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a b s t r a c t 

We solve a rich routing problem inspired from practice, in which a heterogeneous fixed fleet is used 

for collecting recyclable waste from large containers over a finite planning horizon. Each container is 

equipped with a sensor that communicates its level at the start of the day. Given a history of observa- 

tions, a forecasting model is used to estimate the expected demands and a forecasting error representing 

the level of uncertainty. The problem falls under the framework of the stochastic inventory routing prob- 

lem and our main contribution is the modeling of the dynamic probability-based cost of container over- 

flows and route failures over the planning horizon. We cast the problem as a mixed integer non-linear 

program and, to solve it, we develop an adaptive large neighborhood search algorithm that integrates a 

purpose-designed forecasting model, tested and validated on real data. We demonstrate the strength of 

our modeling approach on a set of rich inventory routing instances derived from real data coming from 

the canton of Geneva, Switzerland. Our approach significantly outperforms alternative deterministic poli- 

cies in its ability to limit the occurrence of container overflows for the same routing cost. Finally, we 

show the benefit of a rolling horizon solution and derive lower and upper bounds on its cost. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Waste collection is one of the most important logistical ac-

ivities performed by any municipality, and also one of the most

xpensive, with collection costs alone accounting for more than

0% of waste management costs ( Tavares et al., 2009 ). Recycling, on

he other hand, can alleviate problems related to landfill capacity

nd pollution, and many countries have already set ambitious

arget levels for recycling. As part of its Circular Economy Strategy,

he European Union (EU), for example, has adopted legislative

roposals to set a common EU target for recycling 65% of munic-

pal and 75% of packaging waste by 2030, limiting at the same

ime the use of landfills ( European Commission, 2016 ). Given the

igh cost of waste management and the significant proportion of
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ollection costs, even small improvements in the latter can lead

o substantial financial savings for waste collectors, municipalities

nd the taxpayer. 

In this context, we solve a rich recyclable waste collection

roblem, which can be described as follows. A heterogeneous

xed fleet is used for collecting recyclable waste from large con-

ainers. Each container holds and each vehicle collects a given

aste flow, e.g. white glass, colored glass, paper, etc. Therefore,

 separate problem is solved for each waste flow. As shown in

ig. 1 , a tour starts and ends at the depot, and is a sequence of

ollections followed by disposals at the available dumps. There is a

andatory visit to a dump just before the end of a tour, i.e. a tour

erminates with an empty vehicle. Dumps are recycling plants.

here could be multiple dumps for the collected waste flow and

hey can be used when and as needed along the tour. We consider

ime windows for the containers, depots and dumps. For depots

nd dumps, time windows represent working hours, whereas for

ontainers they can be set to avoid collections during rush hours,

chool times, etc. A tour is also limited by the legal duration of
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depot

c c c c c c c

c

cdumpdump

c

ccccccc
c = container

Fig. 1. Example of a collection tour ( Markov et al., 2016 ). 
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the working day. Accessibility restrictions apply to certain points,

for example containers located in narrow streets that cannot be

accessed by big collector trucks. 

Containers are equipped with ultrasound sensors that com-

municate their waste levels via the GSM network at the start of

the day. Yet, planning today’s collections while ignoring future

container demands is myopic. For instance, it may be cheaper to

postpone a collection if we know that the container in question

fills up slowly. On the other hand, it may be worthwhile collecting

an almost empty container today if we know that it will expe-

rience high demand in the coming days. Since future demands

are unknown, we use historical data and forecasting techniques

to estimate their expected values and the distribution of the

forecasting error term over a multi-day planning horizon. 

Deviations of the demand realizations from their expected

values may lead to undesirable events. If a container fills up

more quickly than expected and is not collected on time, it

may overflow. Experience suggests that such containers continue

serving demand because people place the waste beside them.

Nevertheless, the municipal regulations require that overflowing

containers should be collected on the same day. By the same

logic, if the containers planned for collection on a given day are

fuller than expected, the vehicle may run out of capacity before its

scheduled dump visit, resulting in a so-called route failure. These

undesirable events require recourse actions, such as the emergency

collection of an overflowing container or an unplanned visit to a

dump in the case of route failure. Recourse actions are expensive.

Therefore, minimizing collection costs requires forward-looking

plans with collection schedules that incorporate the probabilities

of undesirable events. 

Given the multi-day planning horizon and the uncertainty

implied by the forecasting error, our problem falls under the

framework of the Stochastic Inventory Routing Problem (SIRP).

Markov et al. (2018) present a unified framework for rich routing

problems with stochastic demands, which allows the explicit

modeling of recourse actions, their probabilities and costs in a

computationally tractable way. The present work builds on this

unified framework by going much deeper into the specifics of our

problem. We apply a forecasting model and derive the expressions

for the recourse costs of container overflows and route failures.

Containers additionally incur an overflow cost that the collec-

tor pays to the municipality in the form of a fine. The correct

attribution of these costs to the objective function involves the

calculation of conditional probabilities, which are day-dependent

and dynamically affected by previous collections during the plan-

ning horizon, and which complicate the solution methodology by

introducing non-linearities. 

While the problem is stochastic, it is also dynamic with new

container level information revealed daily. The latter is integrated

in a rolling horizon fashion by solving an SIRP on each day and

implementing the decisions for that day. Considering a multi-day

planning horizon at each rollover thus takes advantage of future
 e  
robabilistic information for making forward-looking decisions

oday. As a result, the collection tours executed on each day reflect

he anticipation of future demands, balancing collection costs and

he expected costs of undesirable events and their recourse ac-

ions. In our problem, demand is revealed in discrete time periods,

.e. with the start of each day. Conceptually, the availability of

ontinuous demand information can be handled using a finer time

iscretization under the same modeling framework. 

The remainder of this article is organized as follows.

ection 2 positions our work with respect to the relevant VRP and

RP literature. Section 3 outlines the forecasting model and devel-

ps the mathematical formulation of our problem. Section 4 de-

cribes the solution methodology, followed by Section 5 , which

resents the numerical experiments. Finally, Section 6 concludes

nd explores future work directions. 

. Related literature 

Given the rich features of our problem, we review both the

elated VRP and IRP literature. In Section 2.1 below, we provide a

hort survey of the VRP with Intermediate Facilities (VRP-IF), the

lectric and alternative fuel VRP, and the heterogeneous fixed fleet

RP. Then, in Section 2.2 , we shift our attention to the stochastic

RP with a specific focus on the modeling approach with respect

o the treatment of uncertainty. Finally, in Section 2.3 , we position

ur contribution. 

.1. Related VRP literature 

One of the seminal applications of the VRP to waste collection

s that of Beltrami and Bodin (1974) who solve a periodic VRP-IF

or commercial waste collection in New York City. Angelelli and

peranza (2002) apply a tabu search heuristic to a similar periodic

roblem. Kim et al. (2006) develop a simulated annealing heuristic

or a waste collection VRP-IF which also considers features such as

our compactness and workload balancing. 

A related problem, the Multi-Depot VRP with Inter-depot

outes (MDVRPI), is proposed by Crevier et al. (2007) . They

ecompose the problem into multi-depot, single-depot and

nter-depot subproblems, which are solved by tabu search. A

olution to the MDVRPI is obtained through a set covering for-

ulation. Crevier et al. (2007) generate two benchmark sets

ith a fixed homogeneous fleet stationed at one depot, with

he rest of the depots acting only as intermediate facilities. The

est known heuristic solutions to these instances are due to

emmelmayr et al. (2013) who develop a Variable Neighborhood

earch (VNS). Muter et al. (2014) propose a branch-and-price

lgorithm for the MDVRPI and manage to solve to optimality

nstances with up to 50 customers. 

A conceptually similar problem appears in the routing of

lectric and alternative fuel vehicles, where recharging or refu-

ling decisions correspond to emptying decisions. Conrad and
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igliozzi (2011) consider the recharging VRP, where electric

ehicles can recharge at customer locations with time win-

ows. Erdo ̆gan and Miller-Hooks (2012) treat the green VRP,

here vehicles use a sparse alternative fuel infrastructure.

chneider et al. (2014) solve the electric VRP with time windows

nd recharging stations, while Schneider et al. (2015) combine

echarging and reloading facilities in the VRP with intermediate

tops. A recent survey of the relevant literature is available in

elletier et al. (2016) . 

The preceding literature assumes homogeneous fleets, whether

imited or not. However, in industry fleets are rarely homogeneous.

hey either start as heterogeneous or become such as vehicles are

dded or replaced. Taillard (1999) was the first to formally define

he Heterogeneous Fixed Fleet VRP (HFFVRP). Being a generaliza-

ion of the Vehicle Fleet Mix Problem (VFMP), the HFFVRP is more

ifficult than the classical VRP or the VFMP. Taillard (1999) solu-

ion approach relies on heuristic column generation and vehicle

ssignment costs are calculated at each iteration. The best heuris-

ic approaches for this problem are due to Penna et al. (2013) and

ubramanian et al. (2012) , and the only fully exact method is that

f Baldacci and Mingozzi (2009) . 

The vehicle routing component embedded in our IRP already

ncludes most of the features discussed above, notably a heteroge-

eous fixed fleet, multiple dumps playing the role of intermediate

acilities, in addition to time windows, a maximum tour duration,

nd accessibility restrictions. The simultaneous presence of all

hese features is seldom considered in the VRP literature. Our

roblem has the complication of including them in an IRP context.

hus, while they are essential to describing a realistic problem

nspired by practice, they also pose a great challenge in terms of

odeling and solution methodology. 

.2. Related SIRP literature 

Coelho et al. (2014b) conduct a survey of the IRP literature dur-

ng the past thirty years. Table 1 positions our problem in terms

f the structural classification scheme they propose. As motivated

n Section 1 , we consider a finite planning horizon which is used

n a rolling fashion. There are multiple containers that are emptied

nto multiple dumps, and so we identify the structure as many-

o-many. Multiple containers can be visited along a tour and the

nventory policy is order-up-to, meaning that a visited container

s always fully emptied. Container overflow is served at a penalty,

hich implies back-ordering inventory decisions where the num-

er of back-order days is limited to one. The fleet is heterogeneous

nd fixed. Information-wise, the problem is stochastic and, given

hat it is solved in a rolling horizon fashion, dynamic with new

ontainer information revealed each day. Other comprehensive

urveys with a particular focus on the stochastic IRP can be found

n Moin and Salhi (2007) and Yu et al. (2012) . In the following, we

imit our attention to finite-horizon stochastic problems, i.e. the

lass to which our problem belongs. In particular, we emphasize

he use of a rolling horizon approach, the limitations of relying on

he concept of optimal service frequencies, and the pros and cons
Table 1 

Structural classification ( Coelho et al., 2014b ). 

Criterion Classification 

Time horizon Finite (rolling) 

Structure Many-to-many 

Routing Multiple 

Inventory policy Order-up-to 

Inventory decisions Back-ordering (with a penalty and limit) 

Fleet composition Heterogeneous 

Fleet size Multiple (fixed) 

d  

I  

J  

d  

s  

t  

s  

w  

s  

m  

i  

i

f various modeling approaches with respect to the problem’s

tochastic elements. 

Trudeau and Dror (1992) extend the work of Dror and

all (1987) on the optimal service frequency under a stochas-

ic setting. They consider both stock-outs and route failures. Unlike

revious research which uses a vehicle with an artificially small

apacity to avoid route failures, Trudeau and Dror (1992) develop

n analytical probability expression, and corroborate their model-

ng approach with a simulation experiment. Our work differs from

hat of Trudeau and Dror (1992) in several major aspects. First, we

ave a heterogeneous fixed fleet rather than a homogeneous one.

econd, route failures pertain to sections of the tours called trips,

hich are delimited by dump visits where the vehicle capacity is

enewed. Thus, there can be several trips and hence several route

ailures in any given tour. Finally, we do not impose a maximum

f one visit and one overflow per container during the planning

orizon, which precludes the derivation of an exact closed-form

robability measure. On the contrary, it requires the tracking of

ach container’s visit-dependent and conditional probability of

verflow on each day of the planning horizon. On top of that, we

onsider multiple rich routing features. 

The work of Bard et al. (1998) includes intermediate facilities

n a distribution context. They apply problem decomposition with

 two-week rolling horizon. Customers to be visited during the

lanning horizon are identified and those scheduled for the first

eek are routed, after which the horizon is shifted by a week. The

ustomer selection procedure is based on Jaillet et al. (2002) who

erive the optimal restocking frequency and the incremental

ost of deviating from it. In the first step of the decomposition

cheme, customers whose optimal visit day falls within the

wo-week horizon are assigned to specific days by solving a

alanced generalized assignment problem that minimizes the total

ncremental cost, accounting for uncertainty through a lower and

pper bound on the total daily demand to be served. The solution

f the routing problem relies on construction and improvement

euristics. Similar ideas, based on the identification of customers

ho must be served versus those who may be served are used in

itsch (2012) and Mes et al. (2014) , both with applications to waste

ollection where the objective is the minimization of overflows.

he former relies on the calculation of incremental costs, while the

atter on expectation-based service frequency. Due to the implied

epetitive pattern, this type of approaches is only appropriate in

ituations where demand stationarity can be assumed. 

Campbell and Savelsbergh (2004) also deal with uncertainty

hrough a decomposition approach that solves the problem of

ssigning customers to days first, using the cost of a giant TSP

our as a crude measure of the daily routing cost, and with coarser

eriod aggregations toward the end of the planning horizon.

fterwards, the IRP is solved for the first few days of the planning

orizon for the customers that were assigned there and assuming

eterministic information. This approach is used in a rolling hori-

on framework with the benefit of reflecting longer-term costs in

he shorter-term problem, i.e. on the days for which the actual IRP

s solved. Such a balance, usually expressed through a so-called re-

uction procedure, was the focus of much of the above-mentioned

RP research (see Dror and Ball, 1987; Dror and Trudeau, 1996;

aillet et al., 2002; Trudeau and Dror, 1992 ). Stochasticity is also

iscussed in Coelho et al. (2014a) , who present a modeling and

olution framework for dynamic and stochastic IRP, incorporating

he use of forecasting. However, their approach relies on con-

tructing point forecasts to be used in a rolling horizon fashion

ithout explicit incorporation of probabilistic information in the

olution process. Independent of the modeling approach or the

ethodology used, the rolling horizon technique is useful in deal-

ng with uncertainty by helping make forward-looking decisions

n the operational short-term. 
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More recently, research on the SIRP has dealt with uncer-

tainty in various ways. Solyalı et al. (2012) , for example, use

the robust optimization approach introduced by Bertsimas and

Sim (20 03, 20 04) to solve a problem with dynamic uncertain

demands, ensuring that vehicle capacity will not be violated for

any realization of the customer demands, which are independent

and symmetric, and for which only a point estimate and a max-

imum deviation are specified. They develop a strong formulation

and use a branch-and-cut solution approach. A robust approach

is also used by Roldán et al. (2016) and Rahbari et al. (2017) .

Bertazzi et al. (2013) propose a heuristic rollout algorithm that

uses a sampling approach to generate demand scenarios for the

current period and considers the average demand for future

ones. Decisions are made by solving a mixed integer program

by branch-and-cut in each period. A similar approach is used by

Bertazzi et al. (2015) who apply it to an IRP with transporta-

tion procurement. Adulyasak et al. (2015) propose a two-stage

and a multi-stage approach for a production-routing problem

under demand uncertainty, in which the first stage determines

production setup and visit frequencies, while subsequent stages

determine production and delivery quantities. They develop

exact formulations and a branch-and-cut algorithm, and for

handling a large number of scenarios, they propose a Benders

decomposition approach, which is able to solve instances of

realistic size. Stochastic optimization with recourse is used by

Hemmelmayr et al. (2010) and Nolz et al. (2014) , who present

applications related to blood product distribution and medical

waste collection, respectively. Chance-constrained approaches,

often oriented towards maintaining a service level, can be found

in Yu et al. (2012) , Abdollahi et al. (2014) , Soysal et al. (2015) and

Soysal et al. (2018) . 

2.3. Discussion 

The use of a particular modeling approach has a strong influ-

ence on how the problem at hand is being viewed. Robust opti-

mization, for example, protects against the worst case scenario for

a given budget of uncertainty. Thus, it has a clear risk orientation.

However, it still leaves open the question of how to define an ap-

propriate budget of uncertainty. And more generally, this approach

is less relevant for our problem where container overflows and

route failures are not disastrous events. In a rolling horizon frame-

work, their states are frequently revisited, unlike what is usually

the case in robust optimization. Furthermore, container overflows

and route failures have a monetary cost which should figure in the

total expected cost incurred by the collector. Thus, the integration

of probability information in the objective is used to provide a

monetary dimension to these undesirable events, and this ap-

proach has a clear cost orientation, as would be the case for a

cost-minimizing firm. Scenario generation and chance-constrained

approaches fall in the middle. While scenario generation/stochastic

programming would be very cumbersome computationally for a

rich IRP like ours, chance constraints may be integrated in our

approach. Our IRP formulation is cost-oriented and includes rich

probability information in the objective function. Moreover, unlike

previous IRP research, we do not assume a stationary demand dis-

tribution and, therefore, cannot rely on the estimation of optimal

service frequencies or cyclic schedules such as in a periodic VRP. 

Markov et al. (2018) propose a framework for modeling de-

mand stochasticity using a cost-oriented approach, which unifies

a number of routing problems from various application fields,

including health care, maritime operations, waste collection and

facility maintenance. The authors focus on topics that address

existing gaps between the literature and practice. They demon-

strate the negligible effect that the used modeling simplifications

have on the objective function and show that stochasticity can be
andled just as effectively in the objective and in the constraints.

lthough the framework has widespread applicability, several of

ts key components need to be tailored for the specific problem

t hand. The purpose of the present paper is to explain how

he framework can be turned into an operational model for the

pecific case of the waste collection problem. 

In this context, we solve a waste collection problem that is

road enough to fit many practical situations. The contribution of

he present work is three-fold. First, we derive the probabilities

nd develop the expression for the dynamic probability-based

osts of container overflows and route failures over the planning

orizon. Second, we propose a state-of-the-art Adaptive Large

eighborhood Search (ALNS) algorithm and integrate it with a

urpose-designed forecasting model, which has been tested and

alidated on waste collection data. The algorithm is able to handle

 variety of rich routing features traditionally absent or rarely con-

idered in the IRP literature, such as a heterogeneous fixed fleet

nd intermediate facilities, and the solutions it provides can be

eadily applied in practice. Third, we demonstrate the strength of

ur modeling approach on a set of rich IRP instances derived from

eal data coming from the canton of Geneva, Switzerland. Our ap-

roach performs significantly better than alternative deterministic

olicies in its ability to control the occurrence of container over-

ows for the same routing cost. We show the benefit of the rolling

orizon approach that includes the newly revealed container infor-

ation each day and derive lower and upper bounds on its cost. 

. Formulation 

In what follows, Section 3.1 presents a brief sketch of the

orecasting model and Section 3.2 develops the mathematical

ormulation for our SIRP. Table 2 summarizes the notations used.

e highlight that container demand refers to the volume amount

laced in a container on a given day. Container inventory and

apacity are also measured in terms of volume. Vehicles, on the

ther hand, have both volume and weight capacities. Depending

n the density of the waste flow, one of them becomes limiting

hile the other may not be. However, if the weight capacity

ecomes limiting before the volume capacity, the volume capacity

an be adjusted to become limiting at the same time. Through

his simple preprocessing step, we avoid tracking both volume and

eight for the benefit of a more elegant formulation. 

.1. Forecasting model 

Any model can be applied to forecast the expected container

emands over the planning horizon and to derive the distribution

f the forecasting error ( Markov et al., 2018 ). Here, we use the

odel proposed by Markov et al. (2015) , which exhibits superior

n- and out-of-sample performance compared to alternatives. It

s based on a discrete mixture of count-data models describing

opulations depositing different waste volumes in the containers.

hus, it supposedly captures a realistic though simplified under-

ying behavior. We assume a set V of distinct deposit volumes,

here deposit volume v ∈ V is generated with a Poisson rate ξ itv 

or container i on day t . The rate ξ itv takes the functional form

itv = exp ( κ� 
it 
γv ) , where κit is a vector of covariates, such as the

ay of the week, weather variables, holiday periods, etc., and γv 

s a vector of estimable parameters for deposit volume v . We

ormulate an expression for the expected value of the demand of

ontainer i on day t as follows: 

 ( ρit ) = 

∑ 

v ∈V 
v ξitv . (1)

o fit the model, we minimize the sum of squared errors between

he observed ρo 
it 

and the expected demand E ( ρit ) over the set of
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Table 2 

Notations. 

Sets 

V set of distinct container deposit volumes H historical estimation period 

o origin d destination 

D set of dumps P set of containers 

N set of all points = { o} ∪ { d} ∪ D ∪ P K set of vehicles 

T planning horizon = { 0 , . . . , u } T + shifted planning horizon = { 1 , . . . , u, u + 1 } 
set of depot-to-dump or dump-to-dump S set of containers in a particular trip in 

trips for vehicle k ∈ K on day t ∈ T 
Parameters 

ξ itg Poisson rate for deposit volume v of container i on day t 

κit vector of covariates for container i on day t 

γv vector of estimable parameters for deposit volume v 

ρ it demand of container i on day t (random variable) 

εit error term of container i on day t 

ς forecasting error (standard deviation of the fit’s residuals) 

π ij travel distance of arc ( i, j ) 

τ ijk travel time of vehicle k on arc ( i, j ) 

λi , μi lower and upper time window bound at point i 

δi service duration at point i 

ω i capacity of container i 

χ container overflow cost (monetary) 

ζ container emergency collection cost (monetary) 

σ it 1 indicates that container i is in a state of full and overflowing on day t , 0 otherwise 

ϕk daily deployment cost of vehicle k (monetary) 

βk unit-distance running cost of vehicle k (monetary) 

θ k unit-time running cost of vehicle k (monetary) 

αkt 1 if vehicle k is available on day t , 0 otherwise 

αik 1 if container i is accessible by vehicle k , 0 otherwise 

�k capacity of vehicle k 

H maximum tour duration 

ψ Route Failure Cost Multiplier (RFCM) ∈ [0, 1] 

C S the average routing cost of going from S ∈ to the nearest dump and back to S (monetary) 

Decision Variables 

x ijkt 1 if vehicle k traverses arc ( i, j ) on day t , 0 otherwise (binary) 

y ikt 1 if vehicle k visits point i on day t , 0 otherwise (binary) 

z kt 1 if vehicle k is used on day t , 0 otherwise (binary) 

q ikt expected pickup quantity by vehicle k from container i on day t (continuous) 

Q ikt expected cumulative quantity on vehicle k at point i on day t (continuous) 

I it expected inventory of container i at the start of day t (continuous) 

S ikt start-of-service time of vehicle k at point i on day t (continuous) 

c

m

a  

w

ρ

a

ς

W  

f  

n  

m  

t  

i  

o  

h

3

 

a  

N  

o  

t  

a  

a  

v

 

d  

s  

τ  

s  

a

i  

S  

i  

o  

b  

d  

f  

a  

a  

c  

c

d  

fl  

m

ontainers P and a historical period H of data availability: 

in 

�

∑ 

i ∈P 

∑ 

t∈H 

(
ρo 

it −
∑ 

v ∈V 
v ξitv 

)2 

, (2) 

ssuming strict exogeneity and with error terms represented by

hite noise as 

it = E (ρit ) + ε it , where ε it are iid normal , (3) 

nd where a consistent estimate of the variance is given by 

 

2 = 

∑ 

i ∈P 
∑ 

t∈H 

(
ρo 

it 
− E ( ρit ) 

)2 

|P||H| − # params 
· (4) 

e refer to ς as the forecasting error. The denominator in

ormula (4) is the total number of data observations |P||H| mi-

us the number of estimated parameters in the model. For a

ore detailed description of the model, the reader is referred

o Markov et al. (2015) . We highlight that the container data

n our case study has a daily resolution. The forecasting and

ptimization models presented below can similarly be applied to

igher-frequency data if such is available. 

.2. Stochastic IRP model 

Our SIRP is defined for a planning horizon T = { 0 , . . . , u }
nd we are given a complete directed graph G(N , A ) , with
 = { o} ∪ { d} ∪ D ∪ P, where o and d represent the depot as an

rigin and a destination, respectively, D is the set of dumps, P is

he set of containers, and A = { (i, j) : ∀ i, j ∈ N , i � = j} is the set of

rcs. For modeling purposes, it is assumed that the set D contains

 sufficient number of replications of each dump to allow multiple

isits by the same vehicle on the same day. 

There is an asymmetric distance matrix, with π ij the travel

istance of arc ( i, j ). Each vehicle may have a different average

peed, which results in a vehicle-specific travel time matrix, where

ijk is the travel time of vehicle k on arc ( i, j ). Each point has a

ingle time window [ λi , μi ], where λi and μi stand for the earliest

nd latest possible start-of-service time. Start of service after μi 

s not allowed, and if the vehicle arrives before λi , it has to wait.

ervice duration at each point is denoted by δi . For containers it

s mostly influenced by the type of container, e.g. underground

r overground, and for dumps by factors such as weighing and

illing. Hence service duration is not indexed by vehicle. Service

uration at the depots is zero. There is an expected demand E (ρit )

or container i on day t . Container capacity is denoted by ω i , and

 cost χ is charged for a full and overflowing container. There is

 heterogeneous fixed fleet K, with each vehicle defined by its

apacity �k , a daily deployment cost ϕk , a unit-distance running

ost βk , and a unit-time running cost θ k . The binary flags αkt 

enote whether vehicle k is available on day t , and the binary

ags αik denote whether container i is accessible by vehicle k . The

aximum tour duration is denoted by H. 
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Fig. 2. State probability tree starting from a non-full state without a regular collection. 
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We introduce the following binary decision variables: x i jkt = 1 if

vehicle k traverses arc ( i, j ) on day t , 0 otherwise; y ikt = 1 if vehicle

k visits point i on day t , 0 otherwise; z kt = 1 if vehicle k is used on

day t , 0 otherwise. In addition, the following continuous variables

are used: q ikt for the expected pickup quantity by vehicle k from

container i on day t; Q ikt for the expected cumulative quantity on

vehicle k at point i on day t; I it for the expected inventory of con-

tainer i at the start of day t ; and S ikt for the start-of-service time

of vehicle k at point i on day t . The inventory levels at the start of

the planning horizon I i 0 are known with certainty. For modeling

purposes, we assume that container inventory is updated at the

start of each day before vehicle visits. Thus, the pickup quantity

is independent of the time of day that the vehicle collects a

container. 

3.2.1. Derivation of the overflow probabilities 

In line with Markov et al. (2018) framework, we introduce the

notions of a regular and an emergency collection. Let σ it denote

the state of container i on day t , where σit = 0 denotes that con-

tainer i is not full on day t , while σit = 1 denotes that it is full and

overflowing. A regular collection of container i on day t by vehicle

k is one for which y ikt = 1 . On the other hand, an emergency

collection occurs when the container is in a state σit = 1 and for

y ikt = 0 , ∀ k ∈ K. An emergency collection incurs a high cost ζ ,

which is an approach often employed in the IRP literature (e.g.

Coelho et al., 2014a; Dror and Ball, 1987; Hemmelmayr et al.,

2010; Trudeau and Dror, 1992 ), and empties the container in ques-
ion. Our routing cost is thus counterbalanced by the container

verflow cost χ and the emergency collection cost ζ which, due to

mbedded conditionality, lead to a non-linear objective function.

t should be mentioned that there is an important conceptual

ifference between χ and ζ . While the former has a well-defined

onetary value which the collector pays to the municipality in

ase of container overflow, the latter is a parameter that needs to

e calibrated to represent the average actual cost of emergency

ollection or to otherwise reflect the collector’s policy in such

ases. 

According to Markov et al. (2018) , the overflow probability

volution can be represented by a succession of binary trees

hich can be precomputed for all possible collection scenarios.

ssume that we start with an inventory I i 0 such that container i is

nitially in state σi 0 = 0 . With no collections during the planning

orizon, the state probability tree develops as in Fig. 2 . Branches

tarting from a state σit = 0 involve the calculation of conditional

robabilities, while those starting from a state σit = 1 involve

nconditional probabilities as the inventory is reset to zero by the

mergency collection. We are only interested in the probability

f overflow, i.e. of being in a state σit = 1 , which is obtained by

uccessively multiplying the branch probabilities. If we impose a

egular collection on day t = 2 , the probability of overflow on day

 = 2 is the probability of being in state σi 2 = 1 . To calculate the

robability of overflow for subsequent days, we start a new tree

ith a root on day t = 2 . For container i , the exhaustive list of

robabilities to precompute is given by: 
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• The unconditional probability of overflow with non-zero initial

inventory. This only applies at the root node of the state prob-

ability tree on day t = 0 and is given by P (I i 0 + ρi 0 � ω i ) . 
• The unconditional probabilities of overflow with zero initial in-

ventory. These apply either at the root node or at a state of

overflow and are expressed by P (0 + ρih � ω i ) , ∀ h ∈ T . 
• The conditional probabilities of overflow with non-zero initial

inventory. These apply along the tree’s uppermost branch and

write as P (I i 0 + 

∑ h 
t=0 ρit � ω i | I i 0 + 

∑ h −1 
t=0 ρit < ω i ) , ∀ h ∈ T : h >

0 . 
• The conditional probabilities of overflow with zero initial in-

ventory apply in all other cases and are obtained as P (0 +∑ h 
t= g ρit � ω i | 0 + 

∑ h −1 
t= g ρit < ω i ) , ∀ g, h ∈ T : h > g. 

The calculation of the conditional probabilities involves the

valuation of: 

 

( 

I ig + 

h ∑ 

t= g 
ρit � ω i 

∣∣∣∣ I ig + 

h −1 ∑ 

t= g 
ρit < ω i 

) 

. (5) 

s explained in Section 3.1 , any forecasting model can be used as

ong as it provides the distribution of the error terms. This distri-

ution is used in calculating the overflow probabilities. In our case,

iven assumption (3) , expression (5) takes the form: 

 

( 

h ∑ 

t= g 
ε it � ω i − I ig −

h ∑ 

t= g 
E (ρit ) 

∣∣∣∣ h −1 ∑ 

t= g 
ε it < ω i − I ig −

h −1 ∑ 

t= g 
E (ρit ) 

) 

. 

(6) 

ubstitute a = ω i − I ig −
∑ h −1 

t= g E (ρit ) , and X = 

∑ h −1 
t= g ε it , where X ∼

 (0 , (h − g) ς 

2 ) and X is independent of εih . Formula (6) then

ewrites as: 

 

(
X + ε ih � a − E (ρih ) 

∣∣∣∣ X < a 

)
= 

P (ε ih � a − E (ρih ) − X, X < a ) 

P (X < a ) 
= 

= 

1 

�X (a ) 
× 1 

2 πς 

2 
√ 

h − g 

∫ a 

−∞ 

∫ ∞ 

a −E (ρih ) −x 
e 
− x 2 

2(h −g) ς 2 e 
− y 2 

2 ς 2 d xd y, 

(7) 

here �X ( · ) is the CDF of X . We standardize the joint probability

n expression (7) by setting x = x/ (ς 

√ 

h − g ) and y = y/ς, and ar-

ive at expression (8) for the conditional probability we are looking

or: 

 

(
X + ε ih � a − E (ρih ) 

∣∣∣∣ X < a 

)
= 

 

1 

2 π�
(

a 

ς 
√ 

h −g 

) ∫ a 

ς 
√ 

h −g 

−∞ 

∫ ∞ 

a −E (ρih ) −xς 
√ 

h −g 

ς 

e −
x 2 

2 e −
y 2 

2 d xd y = 

 

1 

2 

√ 

2 π�
(

a 

ς 
√ 

h −g 

)∫ a 

ς 
√ 

h −g 

−∞ 

e −
x 2 

2 erfc 

( 

a − E (ρih ) − xς 

√ 

h − g 

ς 

√ 

2 

) 

dx,

(8) 

here �( · ) is the CDF of a standard normal variable. The single

ntegral in expression (8) can be evaluated using a standard statis-

ical package like R in the order of milliseconds. For a problem of

ealistic size, all the necessary unconditional and conditional prob-

bilities can be automatically precomputed in a negligible amount

f time using the latest container information. 

.2.2. Objective function 

Using the above derivations, we formulate the objective func-

ion z in line with the structure of Markov et al. (2018) unified

ramework. It consists of the Expected Overflow and Emergency

ollection Cost (EOECC), the Routing Cost (RC), and the Expected
oute Failure Cost (ERFC). The objective function (9) is non-

inear due to the non-linear nature of the EOECC and the ERFC

omponents defined below: 

in z = EOECC + RC + ERFC . (9) 

he expected overflow and emergency collection cost is expressed

s: 

OECC = 

∑ 

t∈T ∪T + 

∑ 

i ∈P 

( 

P ( σit = 1 | m = max ( 0 , g < t : 

∃ k ∈ K : y ikg = 1 

))( 

χ + ζ − ζ
∑ 

k ∈K 
y ikt 

) ) 

, (10) 

here the probability of being in a state of overflow is conditional

n the most recent regular collection, identified for each container

 by the index m . For a given container i , the max operator returns

he day g of the most recent regular collection, or 0 if the container

as not undergone any regular collections before day t . The state

robability is calculated by multiplication of the involved branch

robabilities described in Section 3.2.1 . For a day t , the applied cost

ncludes the container overflow cost χ and the emergency collec-

ion cost ζ in case there is no regular collection on that day, and

nly the container overflow cost χ in case there is a regular collec-

ion. Although there is no uncertainty on day t = 0 , we still need

o pay the overflow cost if the container is in a state of overflow.

n the other hand, the inventories at the start of the first day after

he end of the planning horizon are completely determined by the

ecisions taken during the planning horizon. For this reason, the

OECC is computed for t ∈ T ∪ T + , where T + = { 1 , . . . , u, u + 1 } . 
The routing cost reflects the daily deployment cost, the

istance-related cost and the time-related cost for each vehicle

sed over the planning horizon. It is formulated as: 

C = 

∑ 

t∈T 

∑ 

k ∈K 

( 

ϕ k z kt + βk 

∑ 

i ∈N 

∑ 

j∈N 
πi j x i jkt + θk ( S dkt − S okt ) 

) 

. (11) 

he expected route failure cost reflects the vehicles’ inability to

erve the containers due to insufficient capacity on the scheduled

epot-to-dump or a dump-to-dump trips. It is expressed as: 

(12) 

here is the set of depot-to-dump or dump-to-dump trips for

ehicle k on day t , S is the set of containers in a particular trip,

 S is the average routing cost of going from this set to the near-

st dump and back, and �sm 

is the inventory of container s after

egular collection on day m . The set is generated by inspect-

ng the routing variables x ijkt . At every feasible solution, for each

ehicle k on each day t we can inspect the point visit sequence

ncoded in the variables x ijkt to generate the set of depot-to-dump

nd dump-to-dump trips. The parameter ψ ∈ [0, 1], which we re-

er to as the Route Failure Cost Multiplier (RFCM), is used to scale

p or down the degree of conservatism regarding this cost compo-

ent. The probability is conditional on the most recent regular col-

ection identified for each container s by the index m . For a given

ontainer s , the max operator returns the day g of the most recent

egular collection, or 0 if the container has not undergone any reg-

lar collection before day t . Given the order-up-to level inventory

olicy and a container s : 

sm 

= 

{
0 if ∃ k ∈ K : y skm 

= 1 , 

I s 0 if y sk 0 = 0 , ∀ k ∈ K. 
(13) 
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In other words, �sm 

= 0 if there is a regular collection of container

s on day m , and is equal to the initial inventory I s 0 if there is no

regular collection on day 0. In essence, the probability of a route

failure in a set S is the probability that the sum of the random

daily demands, plus potentially the initial inventories on day 0,

collected from this set exceeds the vehicle capacity. By definition,

there are no route failures on day t = 0 as the container informa-

tion is fully known. 

The nearest dump to each container can be precomputed.

Probability-wise, once the days m of the previous collection of

each container are found, the remaining probability is uncondi-

tional. Given that it involves multiple containers, it is impractical

to precompute for all combinations. Thus, we implement a solu-

tion in which the probability is evaluated during runtime using an

approximation of the standard normal distribution based on the

approximation of the error function: 

erf (x ) ≈ 1 −
(
a 1 t + a 2 t 

2 + · · · + a 5 t 
5 
)
e −x 2 , t = 

1 

1 + dx 
, (14)

where d = 0 . 3275911 , a 1 = 0 . 254829592 , a 2 = −0 . 284496736 , a 3 =
1 . 421413741 , a 4 = −1 . 453152027 , a 5 = 1 . 061405429 , and whose

maximum approximation error is 1 . 5 × 10 −7 ( Abramowitz and

Stegun, 1972 ). These repetitive calculations have no discernible

influence on the algorithm’s runtime. 

As shown in Markov et al. (2018) , the expressions of the RC and

ERFC components imply a slight overestimation of the real cost as

they ignore the probability of containers overflowing before the

day t on which they are collected. If such containers are skipped in

the tours performed on day t , this would reduce the RC. Whether

they are skipped or not, they would be less full than expected,

which would lower the ERFC due to the lower probability of

the collected volume on day t exceeding the vehicle capacity.

Trudeau and Dror (1992) develop probabilistic expressions that

capture these effects for a simpler setup and with various as-

sumptions that we do not impose, including a single container

visit and overflow over the planning horizon. On the other hand,

given the operational nature of the problem, implementing a

full-blown simulator of the objective function to capture these

effects would be very impractical. Still, as demonstrated by the

numerical experiments in Section 5 , after simulation the number

of realized overflows over the planning horizon is so low that

these two un-captured effects are marginal. Therefore, we consider

our model a good representation of reality. 

3.2.3. Constraints 

The constraints can be split into several categories, with the

first category consisting of basic vehicle routing constraints. Con-

straints (15) and (16) ensure that only available vehicles are used,

and that if a vehicle is used, its tour starts at the origin and ends

at the destination, with a visit to a dump immediately before that.

Constraints (17) link the visit and the routing variables, while

constraints (18) stipulate that a container is visited by at most one

vehicle on a given day. Constraints (19) guarantee that vehicles do

not visit inaccessible points. Flow conservation is represented by

constraints (20) . ∑ 

j∈N 
x ojkt = αkt z kt , ∀ t ∈ T , k ∈ K (15)

∑ 

i ∈D 
x idkt = αkt z kt , ∀ t ∈ T , k ∈ K (16)

y ikt = 

∑ 

j∈N 
x i jkt , ∀ t ∈ T , k ∈ K, i ∈ P (17)

∑ 

k ∈K 
y ikt � 1 , ∀ t ∈ T , i ∈ P (18)

y � α , ∀ t ∈ T , k ∈ K, i ∈ P (19)
ikt ik 
 

i ∈N 
x i jkt = 

∑ 

i ∈N 
x jikt , ∀ t ∈ T , k ∈ K, j ∈ D ∪ P (20)

The inventory constraints are necessary for tracking the con-

ainer inventories and linking them to the vehicle visits and

he pickup quantities. Constraints (21) track the inventories as

 function of the previous day’s inventories, pickup quantities

nd expected demands. Constraints (22) impose the fact that, in

xpected terms, we do not accept container overflows. As already

entioned in Section 3.2.2 , the inventories need to be computed

ver T + , starting from the fully known inventories on day t = 0 .

onstraints (23) ensure that if the starting inventory exceeds

apacity, the container must be collected on day t = 0 . The big- M

eflects the assumption that the expected daily demand can never

xceed the container capacity. In addition, a daily rolling horizon

nforces the one-day back-order limit. Constraints (24) force the

ickup quantity to zero if the container is not visited. Constraints

25) and (26) represent the order-up-to policy. The big- M values

n constraints (24) and (26) can be set to 2 ω i for t = 0 and to

 i otherwise, reflecting the fact that the picked-up inventory can

ever exceed container capacity, except on day t = 0 . 

 it = I i (t−1) −
∑ 

k ∈K 
q ik (t−1) + E (ρi (t−1) ) , ∀ t ∈ T + , i ∈ P (21)

 it � ω i , ∀ t ∈ T + , i ∈ P (22)

 i 0 − ω i � ω i 

∑ 

k ∈K 
y ik 0 , ∀ i ∈ P (23)

 ikt � My ikt , ∀ t ∈ T , k ∈ K, i ∈ P (24)

 ikt � I it , ∀ t ∈ T , k ∈ K, i ∈ P (25)

 ikt � I it − M(1 − y ikt ) , ∀ t ∈ T , k ∈ K, i ∈ P (26)

In the context of vehicle capacities, constraints (27) bound from

elow the cumulative quantity on the vehicle at each container,

hile constraints (28) enforce the vehicle capacity. Constraints

29) reset the cumulative quantity on the vehicle to zero at the

rigin, destination, and dumps. Keeping track of the cumulative

uantity on the vehicle is achieved by constraints (30) . 

 ikt � Q ikt , ∀ t ∈ T , k ∈ K, i ∈ P (27)

 ikt � �k , ∀ t ∈ T , k ∈ K, i ∈ P (28)

 ikt = 0 , ∀ t ∈ T , k ∈ K, i ∈ N \ P (29)

 ikt + q jkt � Q jkt + �k 

(
1 − x i jkt 

)
, 

∀ t ∈ T , k ∈ K, i ∈ N \ { d} , j ∈ P (30)

The next four constraints express the intra-day temporal

haracteristics of the problem. Constraints (31) calculate the

tart-of-service time at each point. In addition, these constraints

liminate the possibility of subtours and ensure that a point is not

isited more than once by the same vehicle. Constraints (32) and

33) enforce the time windows. Constraints (34) provide a lower

ound on the tour duration, while constraints (35) apply the

aximum tour duration. 

 ikt + δi + τi jk � S jkt + 

(
μi + δi + τi jk 

)(
1 − x i jkt 

)
, 

∀ t ∈ T , k ∈ K, i ∈ N \ { d} , j ∈ N \ { o} (31)

i 

∑ 

j∈N 
x i jkt � S ikt , ∀ t ∈ T , k ∈ K, i ∈ N \ { d} (32)
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 jkt � μ j 

∑ 

i ∈N 
x i jkt , ∀ t ∈ T , k ∈ K, j ∈ N \ { o} (33)

 dkt − S okt � 0 , ∀ t ∈ T , k ∈ K (34)

 dkt − S okt � H , ∀ t ∈ T , k ∈ K (35)

Finally, constraints (36) and (37) establish the variable domains.

 i jkt , y ikt , z kt ∈ { 0 , 1 } , ∀ t ∈ T , k ∈ K, i, j ∈ N (36)

 ikt , Q ikt , I it , S ikt � 0 , ∀ t ∈ T , k ∈ K, i ∈ N (37)

. Adaptive large neighborhood search 

Adaptive Large Neighborhood Search (ALNS) was introduced by

opke and Pisinger (2006a) in the context of the pickup and deliv-

ry problem with time windows. It is a type of large neighborhood

earch in which a number of fairly simple operators compete in

odifying the current solution. At each iteration of the search pro-

ess, a number of customers is removed from the current solution

y a destroy operator, after which they are reinserted elsewhere by

 repair operator. In the context of our IRP, not all customers need

o be visited every day, or even at all. Hence, we do not require

hat all removed customers should be reinserted by the repair op-

rator. The search guiding principle can be based on any meta-

euristic framework. Simulated annealing appears to be the pre-

erred approach in the ALNS literature, and is also the one we im-

lement. Given an incumbent solution s , a randomly drawn neigh-

or solution s ′ is always accepted if f ( s ′ ) < f ( s ), and with probability

xp (−( f (s ′ ) − f (s )) /T ) otherwise, with f ( s ) representing the solu-

ion cost and T > 0 the current temperature. The temperature is ini-

ialized as T start and is reduced at each iteration by a cooling rate

 ∈ (0, 1). The search stops when T reaches a predetermined T end . 

Operator choice is governed by a roulette-wheel mechanism.

ach operator i has a weight W i , which depends on its past per-

ormance and a score. Given the set of destroy (repair) operators

, the destroy (repair) operator i is selected with probability

 i / 
∑ 

j∈O W j . The ALNS starts with all weights set to one and all

cores set to zero. The scores of the selected destroy-repair couple

re increased by e 1 if they find a new best feasible solution, by

 2 < e 1 if they improve the incumbent, and by e 3 < e 2 if they do

ot improve the incumbent but the new solution is accepted. This

trategy rewards successful operator couples, while at the same

ime maintaining diversification during the search. It is important

o note that if a destroy-repair couple leads to a visited solution,

o reward is applied. The search is divided into segments of F

terations each, at the end of which the operator weights are

pdated. Let C F 
i 

denote the score of operator i and N 

F 
i 

the number

f times it was applied in the last segment of length F . The new

eights are computed as follows: 

 i = 

{
W i if N 

F 
i 

= 0 , 

(1 − b) W i + bC F 
i 
/ 
(
m i N 

F 
i 

)
otherwise. 

(38) 

n expression (38) , m i is a normalization factor damping the

eights of more computationally expensive operators by multiply-

ng the number of times they were applied ( Coelho et al., 2012;

opke and Pisinger, 2006b ). The value b ∈ [0, 1] is a reaction factor,

ontrolling the relative effect of past performance and the scores

n the new weights. Once the weights are updated, C F 
i 

and N 

F 
i 

are

eset to zero. 

Regarding the initial solution, we build empty tours consisting

f the depot as an origin and destination and one dump in be-

ween, without inserting any containers. An empty tour is built for

ach available vehicle on each day of the planning horizon. Since
he destroy operators will have no effect in the beginning, the

epair operators will insert containers and construct a non-empty

olution. 

.1. Solution representation 

To facilitate the search and avoid becoming trapped in local op-

ima, we admit infeasible intermediate solutions at a penalty. This

elaxation technique is especially useful for tightly constrained

nstances. Let s be a solution and let N 

′ 
kt 

(s ) denote all point

isits by vehicle k on day t in s , where each visit is a replication

f the visited point. In addition, let P 

′ 
kt 

(s ) ⊂ N 

′ 
kt 

(s ) denote all

oint visits where the next visit is a dump. We also define the

unction (x ) + = max { 0 , x } . Our ALNS admits the following types of

ntermediate feasibility violations: 

1. Vehicle capacity violation is the sum of excess cumulative de-

mand in P 

′ 
kt 

(s ) , ∀ t ∈ T , k ∈ K. Formally, it is defined as: 

V 

�(s ) = 

∑ 

t∈T 

∑ 

k ∈K 

∑ 

i ∈P ′ 
kt 

( Q ikt − �k ) 
+ 
. (39) 

2. Time window violation is the total violation of the upper time

window bounds μi in N 

′ 
kt 

(s ) , ∀ t ∈ T , k ∈ K. Lower time win-

dow bounds cannot be violated because if the vehicle arrives

at point i before λi , it waits. Hence, formally, we have: 

V 

μ(s ) = 

∑ 

t∈T 

∑ 

k ∈K 

∑ 

i ∈N ′ 
kt 

( S ikt − μi ) 
+ 
. (40) 

3. Duration violation is expressed as the sum of excess durations.

It is verified after time window violation. For each tour that

has no time window violation, we apply forward time slack

reduction ( Savelsbergh, 1992 ), which may minimize tour dura-

tion while preserving time window feasibility. In mathematical

terms, duration violation writes as: 

V 

H (s ) = 

∑ 

t∈T 

∑ 

k ∈K 
( S dkt − S okt − H ) 

+ 
. (41) 

4. Container capacity violation is the sum of excess container in-

ventories ∀ t ∈ T + , i ∈ P, or: 

V 

ω (s ) = 

∑ 

t∈ T + 

∑ 

i ∈P 
( I it − ω i ) 

+ 
. (42) 

5. Backorder limit violation is the sum of excess container inven-

tories on day t = 0 , ∀ i ∈ P that are not visited on day t = 0 . In

mathematical terms, this is expressed as: 

V 

0 (s ) = 

∑ 

i ∈P 

( ( 

1 −
∑ 

k ∈K 
y ik 0 

) 

( I i 0 − ω i ) 
+ 
) 

. (43) 

6. Accessibility violation is the sum of inaccessible visits in

N 

′ 
kt 

(s ) , ∀ t ∈ T , k ∈ K. They are accounted for as: 

V 

α(s ) = 

∑ 

t∈T 

∑ 

k ∈K 

∑ 

i ∈N ′ 
kt 

( y ikt − αik ) 
+ 
. (44) 

Including all the violations, the complete solution cost during

he search is represented by: 

f (s ) = z(s ) + L �V 

�(s ) + L μV 

μ(s ) + L H V 

H (s ) + L ω V 

ω (s ) 

+ L 0 V 

0 (s ) + L αV 

α(s ) . (45) 

he parameters L � through L α are the penalties for each type

f feasibility violation. They are dynamically adjusted during the

earch so as to encourage the exploration of infeasible solutions

ut to avoid staying infeasible for too long. At each accepted solu-

ion, the incumbent s is checked for each type of violation. If it is

on-zero, its respective penalty is multiplied by a rate � > 1, other-

ise it is divided by the same rate. If s has no feasibility violation,

he values of f ( s ) and z ( s ) coincide. 
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4.2. Operators 

The main ingredient of the ALNS are the destroy and repair

operators. Some of the operators are inspired or adapted from the

literature ( Buhrkal et al., 2012; Coelho et al., 2012; Hemmelmayr

et al., 2013; Ropke and Pisinger, 20 06a; 20 06b ), while others are

developed to capture the specifics of our problem, in particular the

stochastic objective function and the presence of a heterogeneous

fixed fleet. We use the following destroy operators: 

1. Remove ν containers randomly. This operator selects a random

tour and removes a random container from it. It is applied

ν times, where ν is an integer drawn from a discrete semi-

triangular distribution bounded below by 1 and above by the

number of containers in P . Small ν ’s result in cosmetic changes

to the solution, while big ν ’s, which are drawn with a lower

probability, lead to larger perturbations. 

2. Remove ν worst containers. This operator removes the container

that would lead to the largest savings � f max in the solution

cost. It is applied ν times. 

3. Shaw removals with relatedness. Based on the ideas of

Shaw (1997) and Ropke and Pisinger (2006a) , this operator re-

moves containers based on a relatedness measure among them.

It starts by selecting a random tour and a random container i in

this tour, and computing the relatedness R ij of i to all containers

j in the tours scheduled on the same day t as the randomly se-

lected tour. We define the relatedness measure R ij of container

i to container j as: 

R i j = d 1 π
[0 , 1] 
i j 

+ d 2 (| λi − λ j | + | μi − μ j | ) [0 , 1] + d 3 | o it − o jt | [0 , 1] ,

(46)

where the first term captures the distance, the second terms

captures the time window difference and the third term cap-

tures the overflow probability difference on day t . As in expres-

sion (10) for the EOECC, the latter is given by: 

o it = P 

(
σit = 1 | m = max 

(
0 , g < t : ∃ k ∈ K : y ikg = 1 

))
. (47)

These terms are scaled between zero and one, as indicated in

superscript, and weighted by the parameters d 1 , d 2 and d 3 . The

relatedness measures are again scaled between zero and one.

Container i and all containers j for which R ij is less than a

threshold d 4 are removed. 

4. Remove container cluster: Inspired by the work of Ropke and

Pisinger (2006b) , this operator removes large clusters of con-

tainers. It selects a random day t in the planning horizon and

divides the containers visited on this day into k clusters, where

k is chosen to be the number of tours executed on this day. If

there is only one tour, its containers are divided into 2 clus-

ters. Clustering is performed using Kruskal’s algorithm, which

progressively merges the containers into clusters based on dis-

tance, until the required number k of clusters is reached. Fi-

nally, a cluster is chosen randomly and removed as long as it

contains less than half of the containers visited on day t . 

5. Empty a random day. This operator selects a random day and

empties all tours performed on it. 

6. Empty a random vehicle. This operator selects a random vehicle

and empties the tours performed by it on all days. 

7. Remove a random dump. This operator selects a random tour

and a random dump in it, excluding the last dump, and re-

moves it. 

8. Remove the worst dump. This operator removes the dump that

would lead to the largest savings � f max in the solution cost.

The last dump in each tour is never removed. 

9. Remove consecutive visits. This operator inspects each container

over the planning horizon and, if it is visited on two consecu-

tive days, removes the second visit. This is based on the idea
that optimal or good-quality solutions will rarely visit the same

container on consecutive days. 

In addition, we use the following repair operators: 

1. Insert ν containers randomly. This operator selects a random

tour and a random container from P not visited on the day the

tour is performed, and inserts it in the tour using best inser-

tion, i.e. in the position in the selected tour that would lead to

the minimum increase � f min in the solution cost. It is applied

ν times. 

2. Insert ν containers in the best way. This operator identifies for

each container i ∈ P the tour and the position in that tour that

would lead to the minimum increase � f min 
i 

in the solution cost

if the container is inserted there, checking that the container is

not visited on the day the tour is performed. The containers

in P are sorted in ascending order of � f min 
i 

and the first ν of

them are inserted in the previously identified tours and posi-

tions. 

3. Insert ν containers with regret-k: As noted in Ropke and

Pisinger (2006a) , the motivation for using regret is to intro-

duce a look-ahead information in the insertion process. Let Y ik 
indicate the tour in which inserting container i using best in-

sertion leads to the k th lowest increase in the solution cost

� f i,Y ik . For a container i , we define the regret- k value as c k 
i 

=
� f i,Y ik − � f i,Y i 1 , i.e. the difference between inserting the con-

tainer in its best tour and its k th best tour. It may be impossible

to insert some containers in k different tours, thus the regret is

computed for the largest possible k ′ ≤ k . The containers in P are

sorted in ascending order of k ′ and descending order of c k 
′ 

i 
. The

first ν containers in the ordered list are inserted in the tours

and positions that would lead to the minimum increase � f min 

in the solution cost. In other words, we insert the containers

that we will regret the most if they are not inserted now. 

4. Shaw insertions with relatedness. This operator selects a random

day t and a random container i ∈ P not visited on day t . It then

proceeds to find the relatedness measure R ij , as defined by for-

mula (46) , to all containers j ∈ P also not visited on day t . It

inserts the container i as well as all containers j not visited on

day t , for which R ij is lower than a threshold d 4 , in the tours

executed on day t and in the positions that would lead to the

minimum increase � f min in the solution cost. 

5. Swap ν random containers. This operator selects two random

tours and a random container in each one, and swaps the

container-to-tour assignment by using best insertion in each

tour. It is applied ν times. 

6. Insert a dump randomly. This operator selects a random tour and

a random dump from D and inserts it at a random position in

the tour. 

7. Insert a dump in the best way. This operator selects a random

dump from D and inserts it in the tour and in the position

that would lead to the minimum increase � f min in the solu-

tion cost. 

8. Swap random dumps. This operator selects two random tours

and a random dump in each one, and swaps the dumps. 

9. Replace a random dump. This operator selects a random tour

and a random dump in it, and replaces it with another random

dump from D. 

0. Reorder dumps. Based on the idea of Hemmelmayr et al. (2013) ,

this operator selects a random tour, removes all dump visits

from it, and finds the locally optimal dump visit configuration

that preserves vehicle capacity feasibility. Fig. 3 provides an il-

lustrative example of a tour starting at the depot, visiting con-

tainers i 1 through i 5 , and terminating at the depot. The values

of ρ1 through ρ5 denote the container demands, and we as-

sume a vehicle with a capacity of 10 units. Because a dump

will never be visited between the depot and the first container,
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depot-i1
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Fig. 3. Feasibility graph of the reorder dumps operator. 

 

 

 

 

 

 

 

 

 

v  

t  

z  

s  

a  

fi  

t  

m  

h  

a

5

 

J  

t  

b  

a  

w  

v  

u  

a  

s  

t  

d  

f  

u  

V  

c

5

 

c  

s  

t  

o  

f  

i  

o  

t  

h  

T  

a  

5  

h  

t  

A  

s  

r  

(  

r  

w  

w  

i  

r  

n

c  

g  

f  

e  

w  

r  

f  

b

5

 

l  

h  

h  

o  

m  

a  

a  

i  

t  
they can be merged into a single node. Each arc starts at a con-

tainer and ends at a container or the depot, visiting on its way

the indicated containers and the best dump, either d 1 or d 2 ,

before the end node. The resulting directed graph is not nec-

essarily complete, as it only contains the vehicle capacity pre-

serving arcs. The solution to the problem amounts to finding

the shortest path from the origin to the destination node rep-

resenting the depot. We use the Bellman-Ford algorithm and

post-optimize the result using 2-opt local search. 

The destroy operators that empty a random day and a random

ehicle leave the affected tour with the depot as an origin and des-

ination, and a dump, and the cost of such a tour is considered

ero. Thus, all original tours always remain available during the

earch for removal of points from or insertion of points into. This is

 straightforward way to manage the presence of a heterogeneous

xed fleet without having to re-evaluate periodically vehicle-to-

our assignments. This strategy will likely not be applicable to

ore classical metaheuristics that exploit much smaller neighbor-

oods. Appendix D provides statistic on operator use, showing that

ll destroy and repair operators are used during the search. 

. Numerical experiments 

The ALNS is implemented as a single-thread application in

ava and the forecasting model and the probability calculator for

he state probability tree ( Fig. 2 ) are scripted in R. All tests have

een carried out on a 3.33 GHz Intel Xeon X5680 server running

 64-bit Ubuntu 16.04.2. Each instance is solved 10 times, out of

hich we report the best, average and worst result, or averaged

alues of the best, average and worst result over a set of instances,

nless indicated otherwise. Section 5.1 below explains how the

lgorithmic parameters were tuned. Section 5.2 describes the case

tudy instances and Section 5.3 presents an extensive analysis of

he stochastic modeling approach, its comparison to alternative

eterministic policies, and its application in a rolling horizon

ramework. The Appendices provide additional experiments eval-

ating the quality of the ALNS with tests on classical IRP and

RP benchmark instances, some of which represent typical waste

ollection configurations. 

.1. Parameter tuning 

The parameter tuning experiments involved both the classi-

al Archetti et al. (2007) IRP benchmark instances and the case
Table 3 

Algorithmic parameters. 

SA-Related AL

Parameter Value Parameter

Initial temperature ( T start ) 10,000 F segmen

Start temp. control param. ( w ) 0.6 Reaction f

Cooling rate ( r ) 0.99998 Reward e 1
Final temperature ( T end ) 0.01 Reward e 2
Penalty change rate ( � ) 1.06 Reward e 3
tudy instances described in Section 5.2 next. We first tuned

he SA-related parameters followed by the ALNS-related and the

perator-related parameters. Initial values were either borrowed

rom ALNS implementations in the literature or based on prelim-

nary trial-and-error combinations. The parameters were tuned

ne by one, unless indicated otherwise, in the order in which

hey appear in Table 3 . The initial temperature was set sufficiently

igh for an initial feasible solution to be found without difficulty.

hen the temperature is calibrated so that the probability of

ccepting a solution which is worse than it by a factor of w is

0%. The purpose of this strategy is to limit the search at very

igh temperatures ( Ropke and Pisinger, 2006a ). The cooling rate

ypically results in several hundred thousand iterations on the

rchetti et al. (2007) instances, and the final temperature allows

ufficient time for the algorithm to converge. The penalty change

ate multiplies or divides the penalties associated with conditions

39) through (44) as explained in Section 4.1 . After fixing the SA-

elated parameters, we tuned the ALNS-related parameters. The re-

ards were tuned together, and after testing several configurations

e chose one that attributes a relatively lower reward e 3 for a non-

mproving but accepted solution. The two destroy operators Shaw

emovals with relatedness and remove container cluster were given

ormalization factors m i of 8, and the two repair operators insert ν
ontainers in the best way and insert ν containers with regret-k were

iven normalization factors m i of 4.5. The normalization factors

or the rest are all equal to one. For the operator-related param-

ters, the best results were obtained for regret-2. The relatedness

eights d 1 , d 2 and d 3 were calibrated at 0.54, 0.23 and 0.23,

espectively. The relatedness thresholds of 0.2 for removals and 0.3

or insertions performed the best. All experimental results reported

elow have been performed with the parameter values in Table 3 . 

.2. Case study instances 

The case study data includes 63 instances of white glass col-

ections in the canton of Geneva, Switzerland, created using the

istorical records for the years 2014, 2015 and 2016. Each instance

as a weekly planning horizon starting on Monday and finishing

n Sunday. As established by constraints (22) in the mathematical

odel, there should be no expected overflows on the first day

fter the planning horizon, in our case the following Monday. On

verage, there are 41 containers per instance, and the maximum

s 53, and their volumes range from 10 0 0 to 30 0 0 liters. There are

wo dumps located far apart in the periphery of the city of Geneva.
NS-Related Operator-Related 

 Value Parameter Value 

t length 2000 Rel. weight d 1 0.54 

actor ( b ) 0.5 Rel. weight d 2 0.23 

 

30 Rel. weight d 3 0.23 

 

20 Rel. threshold d 4 0.2/0.3 

 

5 Regret- k 2 
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Table 4 

Probabilistic policies: basic results for cost analysis on real data instances. 

Avg Num Avg Num Avg Num Best Cost Avg Cost Worst Cost Gap Avg- Gap Worst- 

Objective ECC RFCM Runtime(s.) Tours Collections Dump Visits (CHF) (CHF) (CHF) Best(%) Best(%) 

Complete 100 1.00 870.65 1.95 44.41 2.24 662.65 666.64 672.87 0.60 1.54 

Complete 100 0.50 871.84 1.95 44.45 2.25 662.38 666.57 673.30 0.63 1.65 

Complete 100 0.25 885.52 1.95 44.46 2.24 662.38 666.92 673.15 0.69 1.63 

Complete 100 0.00 871.81 1.95 44.46 2.23 662.26 666.78 674.01 0.68 1.78 

Complete 50 1.00 864.57 1.92 42.39 2.18 648.14 651.36 656.77 0.50 1.33 

Complete 50 0.50 855.51 1.92 42.40 2.17 647.99 651.50 656.90 0.54 1.37 

Complete 50 0.25 873.28 1.92 42.36 2.16 648.05 651.15 656.66 0.48 1.33 

Complete 50 0.00 856.39 1.92 42.35 2.18 648.14 651.40 656.47 0.50 1.29 

Complete 25 1.00 841.94 1.90 41.03 2.16 638.61 641.41 646.06 0.44 1.17 

Complete 25 0.50 844.22 1.90 41.05 2.16 638.38 641.22 645.89 0.44 1.18 

Complete 25 0.25 846.67 1.90 41.01 2.15 638.57 641.50 646.19 0.46 1.19 

Complete 25 0.00 855.83 1.90 41.01 2.15 638.42 641.49 646.36 0.48 1.24 

Routing-only 0 0.00 681.27 1.83 16.64 1.87 421.99 422.48 423.12 0.12 0.27 

Table 5 

Probabilistic policies: key performance indicators for cost analysis on real data instances. 

Avg Routing Avg Overflow Avg Rte Failure Avg Collected Liters Per Liters Per Unit 

Objective ECC RFCM Cost (CHF) Cost (CHF) Cost (CHF) Volume (L) Unit Cost Routing Cost 

Complete 100 1.00 579.75 86 .86 0.03 47,821.12 71.73 82.49 

Complete 100 0.50 579.84 86 .65 0.07 47,920.02 71.89 82.64 

Complete 100 0.25 580.16 86 .71 0.04 47,925.52 71.86 82.61 

Complete 100 0.00 579.93 86 .85 0.00 47,872.93 71.80 82.55 

Complete 50 1.00 563.52 87 .83 0.01 46,247.51 71.00 82.07 

Complete 50 0.50 563.03 88 .40 0.08 46,327.89 71.11 82.28 

Complete 50 0.25 562.19 88 .91 0.05 46,380.87 71.23 82.50 

Complete 50 0.00 563.34 88 .06 0.00 46,404.74 71.24 82.37 

Complete 25 1.00 553.80 87 .59 0.02 45,215.18 70.49 81.64 

Complete 25 0.50 553.74 87 .42 0.07 45,279.65 70.62 81.77 

Complete 25 0.25 553.77 87 .68 0.06 45,281.71 70.59 81.77 

Complete 25 0.00 553.53 87 .96 0.00 45,347.30 70.69 81.92 

Routing-only 0 0.00 422.48 0 .00 0.00 24,955.14 59.07 59.07 
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The fleet consists, depending on the instance, of one or two het-

erogeneous vehicles of volume capacity in the order of 30,0 0 0

liters and weight capacity of 10,0 0 0 to 15,0 0 0 kg, which are not

available on the weekend. We also have access to historical waste

levels for each container. Thus, the demands for each instance are

forecast by the model from Section 3.1 using the previous 90 days

of observations for each container. Two deposit sizes—two and ten

liters—are used. For each instance, there is a distinct forecasting

error ς estimated by formula (4) . We do not have information

about maximum tour duration, time windows and the cost param-

eters, for which we set realistic or reasonable values. Thus, tours

should respect a maximum duration of four hours each, and the

time windows correspond to 8:00 a.m. until noon. For the trucks,

we use a daily deployment cost of 100 CHF, a cost of 2.95 CHF per

kilometer and a cost of 40 CHF per hour. The overflow cost, which

is normally determined by the municipality, is set to 100 CHF. 

5.3. Analysis of the stochastic approach 

In this section, we analyze the proposed stochastic ap-

proach on the waste collection IRP instances introduced above.

Section 5.3.1 evaluates the effect of incorporating the probability-

based cost of container overflows and route failures in the

objective function in terms of its impact on the total cost and the

resulting frequency of these undesirable events. Section 5.3.2 com-

pares the stochastic approach to alternative deterministic policies

such as artificial buffer capacities for the containers and trucks. In

both Sections 5.3.1 and 5.3.2 , simulation of the stochastic demands

is used to assess the quality of the produced solution. Finally,

Section 5.3.3 presents the rolling horizon experiments and derives

lower and upper bounds on the solution cost for the planning

horizon. 
.3.1. Probabilistic policies 

To study the impact of the probability information included

n the objective function, we perform two types of experiments

n the instances described in Section 5.2 . The first type con-

iders the complete objective function with all relevant costs,

s defined by expression (9) . We label the problem with this

bjective “Complete”. The second type minimizes the routing cost

efined by expression (11) , ignoring all costs related to container

verflows, emergency collections and route failures, and we label

he problem with the latter objective “Routing-only”. Since the

outing-only problem ignores all stochastic information and only

he stochastic information, it becomes the deterministic version of

he stochastic problem. Tables 4 , 5 and 6 summarize the numerical

esults for various choices of the Emergency Collection Cost (ECC)

nd the Route Failure Cost Multiplier (RFCM), and each row repre-

ents averaged values over the 63 instances. In these three tables,

he first three columns identify the type of objective considered

complete vs. routing-only), the applied ECC, and the applied

FCM. In Table 4 , the next four columns report the computation

ime, the average number of tours, container collections and dump

isits. As each instance is solved 10 times, the next three columns

eport the average over the 63 instances of the best, average and

orst cost, respectively, over the 10 runs for each instance. The

ast two columns show the percent gap between the average and

he best cost, and the worst and the best cost, respectively. We

bserve that computation times are in the order of 10 to 15 min,

hich is acceptable for an operational problem that is solved on a

aily basis. The results indicate clearly that the complete objective

olution collects on average more than twice as many containers

nd, as a consequence, performs more tours and dump visits. In

erms of expected cost, it is 50 to 60% more expensive. Over the

3 instances, the average gap between the average cost and the
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Table 6 

Probabilistic policies: container overflows and route failures for real data instances. 

Avg Num Overflows Avg Num Route Failures 

Objective ECC RFCM 75th Perc. 90th Perc. 95th Perc. 99th Perc. 75th Perc. 90th Perc. 95th Perc. 99th Perc. 

Complete 100 1.00 0 .83 1 .60 2 .15 3 .26 0.05 0.05 0.05 0.07 

Complete 100 0.50 0 .81 1 .58 2 .14 3 .27 0.05 0.06 0.07 0.10 

Complete 100 0.25 0 .81 1 .59 2 .15 3 .26 0.05 0.07 0.07 0.11 

Complete 100 0.00 0 .83 1 .57 2 .16 3 .28 0.10 0.11 0.12 0.16 

Complete 50 1.00 1 .04 1 .87 2 .48 3 .72 0.05 0.05 0.05 0.05 

Complete 50 0.50 1 .04 1 .86 2 .48 3 .73 0.05 0.07 0.07 0.07 

Complete 50 0.25 1 .06 1 .88 2 .50 3 .72 0.06 0.09 0.09 0.10 

Complete 50 0.00 1 .06 1 .87 2 .48 3 .72 0.09 0.11 0.11 0.13 

Complete 25 1.00 1 .26 2 .12 2 .73 4 .08 0.06 0.06 0.06 0.06 

Complete 25 0.50 1 .25 2 .10 2 .73 4 .07 0.05 0.07 0.07 0.07 

Complete 25 0.25 1 .25 2 .11 2 .74 4 .09 0.05 0.08 0.08 0.09 

Complete 25 0.00 1 .25 2 .11 2 .77 4 .09 0.09 0.10 0.11 0.11 

Routing-only 0 0.00 16 .93 20 .45 22 .55 26 .71 0.04 0.05 0.05 0.05 
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est cost is in the order of 0.5%, and between the worst cost and

he best cost it is in the order of 1.5%, which is an indication of

he quality of the results provided by the ALNS. The values are

owest for the routing-only objective and grow with higher ECC

or the complete objective, reflecting the more challenging search

pace produced by the non-linearities present there. On the other

and, it appears that the gaps are almost unaffected by the RFCM. 

Table 5 is a more detailed breakdown of the cost and efficiency

tructure of the set of objective functions presented in Table 4 . The

ourth, fifth and sixth columns decompose the average solution

ost from Table 4 into routing, overflow and route failure cost.

he last three columns report the total collected volume in liters,

nd the volume per unit of total cost and per unit of routing

ost, which can be regarded as performance indicators. The results

eveal that the routing cost of the complete objective solution is

n average only 30 to 40% higher than that of the routing-only

bjective solution. The rest of the difference in the total solution

ost is explained by the contribution of the expected overflow

ost. The routing cost is lower for a lower emergency collection

ost, while the expected overflow cost remains almost unchanged.

 higher emergency collection cost necessitates more frequent

isits as an attempt to further limit overflows. The route failure

ost in both solutions is practically null. Not surprisingly, the

olutions with the complete objective collect more volume as well.

owever, a better indication of their efficiency is provided by the

ollected volume per unit cost, which is 20% higher with respect to

he total cost, and almost 40% higher with respect to the routing

ost. 

The relevance of the probability information captured by the

bjective function can be evaluated through the analysis of the

ccurrence of extreme events. After solving each instance, we

erform 10,0 0 0 simulations for it. First, we sample the forecasting

rror independently for each container and each day using the

stimate ς . Then, we evaluate the effect on the occurrence of

ontainer overflows and route failures in the solution provided by

he ALNS algorithm. An overflow is counted on each day, i.e. if a

ontainer is overflowing on two consecutive days because it is not

ollected, we count two overflow events. Table 6 summarizes the

umber of overflows and route failures at the 75th, 90th, 95th and

9th percentiles of the 10,0 0 0 simulation runs for each instance,

here each row is an averaged result for the 63 instances. We

bserve a strong negative correlation of the average number of

verflows with the emergency collection cost and of the average

umber of route failures with the RFCM. What is more striking,

owever, is the difference between the series of complete ob-

ectives on the one hand and the routing-only objective on the

ther. While the complete objectives are able to limit the number

f overflows to about four, even at the extreme of the simulated
istribution, the average number of overflows when using the

outing-only objective is higher by a degree of magnitude. 

.3.2. Alternative policies 

To further study the theoretical justification and practical

elevance of the stochastic modeling approach, we compare it to

n intuitive routing-only approach, in which during the solution

f the problem we use artificially low capacities for the containers

nd the trucks. This policy is an attempt to control the number

f container overflows and route failures and it also leads, un-

oubtedly, to higher routing costs due to the necessity of more

requent visits. After each instance is solved, we perform the same

imulation-based validation of the solution as in Section 5.3.1 .

owever, during the simulation we count the number of container

verflows and route failures with respect to the original container

nd truck capacities. Thus, we have a fair comparison between the

robabilistic policies and the alternative policies of artificially low

apacities. 

Tables 7–9 are structured in the same way as Tables 4–6 in

ection 5.3.1 . Here, the objective is always routing-only and what

aries are the Container Effective Capacity (CEC) and the Truck

ffective Capacity (TEC) as fractions of their original capacities.

n Table 7 , we note the strong negative correlation between the

ontainer effective capacity and the average number of tours, con-

ainer collections and dump visits in the solutions. We also notice

hat the relative increase in the number of container collections is

uch higher than the reduction of the container effective capacity.

his is an artifact of the finite planning horizon as many con-

ainers may be collected two or three times rather than once or

wice due to their smaller effective capacities. This effect will most

ikely diminish over the long run. We notice that the solution time

rows with the number of container collections, and so do the

olution gaps. Yet, the increase of the solution time is smaller than

he increase of the number of container collections. Moreover,

ven the highest gaps for a container effective capacity of 60%

emain in the order of 1.5% and below. One explanation for the

ncrease of solution time and the gaps could be that the problem

ecomes tighter and hence the solution space more challenging.

n fact, two of the instances for a CEC of 60% are infeasible. 

Table 8 shows the gradual growth of the routing cost as we

educe the effective capacities. Since the objective is always

outing-only, the overflow and route failure components do not

pply. The last three columns reveal an interesting result. Lowering

he CEC from 100%, to 90%, to 75% results in solutions collect-

ng more volume, but also more volume per unit routing cost.

owever, further lowering the container effective capacity to 60%

esults in a disproportionately higher routing cost. As a result,

espite collecting more volume, the solutions with a CEC of 60%
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Table 7 

Alternative policies: basic results for cost analysis on real data instances. 

Avg Num Avg Num Avg Num Best Cost Avg Cost Worst Cost Gap Avg- Gap Worst- 

Objective CEC TEC Runtime(s.) Tours Collections Dump Visits (CHF) (CHF) (CHF) Best(%) Best(%) 

Routing-only 1.00 1.00 682 .31 1.83 16.64 1.87 421.95 422.51 423.16 0.13 0.29 

Routing-only 1.00 0.90 685 .38 1.83 16.65 1.87 422.22 422.80 423.47 0.14 0.30 

Routing-only 1.00 0.75 672 .96 1.83 16.65 1.95 423.38 424.02 424.92 0.15 0.36 

Routing-only 1.00 0.60 757 .33 1.83 16.66 2.04 425.31 426.06 426.93 0.18 0.38 

Routing-only 0.90 1.00 742 .70 2.00 22.63 2.02 486.29 486.83 487.59 0.11 0.27 

Routing-only 0.90 0.90 746 .77 2.00 22.62 2.06 486.82 487.39 488.09 0.12 0.26 

Routing-only 0.90 0.75 738 .18 2.00 22.62 2.15 488.46 489.16 489.95 0.14 0.31 

Routing-only 0.90 0.60 725 .43 2.00 22.63 2.37 492.74 493.71 494.69 0.20 0.39 

Routing-only 0.75 1.00 873 .54 2.00 33.52 2.43 541.87 542.92 544.53 0.19 0.49 

Routing-only 0.75 0.90 863 .36 2.00 33.52 2.60 544.60 545.78 547.25 0.22 0.49 

Routing-only 0.75 0.75 869 .94 2.00 33.50 2.86 549.13 550.15 551.46 0.19 0.42 

Routing-only 0.75 0.60 862 .67 2.00 33.54 3.12 555.35 557.37 559.75 0.36 0.79 

Routing-only 0.60 1.00 1037 .72 2.97 44.59 3.78 780.40 783.05 788.46 0.34 1.03 

Routing-only 0.60 0.90 1241 .91 2.97 44.65 3.88 782.50 785.42 792.24 0.37 1.25 

Routing-only 0.60 0.75 1060 .95 2.97 44.67 4.10 788.74 792.06 798.07 0.42 1.18 

Routing-only 0.60 0.60 1023 .95 2.97 44.79 4.58 799.71 804.37 811.70 0.58 1.50 

Table 8 

Alternative policies: key performance indicators for cost analysis on real data instances. 

Avg Routing Avg Overflow Avg Rte Failure Avg Collected Liters Per Liters Per Unit 

Objective CEC TEC Cost (CHF) Cost (CHF) Cost (CHF) Volume (L) Unit Cost Routing Cost 

Routing-only 1.00 1.00 422.51 0.00 0.00 24,992.02 59.15 59.15 

Routing-only 1.00 0.90 422.80 0.00 0.00 24,963.64 59.04 59.04 

Routing-only 1.00 0.75 424.02 0.00 0.00 24,986.17 58.93 58.93 

Routing-only 1.00 0.60 426.06 0.00 0.00 24,909.59 58.46 58.46 

Routing-only 0.90 1.00 486.83 0.00 0.00 31,553.37 64.81 64.81 

Routing-only 0.90 0.90 487.39 0.00 0.00 31,577.74 64.79 64.79 

Routing-only 0.90 0.75 489.16 0.00 0.00 31,747.19 64.90 64.90 

Routing-only 0.90 0.60 493.71 0.00 0.00 31,846.97 64.51 64.51 

Routing-only 0.75 1.00 542.92 0.00 0.00 44,149.46 81.32 81.32 

Routing-only 0.75 0.90 545.78 0.00 0.00 44,108.02 80.82 80.82 

Routing-only 0.75 0.75 550.15 0.00 0.00 43,985.69 79.95 79.95 

Routing-only 0.75 0.60 557.37 0.00 0.00 44,219.61 79.34 79.34 

Routing-only 0.60 1.00 783.05 0.00 0.00 54,332.98 69.39 69.39 

Routing-only 0.60 0.90 785.42 0.00 0.00 54,360.53 69.21 69.21 

Routing-only 0.60 0.75 792.06 0.00 0.00 54,479.13 68.78 68.78 

Routing-only 0.60 0.60 804.37 0.00 0.00 54,564.10 67.83 67.83 

Table 9 

Alternative policies: container overflows and route failures for real data instances. 

Avg Num Overflows Avg Num Route Failures 

Objective CEC TEC 75th Perc. 90th Perc. 95th Perc. 99th Perc. 75th Perc. 90th Perc. 95th Perc. 99th Perc. 

Routing-only 1.00 1.00 16 .96 20 .47 22 .58 26 .71 0.03 0.05 0.05 0.05 

Routing-only 1.00 0.90 16 .93 20 .42 22 .54 26 .68 0.00 0.00 0.00 0.00 

Routing-only 1.00 0.75 16 .90 20 .42 22 .55 26 .70 0.00 0.00 0.00 0.00 

Routing-only 1.00 0.60 16 .85 20 .37 22 .50 26 .63 0.00 0.00 0.00 0.00 

Routing-only 0.90 1.00 10 .29 13 .07 14 .78 18 .23 0.02 0.02 0.02 0.02 

Routing-only 0.90 0.90 10 .25 13 .04 14 .74 18 .15 0.00 0.00 0.00 0.00 

Routing-only 0.90 0.75 10 .27 13 .03 14 .77 18 .15 0.00 0.00 0.00 0.00 

Routing-only 0.90 0.60 10 .28 13 .02 14 .77 18 .21 0.00 0.00 0.00 0.00 

Routing-only 0.75 1.00 4 .23 6 .07 7 .25 9 .65 0.06 0.06 0.06 0.06 

Routing-only 0.75 0.90 4 .25 6 .06 7 .27 9 .66 0.00 0.00 0.00 0.00 

Routing-only 0.75 0.75 4 .25 6 .07 7 .29 9 .68 0.00 0.00 0.00 0.00 

Routing-only 0.75 0.60 4 .24 6 .03 7 .25 9 .67 0.00 0.00 0.00 0.00 

Routing-only 0.60 1.00 2 .17 3 .52 4 .45 6 .34 0.01 0.01 0.01 0.01 

Routing-only 0.60 0.90 2 .18 3 .52 4 .48 6 .32 0.00 0.00 0.00 0.00 

Routing-only 0.60 0.75 2 .15 3 .54 4 .46 6 .29 0.00 0.00 0.00 0.00 

Routing-only 0.60 0.60 2 .17 3 .53 4 .47 6 .31 0.00 0.00 0.00 0.00 
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are less efficient in terms of collected volume per unit routing cost

compared to the solutions with a CEC of 75%. Table 9 describes the

average results of the 10,0 0 0 simulation runs that were performed

on each instance with the original container and truck effective

capacities. It is immediately clear that considering artificially low

capacities during the solution has a marked effect in reducing

overflows and route failures. To be precise, the average number of

overflows drops by roughly a third when the container effective
apacity is reduced to 90% and by roughly two thirds when it is

educed to 75%. On the other hand, reducing the truck effective

apacity to 90% can effectively eliminate the occurrence of route

ailures. 

Figs. 4 and 5 present a side-by-side comparison of the prob-

bilistic and the alternative policies of using artificially low

ontainer and truck capacities. In both figures, the first 12 bars

epresent the probabilistic model with complete objective function
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Fig. 4. Comparison of routing cost for probabilistic and alternative policies. 
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(a) Overflows
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Fig. 5. Comparison of container overflows and route failures for probabilistic and alternative policies. 
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o  
or various Emergency Collection Costs (ECC) and Route Failure

ost Multipliers (RFCM). The last 16 bars represent the alternative

olicies of using artificially low capacity for various Container

ffective Capacities (CEC) and Truck Effective Capacities (TEC). We

hould point out that the baseline routing-only policy with con-

ainer and truck effective capacity of 100% has the lowest routing

ost. Fig. 4 reveals that the routing cost of the probabilistic policies

onsidered ranges from approximately 550 to 580 CHF depending

ostly on the value of the emergency collection cost. This latter

ange is relatively limited compared to the range of routing costs
or the alternative policies, which goes from 420 to 800 CHF,

ith pronounced jumps linked to the variation of the container

ffective capacity. We observe a disproportionate cost increase

inked to lowering the container effective capacity from 75% to

0%. This effect is due to the fact that many more containers need

o be collected now. There are on average three vs. two tours per

olution, compared to the case of a CEC of 75% or 90%. Moreover,

ours are on average also longer and as a result less compact. 

We contrast the above observation with the average number of

verflows and route failures after the simulation-based validation
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of both types of policies. These are presented in Fig. 5 , in parts

(a) and (b), respectively. Part (a) of the figure reveals that all

considered probabilistic policies are able to limit the number of

overflows to very low values. There is still a slight increase in

the number of overflows (with an associated slight decrease in

the routing cost) when the emergency collection cost is reduced

from 100 to 50 and then to 25 CHF. Nevertheless, the average

number of overflows across all instances is approximately four,

even at the 99th percentile. In comparison, the average number

of overflows for the alternative policies is markedly higher. While

reducing the container effective capacity leads to a considerable

drop in the number of overflows, the alternative policies cannot

beat the probabilistic ones. A case in point are the complete

objective solutions for an ECC of 25 CHF and the routing-only

solutions for a CEC of 75%. While they incur a similar routing cost

as shown in Fig. 4, Fig. 5 reveals that the occurrence of overflows

for the routing-only solutions is more than twice as high. Reducing

further the CEC leads to a mild decrease in the occurrence of over-

flows accompanied by a significant increase in the routing cost.

We stress here that since we compare the performance of two

policy types in terms of number of overflows and route failures at

different percentiles, we must isolate these components from the

solution cost of the probabilistic model, with a fair cost compar-

ison thus given by the routing cost. These results clearly support

the findings of Markov et al. (2018) of the superior performance

of the probabilistic policies in the face of stochastic demand. 

Lastly, part (b) of Fig. 5 shows how both types of policies

perform in terms of the average number of route failures over

all instances. Here, the alternative policies appear to be more

successful. As already noted before, reducing the truck effective

capacity to 90% is sufficient to eliminate the occurrence of route

failures. As far as the probabilistic policies are concerned, we

identify an interesting pattern. The number of route failures is

positively correlated with the emergency collection cost and

negatively correlated with the route failure cost multiplier. The

latter is an intuitive result. The former relationship, however, is

slightly more intricate. What is at play here is a trade-off between

container overflows and route failures. A higher emergency collec-

tion cost incentivizes more frequent container visits. Trucks thus

collect more containers in each tour and, by consequence, in each

depot-to-dump or dump-to-dump trip. Since trucks are fuller on

average, the solution is subject to a higher risk of route failures.
Table 10 

Analysis of rolling horizon DSIRP bounds. 

Static IRP with Rolling DSIRP with Static SIRP with 

Instance True Demand Forecast Demand Forecast Demand In

Inst_1 276.44 585.69 658.39 In

Inst_2 448.67 937.47 849.43 In

Inst_3 307.88 626.01 816.05 In

Inst_4 266.15 577.82 701.61 In

Inst_5 450.14 663.50 790.44 In

Inst_6 300.73 624.62 708.79 In

Inst_7 268.65 580.83 649.67 In

Inst_8 427.17 608.31 680.36 In

Inst_9 442.34 609.44 656.44 In

Inst_10 448.70 578.34 647.05 In

Inst_11 467.35 614.28 669.33 In

Inst_12 449.20 681.10 625.59 In

Inst_13 254.66 558.57 629.36 In

Inst_14 276.60 613.72 685.64 In

Inst_15 429.26 562.12 788.75 In

Inst_16 529.60 626.97 702.61 In

Inst_17 423.07 589.66 663.90 In

Inst_18 457.65 596.14 681.29 In

Inst_19 448.66 524.41 596.81 In

Inst_20 418.12 569.73 653.22 In

Inst_21 276.32 570.41 622.47 

Note: The four instances for which the hypothesized bounds do not hold are s
he probabilistic policies collect on average more containers than

he alternative policies and this could be a valid explanation of the

atter’s better performance when it comes to limiting the number

f route failures. However, as reported in Table 5 , the contribution

f the expected route failure cost to the total cost is immaterial. 

.3.3. Rolling horizon experiments 

In practice, the SIRP that we consider is solved in a daily

olling horizon fashion using the newly revealed container level

nformation. In this approach, the problem is solved for a planning

orizon T , the tours that are scheduled on day t = 0 are executed,

he horizon is rolled over by a day, the problem is re-solved,

nd so on. Thus, true demands are gradually revealed each day,

ut the demands over the planning horizon are still stochastic.

his type of problem is known as the Dynamic and Stochastic

nventory Routing Problem (DSIRP). The solution of the DSIRP

equires the solution of an SIRP at each rollover. The cost of the

SIRP is composed of the total routing and overflow cost on day

 = 0 resulting from the solution of the SIRP at each rollover. We

ote that the route failure cost does not apply on day t = 0 . We

lso note that overflows on day t = 0 are deterministic, since the

ontainer levels are fully known, and thus for each overflow on

ay t = 0 the full overflow cost χ is paid. 

In the solution of the DSIRP, true demands are gradually re-

ealed in the solution process, which reduces uncertainty. Thus,

e hypothesize that its solution cost should be bounded above by

he solution cost of a static SIRP for the same planning horizon.

ndeed, the derivation of the overflow probabilities formalized in

ection 3.2.1 indicates that uncertainty is higher farther in the

uture. By effectively planning only for the next day and relying

n newly revealed demands each day, the DSIRP is able to reduce

ncertainty compared to the static SIRP. The cost comparison

etween the two is nevertheless sensitive to the actual demand

ealizations, hence our choice of referring to these bounds as

mpirical. 

Assume that we solve the SIRP for a planning horizon

 = { 0 , . . . , u } . In order to compare its cost to that of the DSIRP,

e should roll over for a number of times equal to the length

f the planning horizon T , i.e. the last rollover should be on

ay u . Moreover, for rollover t the initial container levels are

pdated by true demands and also dependent on the solution of

ollover t − 1 . Updated forecasts are used at each rollover. We also
Static IRP with Rolling DSIRP with Static SIRP with 

stance True Demand Forecast Demand Forecast Demand 

st_22 429.20 526.06 607.22 

st_23 241.44 568.15 681.54 

st_24 547.92 769.08 747.64 

st_25 446.31 583.87 689.37 

st_26 442.02 575.57 656.27 

st_27 441.36 595.47 705.01 

st_28 465.74 628.59 733.80 

st_29 436.25 579.74 701.33 

st_30 414.41 701.87 692.33 

st_31 442.87 530.14 668.17 

st_32 255.32 617.04 695.62 

st_33 460.04 641.00 773.33 

st_34 505.55 674.98 710.84 

st_35 481.85 746.10 786.94 

st_36 454.60 658.51 741.02 

st_37 465.33 651.41 749.50 

st_38 519.56 709.76 809.91 

st_39 243.94 623.29 697.93 

st_40 450.94 620.09 756.48 

st_41 403.01 576.45 688.68 

hown in bold. 
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ypothesize that the solution of the DSIRP should be bounded

elow by the solution of a static IRP using true demands for the

ame planning horizon T . Using true demands rids the problem

f any uncertainty. The solution of the IRP results in an intelligent

ssignment of tours to days. Thus, the number of executed tours

ver the planning horizon will be minimized and tours may not

e executed on each day. This is not necessarily the case for the

olution of the DSIRP, which has no memory of the past rollovers

nd may assign tours on day t = 0 for each rollover. 

To test our hypotheses, we generate a second set of real data

nstances. It comprises 41 instances, each covering two weeks

f white glass collections in the canton of Geneva, Switzerland

n 2014, 2015, or 2016. On average, there are 69 containers per

nstance, and the maximum is 86. Otherwise, the instances fit the

ame description as the set of 63 one-week-long instances de-

cribed in Section 5.2 . We solve the static IRP with true demands

nd static SIRP with forecast demands for the first week, and the

SIRP with a one week planning horizon and rollovers for the

rst week. Table 10 presents the results we obtain. Since we are

nterested in verifying the empirical existence of the hypothesized

ounds, we report the best cost out of 10 runs for each instance.

he bounds are obtained in all but four cases, which are shown

n bold. The relative differences are also very interesting to look

t. The solutions of the DSIRP are on average 61% more expensive

han those of the static IRP with true demands. This result is

nevitably related to the level of uncertainty as represented by

he forecasting error ς . In other words, if more accurate forecast-

ng methodologies are available, this gap may be brought down

ubstantially. On the other hand, the static SIRP approach is on

verage 14% more expensive than the rolling horizon approach,

learly showing the benefit of the latter in practical applications. 

. Conclusion 

We motivate and formulate a real-world stochastic inventory

outing problem which includes a range of practical and policy-

elated constraints. To solve the problem, we develop an ALNS

lgorithm and use a realistic demand forecasting model. We ana-

yze our stochastic modeling approach on instances derived from

eal data and demonstrate the relevance of the rich probability

nformation that we model in the objective function. We observe

hat capturing this information leads to only a moderate increase

n the routing cost, while avoiding major expenditures even at rel-

tively lower percentiles of the simulated demand scenarios. Based

n our policy, we can control the rate of occurrence of undesirable

vents, like container overflows and route failures, by scaling their

robability-related costs. Our approach significantly outperforms

lternative deterministic policies of using artificially low capacities

or the containers and the trucks in its ability to control the oc-

urrence of container overflows for the same routing cost. Finally,

e show the benefit of the rolling horizon approach that includes

he newly revealed container information each day and derive

mpirical lower and upper bounds on the its cost. The practical

elevance of our approach is also highlighted by the fact that each

ew daily solution can be fed in the morning to a routing device,

uch as GPS navigation, as a sequence of points to follow. 

Given that our problem is interesting from both a theoretical

nd a practical point of view, it lends itself to a rich variety of

otential future work directions. Developing an exact method for

olving small instances or a lower bounding procedure for realistic

nstances can be used to provide benchmark results for the ALNS.

sing different modeling techniques, such as scenario generation

r robust optimization, can also be used to evaluate the relative

uality of the proposed framework. More practically relevant

deas include the integration of a location aspect regarding the
umps, the possibility of open tours, online re-optimization and

he solution of a multi-flow problem. 
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