
j =

∑
m=1,...,N :y (m)=y

x(m)
j +1∑

m=1,...,N :y (m)=y
n(m) + J

. (4.1)

Rati o j =
C P M spam

j

C P M ham
j

. (4.2)
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Word Count spam Count ham Ratio counts per message (·10−5)
reproducible 0 6642 7.58
ntstatus 0 2690 18.7
speakup 0 2463 20.4
uint 0 1741 28.9
committer 0 1468 34.2
ndr 0 1401 35.9
revno 0 1278 39.4
zonk 0 873 57.6
tridge 0 759 66.3
accuweather 0 648 77.6

Table 4.1: Top 10 words which are identifiable for ham e-mail messages from TREC dataset according to the ratio of words per message.
As can be noted these 10 words are only used in the ham e-mails, and therefore these words are assumed to be representative for the
category ham e-mails. The ratio of counts per message shows how the words are sorted.

Table 4.1 shows us that there are quite a number of words that are used more often in ham e-mails than in
spam e-mails. Table 4.2 shows similar values, but for words that are identifiable with spam e-mails. From both
these tables it is suspected that there is an possibility to distinguish spam from ham e-mails based on word
frequencies. Furthermore, it should be noted that almost all words presented in the tables only occur in one
of the categories, which might imply that it should be able to distinguish spam and ham e-mails by looking at
the word occurrences. Another observation is that the words in Table 4.1 are mainly English words whilst the
words in Table 4.2 are mainly French. This is indeed true, although English words are also identifiable (but
not in the top 10) as spam words, and vice versa.

Word Count spam Count ham Ratio counts per message
desjardins 31244 1 7866.06
accsd 6787 0 3417.81
anatrim 4526 0 3084.99
mouvement 4516 0 2274.99
scuris 2613 0 1316.17
soyez 1610 0 1314.66
comptable 2509 0 1314.16
caisses 2411 0 1214.46
membre 2400 0 1208.92
svp 2365 0 1191.3

Table 4.2: Top 10 words which are identifiable for spam e-mail messages from TREC dataset according to the ratio of words per message.
As can be noted these 10 words are mainly used in the spam e-mails, and therefore these words are assumed to be representative for the
category spam e-mails. The ratio of counts per message shows how the words are sorted.

4.1.2. Length of e-mail

As can be seen in Figure 4.1, but even better in Table 4.3, there is not much, but still a little difference in terms
of the length of spam e-mails versus the length of ham e-mails. Figure 4.1 shows the boxplots of the logarithm
of the lengths of the e-mails per category. Although the differences are small between the categories, note that
in general there are more smaller and bigger ham e-mails than spam e-mails. This might imply that especially
for the outlying lengths of e-mails a good classification can be given.
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Figure 4.1: Boxplot of length spam e-mails TREC (in which the length is defined as the number of words). As can be noted the lengths
are more or less similar, although especially the outlying values of the ham category might be useful for classification.

Table 4.3, gives more information. As can be seen, the mean as well as the standard deviation are quite
different between the two categories. This also gives us the impression that these differences might be of
value to distinguish spam and ham e-mails. Furthermore, Figures 4.2-4.3 show histograms of the lengths
of the e-mails shorter than 1000 words (if the longer e-mails are also presented, no informative figure can
be made). As can be noted from these figures it is expected that the lengths of the e-mails follow a Pareto
distribution. This distribution is often used for lengths, and it is therefore expected that this is observed [44].

Spam Ham
Mean 175.91 287.91
Standard deviation 335.34 643.81
Q1 45 88
median 101 159
Q3 231 293

Table 4.3: Basic statistical features of lengths of e-mails from TREC dataset (divided into the classification spam and ham)
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Figure 4.2: Histogram of length e-mails TREC dataset (in which length is defined as the number of words). As can be noted many e-mails
shorter than 5000 words are present. Figure E.2 shows the same histogram but only for the smaller e-mail messages.

Figure 4.3: Histogram of length e-mails TREC dataset, shown for both categories (in which length is defined as the number of words). As
can be seen both categories are distributed similarly.
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4.2. Fraud analysis ENRON
As has been explained in Section 1.1.3, several research papers have found ways to identify fraudulent finan-
cial statements and annual reports. The models that were found in the research reports were mostly based on
linguistic features, i.e. usage of words. In this section the same analysis will be done as in the previous section
on spam. Based on the conclusions from other research reports, it is expected to find some differences in the
word counts between relevant (fraud related) and unlabeled (possibly legit or fraud related) e-mails.

4.2.1. Word counts and occurrences
In a similar manner as is described in Section 4.1.1 the e-mails in the labeled ENRON dataset have also been
analysed. Although the ENRON dataset is limited in size (i.e. number of e-mails), some careful conclusions
have been made. In Table 4.5 the 10 words that are most identifiable for relevant e-mail are shown. Table 4.4
shows the 10 words that are most identifiable for unlabeled e-mail. The values in the column in which the ra-
tio counts per message is shown are calculated according to Equations (4.1) and (4.2). From both these tables
it can be concluded that there are again various differences in word usage, however the difference is smaller
than in the similar spam analysis. This smaller difference might lead to results that have a lower performance
than in spam classification. Looking at the specific words in the tables, it should be noted that there are a
number of specific ENRON related words in Table 4.5. It should be kept in mind that these words will most
likely not be useful if a model will be trained with the labeled ENRON dataset and apply the model to another
case, because words that are company specific are (often) not used by other companies and therefore not
present in other cases.

Word Count relevant Count not labeled Ratio counts per message
consumers 0 2795 0.023
bankruptcy 0 1945 0.033
retirement 0 1860 0.034
bills 0 1856 0.034
declared 0 1812 0.035
donate 0 1808 0.035
basic 0 977 0.065
americans 0 975 0.066
buying 0 958 0.067
thousands 0 951 0.067

Table 4.4: Top 10 words which are identifiable for not labeled e-mail messages from ENRON dataset according to the ratio of words
per message. As can be noted these 10 words are only used in the unlabeled e-mails, and therefore these words are assumed to be
representative for this category. The ratio of counts per message shows how the words are sorted.

Word Count relevant Count not labeled Ratio counts per message
epe 23 1 767.52
developmentenron 8 0 575.64
ccbn 8 0 575.64
pref 6 0 447.72
holdco 5 0 383.76
barone 4 0 319.8
fraudulent 4 0 319.8
deconsolidate 4 0 319.8
ivers 4 0 319.8
writedowns 4 0 319.8

Table 4.5: Top 10 words which are identifiable for relevant e-mail messages from ENRON dataset according to the ratio of words per mes-
sage. As can be noted these 10 words are mainly used in the relevant e-mails, and therefore these words are assumed to be representative
for this category. The ratio of counts per message shows how the words are sorted. Moreover, it should be mentioned that the words are
not used many times (i.e. counts are low), this might have an influence on the classification results.
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4.2.2. Length of e-mail

As can be seen in Figure 4.4 as well as in Table 4.6, there is a bigger difference in terms of length between
relevant and not labeled e-mails when compared to the difference in lengths between spam and ham e-mails
(as has been done in the previous section). Figure 4.4 shows the logarithm of the length of the e-mails in the
two different categories, whilst in Table 4.6 the original values are presented. Furthermore, Table 4.6 shows
us that especially the standard deviation of relevant mails is higher.

Figure 4.4: Boxplot of the logarithm of the length of e-mails of the two categories in the ENRON dataset (in which the length is defined
as the number of words). As can be noted the lengths are more or less similar, although especially the outlying values of the unlabeled
(Legit) category might be useful for classification.

Relevant Not Labeled
Mean 237.62 214.80
Standard deviation 374.27 324.97
Q1 42.5 55
median 139 152.5
Q3 281 227

Table 4.6: Basic statistical features of lengths of e-mails from ENRON dataset (divided into the classification relevant and unlabeled).
From this table it can be concluded that not labeled e-mails have a smaller standard deviation, when compared to the relevant e-mails.

In order to get a better view on the distribution the lengths of e-mails, some histograms have been added.
Figure 4.5 shows the histogram of all e-mails regardless of the category. This histogram includes a very long
e-mail. Figure E.1 gives a better view of the distribution over the e-mails that are shorter in length, for this fig-
ure the e-mails with a maximum length of 1000 words have been used. Figure 4.6 (and also Figure E.2 for the
smaller e-mails only) shows the histogram of all e-mails in both categories. Based on these figures it would
be suspected that the length of e-mails, in terms of number of words, follow a Pareto distribution.

Based on the analysis done in this section, it can again be concluded that no major differences are present
between the categories relevant and not labeled in terms of the length of e-mails. However, especially for
small and large e-mails small differences are spotted.
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Figure 4.5: Histogram of length e-mails ENRON dataset (in which length is defined as the number of words). As can be noted many
e-mails shorter than 2000 words are present. Figure E.2 shows the same histogram but only for the smaller e-mail messages.

Figure 4.6: Histogram of length e-mails ENRON dataset, shown for both categories (in which length is defined as the number of words).
As can be seen both categories are distributed similarly.
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4.3. Fraud analysis confidential dataset
As in the previous two sections, this section will be usef for the analysis of the data of the confidential dataset.
Since this dataset is a recent ’real life’ dataset, it is expected that differences between relevant and not relevant
e-mails will be seen.

4.3.1. Word counts and occurrences
In a similar manner as is described in Section 4.1.1 the e-mails in the labeled confidential dataset have also
been analysed. In Table 4.8 the counts of the 10 words that are most identifiable for relevant e-mail are shown.
Table 4.7 shows the counts of the 10 words that are most identifiable for not relevant e-mail. The reason that
the original words are not shown is because of the confidentiality of the dataset. The values in the column
in which the ratio counts per message is shown are calculated according to Equations (4.1) and (4.2). From
both these tables it can be concluded that there are again various differences in word usage, however the
difference is smaller than in the similar spam analysis. This smaller difference might lead to results that have
a lower performance than in spam classification. Furthermore, it is remarkable to see that there is a word
which is identified as a ’relevant’ word, that also occurs multiple times in e-mails of the category not relevant.
This shows how words that are used in fraud related e-mails are not only words that are specifically related to
fraud, but also part of the language used in normal e-mails.

Word Count relevant Count not relevant Ratio counts per message
word0 0 947 0.015
word1 0 477 0.030
word2 0 291 0.049
word3 0 290 0.049
word4 0 249 0.057
word5 0 203 0.070
word6 0 189 0.075
word7 0 187 0.076
word8 0 164 0.086
word9 0 143 0.099

Table 4.7: Top 10 words which are identifiable for not relevant e-mail messages from confidential dataset according to the ratio of words
per message. The original words are not shown due to the confidentiality of the dataset. As can be noted these 10 words are only used in
the not relevant e-mails, and therefore these words are assumed to be representative for this category. The ratio of counts per message
shows how the words are sorted.

Word Count relevant Count not relevant Ratio counts per message
word0 23 0 340.8
word1 12 0 184.6
word2 12 0 184.6
word3 23 1 170.4
word4 11 0 170.4
word5 89 7 159.8
word6 10 0 156.2
word7 10 0 156.2
word8 9 0 142.0
word9 9 0 142.0

Table 4.8: Top 10 words which are identifiable for relevant e-mail messages from confidential dataset according to the ratio of words
per message. The original words are not shown due to the confidentiality of the dataset. As can be noted these 10 words are mainly
used in the relevant e-mails, and therefore these words are assumed to be representative for this category. The most remarkable word is
numbered 5, and occurs a number of times in both categories. The ratio of counts per message shows how the words are sorted.
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4.3.2. Length of e-mail
As can be seen in Figure 4.7, and in Table 4.9, there is not much difference in terms of length between relevant
and not relevant e-mails. Figure 4.7 shows the logarithm of the length of the e-mails in the two different cat-
egories, whilst in Table 4.9 the original values are presented. Furthermore, Table 4.9 shows us that especially
the standard deviation of not relevant e-mails is much higher.

Figure 4.7: Boxplot of the logarithm of the length of e-mails of the two categories in the confidential dataset (in which the length is
defined as the number of words).

Relevant Not Relevant
Mean 534.99 519.20
Standard deviation 608.14 788.48
Q1 168.0 66.0
median 350.0 232.0
Q3 631.0 622.0

Table 4.9: Basic statistical features of lengths of e-mails from confidential dataset (divided into the classification relevant and not rele-
vant)

In order to get a better view on the distribution the lengths of e-mails, some histograms have been added.
Figure 4.9 shows the histogram of all e-mails for both categories. Figure 4.8 shows the histogram of all e-mails
regardless of their category. Based on these figures it would be suspected that the length of e-mails, in terms
of number of words, follow a Pareto distribution.

Furthermore, the same conclusion as has been made based on the TREC and ENRON dataset is made. Only
small differences in length are present between the categories.
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Figure 4.8: Histogram of length e-mails confidential dataset (in which length is defined as the number of words). Partially based on this
histogram the lengths are expected to follow a Pareto distribution.

Figure 4.9: Histogram of length e-mails confidential dataset, shown for both categories (in which length is defined as the number of
words). As can be seen both categories are distributed similarly. Partially based on this histogram the lengths are expected to follow a
Pareto distribution.
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4.4. Conclusion
Based on the analysis performed in this chapter, small differences have been found in the word usage be-
tween spam and ham e-mails as well as between relevant and unlabeled/not relevant e-mails. It should be
remarked that the difference in word usage between relevant and unlabeled/not relevant e-mails is smaller,
and it would therefore be expected that a model has lower performance compared to spam classification

The difference in length of e-mails in both categories (in terms of number of words) has also been looked
at. This analysis concluded both for the spam/ham as well as the relevant/not labeled classification that the
difference can especially be found in the outliers. The length of e-mails can therefore potentially be a good
characteristic to identify certain e-mails.

This means that indeed the features taken from the research reports discussed in Chapter 1 are expected to
be able to give a good classification. There might, however, be a difference in performance between spam
classification and the classification of fraud related messages. Furthermore, the features on word frequencies
and word occurrence are expected to perform better than the feature on e-mail lengths, since the differences
between the categories for those two features is bigger than the difference for the feature of e-mail lengths.





5
Classification models

In the previous chapters the background information on the used mathematics (Chapter 2) and datasets
(Chapter 3) have been discussed. In the previous chapter it has been confirmed that the proposed features,
based on the literature study, show characteristics suitable for classification. Based on these observations,
this chapter will focus on the mathematical models that will be applied to the data discussed in Chapter 3.
This mathematical background will be given for the features: Word frequences, word occurrences and e-mail
length. This chapter will, per feature, mainly discuss two different models: a generative and a discrimina-
tive model. For both models an estimation of the parameter based on MLE and Bayesian estimates is given.
For the generative model this comes down to Classical Naive Bayes and Extended Naive Bayes. For the dis-
criminative model these model names do not yet exists in literature. The mathematical explanations in this
chapter are kept brief and only focused on the assumptions and way to calculate the probability that a new
e-mail belongs to a certain category. More detailed mathematical derivations are given in Appendices B-D.

5.1. Word frequencies
In this section the generative and discriminative models based on the feature of word frequencies are given.
The overview of the various models discussed is shown in Figure 5.1

Figure 5.1: Overview of the model based on word frequencies discussed in this section. Based on the feature word counts to different
models are discussed, each with two different parameter estimations.

5.1.1. Generative model
A simple generative model for e-mails will be described. Let

(
t1, . . . , t J

)
be a given dictionary of words. Let

θy =
(
θ

y
j

)J

j=1
be relative frequencies for these words as they occur in e-mails, in which y is indicates whether

the e-mail is relevant (y = 1) or not relevant (y = 0). Furthermore, let z = (z1, . . . , zn) be an ordered sequence
of words.

35
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The notation x j (z) = #
{
i : zi = t j

}
will be used, i.e. x j is the word count of the j -th word in the dictionary. The

posterior distribution over x is given by:

p(x | y) = p(n)

(
n

x1 · · ·x J

)
J∏

j=1

(
θ

y
j

)x j
. (5.1)

Furthermore, let z (1), . . . , z (N ) denote a sequence of N e-mails (or for the purpose of this model, equivalently:
word counts x (1), . . . , x (N )). Moreover, y (1), . . . , y (N ) denotes whether an e-mail is relevant or not relevant. All
e-mails are assumed to be independently generated according to the model. Our available parameters are
θ0 and θ1, and it is assumed that the probability distributions p(y) (the distribution on whether an e-mail is
relevant or not) and p(n) (the distribution on the length of an e-mail) are fixed.

The assumption that e-mails are independently generated according to the model might not be valid when
looking at certain threads of conversations, but is a generalisation of a mailbox. After all, not every e-mail sent
and received will be about the same subject. Assuming the distributions p(y) and p(n) to be fixed is a simpli-
fication, the length n of an e-mail might depend on the category the e-mail belongs to and the classification
y might be dependent on time. However, assuming fixed distributions will lead to a less computationally
expensive model.

In the next two sections the parameters are assumed to be estimated by using Maximum Likelihood Estima-
tion (Classical NB), or by applying a full Bayesian model (Extended NB). The assumption that the parameters
can be estimated by Maximum Likelihood Estimation, can be valid since it is the computation that is least
expensive and this makes the classification of new e-mails in general faster. The assumption that the pa-
rameters can be estimated by a full Bayesian model, can be valid since it takes (partially) into account the
uncertainty about the parameter estimation. A full Bayesian model might be able to give better predictions.

Classification based on MLE of θy

The Maximum Likelihood Estimation of the generative model is the model which is referred to as Classical
Naive Bayes. In this model the parameters are estimated with the following point estimates:

θ
y
j =

∑
m=1,...,N :y (m)=y

x(m)
j∑

m=1,...,N :y (m)=y
n(m)

. (5.2)

For the classification of a new e-mail, Bayes’ law is used and the obtained MLE estimators for θy are plugged
in:

p(y | z) =
J∏

j=1

(
θ

y
j

)x j (z) ·p y (1−p)1−y , (5.3)

It is likely that with this formula a probability of 0 is given to both situations y = 0 and y = 1. This is the case
since our dataset corresponding to the training of θ does not have to have the situation in which every word
occurs in an e-mail for both cases. Therefore Laplace smoothing will be applied to the MLE estimations of θy

j :

θ̃
y
j =

∑
m=1,...,N :y (m)=y

(
x(m)

j

)
+1∑

m=1,...,N :y (m)=y

(
n(m)

)+ J
. (5.4)

Classification based on Bayesian estimation of θy

In the full Bayesian model prior on the parameters is used. In this case the conjugate prior of the Multinomial
distribution is used, namely the Dirichlet distribution. This yields that

p
(
θξ | x (1), . . . , x (N ), y (1), . . . , y (N )

)
∼ Di r

(
αξ

)
, (5.5)

with α
ξ
j =

∑
m=1,...,N :y (m)=ξ

(
x(m)

j

)
+α j and ξ = 0,1. The hyperparameter is chosen to be α j = 1 for all 1 ≤ j ≤ J .

This means that as little distinction as possible is made between the word occurrences beforehand, i.e. an
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uninformative prior is used.

Therefore, the conditional distribution of y (N+1) for our new e-mail is written as:

p
(
y (N+1) | x (1), . . . , x (N ), y (1), . . . , y (N ), x (N+1))∝ p y (N+1)

(1−p)1−y (N+1) · 1

B
(
αy (N+1)) ·B

(
α̃y (N+1)

)
, (5.6)

with
α̃

y (N+1)

j = x(N+1)
j + ∑

m=1,...,N :y (m)=y (N+1)

(
x(m)

j

)
+α j .

Which needs to be calculated for y (N+1) = 0 and y (N+1) = 1 since this expression holds up to the proportion-
ality constant.

5.1.2. Discriminative model
A simple discriminative model for e-mails will be described. As in the generative model, let (t1, . . . , t J ) be a
given dictionary of words. Let y indicate whether the e-mail is relevant (y = 1) or not relevant (y = 0).

Again let z = (z1, . . . , zn) be an ordered sequence of words. Also the notation x j (z) = #
{
i : zi = t j

}
will be used,

i.e. x j is the word count of the j -th word in the dictionary.

Logistic Regression as discriminative model will be used, therefore assume that

p(y = 1|x) = 1

1+exp

(
w0 +

J∑
j=1

w j x j

) ; (5.7)

p(y = 0|x) =
exp

(
w0 +

J∑
j=1

w j x j

)

1+exp

(
w0 +

J∑
j=1

w j x j

) . (5.8)

Furthermore, let z (1), . . . , z (N ) denote a sequence of e-mails (or for the purpose of this model, equivalently:
word counts x (1), . . . , x (N )). Moreover, let y (1), . . . , y (N ) denote whether an e-mail is relevant or not relevant.
Assume all e-mails are independently generated according to the model. Let w = (

w1, . . . , w J
)

be the weights
needed in Formula (5.8) and (5.7). With the assumption that the outcomes follow a fixed Bernoulli distribu-
tion.

The assumption that e-mails are independently generated according to the model might not be valid when
looking at certain threats of conversations, but is a generalisation of a mailbox. After all, not every e-mail sent
and received will be about the same subject. Assuming the distributions p(y) to be a fixed Bernoulli distribu-
tion is a simplification, the classification y might be dependent on time. However, the assumption will lead
to a less computationally expensive model.

In the next two sections the parameters are assumed to be either estimated by using Maximum Likelihood
Estimation, or by applying a full Bayesian model. The assumption that the parameters can be estimated by
Maximum Likelihood Estimation, can be valid since it is the computation that is least expensive. The as-
sumption that the parameters can be estimated by a full Bayesian model, can be valid since it takes (partially)
into account the uncertainty about the parameter estimation.

Classification based on MLE of for w
In the Maximum Likelihood Estimation of the discriminative model will will use the following log likelihood:

l (w ) =
N∑

m=1

(
y (m) ln

(
p

(
y = 1 | x (m)))+ (

1− y (m)) ln
(
p

(
y = 0 | x (m)))) (5.9)

The only steps left to get the best parameters w is to maximize Equation (5.9) with respect to this parameter
(in other words setting the derivative w.r.t. w to zero and solving this equation). Note that no closed form of
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the maximization of the log likelihood is available. Various algorithms are available to approximate the max-
imization, SAGA has been used, which was made available by the function LogisticRegression in the package
sklearn.linear_model.

For the classification of a new e-mail, Equations (5.8) and (5.7) have been used. The classification property
of logistic regression comes down to giving e-mail z (N+1) (and corresponding data x (N+1)) label y (N+1) = 0 if

0 < w0 +
J∑

j=1
w j x(N+1)

j , and label y = 1 otherwise.

Classification based on Bayesian estimation of w
In the full Bayesian model a prior on the parameters has been used. In this case a weakly informative normally
distributed prior is used. This gives us the following posterior distribution for w (a detailed description is
given in Appendix B.2):

p
(
w | x (1), . . . , x (N ), y (1), . . . , y (N ))∝

N∏
m=1

 1

1+exp

(
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j

) · y (m) +
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J∑
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j

)

1+exp

(
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J∑
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w j x(m)
j

) · (1− y (m))
 ·

J∏
i=0

1p
2π ·1012

exp

(
− w2

i

2 ·1012

)
.

Therefore, the conditional distribution of y (N+1) for our new e-mail can be written as (S J is the J dimensional
simplex):

p
(
y (N+1) | x (1), . . . , x (N+1), y (1), . . . , y (N ))∝

∫
S J
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 y (m)
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(
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j

) +
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(
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J∑
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)
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(
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J∑
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) · (1− y (m))
 ·

J∏
i=0

1p
2π ·1012

exp

(
− w2

i

2 ·1012

)
d w .

Which needs to calculated for y (N+1) = 0 and y (N+1) = 1 since this expression holds up to the proportionality
constant.
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5.2. Word occurrences
In this section the generative and discriminative models based on the feature of word occurrences are dis-
cussed. The overview of the various models discussed is shown in Figure 5.2

Figure 5.2: Overview of the model based on word occurrences discussed in this section. Based on the feature word counts to different
models are discussed, each with two different parameter estimations.

5.2.1. Generative model
A simple generative model for e-mails will be described. Let z = (z1, . . . , zn) be a sequence of words of an

e-mail. Let
(
t1, . . . , t J

)
be a given dictionary of words. Let q y =

(
q y

j

)J

j=1
, in which q y

j represents the probability

that word t j corresponds to the category relevant (y = 1) or not relevant (y = 0), i.e. p
(
ti | y

) = q y
j . Further-

more, it holds that q1
j = 1−q0

j .

Let x = (
x1, . . . , x J

)
be the corresponding features of the given dictionary, in which xi = 1 if word ti is present

in the e-mail (i.e. ti ∈ z) and xi = 0 if word ti is not present (i.e. ti 6∈ z). For simplicity, assume that the
distribution of n does not depend on y . The posterior distribution over x will then become:

p(x | y) = p(n)
J∏

j=1

(
q y

j

)x j ·
(
1−q y

j

)1−x j
. (5.10)

Furthermore, let x (1), . . . , x (N ) denote word occurrences of e-mails. Moreover, let y (1), . . . , y (N ) denote whether
an e-mail is relevant or not. All e-mails are assumed to be independently generated according to the model.
Our available parameters are q 0 and q 1, and the probability distributions p(y) and p(n) are assumed to be
fixed.

These assumptions are based on the same reasoning as is given in Chapter 5.1. For completeness this rea-
soning is also stated here.

The assumption that e-mails are independently generated according to the model might not be valid when
looking at certain threats of conversations, but is a generalisation of a mailbox. After all, not every e-mail
sent and received will be about the same subject. Assuming the distributions p(y) and p(n) to be fixed is a
simplification, the length n of an e-mail might depend on whether an e-mail is relevant or not relevant and
the classification y might be dependent on time. However, assuming fixed distributions will lead to a less
computationally expensive model.

In the next two sections the parameters are assumed to be either estimated by using Maximum Likelihood
Estimation, or by applying a full Bayesian model. The assumption that the parameters can be estimated by
Maximum Likelihood Estimation, can be valid since it is the computation that is least expensive. The as-
sumption that the parameters can be estimated by a full Bayesian model, can be valid since it takes (partially)
into account the uncertainty about the parameter estimation.
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Classification based on MLE of q y

The Maximum Likelihood Estimation of the generative model gives us the following point estimates:

q y
j =

∑
m=1,...,N :y (m)=y

x(m)
j∑

m=1,...,N :y (m)=y
1

.

For the classification of a new e-mail, Bayes’ law is used and the obtained MLE estimators for θy are plugged
in:

p(y | x) ∝
J∏

j=1

((
q y

j

)x j ·
(
1−q y

j

)1−x j
)
·p y (1−p)1−y , (5.11)

It is likely that with this formula probability of 0 is given in both situations y = 0 and y = 1. This is the case
since our dataset corresponding to the training of q does not have to have the situation in which every word
occurs in an e-mail for both cases. Therefore Laplace smoothing will be applied to the MLE estimations of
q y

j :

q̃ y
j =

∑
m=1,...,N :y (m)=y

(
x(m)

j

)
+1∑

m=1,...,N :y (m)=y
(1)+ J

. (5.12)

Classification based on Bayesian estimation of q y

In the full Bayesian model a prior on the parameters has been used. In this case the conjugate prior of the
Bernoulli distribution is used, namely the Beta distribution. This yields that

p
(

qξ | x (1), . . . , x (N ), y (1), . . . , y (N )
)
∝

J∏
j=1

(
qξj

)α j −1+ ∑
m=1,...,N :y(m)=ξ

x(m)
j ·

(
1−qξj

)β j −
∑

m=1,...,N :y(m)=ξ
x(m)

j

B
(
α j ,β j

) , (5.13)

with ξ= 0,1.

Therefore, the conditional distribution of y (N+1) for our new e-mail can be written as:

p
(
y (N+1) | x (1), . . . , x (N ), y (1), . . . , y (N ), x (N+1)) ∝

J∏
j=1

p y (N+1)
(1−p)1−y (N+1)

B
(
α j ,β j

) ·B
(
α̃ j , β̃ j

)
in which α̃ j =α j + ∑

m=1,...,N+1:y (m)=y (N+1)
x(m)

j and β̃ j =β j + ∑
m=1,...,N+1:y (m)=y (N+1)

(
1−x(m)

j

)
.

Which need to be calculated for y (N+1) = 0 and y (N+1) = 1 since this expression holds up to the proportionality
constant.

5.2.2. Discriminative model
The discriminative model for e-mails based on word occurrences is similar as the discriminative model for
e-mails based on word frequencies, which is described in Section 5.1.2 and B.2. Let

(
t1, . . . , t J

)
be a given dic-

tionary of words. Let y indicate whether the e-mail is relevant (y = 1) or not relevant (y = 0). Furthermore let
x = (

x1, . . . , x J
)

be a sequence that indicates whether word ti is in e-mail message z then xi = 1 or else xi = 0.

The model of Logistic Regression is the same as is described by Equations (5.7) and (5.8), but in this case with
the variable x as described above.

The MLE as well as the Bayesian estimate for w used in Equations (5.7) and (5.8) is approximated with the
same methods as described in Section B.2. The way new data is given a classification is also described in this
section, please note that the feature vector x is used as described above, instead of the word frequencies used
in Section B.2.
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5.3. E-mail length
In this section the generative and discriminative models based on the feature of e-mail length are discussed.
Please recall that the length of an e-mail is defined as the number of words that are present in the e-mail after
preparation. The overview of the various models discussed is shown in Figure 5.3

Figure 5.3: Overview of the model based on length of an e-mail discussed in this section. Based on the feature word counts to different
models are discussed, each with two different parameter estimations.

5.3.1. Generative model
A simple generative model for e-mails will be described. Let z = (z1, . . . , zn) be a sequence of words of an
e-mail. Let x = n denote the length of an e-mail. The length of an e-mail is defined by the number of words
present in the e-mail. As is noted in Chapter 4, the lengths of an e-mail are Pareto distributed (observed
based on the data as well as by other literature [44]). The distribution over x will then for both categories of y
become:

p(x | y) = αy ·ηαy

xαy+1
. (5.14)

Furthermore, let x(1), . . . , x(N ) denote the lengths of N e-mails. Moreover, let y (1), . . . , y (N ) denote whether an
e-mail is relevant or not. All e-mails are assumed to be independently generated according to the model. Our
available parameters are η, α0 and α1, and the probability distribution p(y) is assumed to be fixed.

The assumptions are based on the same reasoning as is given in Chapter 5.1. For completeness this reasoning
is also stated here.

The assumption that e-mails are independently generated according to the model might not be valid when
looking at certain threats of conversations, but is a generalisation of a mailbox. After all, not every e-mail sent
and received will be about the same subject. Assuming the distribution p(y) to be fixed is a simplification,
the classification y might be dependent on time. However, assuming a fixed distribution will lead to a less
computationally expensive model.

In the next two sections the parameters will be assumed to be either estimated by using Maximum Likelihood
Estimation, or by applying a full Bayesian model. The assumption that the parameters can be estimated by
Maximum Likelihood Estimation, can be valid since it is the computation that is least expensive. The as-
sumption that the parameters can be estimated by a full Bayesian model, can be valid since it takes (partially)
into account the uncertainty about the parameter estimation.

Classification based on MLE of αy

The Maximum Likelihood Estimation of the generative model gives us the following point estimates:

α̂y =

∑
m=1,...,N :y (m)=y

1

∑
m=1,...,N :y (m)=y

ln
(

x(m)

η̂

) ,
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in which η̂= min
m=1,...,N

(x(m)).

For the classification of a new e-mail, Bayes’ law is used and the obtained MLE estimators forα0,α1 and η are
plugged in:

p(y | x) ∝ α̂y · η̂α̂y

xα̂y+1
·p y (1−p)1−y . (5.15)

Classification based on Bayesian estimation of αy

In the full Bayesian model a prior on the parameters will be used. In this case the conjugate prior of the Pareto
distribution, namely the Gamma distribution, is used. This yields that

p
(
αξ | x (1), . . . , x (N ), y (1), . . . , y (N )

)
∼Gamma(â, b̂), (5.16)

with ξ = 0,1. Furthermore, âξ = a + ∑
m=1,...,N :y (m)=ξ

1 and b̂ξ = ∑
m=1,...,N :y (m)=ξ

(
ln(η)− ln(x(m))−b

)
in which a,b

hyperparameters of the prior Gamma distribution (details can be found in Appendix D).

Therefore, the conditional distribution of y (N+1) for our new e-mail can be written as:

p
(
y (N+1) | x (1), . . . , x (N ), y (1), . . . , y (N ), x (N+1)) ∝ p y (N+1)

(1−p)y (N+1) · Γ(α̂y (N+1) +1)(
b̂y (N+1) − ln

(
η

x(N+1)

))α̂y(N+1)+1
,

in which η is assumed to be a fixed valued hyperparameter, of which the value equals 1.
This equation needs to be calculated for y (N+1) = 0 and y (N+1) = 1 since this expression holds up to the pro-
portionality constant.

5.3.2. Discriminative model
A simple discriminative model for e-mails will be described. As in the generative model, let y indicate whether
the e-mail is relevant (y = 1) or not relevant (y = 0).

Again let z = (z1, . . . , zn) be a sequence of words of an e-mail. Let x = n denote the length of an e-mail. The
length of an e-mail will be defined by the number of words present in the e-mail.
Logistic Regression will be used as discriminative model. Therefore it will be assumed that

p(y = 1|x) = 1

1+exp(w0 +w1x)
; (5.17)

p(y = 0|x) = exp(w0 +w1x)

1+exp(w0 +w1x)
. (5.18)

Furthermore, let z (1), . . . , z (N ) denote a sequence of e-mails (or for the purpose of this model, equivalently:
the length of the e-mails x(1), . . . , x(N )). Moreover, let y (1), . . . , y (N ) denote whether an e-mail is relevant or not
relevant. All e-mails are assumed to be independently generated according to the model. Let w = (w0, w1)
be the weights needed in Formula (5.18) and (5.17). With the assumption that the outcomes follow a fixed
Bernoulli distribution.

The assumption that e-mails are independently generated according to the model might not be valid when
looking at certain threats of conversations, but is a generalisation of a mailbox. After all, not every e-mail sent
and received will be about the same subject. Assuming the distribution p(y) to be fixed is a simplification,
the classification y might be dependent on time. However, assuming a fixed distribution will lead to a less
computationally expensive model.

In the next two sections the parameters are either assumed to be estimated by using Maximum Likelihood
Estimation, or by applying a full Bayesian model. The assumption that the parameters can be estimated by
Maximum Likelihood Estimation, can be valid since it is the computation that is least expensive. The as-
sumption that the parameters can be estimated by a full Bayesian model, can be valid since it takes (partially)
into account the uncertainty about the parameter estimation.



5.3. E-mail length 43

Classification based on MLE of w
In the Maximum Likelihood Estimation of the discriminative model will will use the following log likelihood:

l (w ) =
N∑

m=1

(
y (m) ln

(
p

(
y = 1 | x (m)))+ (

1− y (m)) ln
(
p

(
y = 0 | x (m)))) . (5.19)

The only steps left is to get the best parameters w is to maximize Equation (5.19) with respect to this param-
eter (in other words setting the derivative w.r.t. w to zero and solving this equation). Note that no closed
form of the maximization of the log likelihood is available. Various algorithms are available to approximate
the maximization, SAGA has been used which was made available by the function LogisticRegression in the
package sklearn.linear_model.

For the classification of a new e-mail, Equations (5.18) and (5.17) will be used. The classification property of
logistic regression comes down to giving e-mail z (N+1) (and corresponding length x(N+1)) label y (N+1) = 0 if
0 < w0 +w1x(N+1), and label y = 1 otherwise.

Classification based on Bayesian estimation of w
In the full Bayesian model a prior on the parameters will be used. In this case a weakly informative normally
distributed prior has been used. This gives us the following posterior distribution for w :

p
(
w | x(1), . . . , x(N ), y (1), . . . , y (N ))

∝
N∏

m=1

(
1

1+exp
(
w0 +w1x(m)

) · y (m) + exp
(
w0 +w1x(m)

)
1+exp

(
w0 +w1x(m)

) · (1− y (m))) · 1∏
i=0

1p
2π ·1012

exp

(
− w2

i

2 ·1012

)
.

Therefore, the conditional distribution of y (N+1) for our new e-mail can be written as (S2 is the 2 dimensional
simplex):

p
(
y (N+1) | x(1), . . . , x(N+1), y (1), . . . , y (N ))

∝
∫

S2

(
y (N+1)

1+exp
(
w0 +w1x(N+1)

) + exp
(
w0 +w1x(N+1)

)
1+exp

(
w0 +w1x(N+1)

) · (1− y (N+1)))

·
N∏

m=1

(
y (m)

1+exp
(
w0 +w1x(m)

) + exp
(
w0 +w1x(m)

)
1+exp

(
w0 +w1x(m)

) · (1− y (m))) · 1∏
i=0

1p
2π ·1012

exp

(
− w2

i

2 ·1012

)
d w .

Which need to be calculated for y (N+1) = 0 and y (N+1) = 1 since this expression holds up to the proportionality
constant.
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Results

The models described in the previous chapter have been applied to the datasets described in Chapter 3. This
chapter will analyse the results of each of these models. Per model, at first, in order to check for possible prob-
lems in the models, a parameter analysis will be done. After that the classification statistics will be explained
and a conclusion is drawn. The analysis has mainly be focused around the results based on the confiden-
tial dataset. The TREC dataset has been used as check with other research reports as well as a reference
point for comparison of the classification performance of the ENRON dataset and the confidential dataset of
benchmark performances were not available. The ENRON dataset will be mentioned in the analysis, however
due to the reasons mentioned in Section 3.2.2 (e.g. data quality) the dataset is most likely not a representa-
tive dataset. As has been explained, the ENRON dataset has been included as it is the only publicly available
dataset that contains fraudulent e-mails, it is therefore useful for future research to be able to compare results.

Please note that the models explained in the previous chapter have been based on three features and each
feature has 4 different parameter estimations. Furthermore, there are three different datasets. This gives in
total 36 different results, which is also visualised in Figure 6.1. 5-fold cross validation has been applied to
the ENRON and confidential dataset, as has been explained in Chapter 3. Due to computational limitations
the performance of the TREC dataset is only measured on set 1. Overall this gave a lot of results, this chap-
ter will therefore only elaborate on results that are worth mentioning, additional results can be found in the
Appendix. Furthermore, due to computational limitations the discriminative models have only been applied
with 1000 parameters. The 1000 parameters have been based on the top 500 words identifiable with relevant
e-mail messages and the top 500 words identifiable as not relevant e-mail messages. The way these words
are chosen is explained in Chapter 4. In order to be able to compare models the generative models have been
applied on all available words as well as the top 1000 words used by the discriminative models.

Furthermore, before an analysis of the results and parameters is done, the classification rules will be ex-
plained in Section 6.1.

Figure 6.1: Overview of all available models, parameter estimations and datasets. In total this gives 36 different classification results that
will be presented in this Chapter or the Appendix

45
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6.1. Classification rules
The models explained in Chapter 5 are meant to perform a classification. In Chapter 3 it has already been ex-
plained which categories are available per dataset (TREC: spam and ham, ENRON: Fraud and unlabeled and
in the confidential dataset: relevant vs and relevant). In this section will be explained what the classification
rules for each dataset, meaning at what probabilities an e-mail will be classified to a certain category. The
classification rules are similar for all three datasets, and summarised in Figure 6.2.

Figure 6.2: Classification rules used to classify e-mails.

6.1.1. TREC
The spam e-mails in the TREC dataset are classified with label y = 1 and ham (not spam) e-mail with label y =
0. The probability of a particular category needs to be above 0.5 in order for the e-mail to get the classification
of this category. If the probabilities are equal (i.e. both 0.5) the classification ’spam’ is given. This classification
for equal probabilities is chosen with the notion of having to review the category manually. Furthermore, if
the probabilities are equal this can mean that either the e-mail is empty (meaning no words are present) or
that the e-mail does not contain any known words (meaning that the words in the new e-mail are not in the
training set). In both cases this means that it is likely a spam e-mail and that a closer look needs to be taken.

6.1.2. ENRON
In case of the labeled ENRON dataset there are two categories, namely relevant and unlabeled. Relevant
e-mail is given a classification with label y = 1 and unlabeled e-mail with label y = 0. The probability of a
particular category needs to be above 0.5 in order for the e-mail to get the classification of this category. If
the probabilities are equal (i.e. both 0.5) the classification relevant will be given. This classification for equal
probabilities is chosen with the notion of having to review the category relevant manually. In this way if the
model is in doubt about the classification (i.e. probabilities equal to 0.5) no e-mails are removed without
being sure of it being not relevant.

6.1.3. Confidential dataset
In case of the confidential KPMG dataset there are two categories, namely relevant and not relevant. Relevant
e-mail is given a classification with label y = 1 and not relevant e-mail with label y = 0. The probability of a
particular category needs to be above 0.5 in order for the e-mail to get the classification of this category. If
the probabilities are equal (i.e. both 0.5) the classification relevant will be given. This classification for equal
probabilities is chosen with the notion of having to review the category relevant manually. In this way if the
model is in doubt about the classification (i.e. probabilities equal to 0.5) no e-mails are removed without
being sure of it being not relevant.
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6.2. Word frequencies
As is stated in the introduction of this chapter, the results corresponding to the models described in the pre-
vious chapter will be explained in the following sections. Moreover, in Attachment F.1 more results are pre-
sented. Especially results corresponding to the TREC and ENRON dataset, as well as additional results of the
5-fold cross validation.

6.2.1. Parameter analysis
In this section an analysis on the behaviour of the parameters in the various models is given. By doing this
analysis any possible problems of the model can be identified before even looking at the results.

Generative model - MLE
For various words it can be checked how the corresponding parameter is trained. Figure 6.3 show this training
process for two words that are identifiable with the two categories (four different words in total, in Section
4.2.1 it has been explained how the words are identifiable with each category). In the Appendix the same
kind of figures can also be found for several other words. In the figures two lines can be seen, one line is for
the training process of the parameter related to the category relevant, the other to the parameter related to
the category not relevant. Furthermore, the grey area around these lines represent one standard deviation.
From these figures it can be concluded that especially the parameters of the words related to the category
relevant show spiky behaviour (e.g. the words numbered 6 and 9 in the category relevant), which might be
an indication that the model is not trained well enough on this part. After all, two gradually stabilizing lines
would be best. This behaviour is present with words that are identifiable as not relevant e-mails (words 4 and
8 in the category not relevant), but generally speaking not with the category relevant. During the analysis of
the results it should be kept in mind that this spiky behaviour is present, the results might increase in perfor-
mance if more information is available about these words (meaning if more e-mails in the category relevant
are used).

(a) Word (not relevant): 4 (b) Word (not relevant): 8

(c) Word (relevant): 6 (d) Word (relevant): 9

Figure 6.3: Training process generative model with MLE (confidential dataset). The two lines indicate how the value of the parameter
corresponding to the words are trained. In these figures ’Legit’ is the category of the unlabeled e-mails.

When looking at the differences of the training process between the two fraud related datasets no major dif-
ferences between the ENRON dataset ( Figures F.1 and F.2) and the confidential dataset (Figures F.6 and F.7)
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are seen. They both show stabalizing lines for parameters related to the category not relevant, whilst the pa-
rameters related to the category relevant show in both cases spiky behaviour. This spiky behaviour can be a
cause for a potential low recall of the category relevant, which needs to be taken into account when analysing
the results.

It should be remarked that these figures are unique for the way the model is trained, if the e-mails are shuffled
the figures will be slightly different.

Furthermore, as can be seen in Figures F.1 and F.2 there are various non-words present (e.g. developmenten-
ron), these words can occur due to the preparation of the e-mails (removing various characters). Another
reason can of course be that the non-word is just used in this way.

Generative model - Bayesian estimation
For various words the difference in prior and posterior marginal distributions is checked. Figure 6.4 shows
this difference for 2 words identifiable with each category of the confidential dataset. In the figures two distri-
bution lines can be seen, one line is for the prior marginal distribution, the other for the posterior distribution.
From these figures it can be concluded that especially the marginal distributions of the words related to the
category ’not relevant’ have a more fixed distribution (in Figure 6.4 words numbered 4 and 8). This is the case
since the marginal posterior distributions are centered around specific values, this might be an indication
that the model is very certain about their posterior distributions, and therefore trained well enough on this
part. Moreover, the marginal posterior distributions of the words related to the category relevant in the con-
fidential dataset (Figure 6.4, and words 6 and 9) also show centered behaviour (towards the value zero). This
might indicate that the classification performance on the confidential dataset with the generative Bayesian
model might be good.

(a) Word: 4 (b) Word: 8

(c) Word: 6 (d) Word: 9

Figure 6.4: Training process generative model with Bayesian estimation (confidential dataset). The two lines indicate the prior and
posterior marginal distribution of the corresponding word.

When comparing the marginal posterior distributions of the confidential dataset (Figures F.8 and F.9) with
the marginal posterior distributions of the ENRON dataset (Figures F.3 and F.4) the main difference that can
be noticed is that the marginal distributions of the words related to the category relevant have a more flat
marginal posterior distribution in the case of ENRON. This might indicate that the classification results of the
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ENRON dataset will be worse than the classification results of the confidential dataset. As is stated earlier, it
was expected that the parameters trained on the ENRON dataset are less fixed, due to the way the dataset is
labeled (it is unknown if all relevant e-mails are labeled as relevant or if there are still relevant e-mails in the
category unlabeled).

Discriminative model - Bayesian estimation
For the discriminative Bayesian model an analysis will be done based on the samples that are used to de-
termine the values of the parameters. In Figure 6.5 the samples for various parameters are shown. As can
be noticed, the difference in sample value are in all 4 cases very big. Most of the samples are near the val-
ues of 0, and therefore the parameter values are expected to be near the true value. Which means that the
classification results are expected to be good.

(a) Word: 4 (b) Word: 8

(c) Word: 6 (d) Word: 9

Figure 6.5: Training process discriminative model with Bayesian estimation (confidential dataset). The blue line indicates the sample
values on which the parameter value is based. As can be noted the sample values show much difference.

6.2.2. Classification analysis
In the previous section it has been explained that the parameters based on the data of the confidential dataset
are promising. The classification results of the model based on word frequencies is presented in this section.
In Section 1.3 it has already been noted that the feature of word frequencies is successfully used in the spam
classification, and therefore the results are worth looking at. When looking at the classification results of
Naive Bayes (generative model with maximum likelihood estimation) for the TREC dataset a precision of the
spam messages is noted of 93.9%, and a recall of 99.6% (as can be seen in Table F.21). This corresponds to
the results presented by Sakkis et al. [50] (maximum recall of 82.35% and a precision of 99.02%). It should be
noted that the results of all models perform average to good in the classification of the e-mails in the TREC
dataset. The worst performing model is by far the generative Bayesian model with a recall of 14.5% (followed
by the generative model with maximum likelihood estimation).
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In Table 6.1 the various statistics that have been explained in Section 2.3.2 are shown. These statistics are aver-
ages of the 5-fold cross validation that has been applied to the confidential dataset. The statistics of the classi-
fication of each training and test set are presented in Appendix F. Based on the Tables F.1 - F.5 and on Table 6.1
it can be concluded that the model based on word frequencies applied on the confidential dataset performs a
lot better than it does on the ENRON dataset. An average recall of the category relevant of the Bayesian gener-
ative model of 52.1% can be noted. Moreover, when using the same generative Bayesian model, but only with
the top 500 words identifiable with relevant and top 500 words identifiable with not relevant e-mails the re-
call percentage is a constant 100%. This is very useful in practice, and is exactly what a model should be doing.

When comparing the results based on the confidential dataset and the ENRON dataset with the TREC dataset,
it can be noted that the classification results are lower. As has been remarked during the analysis of the pa-
rameters no very good results were expected (due to the flat posterior distributions, and the spiky behaviour).
Furthermore it is also stated earlier that the TREC dataset is much bigger in size than the ENRON/confiden-
tial dataset, and therefore better performance of TREC was already expected.

Based on the results the discriminative models are not performing as well as the generative models. The recall
of the category relevant of the discriminative models is a lot lower. The same holds for the generative model
with maximum likelihood estimation, although this model does perform a little better in terms of recall of the
category relevant when compared to the discriminative models.

MLE (GM) BE (GM) MLE (DM)* BE (DM)* ML (GM)* BE (GM)*
Accuracy 85.7% 76.3% 93.18% 90.1% 79.0% 9.1%
’relevant’ recall 27.5% 52.1% 0.0% 26.2% 44.8% 100%
’relevant’ precision 16.9% 15.9% n.a. 26.2% 14.9% 6.0%
’not relevant’ recall 90.0% 78.2% 100% 94.9% 81.5% 2.4%
’not relevant’ precision 94.4% 95.7% 93.18% 94.5% 96.1% 100%

Table 6.1: Average performance results word frequencies (5-fold cross validation), based on confidential dataset. Striking is the average
recall of 100% of the Bayesian generative model based on 1000 words as parameters, this is the best performing model present in the ta-
ble. (GM = Generative model, DM = Discriminative Model, MLE = Maximum Likelihood Estimation, BE = Bayesian Estimation). * = based
on the top 500 words identified as as best corresponding the category ’relevant’ and the top 500 words identified as best corresponding
to the category ’not relevant’.

For both Bayesian generative models (with and without parameters based on only 1000 words) additional
research has been done. In order to question whether it is luck that the models are performing very well,
Bayes Factors have been calculated. Tables F.6-F.15 (two representative tables are also shown below, Table 6.2
and Table 6.3) show that for the generative Bayesian model based on all words the classification of the True
positives is so called ’strong’ to ’decisive’ according to Bayes factor. Whilst for the generative Bayesian model
based on the top 1000 words the classification of the true positives is most of the times ’decisive’. This means
that the models are certain about their classification (i.e. no probabilities near 0.5), and thus suggests that
the models might be useful in practice. The Bayes factors also indicate that the generative Bayesian model
based on the top 1000 words is more useful, since its classification is more certain in general (also for the True
negatives).
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Bayes factor True Positives True Negatives False Positives False Negatives

B > 102 0 7 0 0

102 > B > 10
3
2 0 0 0 0

10
3
2 > B > 10 0 0 0 0

10 > B > 10
1
2 0 0 0 0

10
1
2 > B > 1 0 0 0 0

B = 1 0 0 8 0

1 > B > 10−
1
2 0 0 0 0

10−
1
2 > B > 10−1 0 0 0 0

10−1 > B > 10−
3
2 0 0 1 0

10−
3
2 > B > 10−2 0 0 0 0

10−2 > B 20 0 363 0

Table 6.2: Bayes Factor results word frequencies for the generative model with Bayesian estimation, based on 1000 words as parameters
(set 2). This table shows that the model is certain about its classification.

Bayes factor True Positives True Negatives False Positives False Negatives

B > 102 0 240 0 6

102 > B > 10
3
2 0 11 0 0

10
3
2 > B > 10 0 5 0 0

10 > B > 10
1
2 0 11 0 0

10
1
2 > B > 1 0 11 0 0

B = 1 0 0 0 0

1 > B > 10−
1
2 0 0 16 0

10−
1
2 > B > 10−1 1 0 12 0

10−1 > B > 10−
3
2 0 0 9 0

10−
3
2 > B > 10−2 1 0 4 0

10−2 > B 12 0 60 0

Table 6.3: Bayes Factor results word frequencies for the generative model with Bayesian estimation (set 2). This table shows that the
model is certain about its classification, in strength of evidence the classification of the true positives would be called ’strong’ to ’certain’.

6.2.3. Conclusion
Based on the the results presented in this section it can be concluded that the generative models based on
word frequencies perform well enough in order to make the distinction between relevant and not relevant
e-mails. Especially the results based on the confidential dataset are promising, with a recall of the generative
Bayesian model (based on 1000 words) of 100% on average over 5-fold cross validation. The classification on
ENRON does not have similar performances, but also shows that the generative Bayesian models perform
best. Furthermore, the classification based on the TREC dataset given results that are comparable to results
stated in other research reports (as is also stated in the State of The Art, Section 1.3).

The discriminative models are in neither case able to compete with the results of the generative models.
Moreover, as is shown in the performance tables the generative models are in general computationally faster
than the discriminative models.
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6.3. Word occurrences
Besides the results of the feature word frequencies, described in the previous section, also results based on
the feature word occurrences will be presented. The most important results will be explained in this section,
more detailed results can also be found in Appendix F.1, especially results corresponding to the TREC and
ENRON dataset, as well as additional results of the 5-fold cross validation.

6.3.1. Parameter analysis
In this section an analysis on the behaviour of the parameters in the various models will be done. By doing
this analysis any possible problems of the model can be identified before even looking at the results.

Generative model - MLE
For various words it can be checked how the corresponding parameter is trained. Figure 6.6 show this train-
ing process for two words that are identifiable with the two categories (in Section 4.2.1 it has been explained
how the words are identifiable with each category). In the Appendix the same kind of figures can also be
found for several other words. In the figures two lines can be seen, one line is for the training process of the
parameter related to the category relevant, the other to the parameter related to the category not relevant.
Furthermore, the grey area around these lines represent one standard deviation. From these figures it can be
concluded that especially the parameters of the words related to the category relevant show spiky behaviour
(e.g. the words numbered 6 and 9), which might be an indication that the model is not trained well enough
on this part. After all, two gradually stabilizing lines would be best. This behaviour is present with words that
are identifiable as not relevant e-mails (e.g. the words numbered 4 and 8), but generally speaking not with
the category relevant. During the analysis of the results it should be kept in mind that this spiky behaviour is
present, the results might increase in performance if more information is available about these words (mean-
ing if more e-mails in the category relevant used).

(a) Word (not relevant): 4 (b) Word (not relevant): 8

(c) Word (relevant): 6 (d) Word: 9

Figure 6.6: Training process generative model for feature word occurrences with MLE (confidential dataset). The two lines indicate how
the value of the parameter corresponding to the words are trained. In these figures ’Legit’ is the category of the unlabeled e-mails.

When looking at the differences of the training process between the various fraud related datasets no major
differences between the ENRON dataset (Figures F.11 and F.12) and the confidential dataset (Figures F.16 and
F.17) can be seen. They both show stabilizing lines for parameters related to the category not relevant, whilst
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the parameters related to the category relevant show in both cases spiky behaviour. This is also the behaviour
seen during the parameter analysis of the models based on word frequencies.

It should be remarked that these figures are unique for the way the model is trained, if the e-mails are shuffled
the figures will be slightly different.

Furthermore, as can be seen in Figures F.11 and F.12 there are various non-words present (e.g. develop-
mentenron), these words can occur due to the preparation of the e-mails (removing various characters).
Another reason can of course be that the non-word is just used in this way.

Generative model - Bayesian estimation
For various words the difference in prior and posterior marginal distributions will be checked. Figure 6.7
show this difference for two words that are identifiable with the two categories. In the figures two distribu-
tion lines can be seen, one line is for the prior marginal distribution, the other for the posterior distribution.
From these figures it can be concluded that the marginal prior distributions are very flat, and therefore as far
from subjective as possible. It can also be noted that the marginal posterior distributions are fixed distribu-
tions. This is the case since the marginal posterior distributions are centered around specific values (in this
case near zero), this might be an indication that the model is very certain about their posterior distributions,
and therefore trained well enough on this part.

(a) Word (not relevant): 4 (b) Word (not relevant): 8

(c) Word (relevant): 6 (d) Word (relevant): 9

Figure 6.7: Training process generative model for feature word occurrences with Bayesian estimation (confidential dataset). The two
lines indicate the prior and posterior marginal distribution of the corresponding word.

Discriminative model - Bayesian estimation
For the discriminative Bayesian model an analysis will be done based on the samples that are used to deter-
mine the values of the parameters. In Figure 6.8 the samples for various parameters are shown. As can be
noticed, the difference in sample value are in all 4 cases very big. This is caused by the very flat normally dis-
tributed prior. Most of the samples are near the values of 0, and therefore the parameter values are expected
to be near the true value. Which means that the classification results are expected to be good. A similar
conclusion has been drawn when the analysis of the samples of the discriminative Bayesian model based on
word frequencies was analysed. In that case it has also been concluded that the classification results showed
a good recall for the category relevant.
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(a) Word: 4 (b) Word: 8

(c) Word: 6 (d) Word: 9

Figure 6.8: Training process discriminative model for feature word occurrences with Bayesian estimation (confidential dataset). The
blue line indicates the sample values on which the parameter value is based. As can be noted the sample values show much difference.

6.3.2. Classification analysis

In the previous section it has been shown that especially the parameters based on the data of the confidential
dataset are as promising as the parameters for the feature word frequencies. The classification results of the
model based on word occurrences is presented in this section. In Section 1.3 it has already been noted that
the feature of word occurrences is used in the spam classification, and therefore the results are worth looking
at. The classification results based on the TREC for word occurrences are not as good as they are for the word
frequencies. Based on word occurrences the best performing model is Naive Bayes (generative model with
maximum likelihood estimation) based on 1000 words, with a precision of the spam messages of 99.7%, and
a recall of 67.1% (as can be seen in Table F.37). Especially the recall is worse than the recall statistics seen
during the analysis of the feature word frequencies. Another good performing model is the discriminative
model based on maximum likelihood estimation, with a recall of 56.6% for the category spam. With these
performances it is not expected that the classification of fraud related e-mails will have a high performance.

In Table 6.4 the various statistics that have been explained in Section 2.3.2 are shown. These statistics are
averages of the 5-fold cross validation that has been applied to the confidential dataset. The statistics of the
classification of each training and test set are presented in Appendix F. Based on the tables F.22 - F.26 and on
Table 6.4 it can be concluded that the models based on word occurrences applied on the confidential dataset
do not perform very well. Although it has already been concluded that the parameters looked similarly trained
as in the model of word frequencies, in this case the results are not the same. Only the generative model with
maximum likelihood estimation (based on 1000 words as parameters) has a decent recall for the category
relevant. The discriminative model with Bayesian estimation is the other model that performs reasonable
with a ’relevant’ recall of 24.1% on average. It can be noted that the other models do not actually classify any
e-mails, but only assign one or the other category to all of the to be predicted e-mails. The reason for the worse
performance might be that each word (regardless of whether the word has a high or low influence on the e-
mail being fraud related) has a similar influence on the outcome that the e-mail belongs to either category.
This results in that the classification might be heavily influenced by words that are of less importance. This
reasoning is partially justified by the fact that the Bayesian discriminative model and the generative model
with maximum likelihood estimation based on the top 1000 words do perform reasonable.
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MLE (GM) BE (GM) MLE (DM)* BE (DM)* ML (GM)* BE (GM)*
Accuracy 92.1% 6.8% 93.2% 91.3% 60.1% 6.8%
’relevant’ recall 0.0% 100% 0.0% 24.1% 58.2% 100%
’relevant’ precision 0.0% 6.8% n.a. 33.1% 26.7% 6.8%
’not relevant’ recall 98.9% 0.0% 100% 96.3% 60.2% 0.0%
’not relevant’ precision 92.0% n.a. 93.18% 94.5% 95.1% n.a.

Table 6.4: Average performance results word occurrences (5-fold cross validation), based on confidential dataset. Based on these av-
erages the Bayesian generative model based on 1000 words as parameters is the best performing model present in the table. However,
since this model does not have any practical advantage (it classifies every e-mail as ’relevant’) the best model for practical usage would
be the generative model with maximum likelihood estimation based on 1000 words as parameters (GM = Generative model, DM = Dis-
criminative Model, MLE = Maximum Likelihood Estimation, BE = Bayesian Estimation). * = based on the top 500 words identified as as
best corresponding the category ’relevant’ and the top 500 words identified as best corresponding to the category ’not relevant’.

On average the best performing model in Table 6.4 is the generative model based on maximum likelihood es-
timation with parameters based on the top 1000 words (top 500 words identifiable with the category relevant
and top 500 words identifiable with the category not relevant), it has been noticed that the generative model
based on maximum likelihood estimation with all words has an average recall of 0.0%. This might show that
the classification is highly dependent on the parameters (i.e. words on which the model is trained) chosen.
Table 6.5 (and Tables F.27-F.27 in the Appendix) show that the generative model with with maximum likeli-
hood estimation based on the top 1000 words is not very certain about its classification. As can be noticed
there are quite a number of True negative classifications that have so called only ’slight evidence’ against
the other class. This means that the model has its doubts about the classification of these e-mails. On the
other hand there are also a number of false negatives that only have ’slight evidence’ against the other class,
meaning that if the decision boundary would be shifted a few more true positives can easily be added (i.e.
changing the probability of 0.5 that has been used to make the predictive classification of belonging to one
class or the other). The observation that there is in various cases only ’slight evidence’ for the classification of
the other class can also be the reason that the generative model based on maximum likelihood and all words
does not perform very well, which gives additional reasons that the classification of this model is based on
the parameters (i.e. words) used.

Bayes factor True Positives True Negatives False Positives False Negatives

B > 102 0 171 0 13

102 > B > 10
3
2 0 14 0 2

10
3
2 > B > 10 0 14 0 1

10 > B > 10
1
2 0 20 0 1

10
1
2 > B > 1 0 8 0 1

B = 1 0 0 0 0

1 > B > 10−
1
2 0 0 25 0

10−
1
2 > B > 10−1 0 0 10 0

10−1 > B > 10−
3
2 3 0 30 0

10−
3
2 > B > 10−2 1 0 7 0

10−2 > B 10 0 65 0

Table 6.5: Bayes Factor results word occurrences for the generative model with maximum likelihood estimation based on the top 1000
words (set 1). This table shows that the model is not very certain about its classification. Many classifications are near B = 1, meaning
that the probabilities are almost equal. The true positives are rather ’certain’.

6.3.3. Conclusion
Generally speaking the feature word occurrences does not perform very well in order to give e-mails a good
classification. Based on the confidential dataset the best performing model is the generative model with max-
imum likelihood estimation, with an average recall of the category relevant of 58.2%. Looking at the Bayes
factor indicates that the model has in several cases only ’slight evidence’ against the other class. Other models
(except for the discriminative Bayesian model) do not classify other than applying one category to all to be
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predicted e-mail messages, in the case of the confidential dataset.

Moreover, as is shown in the performance tables the generative models are in general computationally faster
than the discriminative models.

6.4. E-mail length
Results based on the feature of the length of e-mail will be presented in this chapter . The most important
results will be explained in this section, more detailed results can also be found in Appendix F.1, especially
results corresponding to the TREC and ENRON dataset, as well as additional results of the 5-fold cross vali-
dation.

6.4.1. parameter analysis
In this section an analysis on the behaviour of the parameters in the various models will be done. By doing
this analysis any possible problems of the model can be identified before even looking at the results.

Generative model - MLE
It has been checked how the parameter of the model based on the feature of lengths is trained. Figure 6.9
shows this training process. In this figure two lines can be seen, one line is for the training process of the
parameter related to the category relevant, the other to the parameter related to the category not relevant.
Furthermore, the grey area around these lines represent one standard deviation. From this figure it can be
concluded that the parameters seem stabilized after the training process. It can be remarked that the values of
both parameters are very much the same (i.e. the lines are near each other at the right side of the plot), which
means that little distinction can be made between the e-mails when regarding the length of e-mails in each
category. This can have impact on the classification performance, since it is better to have bigger differences
between the models. In Chapter 4 it has already been concluded that not much difference between lengths is
present, but especially the outlying values might be distinguished with this model.

Figure 6.9: Training process generative model for feature length e-mail with MLE (confidential dataset). The two lines indicate how the
value of the parameter corresponding to the words are trained. In these figures ’Legit’ is the category of the unlabeled e-mails.

It should be remarked that these figures are unique for the way the model is trained, if the e-mails are shuffled
the figures will be slightly different.

Furthermore, the parameters of the model trained with the ENRON dataset again shows similar characteris-
tics. This can be found in Figure F.21. Therefore, similar performance statistics will be expected based on this
parameter analysis.

Generative model - Bayesian estimation
The difference in prior and posterior marginal distributions has also been checked. Figure 6.10 shows this
difference. In the figure two distribution lines can be seen, one line is for the prior marginal distribution,
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the other for the posterior distribution. From this figure it can be concluded that the marginal posterior
distributions are very flat, and therefore it is expected that the classification results are not very good. In
general a model with more fixed marginal posterior distributions has better classification performances, as
has already been noted with the models based on word frequencies.

Figure 6.10: Training process generative model for feature length e-mail with Bayesian estimation (confidential dataset). The two lines
indicate how the value of the parameter corresponding to the words are trained. In these figures ’Legit’ is the category of the unlabeled
e-mails.

Discriminative model - Bayesian estimation
For the discriminative Bayesian model an analysis has been done based on the samples that are used to
determine the value of the parameter. In Figure 6.11 the samples for various parameters are shown. As can
be noticed, the difference in sample value are not very big (in contrast with the samples analysed for the
features word frequencies and word occurrences). Most of the samples are near the values of 0, and therefore
the parameter values are expected to be near the true value. Which means that the classification results are
expected to be good. The model trained by the ENRON dataset shows similar characteristics, as can be seen
in Figure F.23.

Figure 6.11: Training process discriminative model for feature length e-mail with Bayesian estimation (confidential dataset). The blue
line indicates the sample values on which the parameter value is based. As can be seen the sample values are quite close to each other.
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6.4.2. Classification analysis

In the previous section it has been shown that especially the parameters based on the data of the confiden-
tial dataset are not as promising as the parameters for the feature word frequencies and word occurrences.
The classification results of the model based on word occurrences is presented in this section. The classifi-
cation results based on the TREC for word occurrences are not as good as they are for the word frequencies
but better than for word occurrences. The best performing model is the generative model based on Bayesian
estimation, with a precision of the spam messages of 67.3%, and a recall of 98.8% (as can be seen in Table
F.53). Another good performing model is the generative maximum likelihood model, with a recall of 93.8%
for the category spam. It is also noticed that the discriminative model based on maximum likelihood esti-
mation does not actually perform any classification other than assigning the same label to all e-mails. With
these performances it is not expected that the classification of fraud related e-mails will have a reasonable
performance for some models, but not for all.

In Table 6.6 the various statistics that have been explained in Section 2.3.2 are shown. These statistics are
averages of the 5-fold cross validation that has been applied to the confidential dataset. The statistics of the
classification of each training and test set are presented in Appendix F. Based on the tables F.38 - F.42 and on
Table 6.6 it can be concluded that the model based on e-mail length applied on the confidential dataset does
not perform very well. It has already been concluded that the parameters (except for the parameter of the
discriminative Bayesian model) looked as if good classification results would become a problem. Only the
generative model with maximum likelihood estimation has a decent recall for the category relevant. It can be
noted that the other models do not actually classify any e-mails, but only assign one or the other category to
all of the to be predicted e-mails. The reason for the worse performance might be that there is not enough
distinction between the lengths of the e-mail of the two categories. The same conclusion has already been
made in Chapter 4, although it has also been concluded there that especially the outlying lengths are different
between the categories. In the classification such results are not noticed.

In Table 6.7 one of the tables with the Bayes factor outcomes is shown (this table is based on cross validation
set 1, but shows similar outcomes as with the other sets, the outcomes of the other sets can be found in Table
F.43-F.47). As expected the model is not sure about its classifications, this can be seen with all the e-mails
being in the ’strength of evidence’ class named ’slight evidence’. The behaviour is, as already stated, most
likely the cause of the worse performance.

MLE (GM) BE (GM) MLE (DM) BE (DM)
Accuracy 84.7% 6.8% 93.2% 93.2%
’relevant’ recall 12.7% 100% 0.0% 0.0%
’relevant’ precision 7.0% 6.8% n.a. n.a.
’not relevant’ recall 87.8% 0.0% 100% 100%
’not relevant’ precision 93.2% n.a. 93.2% 93.2%

Table 6.6: Average performance results length e-mail (5-fold cross validation), based on confidential dataset. Based on these averages the
only practically usable model is the generative model based with maximum likelihood estimation. All other models are not performing
any classification other than assigning one class to all e-mail messages. (GM = Generative model, DM = Discriminative Model, MLE =
Maximum Likelihood Estimation, BE = Bayesian Estimation).
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Bayes factor True Positives True Negatives False Positives False Negatives

B > 102 0 0 0 0

102 > B > 10
3
2 0 0 0 0

10
3
2 > B > 10 0 0 0 0

10 > B > 10
1
2 0 0 0 0

10
1
2 > B > 1 0 328 0 27

B = 1 0 0 0 0

1 > B > 10−
1
2 5 0 39 0

10−
1
2 > B > 10−1 0 0 0 0

10−1 > B > 10−
3
2 0 0 0 0

10−
3
2 > B > 10−2 0 0 0 0

10−2 > B 0 0 0 0

Table 6.7: Bayes Factor results of e-mail lengths for the generative model with maximum likelihood estimation (set 1). This table shows
that the model is not certain about its classification.

6.4.3. Conclusion
Generally speaking the feature of e-mail length does not perform very well in order to give e-mails a good
classification, this is due to the limited difference of e-mail lengths between the categories. Based on the
confidential dataset the best performing model is the generative model with maximum likelihood estimation,
with an average recall of the category relevant of 12.7%. Other models do not classify other than applying one
category to all to be predicted e-mail messages, in the case of the confidential dataset. Furthermore, the
classification based on the ENRON dataset does not show much better or different results.
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Additional classification model: AdaBoost

Based on the results presented in the previous Chapter an additional model will be introduced and only
limitedly analysed. The additional model is the machine learning model AdaBoost that shows promising
results in difficult classification problems. As has been noted the models performed best on the confidential
dataset. The reason that has been given is that the confidential dataset is most likely the best representative
dataset for fraud classification, and the others probably lack data quality. Therefore, to save computing time,
in this chapter the AdaBoost model has only be applied to the confidential dataset.

7.1. Classification model
AdaBoost is an iterative algorithm that uses different weights in each simulation during the training process.
The weights are increased or decreased based on the misclassification at each iteration. In this way AdaBoost
might be able to give better classifications. As is stated by Weiss [60] "rare classes are more error-prone than
common classes, and therefore it is reasonable to belief that boosting may improve their classification per-
formance."

Besides the reason that AdaBoost might improve performance of the imbalanced datasets, especially in the
classification of rare classes (i.e. the relevant e-mail messages), AdaBoost has also been chosen as additional
classification model to compare the classification performance of the (full) Bayesian models described in
Chapter 5 with a already implemented machine learning model.

For the classification of the data with AdaBoost the function AdaBoost of the package sk.learn will be used.
A detailed description of AdaBoost is given by for example Freund and Schapire [23] or Bishop [7]. AdaBoost
from the package sk.learn uses the algorithm described by Zhu et al. [63].

AdaBoost uses many ’weak learners’ (learning algorithms that perform just above random classification) in
order to create a predictive model that has a high classification performace. The same features are used
(namely word frequencies, word occurrences and length of an e-mail) as have been described in Chapter 1
and as have been used in the previous chapters. The output of the AdaBoost algorithm is the class label of the
to be predicted e-mail. The package sk.learn uses decision trees as weak learners.

7.2. Results
The various results based on the confidential dataset are given in Tables 7.1 - 7.3 (statistics based on word
frequencies, word occurrences and e-mail lengths respectively). It should be remarked that due to computa-
tion limitations only 1000 parameters (top 500 words identifying relevant and top 500 words identifying not
relevant e-mail messages) are used. It can in general be noticed that AdaBoost does not perform well in clas-
sifying relevant e-mail messages. This was not expected since AdaBoost is known for its good classification of
rare classes.

The maximum recall of the category relevant over all results 9.7%, whilst in the previous chapter multiple
times a recall of 20% till even 50% on average has been seen. This gives additional reason to believe that the
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best performing models found in the previous chapter are indeed actually good models to use in practice.

set 1 set 2 set 3 set 4 set 5
# Predicted = given 362 379 368 377 358
# False Positives 5 0 0 0 11
# False Negatives 32 20 31 22 30
# True Positives 0 0 0 0 1
# True Negatives 362 379 368 377 357
Accuracy 90.7% 95.0% 92.2% 94.5 % 89.7%
Error rate 9.3% 5.0% 7.8% 5.5% 10.3%
’relevant’ recall 0.0% 0.0% 0.0% 0.0% 3.2%
’relevant’ precision 0.0% n.a. n.a. n.a. 8.3%
’not relevant’ recall 98.6% 100% 100% 100% 97.0%
’not relevant’ precision 91.9% 95.0% 92.2% 94.5% 92.2%
’relevant’ F-score n.a. n.a. n.a. n.a. 4.6%
’not relevant’ F-score 95.1% 95.1% 95.1% 97.0% 94.5%
’relevant’ percentage 8.0% 5.0% 7.8% 5.5% 7.8%
Time (test) 1049 sec 1350 sec 802 sec 1224 sec 1023 sec
Time (training) 9440 sec 9275 sec 9035 sec 9420 sec 9081 sec

Table 7.1: Performance results, based on the feature word frequencies of e-mail messages in the confidential dataset. AdaBoost is used
to perform the classification, and the top 1000 words are used as parameters in the model.

set 1 set 2 set 3 set 4 set 5
# Predicted = given 352 379 362 376 352
# False Positives 15 0 7 1 19
# False Negatives 32 20 30 22 28
# True Positives 0 0 1 0 3
# True Negatives 352 379 361 376 349
Accuracy 88.2% 95.0% 90.7% 94.2% 88.2%
Error rate 11.8% 5.0% 9.3% 5.8% 11.8%
’relevant’ recall 0.0% 0.0% 3.2% 0.0% 9.7%
’relevant’ precision 0.0% n.a. 12.5% 0.0% 13.6%
’not relevant’ recall 95.9% 100% 98.1% 99.7% 94.8%
’not relevant’ precision 91.7% 95.0% 92.3% 94.5% 92.6%
’relevant’ F-score n.a. n.a. 5.1% n.a. 11.3%
’not relevant’ F-score 93.8% 95.1% 95.1% 97.0% 93.7%
’relevant’ percentage 8.0% 5.0% 7.8% 5.5% 7.8%
Time (test) 766 sec 966 sec 607 sec 918 sec 719 sec
Time (training) 9229 sec 8907 sec 9122 sec 9067 sec 9117 sec

Table 7.2: Performance results, based on the feature word occurrences of e-mail messages in the confidential dataset. AdaBoost is used
to perform the classification, and the top 1000 words are used as parameters in the model.
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set 1 set 2 set 3 set 4 set 5
# Predicted = given 367 378 368 376 367
# False Positives 0 1 0 1 1
# False Negatives 32 20 31 22 31
# True Positives 0 0 0 0 0
# True Negatives 367 378 368 376 367
Accuracy 92.0% 94.7% 92.2% 94.2% 92.0%
Error rate 8.0% 5.3% 7.8% 5.8% 8.0%
’relevant’ recall 0.0% 0.0% 0.0% 0.0% 0.0%
’relevant’ precision n.a. 0.0% n.a. 0.0% 0.0%
’not relevant’ recall 100% 99.7% 100% 99.7% 99.7%
’not relevant’ precision 92.0% 95.0% 92.2% 94.5% 92.2%
’relevant’ F-score n.a. n.a. n.a. n.a. n.a.
’not relevant’ F-score 95.8% 97.3% 95.9% 97.0% 95.8%
’relevant’ percentage 8.0% 5.0% 7.8% 5.5% 7.8%
Time (test) 5 sec 5 sec 4 sec 5 sec 5 sec
Time (training) 19 sec 19 sec 19 sec 19 sec 19 sec

Table 7.3: Performance results, based on the feature of e-mail lengths of e-mail messages in the confidential dataset. AdaBoost is used
to perform the classification, and the top 1000 words are used as parameters in the model.

7.3. Conclusion
Based on the short analysis AdaBoost does not show any promising results. It was expected to increase the
performance found in the previous chapter, but the classification results show that a decrease in performance
is found. It might therefore indicate that the best performing models in the previous chapter are indeed good
models to use in practice.





8
Conclusion, discussion and

recommendations

"A complex system that works is invariably found to have evolved from a simple system that worked.
A complex system designed from scratch never works and cannot be patched up to make it work.
You have to start over with a working simple system."

John Gall (1975)

The quote from John Gall perfectly summarises the premise of the research presented in this thesis. First a
simple model that works needs to be found, in order to try anything more advanced. In the Introduction, and
in the summary of the state of the art research it was emphasized that currently only limited to no research is
available that is similar as the research done in this thesis. The goal of this thesis was to find techniques that
are able to be trained on historical datasets in order to give a classification of new e-mails in terms of whether
they are relevant or not relevant to a new e-Discovery case. In the Introduction the following research ques-
tion was formulated: Can spam filtering techniques be used as viable techniques for detecting fraud related (i.e.
relevant) e-mails?

In the following sections first the findings are concluded and the research question is answered. After that
the results are discussed, and any difficulties or consequences of assumptions are pointed out. Finally rec-
ommendations for future research are given based on the findings.

8.1. Conclusion
Based on the results presented in this thesis it has to be concluded that the best performing feature is word
frequencies. Although no model has been found of which with certainty can be said that the results are good
enough to be put into practice directly, the generative model with Bayesian estimation showed an average
recall of 51.1% and when taking into account only the top 1000 words even an average recall of 100%. It is
therefore concluded that this model taken from the spam classification might be a viable way for the detec-
tion of relevant e-mail messages. It has been remarked that the parameters of this model are most likely not
trained well enough (due to the spiky behaviour during the training process), and therefore the classification
performance is expected to increase if better and more data is available. Furthermore, by the means of Bayes
factor analysis it has been concluded that the classes assigned by the generative Bayesian model are so called
’strong’ to ’decisive’ in terms of strength of evidence. The other models did not perform as good as the gener-
ative Bayesian model. The generative model with Bayesian estimation is also one of the models for which it
holds that the classification can be computed relatively fast, which is useful for using the model in practice.

The classification based on word occurrences or e-mail lengths did not perform as expected and did not get
near the results that were found with the word frequencies.
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8.2. Discussion
As has already been remarked in the various chapters that described the implementation of the features, one
of the major drawbacks is the nature of the data of an e-Discovery case. This drawback consists of three parts,
namely the unbalancedness of the data, the data quality as well as the availability of the data. As has been
noted in the report data used in e-Discovery cases are very unbalanced, it is not uncommon to have between
1% and 10% of relevant e-mail in the dataset. This can have influence on the results shown in this thesis,
since the parameters are estimated based on the available data. Therefore if from one class a lot of data is
available, and from the other class only limited data, then various models are biased towards the larger class.
Furthermore, it has been remarked that the data quality of especially the ENRON dataset is not high. The re-
sults showed low classification performance based on the ENRON dataset, it is expected that the data quality
is the major cause. It has been decided to include the ENRON dataset (regardless of its quality) in order for
future research to be able to compare results. Moreover, and closely related to the previous two discussion
parts on the aspect of data, there is not much data available. As might already have been noted, the current
models have been applied in a cross validation setting, whilst the original idea was to train on one dataset
and classify on a new dataset. However, no additional datasets were available at the time of doing research,
and therefore the analysis of cross validation is done.

Secondly, it has not been studied which influence the priors have on the classification performances. The
prior values used are tried to be kept as objective as possible, by using flat priors and values for the hyper
parameters that are widely accepted, but the influence of the prior on the posterior distribution is not mea-
sured. In order to keep the research focused on the goal of the thesis, it is decided to not include an analyse
on the influence of the priors. It is possible that the priors used have a big influence on the classification
performance, and that an other prior of hyper parameter value would have resulted in better results.

Furthermore, the models are based on various assumptions. It is known that two of the used assumptions
(independence of words and e-mails) are in practice not valid. Despite not being valid these assumptions are
used in order to make the models more useful in practice and computationally more efficient. Many other
research report use the same assumptions, but it might be the case that these assumptions influence our re-
sults more than expected.

Moreover, the pre-processing of the e-mails can be questionable. It is chosen to remove any characters other
than the small and capital letters. In this way the original text is adapted and therefore unique characteris-
tics that can be of importance in the classification of relevant e-mails might be removed. At the same time no
stemming or natural language processing is applied in order to keep the original text, and to be able to classify
based on the original words used. Keeping the original text results in many different unique parameters (i.e.
words) whilst stemming or natural language processing results in more counts per feature, but less unique
features. In general both possibilities have their own advantages and disadvantages.

Finally, the consequences of using classification model should be kept in mind. A model that is able to detect
relevant e-mails is useful in terms of money and time. However, the model is only trained on historical data,
and therefore a natural bias will be present. If historically certain messages are labeled as relevant that were
not actually relevant, then in the future anything similar will of course also be labeled relevant. Furthermore,
if the actual fraud in a new case is not in the trainingsset, but some messages in the case are pointed out
by the model as being relevant a tunnel vision might be created. It is always advisable to keep in mind that
a model only gives an indication, but never knows with certainty that the messages labeled as relevant are
indeed relevant to the case. The models discussed are not able to detect the meaning of words, only their
usage.
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8.3. Recommendations
Although in this thesis different models and datasets are looked into, research is never finished. It has espe-
cially been noted that this thesis was focused on exploratory research. Therefore, various recommendations
for further research will be given in this section.

First of all, it is recommended for any organisation, but especially KPMG since the thesis was written in co-
operation with Forensic Technology, to create a database of datasets that can be used for training these kind
of models. As has been noted throughout the report, the quality of the (publicly) available data is currently
not very high. Public data is simply not available, and in order to be able to develop a model that is able to be
put into practice, quite a number of datasets are needed in order to train a model that is able to perform well
enough.

Secondly, this thesis has only looked at a certain selection of models. The models have been chosen based
on the available information, but this does not mean that other models cannot perform better. At the end of
the thesis an additional model, AdaBoost, has been looked into. Although AdaBoost did not perform well, it
might be that for example Support Vector Machines perform a lot better.

Furthermore, the application of stemming or language processing in general might improve results signifi-
cantly. In this thesis it has been decided not to apply natural language processing since information is re-
moved. However, it has been concluded that the words identifiable with fraud are not present in high quanti-
ties. Natural language processing might result in higher counts of certain features, and therefore better overall
performance.

Besides the development of a model that is able to select fraudulent messages. It is also useful for an e-
Discovery case to look into models that remove non fraudulent messages (i.e. news articles, spam, newslet-
ters etc.). In this way the size of the dataset that still needs to be review is decreased, and therefore the review
process is faster.

Moreover, a straightforward recommendation is looking into new features. This thesis has only looked into
word frequencies, word occurrences and length of e-mails, however many more features are available. Such
as the number of recipients, the day of the week the e-mail is sent, the presence of an attachment, etc. It is
even possible to create a overall model that combines different features. In this case the most computational
efficient way is to assume that features are independent, but taking dependence of features (or even words/e-
mails) into account might improve the classification results.

Furthermore, it has been noted that the e-mail datasets related to e-Discovery cases are in almost all cases
unbalanced datasets. Only limited information is available on the way unbalanced unstructured datasets
need to be handled, and therefore additional research can be added.

looking into the threshold of p = 0.5 might improve performance. By the means of Bayes factor it has been
concluded that no large performance increase was possible, but by determining the most optimal threshold
value might just give the additional increase in performance in order to make a model useful in practice.
Last but not least, based on the conclusion it is recommended to do additional research on the generative
Bayesian model based on word frequencies (i.e. Extended Naive Bayes) in order to improve the performance.
There are multiple ways to improve the performance, such as by taking different prior distributions, other
classification rules or by looking at the word frequencies used. Each of these are different assumptions of the
model, and by changing these assumptions better classification might be achieved.
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A
Mathematical background - distributions

Throughout the report various distributions will be used. For completeness these distributions will be stated
in the following subsections.

A.1. Multinomial distribution
The multinomial distribution is a generalization of the binomial distribution. The distribution has two pa-

rameters namely n, the number of trials, and p1, . . . , pk , the event probabilities (with
k∑

i=1
pi = 1). Furthermore,

it uses the support xi ∈ {0, . . . ,n} with i ∈ {1, . . . ,k} and
k∑

i=1
xi = n.

The probability density function is given by:

f (x1, . . . , xk ; p1, . . . , pk ) = n!
k∏

i=1
xi !

·
k∏

i=1
pxi

i .

The conjugate prior of the Multinomial distribution is the Dirichlet distribution.

A.2. Dirichlet distribution
The Dirichlet distribution has two parameters, namely the number of categories (K ) and the concentration
parameters α = α1, . . . ,αK , where αi > 0. Furthermore, it uses the support τ1, . . . ,τK with τi ∈ (0,1) and
K∑

i=1
τi = 1.

The probability density function is given by:

f (τ1, . . . ,τK ;α1, . . . ,αK ) = 1

B(α)

K∏
i=1

τ
αi−1
i ,

in which the Beta function is given by

B(α) =

K∏
i=1
Γ(αi )

Γ(
K∑

i=1
αi )

.

The gamma function is known by (for complex numbers with a positive real part):

Γ(αi ) =
∞∫

0

xαi−1e−x d x.
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The mean of a random variable X = (X1, . . . , XK ) ∼ Di r (α) is given by E[Xi ] = αi
K∑

k=1
αk

. The mode is given by

αi−1
K∑

k=1
αk−K

.

It should also be noted that the Dirichlet distribution is a conjugate prior for the multinomial distribution.
Which means that if the prior distribution of multinomially distributed parameters is Dirichlet then the pos-
terior distribution is also a Dirichlet distribution.

A.3. Pareto distribution
The Pareto distribution is a distribution that is a power law probability distribution. The distribution has two
parameters, namely η, the scale, and α, the shape. It must hold that η> 0 and α> 0. Furthermore it uses the
support x ∈ [η,∞).

The probability density function is given by

f (x;α,η) =
{
αηα

xα+1 i f x ≥ η
0 i f x < η.

The conjugate prior of the Pareto distribution is the Gamma distribution.

A.4. Gamma distribution
The Gamma distribution is te conjugate prior for the Pareto distribution. It uses two parameters, namely
α> 0 as its shape and β> 0 as its rate parameter. The support is x ∈ (0,∞).

The probability density function is given by (for α,β, x > 0)

f (x;α,β) = βαxα−1e−β·x

Γ(α)
.

A.5. Bernoulli distribution
The Bernoulli distribution is the distribution in which a random variable takes value 1 with probability p and
value 0 with probability (1− p). The parameters of the distribution are 0 ≤ p ≤ 1. and it uses the support
k ∈ {0,1}.

The probability density function is given by

f (k; p) = pk (1−p)1−k .

Note that the Bernoulli distribution is a special case of the Binomial distribution (with n = 1).

A.6. Beta distribution
The Beta distribution uses the parameters α> 0 and β> 0, with support x ∈ [0,1].

The probability density function is given by

f (x;α,β) = xα−1 · (1−x)β−1

B(α,β)
,

in which B(α,β) = Γ(α)Γ(β)
Γ(α+β) .

The beta distribution is the conjugate prior for the Bernoulli distribution.



B
Mathematical details - model word

frequencies

B.1. Generative model
A simple generative model for e-mails will be described. Let

(
t1, . . . , t J

)
be a given dictionary of words. Let

θy =
(
θ

y
j

)J

j=1
be relative frequencies for these words as they occur in e-mails, in which y indicates whether

the e-mail is relevant (y = 1) or not relevant (y = 0).

Let z = (z1, . . . , zn) be an ordered sequence of words. The probability distribution over e-mails z can be written
as:

p(z) = ∑
y=0,1

p(y)p(z |y)

= ∑
y=0,1

p(y)p(n | y)p(z | n, y)

= ∑
y=0,1

p(y)p(n | y)
n∏

i=1
p

(
zi | n, y

)
.

For simplicity, assume that the distribution of n does not depend on y . With p
(
zi = t j | n, y

)= p
(
zi | y

)= θy
j ,

this fully specifies our generative model. The notation x j (z) = #
{
i : zi = t j

}
will be used, i.e. x j is the word

count of the j -th word in the dictionary. The following holds

p(z | y) = p(n)
J∏

j=1

(
θ

y
j

)x j (z)
.

The posterior distribution over x will then become (taking into account multiple ways in which word counts
may occur):

p(x | y) = p(n)

(
n

x1 · · ·x J

)
J∏

j=1

(
θ

y
j

)x j
. (B.1)

B.1.1. Maximum likelihood estimation of θy

Let z (1), . . . , z (N ) denote a sequence of e-mails (or for the purpose of this model, equivalently: word counts
x (1), . . . , x (N )). Furthermore, let y (1), . . . , y (N ) denote whether an e-mail is relevant or not relevant. It is as-
sumed that all e-mails are independently generated according to the model. Our available parameters are θ0

and θ1, and it is assumed that the probability distributions p(y) and p(n) to be fixed. The likelihood of this
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observation is

L
(
θ0,θ1) =

N∏
m=1

p
(
x (m), y (m))

=
N∏

m=1
p

(
y (m))p

(
x (m) | y (m))

=
N∏

m=1
p

(
y (m))p

(
n(m))( n(m)

x(m)
1 · · ·x(m)

J

)
J∏

j=1

(
θ

y (m)

j

)x(m)
j

.

The log likelihood will be, up to irrelevant additional constants, equal to

l
(
θ0,θ1)= N∑

m=1

J∑
j=1

x(m)
j log

(
θ

y (m)

j

)
.

This log likelihood will be maximized subject to the constraint that
J∑

j=1
θ

y
j = 1, and θy

j ≥ 0 for all j and y . This

yields

θ
y
j =

∑
m=1,...,N :y (m)=y

x(m)
j∑

m=1,...,N :y (m)=y
n(m)

.

Classification based on MLE
It is known that y gets either the class ’relevant’ or ’not relevant’, therefore it can be assumed that the distri-
bution of y is the Bernoulli distribution with parameter p (the probability of an e-mail being spam), i.e.,

p(y) = p y · (1−p)1−y .

In this equation p is a fixed valued hyperparameter.

For the classification of a new e-mail, Bayes’ law will be used and the obtained MLE estimators for θy are
plugged in:

p(y | z) = p(z | y)p(y)

p(z | y = 0)p(y = 0)+p(z | y = 1)p(y = 1)
(B.2)

∝ p(z | y)p(y) (B.3)

∝
J∏

j=1
(θy

j )x j (z) ·p y (1−p)1−y , (B.4)

in which

θ
y
j =

∑
m=1,...,N :y (m)=y

x(m)
j∑

m=1,...,N :y (m)=y
n(m)

.

It is likely that with this formula a probability of 0 of both situations y = 0 and y = 1 will be given. This is the
case since our dataset corresponding to the training of θ does not have to have the situation in which every
word occurs in an e-mail for both cases. Therefore Laplace smoothing will be applied to the MLE estimations
of θy

j :

θ̃
y
j =

∑
m=1,...,N :y (m)=y

(
x(m)

j

)
+1∑

m=1,...,N :y (m)=y

(
n(m)

)+ J
. (B.5)
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B.1.2. Bayesian estimation
The posterior distribution of θ = (

θ0,θ1
)

will become

p
(
θ | y, x

) = p(x | θ, y)p(y | θ)p(θ)

p(y | x)p(x)

= p(x | θ, y)p(y)p(θ)

p(y | x)p(x)

∝ p(x | θ, y)p(θ),

in which it is used that

p(x | θ, y) = p(n)

(
n

x1 · · ·x J

)
J∏

j=1

(
θ

y
j

)x j
,

and p (θy ) ∼ Di r (α), i.e.

p
(
θy )= 1

B(α)

J∏
j=1

(
θ

y
j

)α j −1
.

It is generally known that

B(α) =

J∏
j=1
Γ

(
α j

)
Γ

(
J∑

j=1
,α j

) (B.6)

and for some β> 0
Γ(β) = (β−1)! (B.7)

This gives us that

p
(
θ0,θ1 | y, x

)∝ J∏
j=1

(
θ

y
j

)x j +α j −1 ·
J∏

j=1

(
θ

1−y
j

)x j +α j −1
.

Let z (1), . . . , z (N ) denote a sequence of e-mails (or for the purpose of this model, equivalently: word counts
x (1), . . . , x (N )). Furthermore, let y (1), . . . , y (N ) denote whether an e-mail is relevant or not relevant. It is assumed
that all e-mails are independently generated according to the model. Our available parameters are θ0 and θ1,
and it is assumed that the probability distributions p(y) and p(n) to be fixed. This gives us the following
posterior distribution for θy :

p
(
θξ | x (1), . . . , x (N ), y (1), . . . , y (N )

)
∝ ∏

m=1,...,N :y (m)=ξ
p

(
x (m) | θ, y (m))p(θ)

∝ ∏
m=1,...,N :y (m)=ξ

(
J∏

j=1

(
θ

y (m)

j

)x(m)
j

)
· 1

B(α)

J∏
j=1

(
θ
ξ
j

)α j −1

= 1

B(α)

J∏
j=1

(
θ
ξ
j

) ∑
m=1,...,N :y(m)=ξ

(
x(m)

j

)
+α j −1

∼ Di r
(
αξ

)
,

with αξj =
∑

m=1,...,N :y (m)=ξ

(
x(m)

j

)
+α j and ξ= 0,1.

It is known that the maximum a posteriori (MAP) estimate equals the mode of the posterior distribution.
Using the conclusion that the posterior distribution of θξ equals the Dirichlet distribution with parameter
αξ, it follows that the MAP estimate for θξ is given by

θ
ξ
j =

α
ξ
j −1

J∑
j=1

(
α
ξ
j

)
− J

=

∑
m=1,...,N :y (m)=ξ

(
x(m)

j

)
+α j −1

J∑
j=1

( ∑
m=1,...,N :y (m)=ξ

(
x(m)

j

)
+α j

)
− J

,
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with the restriction that αξj > 1. If αξj ≤ 1 then the maximum will be on the boundary.

The posterior mean is given by

Eθ
ξ
j =

α
ξ
j

J∑
j=1

α
ξ
j

=

∑
m=1,...,N :y (m)=ξ

(
x(m)

j

)
+α j

J∑
j=1

( ∑
m=1,...,N :y (m)=ξ

(
x(m)

j

)
+α j

) .

Classification based on Bayesian estimate
It is known that y gets either the class ’relevant’ or ’not relevant’, therefore it can be assumed that the distri-
bution of y is the Bernoulli distribution with parameter p (the probability of an e-mail being fraud), i.e.,

p(y) = p y · (1−p)1−y .

In this equation p is a fixed valued hyperparameter.

Using Bayes’ law and the formula (with conditioning on θ) p(y | z) = p(z |y)p(y)
p(z |y=0)p(y=0)+p(z |y=1)p(y=1) of Sec-

tion B.1.1:

p(y | x ,θ) ∝ p(x | y,θ)p(θ | y)p(y)

∝ p(x | y,θ)p(y)

∝
J∏

j=1

(
θ

y
j

)x j ·p y (1−p)1−y .

This gives us that the formula for classification equals:

p(y | x) =
∫

S J

J∏
j=1

(
θ

y
j

)x j ·p y (1−p)1−y dθ,

in which S J is the corresponding simplex over the J dimensions of θ.

Therefore, when taking into account the sequence of e-mails z (1), . . . , z (N ) (or for our purposes, equivalently:
word counts x (1), . . . , x (N )) together with information y (1), . . . , y (N ), the conditional distribution of y (N+1) for
our new e-mail can be written as:

p
(
y (N+1) | x (1), . . . , x (N ), y (1), . . . , y (N ), x (N+1)) =

∫
S J

p
(
y (N+1) | x (N+1),θ

)
p

(
θ | x (1), . . . , x (N ), y (1), . . . , y (N ))dθ

∝
∫

S J

J∏
j=1

(
θ

y (N+1)

j

)x(N+1)
j ·p y (N+1)

(1−p)1−y (N+1) ·

1

B
(
αy (N+1)) J∏

j=1

(
θ

y (N+1)

j

) ∑
m=1,...,N :y(m)=y(N+1)

(
x(m)

j

)
+α j −1

dθ

= p y (N+1)
(1−p)1−y (N+1) · 1

B
(
αy (N+1)) ·

∫
S J

J∏
j=1

(
θ

y (N+1)

j

)x(N+1)
j + ∑

m=1,...,N :y(m)=y(N+1)

(
x(m)

j

)
+α j −1

dθ

= p y (N+1)
(1−p)1−y (N+1) · 1

B
(
αy (N+1)) ·B

(
α̃y (N+1)

)
,

using
∫

S J
1

B
(
α̃y(N+1)

) J∏
j=1

(
θ

y (N+1)

j

)α̃y(N+1)−1
dθ = 1 (inside the integral is a typical Dirichlet distribution with pa-

rameters J and α̃y (N+1)
, so the probability density function integrates to 1) and with

α̃
y (N+1)

j = x(N+1)
j + ∑

m=1,...,N :y (m)=y (N+1)

(
x(m)

j

)
+α j .
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Which needs to be calculated for y (N+1) = 0 and y (N+1) = 1 since this expression holds up to the proportion-
ality constant.

B.2. Discriminative model
A simple discriminative model for e-mails will be described. As in the generative model, let (t1, . . . , t J ) be a
given dictionary of words. Let y indicate whether the e-mail is relevant (y = 1) or not relevant (y = 0).

Let z = (z1, . . . , zn) be an ordered sequence of words. Also the notation x j (z) = #
{
i : zi = t j

}
will be used, i.e.

x j is the word count of the j -th word in the dictionary.

Logistic Regression will be used as discriminative model. Therefore it is assumed that

p(y = 1|x) = 1

1+exp

(
w0 +

J∑
j=1

w j x j

) ; (B.8)

p(y = 0|x) =
exp

(
w0 +

J∑
j=1

w j x j

)

1+exp

(
w0 +

J∑
j=1

w j x j

) . (B.9)

B.2.1. Maximum likelihood estimation of w
Let z (1), . . . , z (N ) denote a sequence of e-mails (or for the purpose of this model, equivalently: word counts
x (1), . . . , x (N )). Furthermore, let y (1), . . . , y (N ) denote whether an e-mail is relevant or not relevant. All e-mails
are assumed to be independently generated according to the model. Let w = (

w1, . . . , w J
)

be the weights
needed in Formula (5.8) and (5.7). With the assumption that the outcomes are Bernoulli distributed, this will
get us the following likelihood (log likelihood denoted with l , and likelihood with L):

L(w ) =
N∏

m=1
p

(
y (m) | x (m)) (B.10)

=
N∏

m=1
p

(
y = 1 | x (m))y (m)

·p
(
y = 0 | x (m))1−y (m)

. (B.11)

l (w ) =
N∑

m=1

(
y (m) ln

(
p(y = 1 | x (m))

)+ (
1− y (m)) ln

(
p

(
y = 0 | x (m)))) . (B.12)

The only steps left to get the best parameters w is to maximize Equation (B.12) (in other words setting the
derivative w.r.t. w to zero and solving this equation). Note that no closed form of the maximization of the log
likelihood is available. Various algorithms are available to approximate the maximization, in the next section
the used approximation method will be stated.

Approximation method
For the MLE of w the available function LogisticRegression from the sklearn.linear_model package has been
used. The approximation method selected in this function is SAGA, other available approximation methods
in LogisticRegression are:

• liblinear

• lbfgs

• newton-cg

• SAG
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Of these approximation methods the first three have the major disadvantage that they are not faster for larger
datasets. SAGA is a incremental gradient algorithm with fast linear convergence rates, and based on SAG. It
has been shown that SAGA is one of the methods that is most efficient for high dimensional data, as is the case
in our application. The reason to choose SAGA over SAG is because SAGA does not require a predefined num-
ber of iterations and because SAGA is the solver of choice for sparse multinomial logistic regression according
to the description of the package. A detailed description of SAGA is given by Defazio et al. [13].

Classification based on MLE
For the classification of a new e-mail, the Equations (5.8) and (5.7) are used. The classification property of
logistic regression comes down to giving e-mail z (N+1) (and corresponding data x (N+1)) label y (N+1) = 0 if

1 < p
(
y = 0|x(N+1)

)
p

(
y = 1|x(N+1)

) = exp

(
w0 +

J∑
j=1

w j x(N+1)
j

)
.

Rewriting gives that z (N+1) (with corresponding word counts x (N+1)) is classified with label y = 0 if 0 < w0 +
J∑

j=1
w j x(N+1)

j , and with label y = 1 otherwise.

B.2.2. Bayesian estimation
The posterior distribution of w will become:

p(w | y, x) ∝ p(y | x , w )p(w )

in which Equations (5.8) and (5.7) are used. For clarification purposes, these will be stated again:

p(y = 1|x , w ) = 1

1+exp

(
w0 +

J∑
j=1

w j x j

) ,

p(y = 0|x , w ) =
exp

(
w0 +

J∑
j=1

w j x j

)

1+exp

(
w0 +

J∑
j=1

w j x j

) .

Furthermore, use that p(w ) ∼ N (0,106), with each wi independent of the other weights [45, 53].

This gives us that

p(w | y, x) ∝

 1

1+exp

(
w0 +

J∑
j=1

w j x j

) · y +
exp

(
w0 +

J∑
j=1

w j x j

)

1+exp

(
w0 +

J∑
j=1

w j x j

) · (1− y)

 ·
J∏

i=0

1p
2π ·1012

exp

(
− w2

i

2 ·1012

)
.

Let z (1), . . . , z (N ) denote a sequence of e-mails (or for the purpose of this model, equivalently: word counts
x (1), . . . , x (N )). Furthermore, let y (1), . . . , y (N ) denote whether an e-mail is relevant or not relevant. All e-mails
are assumed to be independently generated according to the model. This gives us the following posterior
distribution for w :

p
(
w | x (1), . . . , x (N ), y (1), . . . , y (N ))

∝
N∏

m=1

 1

1+exp

(
w0 +

J∑
j=1

w j x(m)
j

) · y (m) +
exp

(
w0 +

J∑
j=1

w j x(m)
j

)

1+exp

(
w0 +

J∑
j=1

w j x(m)
j

) · (1− y (m))
 ·

J∏
i=0

1p
2π ·1012

exp

(
− w2

i

2 ·1012

)
.
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Classification based on Bayesian estimate
Using Bayes’ law it follows that the formula for classification equals:

p(y | x) ∝
∫

S J
p(w | y, x)p(y | x , w )d w

Therefore, when taking into account the sequence of e-mails z (1), . . . , z (N ) (or for our purposes, equivalently:
word counts x (1), . . . , x (N )) together with information y (1), . . . , y (N ), the conditional distribution of y (N+1) for
our new e-mail can be written as:

p
(
y (N+1) | x (1), . . . , x (N+1), y (1), . . . , y (N ))

∝
∫

S J
p

(
y (N+1), w | x (1), . . . , x (N ), y (1), . . . , y (N ), x (N+1))d w

=
∫

S J
p

(
y (N+1) | x (N+1), w

)
p

(
w | x (1), . . . , x (N ), y (1), . . . , y (N ))d w

=
∫

S J

 1

1+exp

(
w0 +

J∑
j=1

w j x(N+1)
j

) · y (N+1) +
exp

(
w0 +

J∑
j=1

w j x(N+1)
j

)

1+exp

(
w0 +

J∑
j=1

w j x(N+1)
j

) · (1− y (N+1))


·
N∏

m=1

 1

1+exp

(
w0 +

J∑
j=1

w j x(m)
j

) · y (m) +
exp

(
w0 +

J∑
j=1

w j x(m)
j

)

1+exp

(
w0 +

J∑
j=1

w j x(m)
j

) · (1− y (m))
 ·

J∏
i=0

1p
2π ·1012

exp

(
− w2

i

2 ·1012

)
d w

Which needs to be calculated for y (N+1) = 0 and y (N+1) = 1 since this expression holds up to the proportion-
ality constant.

For the Bayesian estimation of w the available package Pystan has been used. The approximation method
available and used in this this package is NUTS. A detailed description of NUTS is given by Hoffman and
Gelman [30].

B.3. Relation generative and discriminative model
When considering the following assumptions it will be shown that the generative model (in our case Multi-
nomial Naive Bayes) implies the form of the discriminative model (in our case Logistic Regression) [41]:

• X = (X1, . . . , Xn), with Xi a discrete random variable, in our case the counts of words in an e-mail

• It holds that p(x |y) follows the distribution in Equation (5.1), described in Section B.1

• Xi and X j are conditionally independent given Y , for each i 6= j

Using these assumptions, and Bayes rule, it holds that:

P(y = 1|x) = p(y = 1)p(x |y = 1)

p(y = 1)p(x |y = 1)+p(y = 0)p(x |y = 0)

= 1

1+ p(y=0)p(x |y=0)
p(y=1)p(x |y=1)

= 1

1+exp(ln p(y=0)p(x |y=0)
p(y=1)p(x |y=1) )

= 1

1+exp(ln p(y=0)
p(y=1) + ln p(x |y=0)

p(x |y=1) )
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With the assumption that p(x |y) follows the distribution in Equation (5.1), it follows that:

ln
p(x |y = 0)

p(x |y = 1)
= ln

p(n)
( n

x1···x J

) J∏
j=1

(θ0
j )x j

p(n)
( n

x1···x J

) J∏
j=1

(θ1
j )x j

= ln

J∏
j=1

(θ0
j )x j

J∏
j=1

(θ1
j )x j

= ln

(
J∏

j=1
(θ0

j )x j

)
− ln

(
J∏

j=1
(θ1

j )x j

)

= x j ln

(
J∏

j=1
(θ0

j )

)
−x j ln

(
J∏

j=1
(θ1

j )

)

= x j

(
ln

(
J∏

j=1
(θ0

j )

)
− ln

(
J∏

j=1
(θ1

j )

))

= x j

(
J∑

j=1
ln

(
(θ0

j )
)
− ln

(
(θ1

j )
))

= x j

(
J∑

j=1
ln

(
θ0

j

θ1
j

))

=
J∑

j=1
x j P j

In which P j = ln

(
θ0

j

θ1
j

)
.

Taking these two expressions together gives us:

p(y = 1|x) = 1

1+exp(ln p(y=0)
p(y=1) +

J∑
j=1

x j P j )

(B.13)

Which is of the form corresponding to Logistic Regression, i.e.

p(y = 1|x) = 1

1+exp(w0 +
J∑

j=1
w j x j )

and

p(y = 1|x) = 1−p(y = 0|x) =
exp(w0 +

J∑
j=1

w j x j )

1+exp(w0 +
J∑

j=1
w j x j )

with w0 = ln p(y=0)
p(y=1) and w j = P j for j = 1, . . . , J .

Based on this proof it can be concluded that the implemented generative model is a special case of the dis-
criminative model. The discriminative model is therefore more general. However, as will be seen in for ex-
ample Section 6.2 that the generative model is computationally less expensive.



C
Mathematical details - model word

occurrences

C.1. Generative model
A simple generative model for e-mails will be described. Let z = (z1, . . . , zn) be a sequence of words of an
e-mail. Let (t1, . . . , t J ) be a given dictionary of words. Let q y = (q y

j )J
j=1, in which q y

j represents the probability

that word t j corresponds to relevant (y = 1) or not relevant (y = 0), i.e. p(ti | y) = q y
j . Furthermore, it holds

that q1
j = 1−q0

j .

Let x = (x1, . . . , x J ) be the corresponding features of the given dictionary, in which xi = 1 if word ti is present in
the e-mail (i.e. ti ∈ z) and xi = 0 if word ti is not present (i.e. ti 6∈ z). The probability distribution over e-mail
features x can be written as:

p(x) = ∑
y=0,1

p(y)p(x |y)

= ∑
y=0,1

p(y)p(n | y)p(x | n, y)

= ∑
y=0,1

p(y)p(n | y)
J∏

i=1
p(xi | n, y).

For simplicity, it will be assumed that the distribution of n does not depend on y . Once it is noted that
p(xi | n, y) = p(xi | y) = p(ti | y)xi · (1−p(ti | y))1−xi , and recall that p(ti | y) = q y

i this fully specifies our gener-
ative model.

The posterior distribution over x will then become:

p(x | y) = p(n)
J∏

j=1
(q y

j )x j · (1−q y
j )1−x j (C.1)

C.1.1. Maximum likelihood estimation for θy

Let x (1), . . . , x (N ) denote word occurrences of e-mails. Furthermore, let y (1), . . . , y (N ) denote whether an e-mail
is relevant or not relevant. All e-mails are assumed to be independently generated according to the model.
Our available parameters are q 0 and q 1, and the probability distributions p(y) and p(n) are assumed to be

83
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fixed. The likelihood of this observation is

L(q 0, q 1) =
N∏

m=1
p(x (m), y (m))

=
N∏

m=1
p(y (m))p(x (m) | y (m))

=
N∏

m=1
p(y (m))p(n(m))

J∏
j=1

(q y (m)

j )
x(m)

j · (1−q y (m)

j )
1−x(m)

j .

The log likelihood will be, up to irrelevant additional constants, equal to

l (q 0, q 1) =
N∑

m=1

J∑
j=1

x(m)
j log(q y (m)

j )+ (1−x(m)
j ) log(1−q y (m)

j ).

This log likelihood will be maximized subject to the constraint that q y
j ≥ 0 for all j and y . This yields

q y
j =

∑
m=1,...,N :y (m)=y

x(m)
j∑

m=1,...,N :y (m)=y
1

.

Classification based on MLE
It is known that y gets either the class ’relevant’ or ’not relevant’, therefore it can be assumed that the distri-
bution of y is the Bernoulli distribution with parameter p (the probability of an e-mail being relevant), i.e.,

p(y) = p y · (1−p)1−y .

In this equation p is a fixed valued hyperparameter.

For the classification of a new e-mail, Bayes’ law is used and the obtained MLE estimators for θy are plugged
in:

p(y | x) = p(x | y)p(y)

p(x | y = 0)p(y = 0)+p(x | y = 1)p(y = 1)
(C.2)

∝ p(x | y)p(y) (C.3)

∝
J∏

j=1
(q y

j )x j · (1−q y
j )1−x j ·p y (1−p)1−y , (C.4)

in which

q y
j =

∑
m=1,...,N :y (m)=y

x(m)
j∑

m=1,...,N :y (m)=y
1

.

It is likely that with this formula a probability of 0 of both situations y = 0 and y = 1 will be given. This is the
case since our dataset corresponding to the training of q does not have to have the situation in which every
word occurs in an e-mail for both cases. Therefore Laplace smoothing will be applied to the MLE estimations
of q y

j :

θ̃
y
j =

∑
m=1,...,N :y (m)=y

x(m)
j +1∑

m=1,...,N :y (m)=y
1+ J

. (C.5)

C.1.2. Bayesian estimation
The posterior distribution of q = (q 0, q 1) will become

p(q | y, x) = p(x | q , y)p(y | q)p(q)

p(y | x)p(x)

= p(x | q , y)p(y)p(q)

p(y | x)p(x)
∝ p(x | q , y)p(q),
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in which the following equations are used

p(x | q , y) = p(n)
J∏

j=1
(q y

j )x j · (1−q y
j )1−x j

and p(q y
j ) ∼ Bet a(α j ,β j ), i.e.

p(q y
j ) =

(q y
j )α j −1 · (1−q y

j )β j −1

B(α j ,β j )
. (C.6)

It is generally known that

B(α,β) = Γ(α)Γ(β)

Γ(α+β)
(C.7)

and for some ζ> 0
Γ(ζ) = (ζ−1)! (C.8)

This gives us that

p(q y ) =
J∏

j=1

(q y
j )α j −1 · (1−q y

j )β j −1

B(α j ,β j )
. (C.9)

Combining Equation (C.1) and (C.6), gives us

p(q 0, q 1 | y, x) ∝
J∏

j=1

(q y
j )α j +x j −1 · (1−q y

j )β j −x j

B(α j ,β j )
·

J∏
j=1

(q1−y
j )α j +x j −1 · (1−q1−y

j )β j −x j

B(α j ,β j )

Let x (1), . . . , x (N )) denote word occurrences of e-mails. Furthermore, let y (1), . . . , y (N ) denote whether an e-
mail is relevant or not. All e-mails are assumed to be independently generated according to the model. Our
available parameters are q 0 and q 1, and the probability distributions p(y) and p(n) are assumed to be fixed.
This gives us the following posterior distribution for q y :

p(qξ | x (1), . . . , x (N ), y (1), . . . , y (N )) ∝ ∏
m=1,...,N :y (m)=ξ

p(x (m) | q , y (m))p(q)

∝ ∏
m=1,...,N :y (m)=ξ

(
J∏

j=1
(q y (m)

j )
x(m)

j · (1−q y (m)

j )
1−x(m)

j

)
·

J∏
j=1

(q y (m)

j )α j −1 · (1−q y (m)

j )β j −1

B(α j ,β j )

=
J∏

j=1

(qξj )
α j −1+ ∑

m=1,...,N :y(m)=ξ
x(m)

j · (1−qξj )
β j −1+ ∑

m=1,...,N :y(m)=ξ
(1−x(m)

j )

B(α j ,β j )
,

with ξ= 0,1.

Classification based on Bayesian estimate
It is known that y gets either the class ’relevant’ or ’not relevant’, therefore it will be assumed that the distri-
bution of y is the Bernoulli distribution with parameter p (the probability of an e-mail being spam), i.e.,

p(y) = p y · (1−p)1−y .

In this equation p is a fixed valued hyperparameter.

Using Bayes’ law and the formula (with conditioning on q) p(y | x) = p(x |y)p(y)
p(x |y=0)p(y=0)+p(x |y=1)p(y=1) of Sec-

tion B.1.1:

p(y | x , q) ∝ p(x | y, q)p(q | y)p(y)

∝ p(x | y, q)p(y)

∝
J∏

j=1
(q y

j )x j · (1−q y
j )1−x j ·p y (1−p)1−y .
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This gives us that the formula for classification equals:

p(y | x) =
∫

S J

J∏
j=1

(q y
j )x j · (1−q y

j )1−x j ·p y (1−p)1−y d q ,

in which S J is the corresponding simplex over the J dimensions of q .

Therefore, when taking into account the sequence of word occurrences x (1), . . . , x (N )) together with informa-
tion y (1), . . . , y (N ), the conditional distribution of y (N+1) for our new e-mail will be written as:

p(y (N+1) | x (1), . . . , x (N ), y (1), . . . , y (N ), x (N+1))

∝
∫

S J
p(y (N+1) | x (N+1), q)p(q | x (1), . . . , x (N ), y (1), . . . , y (N ))d q

∝
∫

S J

J∏
j=1

(q y (N+1)

j )
x(N+1)

j · (1−q y (N+1)

j )
1−x(N+1)

j ·p y (N+1)
(1−p)1−y (N+1) ·

J∏
j=1

(q y (N+1)

j )
α j −1+ ∑

m=1,...,N :y(m)=y(N+1)
x(m)

j

(1−q y (N+1)

j )
β j −1+ ∑

m=1,...,N :y(m)=y(N+1)
(1−x(m)

j )

B(α j ,β j )
d q

=
J∏

j=1

p y (N+1)
(1−p)1−y (N+1)

B(α j ,β j )
·
∫ 1

0

(
q y (N+1)

j

)α̃ j −1
·
(
1−q y (N+1)

j

)β̃ j −1
d q y (N+1)

j

=
J∏

j=1

p y (N+1)
(1−p)1−y (N+1)

B(α j ,β j )
·B(α̃ j , β̃ j )

in which α̃ j =α j + ∑
m=1,...,N+1:y (m)=y (N+1)

x(m)
j and β̃ j =β j + ∑

m=1,...,N+1:y (m)=y (N+1)
(1−x(m)

j ).

Which needs to be calculated for y (N+1) = 0 and y (N+1) = 1 since this expression holds up to the proportion-
ality constant.



D
Mathematical details - model e-mail length

D.1. Generative model
A simple generative model for e-mails will be described. Let z = (z1, . . . , zn) be a sequence of words of an e-
mail. Let x = n denote the length of an e-mail. The length of an e-mail will be defined by the number of words
present in the e-mail. As has been noted in Chapter 4, the lengths of e-mail messages are Pareto distributed.
Therefore, the probability distribution over the e-mail length x can be written as:

p(x) = ∑
y=0,1

p(y)p(x|y)

= ∑
y=0,1

p(y)
αy ·ηαy

xαy+1
.

The posterior distribution over x equals:

p(x | y) = αy ·ηαy

xαy+1
. (D.1)

D.1.1. Maximum likelihood estimation forαy

Let x(1), . . . , x(N ) denote lengths of e-mails. Furthermore, let y (1), . . . , y (N ) denote whether an e-mail is relevant
or not relevant. All e-mails are assumed to be independently generated according to the model. Our available
parameters are α0,α1 and η, and the probability distribution p(y) is assumed to be fixed. The likelihood of
this observation is

L(α0,α1,η) =
N∏

m=1
p(x(m), y (m))

=
N∏

m=1
p(y (m))p(x(m) | y (m))

=
N∏

m=1
p(y (m))

αy (m) ·ηαy(m)

(x(m))αy(m)+1
.

The log likelihood will be, up to irrelevant additional constants, equal to

l (α0,α1,η) =
N∑

m=1
ln

(
αy (m)

)
+αy (m)

ln
(
η
)− (

αy (m) +1
)

ln
(
x(m)) .

This log likelihood will be maximized subject to the constraint that q y
j ≥ 0 for all j and y . This yields

α̂y =

∑
m=1,...,N :y (m)=y

1

∑
m=1,...,N :y (m)=y

ln
(

x(m)

η̂

) .
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Furthermore,

η̂= min
m=1,...,N :y (m)=y

(
x(m)) .

Classification based on MLE
It is known that y gets either the class ’relevant’ or ’not relevant’, therefore the distribution of y will be assumed
to be Bernoulli distributed with parameter p (the probability of an e-mail being relevant), i.e.,

p(y) = p y · (1−p)1−y .

In this equation p is a fixed valued hyperparameter.

For the classification of a new e-mail, Bayes’ law will be used and the obtained MLE estimators for αy and η
will be plugged in:

p(y | x) = p(x | y)p(y)

p(x | y = 0)p(y = 0)+p(x | y = 1)p(y = 1)
(D.2)

∝ p(x | y)p(y) (D.3)

∝ α̂y ·ηα̂y

xα̂y+1
·p y · (1−p)1−y , (D.4)

in which

α̂y =

∑
m=1,...,N :y (m)=y

1

∑
m=1,...,N :y (m)=y

ln
(

x(m)

η̂

) ,

and

η̂= min
m=1,...,N :y (m)=y

(
x(m)) .

D.1.2. Bayesian estimation
η will be assumed to be a fixed valued hyperparameter. The value will be taken equal to 1, since that is the
smallest size an e-mail can be.
The posterior distribution of α= (α0,α1) will become

p(α | y, x) = p(x |α, y)p(y |α)p(α)

p(y | x)p(x)

= p(x |α, y)p(y)p(α)

p(y | x)p(x)
∝ p(x |α, y)p(α),

in which it is used that

p(x |α, y) = αy ·ηαy

xαy+1

and p(αy ) ∼Gamma(a,b), i.e.

p(αy ) = ba

Γ(a)
(αy )a−1 ·e−b·αy

. (D.5)

Combining Equation (D.1) and (D.5), gives us

p(α0,α1 | y, x) ∝
(

ba

Γ(a)
(αy )a−1 ·e−b·αy · α

y ·ηαy

xαy+1

)
·
(

ba

Γ(a)
(α1−y )a−1 ·e−b·α1−y · α

1−y ·ηα1−y

xα1−y+1

)
.

Let x(1), . . . , x(N ) denote the lengths of e-mails. Furthermore, let y (1), . . . , y (N ) denote whether an e-mail is
relevant or not. All e-mails are assumed to be independently generated according to the model. Our available
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parameters are α0 and α1, and the probability distribution p(y) is assumed to be fixed. This gives us the
following posterior distribution for αy :

p(αξ | x(1), . . . , x(N ), y (1), . . . , y (N )) ∝ ∏
m=1,...,N :y (m)=ξ

p(x(m) |α, y (m))p(α)

= ∏
m=1,...,N :y (m)=ξ

 αξηα
ξ(

x(m)
)αξ+1

 · ba

Γ(a)

(
αξ

)a−1
e−b·αξ

=
(
αξ

)a−1+ ∑
m=1,...,N :y(m)=ξ

1

· ba

Γ(a)
·e

∑
m=1,...,N :y(m)=ξ

ln(η)αξ− ∑
m=1,...,N :y(m)=ξ

ln(x(m))(αξ+1)−bαξ

=
(
αξ

)a−1+ ∑
m=1,...,N :y(m)=ξ

1

·e
αξ

( ∑
m=1,...,N :y(m)=ξ

(
ln(η)−ln(x(m))

)−b

)

∼ Gamma(âξ, b̂ξ),

with ξ = 0,1. Furthermore, âξ = a + ∑
m=1,...,N :y (m)=y

1 and b̂ξ = − ∑
m=1,...,N :y (m)=y

(
ln(η)− ln(x(m))

)+b. It is com-

mon to set the hyperparameters a and b equal to 1.

Classification based on Bayesian estimate
It is known that y gets either the class ’relevant’ or ’not relevant’, therefore the distribution of y will be assumed
to be Bernoulli distributed with parameter p (the probability of an e-mail being spam), i.e.,

p(y) = p y · (1−p)1−y .

In this equation p is a fixed valued hyperparameter.

Using Bayes’ law and the formula (with conditioning on q) p(y | x) = p(x|y)p(y)
p(x|y=0)p(y=0)+p(x|y=1)p(y=1) of Sec-

tion B.1.1:

p(y | x,α) ∝ p(x | y,α)p(α | y)p(y)

∝ p(x | y,α)p(y)

∝ αy ·ηαy

xαy+1
·p y (1−p)1−y .

This gives us that the formula for classification equals:

p(y | x) =
∫ ∞

0

αy ·ηαy

xαy+1
·p y (1−p)1−y dα.

Therefore, when taking into account the e-mail length x(1), . . . , x(N ) together with information y (1), . . . , y (N ),
the conditional distribution of y (N+1) for our new e-mail can be written as:

p(y (N+1) | x(1), . . . , x(N ), y (1), . . . , y (N ), x(N+1)) ∝
∫ ∞

0
p(y (N+1) | x(N+1),α)p(α | x(1), . . . , x(N ), y (1), . . . , y (N ))dαy (N+1)

=
∫ ∞

0

(
αy (N+1)

)ây(N+1)

· ηα
y(N+1)

(
x(N+1)

)αy(N+1)
·e−b̂y(N+1)

αy(N+1)

·p y (N+1)
(1−p)y (N+1)

dαy (N+1)

= p y (N+1)
(1−p)y (N+1) ·

∫ ∞

0

(
αy (N+1)

)ây(N+1)

·e
−

(
b̂y(N+1)−ln

(
η

xN+1

))
αy(N+1)

dαy (N+1)

= p y (N+1)
(1−p)y (N+1) · Γ(ây (N+1) +1)(

b̂y (N+1) − ln
(

η

x(N+1)

))ây(N+1)+1

Which needs to be calculated for y (N+1) = 0 and y (N+1) = 1 since this expression holds up to the proportion-
ality constant.





E
Additional data analysis

E.1. Length of small e-mails ENRON dataset

Figure E.1: Histogram of the length of e-mails which contain less than 1000 words in the ENRON dataset (in which length is defined as
the number of words)
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Figure E.2: Histogram of the length of e-mails which contain less than 1000 words in the ENRON dataset, shown for both categories (in
which length is defined as the number of words)



F
Additional Results

F.1. Model word frequencies

F.1.1. Parameter analysis

93



94 F. Additional Results

ENRON

(a) Word: buying (b) Word: basic

(c) Word: thousands (d) Word: americans

(e) Word: donate (f) Word: declared

(g) Word: bills (h) Word: retirement

(i) Word: bankruptcy (j) Word: consumers

Figure F.1: Training process generative model with MLE for words identifiable as unlabeled (ENRON)
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(a) Word: holdco (b) Word: writedowns

(c) Word: ivers (d) Word: deconsolidate

(e) Word: fraudulent (f) Word: pref

(g) Word: barone (h) Word: developmentenron

(i) Word: ccbn (j) Word: epe

Figure F.2: Training process generative model with MLE for words identifiable as relevant (ENRON)
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(a) Word: buying (b) Word: basic

(c) Word: thousands (d) Word: americans

(e) Word: donate (f) Word: declared

(g) Word: bills (h) Word: retirement

(i) Word: bankruptcy (j) Word: consumers

Figure F.3: Training process generative model with Bayesian estimation words identifiable as unlabeled (ENRON). The two lines indicate
the prior and posterior marginal distribution of the corresponding word.
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(a) Word: holdco (b) Word: writedowns

(c) Word: ivers (d) Word: deconsolidate

(e) Word: fraudulent (f) Word: pref

(g) Word: barone (h) Word: developmentenron

(i) Word: ccbn (j) Word: epe

Figure F.4: Training process generative model with Bayesian estimation for words identifiable as relevant (ENRON). The two lines indicate
the prior and posterior marginal distribution of the corresponding word.
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(a) Parameter: 0 (b) Parameter: 1

(c) Parameter: 2 (d) Parameter: 3

(e) Parameter: 4 (f) Parameter: 5

(g) Parameter: 6 (h) Parameter: 7

(i) Parameter: 8 (j) Parameter: 9

Figure F.5: Training process discriminative model for the feature of word frequencies with Bayesian estimation (ENRON dataset).The
blue line indicates the sample values on which the parameter value is based. The titles of each plot are numbered because it is now 100%
known to which word the parameter used by the package is related.
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confidential dataset

(a) Word: 0 (b) Word: 1

(c) Word: 2 (d) Word: 3

(e) Word: 4 (f) Word: 5

(g) Word: 6 (h) Word: 7

(i) Word: 8 (j) Word: 9

Figure F.6: Training process generative model with MLE for words identifiable as not relevant (confidential dataset). The words are
numbered due to the confidentiality of the dataset.
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(a) Word: 0 (b) Word: 1

(c) Word: 2 (d) Word: 3

(e) Word: 4 (f) Word: 5

(g) Word: 6 (h) Word: 7

(i) Word: 8 (j) Word: 9

Figure F.7: Training process generative model with MLE for words identifiable as relevant (confidential dataset). The words are numbered
due to the confidentiality of the dataset.
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(a) Word: 0 (b) Word: 1

(c) Word: 2 (d) Word: 3

(e) Word: 4 (f) Word: 5

(g) Word: 6 (h) Word: 7

(i) Word: 8 (j) Word: 9

Figure F.8: Training process generative model with Bayesian estimation words identifiable as not relevant (confidential dataset). The two
lines indicate the prior and posterior marginal distribution of the corresponding word. The words are numbered due to the confiden-
tiality of the dataset.
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(a) Word: 0 (b) Word: 1

(c) Word: 2 (d) Word: 3

(e) Word: 4 (f) Word: 5

(g) Word: 6 (h) Word: 7

(i) Word: 8 (j) Word: 9

Figure F.9: Training process generative model with Bayesian estimation words identifiable as relevant (confidential dataset). The two
lines indicate the prior and posterior marginal distribution of the corresponding word. The words are numbered due to the confiden-
tiality of the dataset.
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(a) Parameter: 0 (b) Parameter: 1

(c) Parameter: 2 (d) Parameter: 3

(e) Parameter: 4 (f) Parameter: 5

(g) Parameter: 6 (h) Parameter: 7

(i) Parameter: 8 (j) Parameter: 9

Figure F.10: Training process discriminative model with Bayesian estimation for feature word frequencies (confidential dataset). The
blue line indicates the sample values on which the parameter value is based. As can be noted the sample values show much difference.



F.1. Model word frequencies 105

F.1.2. Results classification

confidential dataset

ML (GM) BE (GM) ML (DM)* BE (DM)* ML (GM)* BE (GM)*
# Predicted = given 339 306 367 353 304 43
# False Positives 35 75 0 21 75 356
# False Negatives 25 18 32 25 17 0
# True Positives 7 14 0 7 15 32
# True Negatives 332 292 367 346 289 11
Accuracy 85.0% 76.6% 92.0% 88.5% 76.8% 10.8%
Error rate 15.0% 23.4% 8.0% 11.5% 23.2% 89.2%
’relevant’ recall 21.9% 43.8% 0.0% 21.9% 46.9% 100%
’relevant’ precision 16.7% 15.7% n.a. 25.0% 16.7% 8.2%
’not relevant’ recall 90.5% 79.6% 100% 94,3% 79.4% 3.0%
’not relevant’ precision 93.0% 94.2% 92.0% 93.3% 99.4% 100%
’relevant’ F-score 18.9% 23.1% n.a. 23.3% 24.6% 15.2%
’not relevant’ F-score 91.7% 86.3% 95.8% 93.8% 88.3% 5.8%
’relevant’ percentage 8.0% 8.0% 8.0% 8.0% 8.0% 8.0%
Time (test) 67 sec 349 sec 47 sec 10 sec 8 sec 117 sec
Time (training) 294 sec 286 sec 33 sec 26434 sec 16 sec 19 sec

Table F.1: Performance results (set 1), based on e-mail messages in a confidential dataset and using the feature word frequencies. (GM
= Generative model, DM = Discriminative Model, ML = Maximum Likelihood Estimation, BE = Bayesian Estimation). * = based on the
top 500 words identified as as best corresponding the category ’relevant’ and the top 500 words identified as best corresponding to the
category ’not relevant’.

MLE (GM) BE (GM) ML (DM)* BE (DM)* ML (GM)* BE (GM)*
# Predicted = given 349 292 379 363 316 27
# False Positives 38 101 0 24 67 372
# False Negatives 12 6 20 23 8 0
# True Positives 8 14 0 8 12 20
# True Negatives 341 278 379 355 304 7
Accuracy 87.5% 73.2% 95.0% 91.0% 80.8% 6.8%
Error rate 12.5% 26.8% 5.0% 9.0% 19.2% 93.2%
’relevant’ recall 40.0% 70.0% 0.0% 40.0% 60.0% 100%
’relevant’ precision 17.4% 12.2% n.a. 25.0% 15.2% 5.1%
’not relevant’ recall 90.0% 73.4% 100% 93.7% 81.9% 1.8%
’not relevant’ precision 96.6% 97.9% 95.0% 96.7% 97.4% 100%
’relevant’ F-score 24.3% 20.8% n.a. 30.8% 24.3% 9.7%
’not relevant’ F-score 93.2% 83.9% 97.4% 95.2% 89.0% 3.5%
’relevant’ percentage 5.0% 5.0% 5.0% 5.0% 5.0% 5.0%
Time (test) 78 sec 353 sec 51 sec 24 sec 8 sec 131 sec
Time (training) 300 sec 295 sec 33 sec 26554 sec 16 sec 19 sec

Table F.2: Performance results (set 2), based on e-mail messages in a confidential dataset and using the feature word frequencies. (GM
= Generative model, DM = Discriminative Model, ML = Maximum Likelihood Estimation, BE = Bayesian Estimation). * = based on the
top 500 words identified as as best corresponding the category ’relevant’ and the top 500 words identified as best corresponding to the
category ’not relevant’.
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MLE (GM) BE (GM) ML (DM)* BE (DM)* ML (GM)* BE (GM)*
# Predicted = given 346 321 368 360 309 37
# False Positives 29 65 0 16 72 362
# False Negatives 24 13 31 3 15 0
# True Positives 7 18 0 8 16 31
# True Negatives 339 303 368 352 293 6
Accuracy 86.7% 80.5% 92.2% 90.2% 78.0% 9.3%
Error rate 13.3% 19.5% 7.8% 9.8% 22.0% 90.7%
’relevant’ recall 22.6% 58.1% 0.0% 25.8% 51.6% 100%
’relevant’ precision 19.4% 21.7% n.a. 33.3% 18.2% 7.9%
’not relevant’ recall 92.1% 82.3% 100% 95.7% 80.3% 1.6%
’not relevant’ precision 93.4% 95.9% 92.2% 93.9% 95.1% 100%
’relevant’ F-score 20.9% 31.6% n.a. 29.1% 26.9% 14.6%
’not relevant’ F-score 92.8% 88.6% 95.9% 94.8% 87.1% 3.1%
’relevant’ percentage 7.8% 7.8% 7.8% 7.8% 7.8% 7.8%
Time (test) 62 sec 357 sec 40 sec 24 sec 7 sec 131 sec
Time (training) 313 sec 308 sec 34 sec 26563 sec 17 sec 19 sec

Table F.3: Performance results (set 3), based on e-mail messages in a confidential dataset and using the feature word frequencies. (GM
= Generative model, DM = Discriminative Model, ML = Maximum Likelihood Estimation, BE = Bayesian Estimation). * = based on the
top 500 words identified as as best corresponding the category ’relevant’ and the top 500 words identified as best corresponding to the
category ’not relevant’.

MLE (GM) BE (GM) ML (DM)* BE (DM)* ML (GM)* BE (GM)*
# Predicted = given 329 266 377 365 312 34
# False Positives 54 122 0 18 65 365
# False Negatives 16 11 22 16 14 0
# True Positives 6 11 0 6 8 22
# True Negatives 323 255 377 359 304 12
Accuracy 82.5% 66.7% 94.5% 91.5% 79.8% 8.5%
Error rate 17.5% 33.3% 5.5% 8.5% 20.2% 91.5%
’relevant’ recall 27.3% 50.0% 0.0% 27.3% 36.4% 100%
’relevant’ precision 10.0% 8.3% n.a. 25.0% 11.0% 5.7%
’not relevant’ recall 85.7% 67.6% 100% 95.2% 82.4% 3.2%
’not relevant’ precision 95.3% 95.9% 94.5% 95.7% 95.6% 100%
’relevant’ F-score 14.6% 14.2% n.a. 26.1% 16.9% 10.8%
’not relevant’ F-score 90.2% 79.3% 97.2% 95.4% 88.5% 6.2%
’relevant’ percentage 5.5% 5.5% 5.5% 5.5% 5.5% 5.5%
Time (test) 71 sec 354 sec 49 sec 24 sec 8 sec 130 sec
Time (training) 301 sec 301 sec 34 sec 26653 sec 16 sec 19 sec

Table F.4: Performance results (set 4), based on e-mail messages in a confidential dataset and using the feature word frequencies. (GM
= Generative model, DM = Discriminative Model, ML = Maximum Likelihood Estimation, BE = Bayesian Estimation). * = based on the
top 500 words identified as as best corresponding the category ’relevant’ and the top 500 words identified as best corresponding to the
category ’not relevant’.
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MLE (GM) BE (GM) ML (DM)* BE (DM)* ML (GM)* BE (GM)*
# Predicted = given 346 337 368 356 311 40
# False Positives 30 43 0 17 59 359
# False Negatives 23 19 31 26 22 0
# True Positives 8 12 0 5 9 31
# True Negatives 338 325 368 351 303 9
Accuracy 86.7% 84.5% 92.2% 89.2% 79.4% 10.0%
Error rate 13.3% 15.5% 7.8% 10.8% 20.6% 90.0%
’relevant’ recall 25.8% 38.7% 0.0% 16.1% 29.0% 100%
’relevant’ precision 21.1% 21.8% n.a. 22.7% 13.2% 7.9%
’not relevant’ recall 91.8% 88.3% 100% 95.4% 83.7% 2.4%
’not relevant’ precision 93.6% 94.5% 92.2% 93.1% 93.2% 100%
’relevant’ F-score 23.2% 27.9% n.a. 18.8% 18.1% 14.6%
’not relevant’ F-score 92.7% 91.3% 95.9% 94.2% 88.2% 4.7%
’relevant’ percentage 7.8% 7.8% 7.8% 7.8% 7.8% 7.8%
Time (test) 70 sec 359 sec 42 sec 23 sec 9 sec 129 sec
Time (training) 314 sec 309 sec 33 sec 27423 sec 17 sec 19 sec

Table F.5: Performance results (set 5), based on e-mail messages in a confidential dataset and using the feature word frequencies. (GM
= Generative model, DM = Discriminative Model, ML = Maximum Likelihood Estimation, BE = Bayesian Estimation). * = based on the
top 500 words identified as as best corresponding the category ’relevant’ and the top 500 words identified as best corresponding to the
category ’not relevant’.

Bayes factor True Positives True Negatives False Positives False Negatives

B > 102 0 10 0 0

102 > B > 10
3
2 0 0 0 0

10
3
2 > B > 10 0 0 0 0

10 > B > 10
1
2 0 1 0 0

10
1
2 > B > 1 0 0 0 0

B = 1 0 0 0 0

1 > B > 10−
1
2 0 0 3 0

10−
1
2 > B > 10−1 0 0 0 0

10−1 > B > 10−
3
2 0 0 0 0

10−
3
2 > B > 10−2 0 0 0 0

10−2 > B 32 0 353 0

Table F.6: Bayes Factor results word frequencies for the generative model with Bayesian estimation, based on 1000 words as parameters
(set 1)



108 F. Additional Results

Bayes factor True Positives True Negatives False Positives False Negatives

B > 102 0 7 0 0

102 > B > 10
3
2 0 0 0 0

10
3
2 > B > 10 0 0 0 0

10 > B > 10
1
2 0 0 0 0

10
1
2 > B > 1 0 0 0 0

B = 1 0 0 8 0

1 > B > 10−
1
2 0 0 0 0

10−
1
2 > B > 10−1 0 0 0 0

10−1 > B > 10−
3
2 0 0 1 0

10−
3
2 > B > 10−2 0 0 0 0

10−2 > B 20 0 363 0

Table F.7: Bayes Factor results word frequencies for the generative model with Bayesian estimation, based on 1000 words as parameters
(set 2)

Bayes factor True Positives True Negatives False Positives False Negatives

B > 102 0 6 0 0

102 > B > 10
3
2 0 0 0 0

10
3
2 > B > 10 0 0 0 0

10 > B > 10
1
2 0 0 0 0

10
1
2 > B > 1 0 0 0 0

B = 1 0 0 0 0

1 > B > 10−
1
2 0 0 3 0

10−
1
2 > B > 10−1 0 0 0 0

10−1 > B > 10−
3
2 0 0 0 0

10−
3
2 > B > 10−2 0 0 0 0

10−2 > B 31 0 359 0

Table F.8: Bayes Factor results word frequencies for the generative model with Bayesian estimation, based on 1000 words as parameters
(set 3)
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Bayes factor True Positives True Negatives False Positives False Negatives

B > 102 0 12 0 0

102 > B > 10
3
2 0 0 0 0

10
3
2 > B > 10 0 0 0 0

10 > B > 10
1
2 0 0 0 0

10
1
2 > B > 1 0 0 0 0

B = 1 0 0 8 0

1 > B > 10−
1
2 0 0 0 0

10−
1
2 > B > 10−1 0 0 0 0

10−1 > B > 10−
3
2 0 0 0 0

10−
3
2 > B > 10−2 0 0 0 0

10−2 > B 22 0 357 0

Table F.9: Bayes Factor results word frequencies for the generative model with Bayesian estimation, based on 1000 words as parameters
(set 4)

Bayes factor True Positives True Negatives False Positives False Negatives

B > 102 0 8 0 0

102 > B > 10
3
2 0 1 0 0

10
3
2 > B > 10 0 0 0 0

10 > B > 10
1
2 0 0 0 0

10
1
2 > B > 1 0 0 0 0

B = 1 0 0 0 0

1 > B > 10−
1
2 0 0 6 0

10−
1
2 > B > 10−1 0 0 0 0

10−1 > B > 10−
3
2 0 0 0 0

10−
3
2 > B > 10−2 0 0 0 0

10−2 > B 31 0 353 0

Table F.10: Bayes Factor results word frequencies for the generative model with Bayesian estimation, based on 1000 words as parameters
(set 5)

Bayes factor True Positives True Negatives False Positives False Negatives

B > 102 0 260 0 12

102 > B > 10
3
2 0 17 0 2

10
3
2 > B > 10 0 3 0 2

10 > B > 10
1
2 0 8 0 2

10
1
2 > B > 1 0 4 0 0

B = 1 0 0 0 0

1 > B > 10−
1
2 0 0 7 0

10−
1
2 > B > 10−1 1 0 7 0

10−1 > B > 10−
3
2 0 0 8 0

10−
3
2 > B > 10−2 0 0 8 0

10−2 > B 13 0 45 0

Table F.11: Bayes Factor results word frequencies for the generative model with Bayesian estimation (set 1)
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Bayes factor True Positives True Negatives False Positives False Negatives

B > 102 0 240 0 6

102 > B > 10
3
2 0 11 0 0

10
3
2 > B > 10 0 5 0 0

10 > B > 10
1
2 0 11 0 0

10
1
2 > B > 1 0 11 0 0

B = 1 0 0 0 0

1 > B > 10−
1
2 0 0 16 0

10−
1
2 > B > 10−1 1 0 12 0

10−1 > B > 10−
3
2 0 0 9 0

10−
3
2 > B > 10−2 1 0 4 0

10−2 > B 12 0 60 0

Table F.12: Bayes Factor results word frequencies for the generative model with Bayesian estimation (set 2)

Bayes factor True Positives True Negatives False Positives False Negatives

B > 102 0 282 0 13

102 > B > 10
3
2 0 7 0 0

10
3
2 > B > 10 0 5 0 0

10 > B > 10
1
2 0 7 0 0

10
1
2 > B > 1 0 2 0 0

B = 1 0 0 0 0

1 > B > 10−
1
2 0 0 8 0

10−
1
2 > B > 10−1 0 0 2 0

10−1 > B > 10−
3
2 1 0 4 0

10−
3
2 > B > 10−2 0 0 3 0

10−2 > B 17 0 48 0

Table F.13: Bayes Factor results word frequencies for the generative model with Bayesian estimation (set 3)

Bayes factor True Positives True Negatives False Positives False Negatives

B > 102 0 228 0 9

102 > B > 10
3
2 0 6 0 0

10
3
2 > B > 10 0 3 0 0

10 > B > 10
1
2 0 3 0 0

10
1
2 > B > 1 0 15 0 2

B = 1 0 0 0 0

1 > B > 10−
1
2 0 0 11 0

10−
1
2 > B > 10−1 0 0 11 0

10−1 > B > 10−
3
2 0 0 10 0

10−
3
2 > B > 10−2 1 0 11 0

10−2 > B 10 0 79 0

Table F.14: Bayes Factor results word frequencies for the generative model with Bayesian estimation (set 4)
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Bayes factor True Positives True Negatives False Positives False Negatives

B > 102 0 299 0 17

102 > B > 10
3
2 0 4 0 0

10
3
2 > B > 10 0 11 0 1

10 > B > 10
1
2 0 3 0 1

10
1
2 > B > 1 0 8 0 0

B = 1 0 0 0 0

1 > B > 10−
1
2 1 0 1 0

10−
1
2 > B > 10−1 1 0 4 0

10−1 > B > 10−
3
2 0 0 1 0

10−
3
2 > B > 10−2 1 0 0 0

10−2 > B 9 0 37 0

Table F.15: Bayes Factor results word frequencies for the generative model with Bayesian estimation (set 5)

ENRON dataset

ML (GM) BE (GM) ML (DM)* BE (DM)* ML (GM)* BE (GM)*
# Predicted = given 1574 1575 1596 1582 27 27
# False Positives 26 25 0 16 1596 1596
# False Negatives 21 21 27 25 0 0
# True Positives 1 1 0 2 27 27
# True Negatives 1573 1574 1596 1580 0 0
Accuracy 97.1% 97.2% 98.3% 97.5% 1.7% 1.7%
Error rate 2.9% 2.8% 1.7% 2.5% 98.3% 98.3%
’relevant’ recall 4.5% 4.5% 0.0% 7.4% 100% 100%
’relevant’ precision 3.7% 3.8% n.a. 11.1% 1.7% 1.7%
’not relevant’ recall 98.4% 98.4% 100% 99.0% 0.0% 0.0%
’not relevant’ precision 98.7% 98.7% 98.3% 98.5% n.a. n.a.
’relevant’ F-score 4.1% 4.1% n.a. 8.9% 3.3% 3.3%
’not relevant’ F-score 98.5% 98.5% 99.1% 98.7% n.a. n.a.
’relevant’ percentage 1.7% 1.7% 1.7% 1.7% 1.7% 1.7%
Time (test) 119 sec 1740 sec 96 sec 80 sec 19 sec 210 sec
Time (training) 1114 sec 1104 sec 437 sec 92269 sec 32 sec 109 sec

Table F.16: Performance results (set 1), based on e-mail messages in the ENRON dataset and using the feature word frequencies. (GM
= Generative model, DM = Discriminative Model, ML = Maximum Likelihood Estimation, BE = Bayesian Estimation). * = based on the
top 500 words identified as as best corresponding the category ’relevant’ and the top 500 words identified as best corresponding to the
category ’not relevant’.
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MLE (GM) BE (GM) ML (DM)* BE (DM)* ML (GM)* BE (GM)*
# Predicted = given 1571 1570 1599 1583 23 23
# False Positives 28 29 0 13 1599 1599
# False Negatives 22 22 25 25 0 0
# True Positives 0 0 0 0 23 23
# True Negatives 1571 1570 1599 1585 0 0
Accuracy 96.9% 96.9% 98.5% 97.7% 1.4% 1.4%
Error rate 3.1% 3.1% 1.5% 2.3% 98.6% 98.6%
’relevant’ recall 0.0% 0.0% 0.0% 0.0% 100% 100%
’relevant’ precision 0.0% 0.0% n.a. 0.0% 1.4% 1.4%
’not relevant’ recall 98.2% 98.2% 100% 99.2% 0.0% 0.0%
’not relevant’ precision 98.6% 98.6% 98.5% 98.4% n.a. n.a.
’relevant’ F-score n.a. n.a. n.a. n.a. 2.8% 2.8%
’not relevant’ F-score 98.4% 98.4% 99.2% 98.8% n.a. n.a.
’relevant’ percentage 1.5% 1.5% 1.5% 1.5% 1.5% 1.5%
Time (test) 119 sec 1860 sec 90 sec 65 sec 19 sec 205 sec
Time (training) 1077 sec 1056 sec 461 sec 93568 sec 38 sec 92 sec

Table F.17: Performance results (set 2), based on e-mail messages in the ENRON dataset and using the feature word frequencies. (GM
= Generative model, DM = Discriminative Model, ML = Maximum Likelihood Estimation, BE = Bayesian Estimation). * = based on the
top 500 words identified as as best corresponding the category ’relevant’ and the top 500 words identified as best corresponding to the
category ’not relevant’.

MLE (GM) BE (GM) ML (DM)* BE (DM)* ML (GM)* BE (GM)*
# Predicted = given 1571 1562 1594 1578 30 30
# False Positives 29 38 0 15 1594 1594
# False Negatives 21 21 30 29 0 0
# True Positives 1 1 0 1 30 30
# True Negatives 1570 1561 1594 1577 0 0
Accuracy 96.9% 96.4% 98.2% 97.3% 1.8% 1.8%
Error rate 3.1% 3.6% 1.8% 2.7% 98.2% 98.2%
’relevant’ recall 4.5% 4.5% 0.0% 3.3% 100% 100%
’relevant’ precision 3.3% 2.6% n.a. 6.2% 1.8% 1.8%
’not relevant’ recall 98.2% 97.6% 100% 99.1% 0.0% 0.0%
’not relevant’ precision 98.7% 98.7% 98.2% 98.2% n.a. n.a.
’relevant’ F-score 3.8% 3.3% n.a. 4.3% 3.5% 3.5%
’not relevant’ F-score 98.4% 98.1% 99.1% 98.6% n.a. n.a.
’relevant’ percentage 1.8% 1.8% 1.8% 1.8% 1.8% 1.8 %
Time (test) 129 sec 2504 sec 79 sec 66 sec 21 sec 216 sec
Time (training) 1110 sec 1146 sec 395 sec 97664 sec 34 sec 95 sec

Table F.18: Performance results (set 3), based on e-mail messages in the ENRON dataset and using the feature word frequencies. (GM
= Generative model, DM = Discriminative Model, ML = Maximum Likelihood Estimation, BE = Bayesian Estimation). * = based on the
top 500 words identified as as best corresponding the category ’relevant’ and the top 500 words identified as best corresponding to the
category ’not relevant’.
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MLE (GM) BE (GM) ML (DM)* BE (DM)* ML (GM)* BE (GM)*
# Predicted = given 1571 1568 1607 1593 16 19
# False Positives 28 33 0 13 1607 1604
# False Negatives 22 20 17 17 0 0
# True Positives 0 2 0 0 16 16
# True Negatives 1571 1566 1607 1593 0 3
Accuracy 96.9% 96.7% 99.0% 98.2% 1.0% 1.2%
Error rate 3.1% 3.3% 1.0% 1.8% 99.0% 98.8%
’relevant’ recall 0.0% 9.1% 0.0% 0.0% 100% 100%
’relevant’ precision 0.0% 5.7% n.a. 0.0% 1.0% 1.0%
’not relevant’ recall 98.2% 97.9% 100% 99.2% 0.0% 0.2%
’not relevant’ precision 98.6% 98.7% 99.0% 98.9% n.a. 100%
’relevant’ F-score n.a. 7.0% n.a. n.a. 2.0% 2.0%
’not relevant’ F-score 98.4% 98.3% 99.5% 99.0% n.a. 0.4%
’relevant’ percentage 1.0% 1.0% 1.0% 1.0% 1.0% 1.0%
Time (test) 129 sec 2726 sec 78 sec 65 sec 19 sec 213 sec
Time (training) 1099 sec 1079 sec 382 sec 107303 sec 35 sec 95 sec

Table F.19: Performance results (set 4), based on e-mail messages in the ENRON dataset and using the feature word frequencies. (GM
= Generative model, DM = Discriminative Model, ML = Maximum Likelihood Estimation, BE = Bayesian Estimation). * = based on the
top 500 words identified as as best corresponding the category ’relevant’ and the top 500 words identified as best corresponding to the
category ’not relevant’.

MLE (GM) BE (GM) ML (DM)* BE (DM)* ML (GM)* BE (GM)*
# Predicted = given 1582 1547 1599 1586 22 22
# False Positives 17 52 0 13 1599 1599
# False Negatives 22 22 25 25 0 0
# True Positives 0 0 0 0 22 22
# True Negatives 1582 1547 1599 1586 0 0
Accuracy 97.6% 95.4% 98.5% 97.7% 1.4% 1.4%
Error rate 2.4% 4.6% 1.5% 2.3% 98.6% 98.6%
’relevant’ recall 0.0% 0.0% 0.0% 0.0% 100% 100%
’relevant’ precision 0.0% 0.0% n.a. 0.0% 1.4% 1.4%
’not relevant’ recall 98.9% 96.7% 100% 99.2% 0.0% 0.0%
’not relevant’ precision 98.6% 98.6% 98.5% 98.4% n.a. n.a.
’relevant’ F-score n.a. n.a. n.a. n.a. 2.8% 2.8%
’not relevant’ F-score 98.7% 97.6% 99.2% 98.8% n.a. n.a.
’relevant’ percentage 1.5% 1.5% 1.5% 1.5% 1.5% 1.5%
Time (test) 129 sec 2251 sec 67 sec 67 sec 21 sec 219 sec
Time (training) 1574 sec 1083 sec 412 sec 11793 sec 37 sec 97 sec

Table F.20: Performance results (set 5), based on e-mail messages in the ENRON dataset and using the feature word frequencies. (GM
= Generative model, DM = Discriminative Model, ML = Maximum Likelihood Estimation, BE = Bayesian Estimation). * = based on the
top 500 words identified as as best corresponding the category ’relevant’ and the top 500 words identified as best corresponding to the
category ’not relevant’.
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TREC dataset

ML (GM) BE (GM) ML (DM)* ML (GM)* BE (GM)*
# Predicted = given 14022 13732 9760 14208 6421
# False Positives 39 33 4834 379 1
# False Negatives 590 887 406 64 8229
# True Positives 9030 8733 9562 9556 1391
# True Negatives 4992 4998 198 4652 5030
Accuracy 95.7% 93.7% 65.1% 97.0% 43.8%
Error rate 4.3% 6.3% 34.9% 3.0% 56.2%
’relevant’ recall 93.9% 90.8% 95.9% 99.3% 14.5%
’relevant’ precision 99.6% 99.6% 66.4% 96.2% 99.9%
’not relevant’ recall 99.2% 99.3% 3.9% 92.5% 100%
’not relevant’ precision 89.4% 84.9% 32.8% 98.6% 37.9%
’relevant’ F-score 96.7% 95.0% 78.5% 97.7% 25.3%
’not relevant’ F-score 94.0% 91.5% 7.0% 95.5% 55.0%
’relevant’ percentage 65.7% 65.7% 65.7% 65.7% 65.7%
Time (test) 52940 sec 158426 sec 3304 sec 962 sec 1596 sec
Time (training) 99722 sec 655 sec 20326 sec 634 sec 2178 sec

Table F.21: Performance results (set 1), based on e-mail messages in the TREC dataset and using the feature word frequencies. (GM =
Generative model, DM = Discriminative Model, ML = Maximum Likelihood Estimation, BE = Bayesian Estimation). * = based on the
top 500 words identified as as best corresponding the category ’relevant’ and the top 500 words identified as best corresponding to the
category ’not relevant’. The performance results of the discriminative model based on Bayesian estimation are not available (the model
took to long too compute).

F.2. Model word occurrences

F.2.1. Parameter analysis
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ENRON

(a) Word: consumers (b) Word: bankruptcy

(c) Word: retirement (d) Word: bills

(e) Word: hurt (f) Word: indeed

(g) Word: americans (h) Word: thousands

(i) Word: basic (j) Word: buying

Figure F.11: Training process of model based on word occurrences for words identifiable as unlabeled (ENRON).
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(a) Word: fraudulent (b) Word: developmentenron

(c) Word: exh (d) Word: developmentenrondevelopment

(e) Word: barone (f) Word: georganne

(g) Word: balancesheet (h) Word: farther

(i) Word: frightens (j) Word: phrases

Figure F.12: Training process of model based on word occurrences for words identifiable as relevant (ENRON).
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(a) Word: consumers (b) Word: bankruptcy

(c) Word: retirement (d) Word: bills

(e) Word: hurt (f) Word: indeed

(g) Word: americans (h) Word: thousands

(i) Word: basic (j) Word: buying

Figure F.13: Training process generative model for the feature of word occurrences with Bayesian estimation words identifiable as not
relevant (ENRON dataset). The two lines indicate the prior and posterior marginal distribution of the corresponding word.
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(a) Word: fraudulent (b) Word: developmentenron

(c) Word: exh (d) Word: developmentenrondevelopment

(e) Word: barone (f) Word: georganne

(g) Word: balancesheet (h) Word: farther

(i) Word: frightens (j) Word: phrases

Figure F.14: Training process generative model for the feature of word occurrences with Bayesian estimation words identifiable as rele-
vant (ENRON dataset). The two lines indicate the prior and posterior marginal distribution of the corresponding word.
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(a) Parameter: 0 (b) Parameter: 1

(c) Parameter: 2 (d) Parameter: 3

(e) Parameter: 4 (f) Parameter: 5

(g) Parameter: 6 (h) Parameter: 7

(i) Parameter: 8 (j) Parameter: 9

Figure F.15: Training process discriminative model for the feature of word occurrences with Bayesian estimation (ENRON dataset).The
blue line indicates the sample values on which the parameter value is based. The titles of each plot are numbered because it is now 100%
known to which word the parameter used by the package is related.
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confidential dataset

(a) Word: 0 (b) Word: 1

(c) Word: 2 (d) Word: 3

(e) Word: 4 (f) Word: 5

(g) Word: 6 (h) Word: 7

(i) Word: 8 (j) Word: 9

Figure F.16: Training process generative model for the feature of word occurrences with MLE for words identifiable as not relevant
(confidential dataset). The words are numbered due to the confidentiality of the dataset.
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(a) Word: 0 (b) Word: 1

(c) Word: 2 (d) Word: 3

(e) Word: 4 (f) Word: 5

(g) Word: 6 (h) Word: 7

(i) Word: 8 (j) Word: 9

Figure F.17: Training process generative model for the feature of word occurrences with MLE for words identifiable as relevant (confi-
dential dataset). The words are numbered due to the confidentiality of the dataset.
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(a) Word: 0 (b) Word: 1

(c) Word: 2 (d) Word: 3

(e) Word: 4 (f) Word: 5

(g) Word: 6 (h) Word: 7

(i) Word: 8 (j) Word: 9

Figure F.18: Training process generative model for the feature of word occurrences with Bayesian estimation words identifiable as not
relevant (confidential dataset). The two lines indicate the prior and posterior marginal distribution of the corresponding word. The
words are numbered due to the confidentiality of the dataset.
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(a) Word: 0 (b) Word: 1

(c) Word: 2 (d) Word: 3

(e) Word: 4 (f) Word: 5

(g) Word: 6 (h) Word: 7

(i) Word: 8 (j) Word: 9

Figure F.19: Training process generative model for the feature of word occurrences with Bayesian estimation words identifiable as rele-
vant (confidential dataset). The two lines indicate the prior and posterior marginal distribution of the corresponding word. The words
are numbered due to the confidentiality of the dataset.
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(a) Parameter: 0 (b) Parameter: 1

(c) Parameter: 2 (d) Parameter: 3

(e) Parameter: 4 (f) Parameter: 5

(g) Parameter: 6 (h) Parameter: 7

(i) Parameter: 8 (j) Parameter: 9

Figure F.20: Training process discriminative model with Bayesian estimation for word occurrences (confidential dataset). The blue line
indicates the sample values on which the parameter value is based. As can be noted the sample values show much difference.
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F.2.2. Results classification

confidential dataset

ML (GM) BE (GM) ML (DM)* BE (DM)* ML (GM)* BE (GM)*
# Predicted = given 359 32 367 360 241 32
# False Positives 5 367 0 13 137 367
# False Negatives 32 0 32 26 18 0
# True Positives 0 32 0 6 14 32
# True Negatives 359 0 367 354 227 0
Accuracy 90.7% 8.0% 92.0% 90.2% 60.9% 8.0%
Error rate 9.3% 92.0% 8.0% 9.8% 29.1% 92.0%
’relevant’ recall 0.0% 100% 0.0% 18.8% 43.8% 100%
’relevant’ precision 0.0% 8.0% n.a. 31.6% 9.3% 8.0%
’not relevant’ recall 98.6% 0.0% 100% 96.5% 62.4% 0.0%
’not relevant’ precision 91.8% n.a. 92.0% 93.2% 92.7% n.a.
’relevant’ F-score n.a. 14.8% n.a. n.a. n.a. 16.5%
’not relevant’ F-score 95.1% n.a. 95.8% 94.8% 74.6% n.a.
’relevant’ percentage 8.0% 8.0% 8.0% 8.0% 8.0% 8.0%
Time (test) 4135 sec 560 sec 75 sec 35 sec 177 sec 161 sec
Time (training) 416 sec 429 sec 140 sec 19065 sec 48 sec 48 sec

Table F.22: Performance results (set 1), based on the feature word occurrences of e-mail messages in a confidential dataset. (GM =
Generative model, DM = Discriminative Model, ML = Maximum Likelihood Estimation, BE = Bayesian Estimation). * = based on the
top 500 words identified as as best corresponding the category ’relevant’ and the top 500 words identified as best corresponding to the
category ’not relevant’.

MLE (GM) BE (GM) ML (DM)* BE (DM)* ML (GM)* BE (GM)*
# Predicted = given 370 20 379 362 258 20
# False Positives 1 379 0 24 126 379
# False Negatives 20 0 20 13 7 0
# True Positives 0 20 0 7 13 20
# True Negatives 370 0 379 355 245 0
Accuracy 94.6% 5.0% 95.0% 90.7% 66.0% 5.0%
Error rate 5.4% 95.0% 5.0% 9.3% 34.0% 95.0%
’relevant’ recall 0.0% 100% 0.0% 35.0% 65.0% 100%
’relevant’ precision 0.0% 5.0% n.a. 22.6% 94.0% 5.0%
’not relevant’ recall 99.7% 0.0% 100% 93.7% 66.0% 0.0%
’not relevant’ precision 94.9% n.a. 95.0% 96.5% 97.2% n.a.
’relevant’ F-score n.a. 9.5% n.a. 27.5% 76.9% 9.5%
’not relevant’ F-score 97.2% n.a. 97.4% 95.1% 78.6% n.a.
’relevant’ percentage 5.0% 5.0% 5.0% 5.0% 5.0% 5.0%
Time (test) 4123 sec 567 sec 81 sec 35 sec 176 sec 161 sec
Time (training) 421 sec 449 sec 139 sec 19489 sec 50 sec 49 sec

Table F.23: Performance results (set 2), based on the feature word occurrences of e-mail messages in a confidential dataset. (GM =
Generative model, DM = Discriminative Model, ML = Maximum Likelihood Estimation, BE = Bayesian Estimation). * = based on the
top 500 words identified as as best corresponding the category ’relevant’ and the top 500 words identified as best corresponding to the
category ’not relevant’.
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MLE (GM) BE (GM) ML (DM)* BE (DM)* ML (GM)* BE (GM)*
# Predicted = given 361 31 368 365 225 31
# False Positives 4 368 0 12 162 368
# False Negatives 31 0 31 22 9 0
# True Positives 0 31 0 9 22 31
# True Negatives 361 0 368 356 203 0
Accuracy 91.2% 7.8% 92.2% 91.5% 56.8% 7.8%
Error rate 8.8% 92.2% 7.8% 8.5% 43.2% 92.2%
’relevant’ recall 0.0% 100% 0.0% 29.0% 71.0% 100%
’relevant’ precision 0.0% 7.8% n.a. 42.9% 12.0% 7.8%
’not relevant’ recall 98.9% 0.0% 100% 96.7% 55.6% 0.0%
’not relevant’ precision 92.1% n.a. 92.2% 94.2% 95.8% n.a
’relevant’ F-score n.a. 14.5% n.a. 34.6% 20.5% 14.5%
’not relevant’ F-score 95.4% n.a. 95.9% 95.4% 70.4% n.a.
’relevant’ percentage 7.8% 7.8% 7.8% 7.8% 7.8% 7.8%
Time (test) 4255 sec 577 sec 65 sec 33 sec 177 sec 159 sec
Time (training) 440 sec 453 sec 141 sec 19643 sec 50 sec 51 sec

Table F.24: Performance results (set 3), based on the feature word occurrences of e-mail messages in a confidential dataset. (GM =
Generative model, DM = Discriminative Model, ML = Maximum Likelihood Estimation, BE = Bayesian Estimation). * = based on the
top 500 words identified as as best corresponding the category ’relevant’ and the top 500 words identified as best corresponding to the
category ’not relevant’.

MLE (GM) BE (GM) ML (DM)* BE (DM)* ML (GM)* BE (GM)*
# Predicted = given 364 22 377 367 226 22
# False Positives 5 377 0 14 154 377
# False Negatives 22 0 22 18 11 0
# True Positives 0 22 0 4 11 22
# True Negatives 364 0 377 363 215 0
Accuracy 93.1% 5.5% 94.5% 92.0% 57.8% 5.5%
Error rate 6.9% 94.5% 5.5% 8.0% 42.2% 94.5%
’relevant’ recall 0.0% 100% 0.0% 18.2% 50.0% 100%
’relevant’ precision 0.0% 5.5% n.a. 22.2% 6.7% 5.5%
’not relevant’ recall 98.6% 0.0% 100% 96.3% 58.3% 0.0%
’not relevant’ precision 94.3% n.a. 94.5% 95.3% 95.1% n.a.
’relevant’ F-score n.a. 10.4% n.a. 20.0% 11.8% 10.4%
’not relevant’ F-score 96.4% n.a. 97.2% 95.8% 72.3% n.a.
’relevant’ percentage 5.5% 5.5% 5.5% 5.5% 5.5% 5.5%
Time (test) 4140 sec 569 sec 80 sec 34 sec 175 sec 161 sec
Time (training) 423 sec 431 sec 138 sec 19639 sec 49 sec 49 sec

Table F.25: Performance results (set 4), based on the feature word occurrences of e-mail messages in a confidential dataset. (GM =
Generative model, DM = Discriminative Model, ML = Maximum Likelihood Estimation, BE = Bayesian Estimation). * = based on the
top 500 words identified as as best corresponding the category ’relevant’ and the top 500 words identified as best corresponding to the
category ’not relevant’.
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MLE (GM) BE (GM) ML (DM)* BE (DM)* ML (GM)* BE (GM)*
# Predicted = given 358 31 368 367 332 31
# False Positives 4 368 0 7 149 368
# False Negatives 32 0 31 25 12 0
# True Positives 0 31 0 6 19 31
# True Negatives 358 0 368 361 213 0
Accuracy 91.1% 7.8% 92.2% 92.0% 59.0% 7.8%
Error rate 8.9% 92.2% 7.8% 8.0% 41.0% 92.2%
’relevant’ recall 0.0% 100% 0.0% 19.4% 61.3% 100%
’relevant’ precision 0.0% 7.8% n.a. 46.2% 11.3% 7.8%
’not relevant’ recall 98.9% 0.0% 100% 98.1% 58.7% 0.0%
’not relevant’ precision 92.0% n.a. 92.2% 93.5% 94.7% n.a.
’relevant’ F-score n.a. 14.5% n.a. 27.3% 19.1% 14.5%
’not relevant’ F-score 95.3% n.a. 95.9% 95.7% 72.5% n.a.
’relevant’ percentage 7.8% 7.8% 7.8% 7.8% 7.8% 7.8%
Time (test) 4277 sec 582 sec 69 sec 34 sec 176 sec 159 sec
Time (training) 437 sec 443 sec 141 sec 19707 sec 51 sec 51 sec

Table F.26: Performance results (set 5), based on the feature word occurrences of e-mail messages in a confidential dataset. (GM =
Generative model, DM = Discriminative Model, ML = Maximum Likelihood Estimation, BE = Bayesian Estimation). * = based on the
top 500 words identified as as best corresponding the category ’relevant’ and the top 500 words identified as best corresponding to the
category ’not relevant’.

Bayes factor True Positives True Negatives False Positives False Negatives

B > 102 0 171 0 13

102 > B > 10
3
2 0 14 0 2

10
3
2 > B > 10 0 14 0 1

10 > B > 10
1
2 0 20 0 1

10
1
2 > B > 1 0 8 0 1

B = 1 0 0 0 0

1 > B > 10−
1
2 0 0 25 0

10−
1
2 > B > 10−1 0 0 10 0

10−1 > B > 10−
3
2 3 0 30 0

10−
3
2 > B > 10−2 1 0 7 0

10−2 > B 10 0 65 0

Table F.27: Bayes Factor results word occurrences for the generative model with maximum likelihood estimation based on the top 1000
words (set 1)
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Bayes factor True Positives True Negatives False Positives False Negatives

B > 102 0 171 0 13

102 > B > 10
3
2 0 14 0 2

10
3
2 > B > 10 0 14 0 1

10 > B > 10
1
2 0 20 0 1

10
1
2 > B > 1 0 8 0 1

B = 1 0 0 0 0

1 > B > 10−
1
2 0 0 25 0

10−
1
2 > B > 10−1 0 0 10 0

10−1 > B > 10−
3
2 3 0 30 0

10−
3
2 > B > 10−2 1 0 7 0

10−2 > B 10 0 65 0

Table F.28: Bayes Factor results word occurrences for the generative model with maximum likelihood estimation based on the top 1000
words (set 2)

Bayes factor True Positives True Negatives False Positives False Negatives

B > 102 0 171 0 13

102 > B > 10
3
2 0 14 0 2

10
3
2 > B > 10 0 14 0 1

10 > B > 10
1
2 0 20 0 1

10
1
2 > B > 1 0 8 0 1

B = 1 0 0 0 0

1 > B > 10−
1
2 0 0 25 0

10−
1
2 > B > 10−1 0 0 10 0

10−1 > B > 10−
3
2 3 0 30 0

10−
3
2 > B > 10−2 1 0 7 0

10−2 > B 10 0 65 0

Table F.29: Bayes Factor results word occurrences for the generative model with maximum likelihood estimation based on the top 1000
words (set 3)
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Bayes factor True Positives True Negatives False Positives False Negatives

B > 102 0 171 0 13

102 > B > 10
3
2 0 14 0 2

10
3
2 > B > 10 0 14 0 1

10 > B > 10
1
2 0 20 0 1

10
1
2 > B > 1 0 8 0 1

B = 1 0 0 0 0

1 > B > 10−
1
2 0 0 25 0

10−
1
2 > B > 10−1 0 0 10 0

10−1 > B > 10−
3
2 3 0 30 0

10−
3
2 > B > 10−2 1 0 7 0

10−2 > B 10 0 65 0

Table F.30: Bayes Factor results word occurrences for the generative model with maximum likelihood estimation based on the top 1000
words (set 4)

Bayes factor True Positives True Negatives False Positives False Negatives

B > 102 0 171 0 13

102 > B > 10
3
2 0 14 0 2

10
3
2 > B > 10 0 14 0 1

10 > B > 10
1
2 0 20 0 1

10
1
2 > B > 1 0 8 0 1

B = 1 0 0 0 0

1 > B > 10−
1
2 0 0 25 0

10−
1
2 > B > 10−1 0 0 10 0

10−1 > B > 10−
3
2 3 0 30 0

10−
3
2 > B > 10−2 1 0 7 0

10−2 > B 10 0 65 0

Table F.31: Bayes Factor results word occurrences for the generative model with maximum likelihood estimation based on the top 1000
words (set 5)
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ENRON dataset

ML (GM) BE (GM) ML (DM)* BE (DM)* ML (GM)* BE (GM)*
# Predicted = given 1552 28 1596 1587 1135 28
# False Positives 44 1596 0 12 478 1596
# False Negatives 27 0 28 25 10 0
# True Positives 0 28 0 3 17 28
# True Negatives 1552 0 1596 1584 1118 0
Accuracy 95.6% 1.7% 98.3% 97.7% 69.9% 1.7%
Error rate 4.4% 98.3% 1.7% 2.3% 30.1% 98.3%
’relevant’ recall 0.0% 100% 0.0% 10.7% 63.0% 100%
’relevant’ precision 0.0% 1.7% n.a. 20.0% 3.4% 1.7%
’not relevant’ recall 97.2% 0.0% 100% 99.2% 70.1% 0.0%
’not relevant’ precision 98.3% n.a. 98.3% 98.4% 99.1% n.a.
’relevant’ F-score n.a. 3.3% n.a. 13.9% 6.5% 3.3%
’not relevant’ F-score 97.7% n.a. 99.1% 98.8% 82.1% n.a.
’relevant’ percentage 1.7% 1.7% 1.7% 1.7% 1.7% 1.7%
Time (test) 20081 sec 2311 sec 79 sec 64 sec 410 sec 211sec
Time (training) 1896 sec 1499 sec 394 sec 52578 sec 87 sec 88 sec

Table F.32: Performance results (set 1), based on the feature word occurrences of e-mail messages in the ENRON dataset. (GM = Gener-
ative model, DM = Discriminative Model, ML = Maximum Likelihood Estimation, BE = Bayesian Estimation). * = based on the top 500
words identified as as best corresponding the category ’relevant’ and the top 500 words identified as best corresponding to the category
’not relevant’.

MLE (GM) BE (GM) ML (DM)* BE (DM)* ML (GM)* BE (GM)*
# Predicted = given 1554 25 1599 1580 1059 25
# False Positives 45 1599 0 21 550 1599
# False Negatives 23 0 25 23 13 0
# True Positives 0 25 0 2 10 25
# True Negatives 1554 0 1599 1578 1049 0
Accuracy 95.8% 1.5% 98.5% 97.3% 65.3% 1.5%
Error rate 4.2% 98.5% 1.5% 2.7% 34.7% 98.5%
’relevant’ recall 0.0% 100% 0.0% 8.0% 43.5% 100%
’relevant’ precision 0.0% 1.5% n.a. 8.7% 1.8% 1.5%
’not relevant’ recall 97.2% 0.0% 100% 98.7% 65.6% 0.0%
’not relevant’ precision 98.5% n.a. 98.5% 98.6% 98.8% n.a.
’relevant’ F-score n.a. 3.0% n.a.% 8.3% 3.5% 3.0%
’not relevant’ F-score 97.8% n.a. 99.2% 98.6% 78.8% n.a.
’relevant’ percentage 1.5% 1.5% 1.5% 1.5% 1.5% 1.5%
Time (test) 20318 sec 2304 sec 78 sec 63 sec 411 sec 246 sec
Time (training) 1369 sec 1269 sec 387 sec 50980 sec 90 sec 89 sec

Table F.33: Performance results (set 2), based on the feature word occurrences of e-mail messages in the ENRON dataset. (GM = Gener-
ative model, DM = Discriminative Model, ML = Maximum Likelihood Estimation, BE = Bayesian Estimation). * = based on the top 500
words identified as as best corresponding the category ’relevant’ and the top 500 words identified as best corresponding to the category
’not relevant’.
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MLE (GM) BE (GM) ML (DM)* BE (DM)* ML (GM)* BE (GM)*
# Predicted = given 1554 25 1594 1587 1161 30
# False Positives 45 1599 0 10 450 1594
# False Negatives 23 0 30 27 13 0
# True Positives 0 25 0 3 17 30
# True Negatives 1554 0 1594 1584 1144 0
Accuracy 95.8% 1.5% 98.2% 97.7% 71.5% 1.8%
Error rate 4.2% 98.5% 1.8% 2.3% 28.5% 98.2%
’relevant’ recall 0.0% 100% 0.0% 10.0% 56.7% 100%
’relevant’ precision 0.0% 1.5% n.a.% 23.1% 3.6% 1.8%
’not relevant’ recall 97.2% 0.0% 100% 99.4% 71.8% 0.0%
’not relevant’ precision 98.5% n.a. 98.2% 98.3% 98.9% n.a.
’relevant’ F-score n.a. 3.0% n.a.% 14.0% 6.8% 3.5%
’not relevant’ F-score 97.8% n.a. 99.1% 98.8% 83.2% n.a.
’relevant’ percentage 1.8% 1.8% 1.8% 1.8% 1.8% 1.8%
Time (test) 20149 sec 2237 sec 89 sec 66 sec 415 sec 201 sec
Time (training) 1326 sec 1213 sec 389 sec 72402 sec 89 sec 88 sec

Table F.34: Performance results (set 3), based on the feature word occurrences of e-mail messages in the ENRON dataset. (GM = Gener-
ative model, DM = Discriminative Model, ML = Maximum Likelihood Estimation, BE = Bayesian Estimation). * = based on the top 500
words identified as as best corresponding the category ’relevant’ and the top 500 words identified as best corresponding to the category
’not relevant’.

MLE (GM) BE (GM) ML (DM)* BE (DM)* ML (GM)* BE (GM)*
# Predicted = given 1551 17 1607 1592 1103 17
# False Positives 43 1607 0 15 508 1607
# False Negatives 30 0 17 17 12 0
# True Positives 0 17 0 0 4 17
# True Negatives 1551 0 1607 1592 1099 0
Accuracy 95.5% 1.0% 99.0% 98.0% 68.0% 1.0%
Error rate 4.5% 99.0% 1.0% 2.0% 32.0% 99.0%
’relevant’ recall 0.0% 100% 0.0% 0.0% 25.0% 100%
’relevant’ precision 0.0% 1.0% n.a.% 0.0% 0.8% 1.0%
’not relevant’ recall 97.3% 0.0% 100% 99.1% 68.4% 0.0%
’not relevant’ precision 98.1% n.a. 99.0% 98.9% 98.9% n.a.
’relevant’ F-score n.a. 2.0% n.a.% n.a. 1.6% 2.0%
’not relevant’ F-score 97.7% n.a. 99.5% 99.0% 80.9% n.a.
’relevant’ percentage 1.0% 1.0% 1.0% 1.0% 1.0% 1.0%
Time (test) 20272 sec 2235 sec 99 sec 74 sec 421 sec 235 sec
Time (training) 1493 sec 1210 sec 506 sec 60949 sec 91 sec 89 sec

Table F.35: Performance results (set 4), based on the feature word occurrences of e-mail messages in the ENRON dataset. (GM = Gener-
ative model, DM = Discriminative Model, ML = Maximum Likelihood Estimation, BE = Bayesian Estimation). * = based on the top 500
words identified as as best corresponding the category ’relevant’ and the top 500 words identified as best corresponding to the category
’not relevant’.
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MLE (GM) BE (GM) ML (DM)* BE (DM)* ML (GM)* BE (GM)*
# Predicted = given 1564 25 1599 1587 1130 25
# False Positives 43 1599 0 14 480 1599
# False Negatives 16 0 25 23 11 0
# True Positives 0 25 0 2 11 25
# True Negatives 1564 0 1599 1585 1119 0
Accuracy 96.4% 1.5% 98.5% 97.7% 69.7% 1.5%
Error rate 3.6% 98.5% 1.5% 2.3% 30.3% 98.5%
’relevant’ recall 0.0% 100% 0.0% 8.0% 50.0% 100%
’relevant’ precision 0.0% 1.5% n.a. 12.5% 2.2% 1.5%
’not relevant’ recall 97.3% 0.0% 100% 99.1% 70.0% 0.0%
’not relevant’ precision 99.0% n.a. 98.5% 98.6% 99.0% n.a.
’relevant’ F-score n.a. 3.0% n.a. 9.8% 4.2% 3.0%
’not relevant’ F-score 98.1% n.a. 99.2% 98.8% 82.0% n.a.
’relevant’ percentage 1.5% 1.5% 1.5% 1.5% 1.5% 1.5%
Time (test) 21250 sec 2284 sec 77 sec 74 sec 414 sec 199 sec
Time (training) 1349 sec 1229 sec 483 sec 51788 sec 90 sec 89 sec

Table F.36: Performance results (set 5), based on the feature word occurrences of e-mail messages in the ENRON dataset. (GM = Gener-
ative model, DM = Discriminative Model, ML = Maximum Likelihood Estimation, BE = Bayesian Estimation). * = based on the top 500
words identified as as best corresponding the category ’relevant’ and the top 500 words identified as best corresponding to the category
’not relevant’.

TREC dataset

ML (GM) BE (GM) ML (DM)* ML (GM)* BE (GM)*
# Predicted = given 9620 5032 7858 11466 5032
# False Positives 5031 0 2811 22 0
# False Negatives 0 9968 4331 3163 9968
# True Positives 9620 0 5637 6457 0
# True Negatives 0 5032 2221 5009 5032
Accuracy 65.7% 33.5% 52.4% 78.3% 33.5%
Error rate 34.3% 66.5% 47.6% 21.7% 66.5%
’relevant’ recall 100% 0.0% 56.6% 67.1% 0.0%
’relevant’ precision 65.7% n.a. 66.7% 99.7% n.a.
’not relevant’ recall 0.0% 100% 44.1% 99.6% 100%
’not relevant’ precision n.a. 33.5% 33.9% 61.3% 33.5%
’relevant’ F-score 79.3% n.a. 61.2% 80.2% n.a.
’not relevant’ F-score n.a. 50.2% 38.3% 75.9% 50.2%
’relevant’ percentage 65.7% 65.7% 65.7% 65.7% 65.7%
Time (test) 3603 sec 98208 sec 2752 sec 6315 sec 1084 sec
Time (training) 110929 sec 1201 sec 20612 sec 980 sec 985 sec

Table F.37: Performance results (set 1), based on the feature word occurrences of e-mail messages in the TREC dataset. (GM = Generative
model, DM = Discriminative Model, ML = Maximum Likelihood Estimation, BE = Bayesian Estimation). * = based on the top 500 words
identified as as best corresponding the category ’relevant’ and the top 500 words identified as best corresponding to the category ’not
relevant’. The performance results of the discriminative model based on Bayesian estimation are not available (the model took too long
to compute).
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F.3. Model length e-mail

F.3.1. Parameter analysis

Figure F.21: Training process generative model for feature length e-mail with MLE (ENRON dataset). The two lines indicate how the value
of the parameter corresponding to the words are trained. In these figures ’Legit’ is the category of the unlabeled e-mails.

Figure F.22: Training process generative model for feature length e-mail with Bayesian estimation (ENRON dataset). The two lines
indicate how the value of the parameter corresponding to the words are trained. In these figures ’Legit’ is the category of the unlabeled
e-mails.
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Figure F.23: Training process discriminative model for feature length e-mail with Bayesian estimation (ENRON dataset). The blue line
indicates the sample values on which the parameter value is based. As can be seen the sample values are quite close to each other.

F.3.2. Results classification

confidential dataset

ML (GM) BE (GM) ML (DM) BE (DM)
# Predicted = given 333 32 367 367
# False Positives 39 367 0 0
# False Negatives 27 0 32 32
# True Positives 5 32 0 0
# True Negatives 328 0 367 367
Accuracy 83.5% 8.0% 92.0% 92.0%
Error rate 16.5% 92.0% 8.0% 8.0%
’relevant’ recall 15.6% 100% 0.0% 0.0%
’relevant’ precision 11.4% 8.0% n.a. n.a.
’not relevant’ recall 89.4% 0.0% 100% 100%
’not relevant’ precision 92.4% n.a. 92.0% 92.0%
’relevant’ F-score 13.2% 14.8% n.a. n.a.
’not relevant’ F-score 90.9% n.a. 95.8% 95.8%
’relevant’ percentage 8.0% 8.0% 8.0% 8.0%
Time (test) 6 sec 139 sec 5 sec 16 sec
Time (training) 18 sec 18 sec 17 sec 134 sec

Table F.38: Performance results (set 1), based on the feature length e-mail of e-mail messages in a confidential dataset. (GM = Generative
model, DM = Discriminative Model, ML = Maximum Likelihood Estimation, BE = Bayesian Estimation).
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MLE (GM) BE (GM) ML (DM) BE (DM)
# Predicted = given 318 20 379 379
# False Positives 64 379 0 0
# False Negatives 17 0 20 20
# True Positives 3 20 0 0
# True Negatives 315 0 379 379
Accuracy 79.7% 5.0% 95.0% 95.0%
Error rate 20.3% 95.0% 5.0% 5.0%
’relevant’ recall 15.0% 100% 0.0% 0.0%
’relevant’ precision 4.5% 5.0% n.a. n.a.
’not relevant’ recall 83.1% 0.0% 100% 100%
’not relevant’ precision 94.9% n.a. 95.0% 95.0%
’relevant’ F-score 6.9% 9.5% n.a. n.a.
’not relevant’ F-score 88.6% n.a. 97.4% 97.4%
’relevant’ percentage 5.0% 5.0% 5.0% 5.0%
Time (test) 6 sec 139 sec 5 sec 17 sec
Time (training) 18 sec 18 sec 17 sec 137 sec

Table F.39: Performance results (set 2), based on the feature length e-mail of e-mail messages in a confidential dataset. (GM = Generative
model, DM = Discriminative Model, ML = Maximum Likelihood Estimation, BE = Bayesian Estimation).

MLE (GM) BE (GM) ML (DM) BE (DM)
# Predicted = given 337 31 368 368
# False Positives 32 368 0 0
# False Negatives 30 0 31 31
# True Positives 1 31 0 0
# True Negatives 336 0 368 368
Accuracy 84.5% 7.8% 92.2% 92.2%
Error rate 15.5% 92.2% 7.8% 7.8%
’relevant’ recall 3.2% 100% 0.0% 0.0%
’relevant’ precision 3.0% 7.8% n.a. n.a.
’not relevant’ recall 91.3% 0.0% 100% 100%
’not relevant’ precision 91.8% n.a. 92.2% 92.2%
’relevant’ F-score 3.1% 14.5% n.a. n.a.
’not relevant’ F-score 91.5% n.a. 95.9% 95.9%
’relevant’ percentage 7.8% 7.8% 7.8% 7.8%
Time (test) 5 sec 140 sec 5 sec 15 sec
Time (training) 19 sec 19 sec 17 sec 131 sec

Table F.40: Performance results (set 3), based on the feature length e-mail of e-mail messages in a confidential dataset. (GM = Generative
model, DM = Discriminative Model, ML = Maximum Likelihood Estimation, BE = Bayesian Estimation).
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MLE (GM) BE (GM) ML (DM) BE (DM)
# Predicted = given 330 22 377 377
# False Positives 50 377 0 0
# False Negatives 19 0 22 22
# True Positives 3 22 0 0
# True Negatives 327 0 377 377
Accuracy 82.7% 5.5% 94.5% 94.5%
Error rate 17.3% 94.5% 5.5% 5.5%
’relevant’ recall 13.6% 100% 0.0% 0.0%
’relevant’ precision 5.7% 5.5% n.a. n.a.
’not relevant’ recall 86.7% 0.0% 100% 100%
’not relevant’ precision 94.5% n.a. 94.5% 94.5%
’relevant’ F-score 8.0% 10.4% n.a. n.a.
’not relevant’ F-score 90.4% n.a. 97.2% 97.2
’relevant’ percentage 5.5% 5.5% 5.5% 5.5%
Time (test) 6 sec 138 sec 5 sec 16 sec
Time (training) 18 sec 18 sec 17 sec 134 sec

Table F.41: Performance results (set 4), based on the feature length e-mail of e-mail messages in a confidential dataset. (GM = Generative
model, DM = Discriminative Model, ML = Maximum Likelihood Estimation, BE = Bayesian Estimation).

MLE (GM) BE (GM) ML (DM) BE (DM)
# Predicted = given 331 31 368 368
# False Positives 42 368 0 0
# False Negatives 26 0 31 31
# True Positives 5 31 0 0
# True Negatives 326 0 368 368
Accuracy 83.0% 7.8% 92.2% 92.2%
Error rate 17.0% 92.2% 7.8% 7.8%
’relevant’ recall 16.1% 100% 0.0% 0.0%
’relevant’ precision 10.6% 7.8% n.a. n.a.
’not relevant’ recall 88.6% 0.0% 100% 100%
’not relevant’ precision 92.6% n.a. 92.2% 92.2%
’relevant’ F-score 12.8% 14.5% n.a. n.a.
’not relevant’ F-score 90.6% n.a. 95.9% 95.9%
’relevant’ percentage 7.8% 7.8% 7.8% 7.8%
Time (test) 5 sec 139 sec 5 sec 15 sec
Time (training) 18 sec 19 sec 17 sec 131 sec

Table F.42: Performance results (set 5), based on the feature length e-mail of e-mail messages in a confidential dataset. (GM = Generative
model, DM = Discriminative Model, ML = Maximum Likelihood Estimation, BE = Bayesian Estimation).
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Bayes factor True Positives True Negatives False Positives False Negatives

B > 102 0 0 0 0

102 > B > 10
3
2 0 0 0 0

10
3
2 > B > 10 0 0 0 0

10 > B > 10
1
2 0 0 0 0

10
1
2 > B > 1 0 328 0 27

B = 1 0 0 0 0

1 > B > 10−
1
2 5 0 39 0

10−
1
2 > B > 10−1 0 0 0 0

10−1 > B > 10−
3
2 0 0 0 0

10−
3
2 > B > 10−2 0 0 0 0

10−2 > B 0 0 0 0

Table F.43: Bayes Factor results of e-mail lengths for the generative model with maximum likelihood estimation (set 1)

Bayes factor True Positives True Negatives False Positives False Negatives

B > 102 0 0 0 0

102 > B > 10
3
2 0 0 0 0

10
3
2 > B > 10 0 0 0 0

10 > B > 10
1
2 0 0 0 0

10
1
2 > B > 1 0 315 0 17

B = 1 0 0 0 0

1 > B > 10−
1
2 3 0 64 0

10−
1
2 > B > 10−1 0 0 0 0

10−1 > B > 10−
3
2 0 0 0 0

10−
3
2 > B > 10−2 0 0 0 0

10−2 > B 0 0 0 0

Table F.44: Bayes Factor results of e-mail lengths for the generative model with maximum likelihood estimation (set 2)

Bayes factor True Positives True Negatives False Positives False Negatives

B > 102 0 0 0 0

102 > B > 10
3
2 0 0 0 0

10
3
2 > B > 10 0 0 0 0

10 > B > 10
1
2 0 0 0 0

10
1
2 > B > 1 0 336 0 30

B = 1 0 0 0 0

1 > B > 10−
1
2 1 0 32 0

10−
1
2 > B > 10−1 0 0 0 0

10−1 > B > 10−
3
2 0 0 0 0

10−
3
2 > B > 10−2 0 0 0 0

10−2 > B 0 0 0 0

Table F.45: Bayes Factor results of e-mail lengths for the generative model with maximum likelihood estimation (set 3)
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Bayes factor True Positives True Negatives False Positives False Negatives

B > 102 0 0 0 0

102 > B > 10
3
2 0 0 0 0

10
3
2 > B > 10 0 0 0 0

10 > B > 10
1
2 0 0 0 0

10
1
2 > B > 1 0 327 0 19

B = 1 0 0 0 0

1 > B > 10−
1
2 3 0 50 0

10−
1
2 > B > 10−1 0 0 0 0

10−1 > B > 10−
3
2 0 0 0 0

10−
3
2 > B > 10−2 0 0 0 0

10−2 > B 0 0 0 0

Table F.46: Bayes Factor results of e-mail lengths for the generative model with maximum likelihood estimation (set 4)

Bayes factor True Positives True Negatives False Positives False Negatives

B > 102 0 0 0 0

102 > B > 10
3
2 0 0 0 0

10
3
2 > B > 10 0 0 0 0

10 > B > 10
1
2 0 0 0 0

10
1
2 > B > 1 0 326 0 26

B = 1 0 0 0 0

1 > B > 10−
1
2 5 0 42 0

10−
1
2 > B > 10−1 0 0 0 0

10−1 > B > 10−
3
2 0 0 0 0

10−
3
2 > B > 10−2 0 0 0 0

10−2 > B 0 0 0 0

Table F.47: Bayes Factor results of e-mail lengths for the generative model with maximum likelihood estimation (set 5)
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ENRON dataset

ML (GM) BE (GM) ML (DM) BE (DM)
# Predicted = given 1420 27 1596 1596
# False Positives 181 1596 0 0
# False Negatives 23 0 28 28
# True Positives 5 27 0 0
# True Negatives 1415 0 1596 1596
Accuracy 87.4% 1.7% 98.3% 98.3%
Error rate 12.6% 98.3% 1.7% 1.7%
’relevant’ recall 17.9% 100% 0.0% 0.0%
’relevant’ precision 2.7% 1.7% n.a. n.a.
’not relevant’ recall 88.7% 0.0% 100% 100%
’not relevant’ precision 98.4% n.a. 98.3% 98.3%
’relevant’ F-score 4.7% 3.3% n.a. n.a.
’not relevant’ F-score 93.3% n.a. 99.1% 99.1%
’relevant’ percentage 1.7% 1.7% 1.7% 1.7%
Time (test) 11 sec 188 sec 10 sec 26 sec
Time (training) 35 sec 37 sec 36 sec 179 sec

Table F.48: Performance results (set 1), based on the feature length e-mail of e-mail messages in the ENRON dataset. (GM = Generative
model, DM = Discriminative Model, ML = Maximum Likelihood Estimation, BE = Bayesian Estimation).

MLE (GM) BE (GM) ML (DM) BE (DM)
# Predicted = given 187 23 1599 1599
# False Positives 1433 1599 0 0
# False Negatives 4 0 25 25
# True Positives 21 23 0 0
# True Negatives 166 0 1599 1599
Accuracy 11.5% 1.4% 98.5% 98.5%
Error rate 88.5% 98.6% 1.5% 1.5%
’relevant’ recall 84.0% 100% 0.0% 0.0%
’relevant’ precision 1.4% 1.4% n.a. n.a.
’not relevant’ recall 10.4% 0.0% 100% 100%
’not relevant’ precision 97.6% n.a. 98.5% 98.5%
’relevant’ F-score 2.8% 2.8% n.a. n.a.
’not relevant’ F-score 18.8% n.a. 99.2% 99.2%
’relevant’ percentage 1.5% 1.5% 1.5% 1.5%
Time (test) 13 sec 182 sec 9 sec 26 sec
Time (training) 37 sec 40 sec 40 sec 169 sec

Table F.49: Performance results (set 2), based on the feature length e-mail of e-mail messages in the ENRON dataset. (GM = Generative
model, DM = Discriminative Model, ML = Maximum Likelihood Estimation, BE = Bayesian Estimation).
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MLE (GM) BE (GM) ML (DM) BE (DM)
# Predicted = given 1423 30 1594 1594
# False Positives 176 1594 0 0
# False Negatives 25 0 30 30
# True Positives 5 30 0 0
# True Negatives 1418 0 1594 1594
Accuracy 87.6% 1.8% 98.2% 98.2%
Error rate 12.4% 98.2% 1.8% 1.8%
’relevant’ recall 16.7% 100% 0.0% 0.0%
’relevant’ precision 2.8% 1.8% n.a. n.a.
’not relevant’ recall 89.0% 0.0% 100% 100%
’not relevant’ precision 98.3% n.a. 98.2% 98.2%
’relevant’ F-score 4.8% 3.5% n.a. n.a.
’not relevant’ F-score 93.4% n.a. 99.1% 99.1%
’relevant’ percentage 1.8% 1.8% 1.8% 1.8%
Time (test) 13 sec 187 sec 12 sec 29 sec
Time (training) 37 sec 40 sec 39 sec 177 sec

Table F.50: Performance results (set 3), based on the feature length e-mail of e-mail messages in the ENRON dataset. (GM = Generative
model, DM = Discriminative Model, ML = Maximum Likelihood Estimation, BE = Bayesian Estimation).

MLE (GM) BE (GM) ML (DM) BE (DM)
# Predicted = given 186 16 1607 1607
# False Positives 1435 1607 0 0
# False Negatives 3 0 17 17
# True Positives 14 16 0 0
# True Negatives 172 0 1607 1607
Accuracy 11.5% 1.0% 99.0% 99.0%
Error rate 88.5% 99.0% 1.0% 1.0%
’relevant’ recall 82.4% 100% 0.0% 0.0%
’relevant’ precision 1.0% 1.0% n.a. n.a.
’not relevant’ recall 10.7% 0.0% 100% 100%
’not relevant’ precision 98.3% n.a. 99.0% 99.0%
’relevant’ F-score 2.0% 2.0% n.a. n.a.
’not relevant’ F-score 19.3% n.a. 99.5% 99.5%
’relevant’ percentage 1.0% 1.0% 1.0% 1.0%
Time (test) 13 sec 189 sec 10 sec 27 sec
Time (training) 37 sec 40 sec 38 sec 178 sec

Table F.51: Performance results (set 4), based on the feature length e-mail of e-mail messages in the ENRON dataset. (GM = Generative
model, DM = Discriminative Model, ML = Maximum Likelihood Estimation, BE = Bayesian Estimation).
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MLE (GM) BE (GM) ML (DM) BE (DM)
# Predicted = given 1438 22 1599 1599
# False Positives 164 1599 0 0
# False Negatives 22 0 25 25
# True Positives 3 22 0 0
# True Negatives 1435 0 1599 1599
Accuracy 88.5% 1.4% 98.5% 98.5%
Error rate 11.5% 98.6% 1.5% 1.5%
’relevant’ recall 12.0% 100% 0.0% 0.0%
’relevant’ precision 1.8% 1.4% n.a. n.a.
’not relevant’ recall 89.7% 0.0% 100% 100%
’not relevant’ precision 98.5% n.a. 98.5% 98.5%
’relevant’ F-score 3.1% 2.8% n.a. n.a.
’not relevant’ F-score 93.9% n.a. 99.2% 99.2%
’relevant’ percentage 1.5% 1.5% 1.5% 1.5%
Time (test) 13 sec 184 sec 10 sec 26 sec
Time (training) 38 sec 38 sec 38 sec 162 sec

Table F.52: Performance results (set 5), based on the feature length e-mail of e-mail messages in the ENRON dataset. (GM = Generative
model, DM = Discriminative Model, ML = Maximum Likelihood Estimation, BE = Bayesian Estimation).

TREC dataset

ML (GM) BE (GM) ML (DM) BE (DM)
# Predicted = given 9920 5149 9968 10098
# False Positives 4465 182 5032 4778
# False Negatives 615 9320 0 124
# True Positives 9353 300 9968 9844
# True Negatives 567 4849 0 254
Accuracy 66.1% 35.1% 66.5% 67.3%
Error rate 33.9% 64.9% 33.5% 32.7%
’relevant’ recall 93.8% 3.1% 100% 98.8%
’relevant’ precision 67.7% 62.2% 66.5% 67.3%
’not relevant’ recall 11.3% 96.4% 0.0% 5.0%
’not relevant’ precision 48.0% 34.2% n.a. 67.2%
’relevant’ F-score 78.6% 5.9% 79.9% 80.1%
’not relevant’ F-score 18.3% 50.5% n.a. 9.3%
’relevant’ percentage 65.7% 65.7% 65.7% 65.7%
Time (test) 166 sec 10792 sec 1104 sec 697 sec
Time (training) 679 sec 655 sec 204 sec 6426 sec

Table F.53: Performance results (set 1), based on the feature length e-mail of e-mail messages in the TREC dataset. (GM = Generative
model, DM = Discriminative Model, ML = Maximum Likelihood Estimation, BE = Bayesian Estimation).
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