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Summary

This thesis aims to explore and enable parameter estimation using the data assimilation
method of the ensemble Kalman filter (EnKF). More specifically applied to the quasi-steady
flow field, measured using particle image velocimetry (PIV), of a plasma actuator in quiescent
flow where the parameters to be estimated are those describing the force field generated. The
ensemble Kalman filter combines experimental observations together with a prior, created
through numerical simulation, in a stochastic framework, to compute a closer estimation of
the true state of the system together with an estimation of the error. This method has already
proven to be able to improve the spacial and temporal accuracy experimental observations,
as well as providing an estimation of the parameters describing the system. The EnKF has
not yet been used in the field of plasma actuators, and can prove a valuable tool in improving
upon existing experimental methods, including the calculation of the pressure field, and the
time dependent force field. The calculation of the pressure field has mostly been ignored, and
the determination of the time dependent force field has been done with limited success so far
using only experimental methods only.

The EnKF and a finite difference laminar Navier-Stokes solver have been implemented in
Matlab. This solver can compute the flow field given a prescribed force field, which will
simulate the working of the plasma actuator. The observations are used in the form of time-
averaged particle image velocimetry obtained by Kotsonis (2012) during previous studies,
creating a steady state system. A slight modification of the traditional EnKF method in
steady state is proposed in order to correct for sub-optimal update steps of the EnKF when
combining the experimental observations with the numerical model. The proposed modified
version called the semi-steady state EnKF (SSS-EnKF) integrates the updated system forward
in time in between updates.

The first part of the research is focused on the understanding of the SSS-EnKF within the
plasma actuator framework. A twin problem is set up with artificially generated observations
to allow for a controlled environment to work in. The sensitivity of the results is measured with
respect to several filter settings, such as ensemble size, prior mean and variance, creation of
the prior, filter type and integration time between updates. The results show a high sensitivity
to the initial prior mean and variance, which is most likely due to the necessary introduction
of bias error to keep all ensemble member stable in the numerical solver. The results show
relatively low sensitivity to the other filter settings.
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vi Summary

Using the optimal filter settings determined by the twin problem, the SSS-EnKF is used
using the actual PIV data for eight different plasma actuator configurations. The results
of the filtering is compared to existing estimations of the force field calculated by Kotsonis
(2012). Most results show good agreement with the existing results. Some results, however,
show poor comparison due to the high sensitivity of the initial prior. Although the current
method is not as robust as existing methods, I believe that major improvements can be made
if further research is done, allowing not only for a robust method of estimating the quasi-
steady force field, but also accurately calculating the time resolved force field, together with
the pressure field.
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Chapter 1

Introduction

The dielectric barrier discharge (DBD) actuator or just plasma actuator is a promising method
of achieving better flow control for e.g. aircraft. The plasma actuator can actively control the
flow by transferring momentum into the flow above the actuator. This momentum transfer
can be described as a body force imposed on the air. Although the plasma actuator has
been studied extensively, a good general description of this body force is still lacking and
is essential for flow engineers to design a plasma actuator for optimal flow control. High
accurate numerical models, which do not require a general description of the body force field,
are impractical for actuator design due to high computational costs.

Plasma actuator have also been studied extensively using experimental method, however,
these experimental methods are mostly restricted to measuring the flow field and give only
limited information about the force field. This thesis proposes the use of a data assimilation
technique called the Ensemble Kalman Filter (EnKF) in combination with experimental data
of the flow field generated by the plasma actuator, obtained using Particle Image Velocimetry
(PIV), to calculate an estimation of the body force field. Data assimilation is a field of study
where experimental data is combined with results from numerical methods in order to find
the ’true’ state of the system. It assumes that both numerical models as well as experimental
data include error, and can be combined to better estimate the state of the system as well as
the parameters used to calculate the state used by the numerical model. This combination
of experimental data with numerical data also gives additional information in the form of
estimated error. Data assimilation techniques can therefore provide a promising new way of
calculating body force fields in an accurate but also relatively computationally inexpensive
way, while also giving additional information about the parameters in the form of estimated
parameter error.

The main goal of this thesis is to create a general method of characterizing the quasi-steady
plasma actuator performance in terms of the force field generated using the data assimilation
technique in the form of the EnKF.
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2 Introduction

Other goals of this thesis are:

1. Reconstruction of close to the wall flow Most techniques of determining the flow
field experimentally have very poor resolution near the wall boundary; something the
EnKF could reconstruct.

2. Approximation of the uncertainty of the estimated parameters. Most studies in
determining the body force field are restricted to only finding a single optimal parameter
fit given the experimental data, whereas the EnKF incorporates the uncertainty of
experimental data to compute an estimation of the parameter error.

3. Create a distinction between the pressure gradient and force field. Velocity
based experimental method can not distinct between the pressure gradient and the
force field. By using both numerical simulation with the velocity based experiments a
distinction can be made.

4. Creation of a data assimilation tool which can be built upon to work with many
different body-force parameterizations, including time dependent parameterizations. As
well as building a foundation for further research in the field of data assimilation with
plasma actuators.

The thesis will start of by giving a general description of the plasma actuator and different
data assimilation techniques. Chapter 3 will discuss the flow solver, experimental data and
the EnKF in detail. Because the EnKF has not been used in these settings yet, a twin problem
is set-up using artificially created experimental data in order to test the EnKF in a controlled
environment. An in-depth description of the set-up and the results are discussed in chapter
4. The results from the twin problem are used to set up the EnKF in combination with the
experimental data to compute the parameter estimation of a total of eight different DBD
actuator configurations. The last chapter will discuss some of the main finding of the thesis
as well as give some recommendations about further research option to improve the current
set-up.
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Chapter 2

Background; plasma actuators and data
assimilation techniques

The following sections will give a brief overview of: first the operation and state of the art in
the field of plasma actuators, and second an overview of data assimilation techniques.

2.1 Plasma actuator

Plasma actuators also called dielectric barrier discharge devices(DBD) have been intensely
studied for the last decade or so. One of the main promises of the plasma actuator is the ability
to actively control the flow around an airfoil of an aircraft; unobtrusively with low installation
and operation costs, while possibly drastically increasing the aerodynamic performance of the
aircraft. The amount of research in the field of plasma actuator is vast, only a brief review
of the operation will be given in the follow section.

2.1.1 Physical background

The term plasma can be loosely defined as an averagely electrically neutral volume of air
containing positive and negative charged particles. This definition can be sharpened by
using the definition given by Kotsonis (2012) as that of a system of particles whose collective
behavior is characterized by long-range Coulomb interactions. This system of particles, in the
case of a plasma actuator, would consist of a range of charged particles including electrons,
positive ions, and negative ions.

Plasma can be created by applying an electrical field of sufficient amplitude to a volume of
air. The electrical field will cause the formation of ions and electrons. The strong electric
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4 Background; plasma actuators and data assimilation techniques

field is created by applying a high voltage of either DC or AC current to two separated
electrodes. The amplitude of the electric field needed to surpass the breakdown potential
depends on ambient pressure, temperature and molecular species available in the neutral
gas. The charged particles created will interact with the electrical field and will therefore
be accelerated through the air. These moving ions will transfer some of their momentum to
the neutral air. Also, the created electrons will change the conductivity of the bulk volume,
enabling a current to flow between the two electrodes. This current is called the barrier
discharge when using a DBD devices

The barrier discharge can occur at a range of spacial and time scales, however, the main
feature all DBD’s have in common is the configuration of one exposed and one insulated
electrode using a dielectric material, in combination with the use of an AC voltage potential.
The use of an insulated electrode creates a charge up of capacitance on the dielectric material
which causes the local field to reverse and locally terminate. To remove this capacitance and
re-initiate the electric field, an AC electric potential is required. The use of an AC potential
is therefore essential in order to sustain barrier discharges on the macroscopic time scale.

2.1.2 Typical Configuration

As described previously, the DBD actuator consists of two electrodes of which one is exposed
to air and the other is insulated using dielectric material. Typical parameters describing a
DBD actuator configuration with typical order of values are: width of electrodes (few mm),
thickness and material properties of dielectric layer (few mm), horizontal gap width (zero or
few mm), actuator frequency (fac) (from a 100 Hz to a few tens of kHz ), and amplitude of
the High Voltage (from a few kV to 20 kV. Typical materials used for the dielectric layer are
Teflon, kapton, glass, ceramics or Plexiglass (Kotsonis (2012)). The electrodes are placed in
an asymmetric configuration where the electrodes not placed directly on top of each other.
Figure 2.1 shows a typical configuration of a DBD actuator. The asymmetric configuration
and the use of an AC voltage source causes the dielectric discharge to be asymmetric as
well as the momentum transfer. This last phenomenon results in an induced velocity in the
fluid above the insulated electrode, which is the main reason DBD actuator are being studied
today.

Figure 2.1: Schematic of typical DBD configuration and operation (taken from Kotsonis (2012))
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2.1 Plasma actuator 5

2.1.3 Mechanical and Electrical Behavior

The electrical behavior of the DBD actuator is important in the process understanding the
working of the DBD actuator. As discussed above it was already noticed that the electrical
field needs to reach a sufficient magnitude to achieve ionization of the air. Other interesting
quantities are the discharge current and the high voltage signals (HV) that goes with it.
Various AC HV signals can be used for DBD actuators, however, the sine wave has been used
and researched the most extensively, and the scope of this thesis will therefore be limited to
only sine wave HV.

The electrical behavior can be described well as suggested by (Enloe et al. (2004a) Enloe et al.
(2004b)). A plasma actuator cycle can be divided into two parts: the forward stroke and the
backward stroke. The forward stroke is defined as the part of the cycle where the exposed
electrode is negative. During this cycle the exposed electrode acts as an unlimited source of
electrons. The electrons build up on the surface of the dielectric material above the insulated
electrode and quench the electrical field to the point where it self terminates. During the
backward stroke the exposed electrode is positive and this time the electrons are provided by
the previously build up of electrons and negatively charged species on the exposed surface of
the dielectric material.

The mechanical behavior can be described by several different quantities of interest. The
induced velocity, total thrust, and the spatial and temporal body force field distribution.
The induced velocity is created by the momentum transfer of the charged species of air,
accelerating by the electrical field, to the neutral particles. This quantity can be measured
using experimental methods such as hot wire anemometry, particle image velocity or laser
Doppler velocimetry. Some of the first measured results of induced velocity were done by Roth
et al. (1998) shown in Figure 2.2. The induced velocity profiles have been studied extensively
experimentally in the last decade and include very high temporal and spacial resolution data.

Figure 2.2: Some of the first ever measured induced velocity produced by a DBD actuator (taken
from Roth et al. (1998))

With each different shape of HV signal, a different induced velocity can be observed. This
induced velocity can be characterized by the shape of the wall jet and the thrust produced.
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6 Background; plasma actuators and data assimilation techniques

Thrust produced is defined here as the spatial-temporal averaged body force produced by
the actuator. Many studies have captured the thrust production of the DBD actuator with
different configurations or HV. However, few researchers have studied the time dependent
and spatially distributed body force field, which represents the momentum transfer from the
charged particles to the neutral air. This spatial and temporal body force field is of great
interest to the flow engineer. Different methods of determining temporal averaged spatial body
force have been used by Kotsonis (2012) using experiments. Figure 2.3 shows a body force
distribution using a method used by Kotsonis (2012) to determine the body force distribution
in continuous operation. Also, Kriegseis et al. (2013) used PIV data together with the Navier-
Stokes equations under the assumption that all pressure gradients are zero. Albrecht et al.
(2011) uses experimental velocity field together with the voricity equations, again under the
assumption of zero pressure gradient, but now also assuming that the cordewise gradient
of the force

δfy
δx is zero. Most of these body force determination have been done using the

assumption of a quasi-steady body force, which is valid for time scale much larger than the
actuator frequency dt >> fac. So far very little research has been done in determining the fully
time dependent body force distribution. This is due to the lack of high temporal resolution
experimental data and additional assumptions used in for example the gradient method, used
by Kotsonis (2012), that break down when resolving the body force on a smaller time scale.
However, recently Neumann et al. (2013) have used laser Doppler velocimetry in order to get
high temporal resolution experimental data and obtained a method in determining the body
force distribution in time.

It should be noted that all of these results are based on experimental data and are restricted by
the accuracy of data and the modeling assumptions made. Almost all measurement techniques
(etc. PIV, laser Doppler) have a very poor accuracy near the wall. Also, assumptions made
by for example Neumann et al. (2013) result in a body force which has a possible error of
atleast 10% of the maximum value determined for the body force. This is many due to the
fact that most studies, including Neumann et al. (2013), use the assumption of a relative to
the force field neglectable pressure gradient. If further improvement in accuracy of the force
field is preferred, the pressure gradient should not be neglected

Figure 2.3: Body force determination using gradient method (taken from Kotsonis (2012))

2.1.4 Numerical Simulation

Numerical simulation of the plasma actuator can be done in many different ways depending
on the goal of the simulation, computational cost restriction, and accuracy requirements.
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2.2 Parameter estimation in data assimilation 7

All methods can be roughly divided in two different types: phenomenological models and
first-principle models. The phenomenological models use simple models to get an expression
of the body force term and implement this in the Navier-Stokes equations. These models
are mostly computational inexpensive and fairly simple to implement. However, they tend
to be inaccurate and need a lot of tuning of the body force, based on either experimental
measurements or more accurate models, in order to give accurate results. These models
also give only a little to no insight into the physical phenomena driving the flow. Shyy et al.
(2002) created a model under the assumption that the electric field strength decreases linearly
from edge of the exposed electrode toward the covered electrode. However, experimentally it
was determined that his charge distribution was exponential Opaits et al. (2008),Cristofolini
et al. (2013). Orlov and Corke (2006) made a large improvement in phenomenological models
adding to the existing lumped element method first proposed by Enloe et al. (2004b). Singh
and Roy (2008) used a full electrostatic model to come up with a Gaussian parameterization
for the body force distribution.

On the other hand, the first-principle models use a very large set of equations, including
not only the Navier-Stokes equations but also Maxwell equations and must take into account
the chemistry of air. These models can result in highly accurate results and give some great
insight into the physical phenomena of the plasma actuator. However, the computational cost
is very high and the models are very complex. First-principle models are often used to create
a parametrization of the body force field for a specific configuration of a plasma actuator. A
very good overview of some phenomenological models and especially the first-principle model
is given by Jayaraman and Shyy (2008).

2.2 Parameter estimation in data assimilation

Data assimilation encapsulates all techniques that use a combination of real-life measurements
and numerical computer models to come up with a closer estimation of the true system state
together with an estimation of uncertainty. Data assimilation techniques can be characterized
by a measure of objective model performance, such as a cost function that penalizes model
errors based on the root mean square error of the model output. Most models have a large
number of degrees of freedom making it computationally very expensive to naively explore
the model performance for every set of parameters. Even more so if parameters are time
dependent. Besides data assimilation techniques, any other optimization technique can be
used for the estimation of the parameters. However, these techniques do not directly include
the estimation of uncertainty in the model parameters and can result in rather trivial local
minima when using highly non-linear system models. Stochastic data assimilation has proven
to be more robust in finding a global minimum and directly calculates an estimate of the model
uncertainty. A further distinction can be made in data assimilation by so called sequential
data assimilation. Sequential data assimilation uses measurements at a single time to update
the system state to the, at that moment, closes to the true state of the model. This procedure
is repeated every time a new measurement becomes available.
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8 Background; plasma actuators and data assimilation techniques

2.2.1 Estimation of optimal model parameters

Estimation of the optimal model parameters can be achieved when extending stochastic data
assimilation techniques. Most sequential data assimilation techniques use an augmented state
vector, which is an extension of the state space by adding the model parameters. This allows
the data assimilation technique to treat the parameters as state variables. In this framework
both the spatial as well as the temporal aspects of the parameters can be taken into account
Evensen (2003). It should be noted that this method of augmenting the state space can
result in additional non-linearities, which can become of concern when using certain types
of data assimilation based on linear theories. These non-linearities can be caused by simple
multiplication of a parameter with the state variable, or by the on/of switching behavior of
the parameter.

2.2.2 Variational minimizing schemes

In order to give both the mean of the estimated parameters and the error of the estimation
of the parameters it is important for the data assimilation scheme to be able to incorporate
the state-dependence of the covariances. There are several techniques that include this state-
dependence, such as four dimensional variational schemes (4DVAR), ensemble Kalman Filter
(EnKF) and particle filters. All of these techniques have as objective to mimimize the variance
of the observed and the numerically computed state, and are therefore also called variational
data assimilation schemes. The 4DVAR schemes can be used to estimate both the initial
conditions as the model parameters. In order for this scheme to work the adjoint model
including the model sensitivity of the parameter has to be calculated. The 4DVAR method
is a promising approach for parameter estimation and has been used with success to reduce
model error and estimate model parameters. However, the construction of the adjoint of
the model including the extension of the model sensitivity of the model parameters can be
complex and time consuming. Also, the 4DVAR can fail when the model or the model
response to parameters is highly non-linear. Non-linear models can create many local minima
and significantly increases the convergence time. Due to the complexity and the potential
large computational costs using a non-linear system such as the Navier-Stokes, it is chosen
to look for a method that is more robust and computationally cheaper when dealing with
non-linear models.

A different set of variational minimizing schemes are those based on the Kalman filter (KF)
(Kalman, 1960). These schemes provide a way to estimate the state error covariance explic-
itly, saving a lot of computational cost compared to the 4DVAR scheme. The Kalman filter
estimates the the optimal system state by combining the prior of the state with the observa-
tions using Bayes’ theorem. The prior is provided by the integration of the model state from
some known prior, either the initial conditions or the previous analysis state. This prior is
also called the forecast. Bayes’ theorem assumes that all error in both the prior and observed
state are multi variant Gaussian. This will be the case if the following two conditions are met.
First, the initial prior has to be multi variant Gaussian, and secondly the model dynamics
have to be linear. Several methods have been developed based on the KF in order to cope with
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2.2 Parameter estimation in data assimilation 9

non-linear model dynamics. The extended Kalman filter (EKF) computes a tangent linear
operator of the model in order to estimate the error covariance in the forecast. This method
can be used together with a parameter augmented state space, however, the computational
cost and memory requirements associated with this scheme makes it only affordable for small
systems.

The Ensemble Kalman filter (Evensen (1994),Burgers et al. (1998)) has been shown to be an
affordable alternative to the KF for non-linear systems. The Ensemble Kalman filter uses
Monte Carlo, or ensemble integration, to estimate the forecast error covariance. For linear
systems with an initial ensemble drawn from a multi variant Gaussian distribution the EnKF
reduces to the KF when the number of ensemble member is sufficiently large. The initial
prior is made by perturbing the initial conditions in a way to maintain a mostly Gaussian
ensemble. When a forecast is made by a non-linear model, the ensemble can still capture
higher modes (besides the mean and variance), depending on the ensemble size.In this case
the variance calculated from the ensemble used during the analysis step does not represent
the variance but more so the perturbation from the optimal values. Therefore, the EnKF
becomes suboptimal filter for non-linear systems, whereas the KF is an optimal filter for
linear systems. With the EnKF there is no necessity of using an adjoint or tangent operator.
It also does not require the need of storing large amounts of data and parallel computing
can be used to integrate the ensemble members of the ensemble members. The EnKF is a
computationally cheap alternative to the EKF or 4DVAR methods.

The EnKF has been successfully been applied to problems in field of hydrogeological (Chen
and Zhang (2006),Franssen and Kinzelbach (2009),Hendricks Franssen and Kinzelbach (2008),
and in the field of oceanography (Anderson (2001),Annan et al. (2005), Yang and Delsole
(2009), Skachko et al. (2009), Orescanin et al. (2009), Koyama and Watanabe (2010), Olivares
(1998), Hacker and Snyder (2005)). Most of these problems are only slightly time dependent
and the parameters are assumed constant during forecasting. However, Yang and Delsole
(2009) shows that it is possible to estimate time varying parameters with the EnKF with
only slight modifications. Also, if the forecast time step is sufficiently small the EnKF does a
fairly good job in accurately estimating the time varying parameters. Most of these studies
were used to reduce the total model error and have successfully done so. While the main
goal was to improve the state estimate, the studies also showed to find a good estimation
of the parameters, both in space and time. However, the parameters are assumed constant
during integration and can only change during the data assimilation analysis. Therefore,
temporal variability of parameters can only be estimated when the time scale of the parameter
fluctuation is much larger then that of the time between assimilation steps.

The EnKF is limited to problem which include only small non-linearties between analysis
steps because of it’s multi-variant Gaussian assumption. A filter that can capture more or
all modes of a pdf when integrating forward in time is the particle filter (PF)(van Leeuwen
(2009), Doucet et al. (2000)). This filter uses the same Monte Carlo method to approximate
the pfd but does not use the assumption of multi-variant Gaussianity. This does allow for a
more sophisticated description of the pdf, however, sample degeneracy is an issue here. This
results in the necessity of using ensemble sizes orders of magnitude larger then used in the
EnKF, making the whole system computationally very expensive.
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Chapter 3

Methodology

The EnKF will be used to combine an incompressible Navier-Stokes solver with 2D PIV mea-
surements of a quasi-steady flow field generated by an actuator in quiescent flow. The main
goal is to determine the values of the parameters describing a quasi-steady body force cre-
ated by the DBD actuator together with error estimates for these parameters. The complete
project including the EnKF and incompressible Navier-Stokes solver have been implemented
in Matlab.

3.1 EnKF

This thesis will be limited to the Ensemble Kalman Filter (EnKF) and variations of this
technique. The EnKF is a method originally proposed by Evensen (1994) and later slightly
modified to the latest definition Evensen (2003). The EnKF is based on the standard Kalman
Filter (KF) which is an optimal filter for linear systems evolving in time. The EnKF is a filter
known to be able to handle non-linearity in systems Hendricks Franssen and Kinzelbach (2008)
and is also able to perform parameter estimation Evensen (2009). The method is relatively
simple and has lower computational costs then alternative data assimilation methods such as
Particle Filters (PF) or the 4DVAR. The following sections will introduce the EnKF and give
an overview of equations used for setting up the problem.

3.1.1 Kalman Filter

The KF is a sequential filter, meaning it integrates a probability density function (pdf) forward
in time (forecast) and updates this pdf of the state whenever measurements are available
(analysis). The model is then reinitialized using this new state before forward integration is
continued. The KF is a variance-minimizing analysis, it combines both the forecast, created by
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12 Methodology

the forward integration of the model, and the observations together with their respective error
covariance to determine the new state of the model as well as the updated error covariance
in which the variance is minimized.

Forecast step

The first step of the KF is the forecast, which integrates a known prior pdf forward in time.
The KF assumes a Gaussian state represented here by Ψ.

Ψ ∼ N (ψ,P), (3.1)

where ψ ∈ Rn represents the mean and P ∈ Rn×n represents the covariance matrix. The
mean of the state can be integrated forward in time from a known condition ψi using a linear
model operator F ∈ Rn×n to create the mean of the forecast as,

ψfi+1 = Fψi, (3.2)

where i + 1 denotes the time level at which measurements are available and superscript f
denotes the forecast. The KF assumes the model to be in-perfect which is simulated by
stochastic model errors δ with zero mean.

δ ∼ N (0,Q) (3.3)

Now the state covariance can be represented by the combination of the linear operator and
the stochastic model noise.

Pf
t = FPf

kF
T + Q, (3.4)

Eq. (3.2) and (3.4) allows to rewrite (3.1) as the complete state of the forecast as:

Ψf
i+1 ∼ N (Fψi,FPiF

T + Q). (3.5)
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3.1 EnKF 13

Analysis

The next step of the KF is combining the forecast state with observations using Bayes’ rule.
This step is called the analysis or sometimes update step.

Assume observations di+1 ∈ Rm with error ε ∼ N (0,R). The observations relate to the true
state dtrue as:

di+1 = dtruei+1 + εi+1 (3.6)

The observations are related to the state space through the observational operator H ∈ Rm×n.

di+1 = Hψtruei+1 + εi+1 (3.7)

The forecast state and the observations are combined using Bayes’ rule which states:

p(ψi+1|di+1) ∝ p(di+1|ψn+1) · po(ψi+1), (3.8)

where po(ψi+1) is the prior of the state given by 3.5, and p(di+1|ψn+1) also called the likeli-
hood, and in the case of the KF is given by:

p(di+1|ψn+1) = di+1 −Hψi+1. (3.9)

Combining (3.8) with the equations above one gets the equations for the mean (ψa) and the
covariance (Pa) of the analysis state:

ψa = ψf + Pf
i+1H

T (HPf
i+1H

T + R)−1(di+1 −Hψfi+1), (3.10)

where the analysis error covariance is defined as

Pa = Pf
i+1H

T (HPf
i+1H

T + R)−1HPf
i+1, (3.11)
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Equations (3.10) and (3.11) are often represented using the Kalman gain matrix:

K = PfHT (HPfH + R)−1 (3.12)

This Kalman gain shows how the Kalman Filter, and Kalman Filter based methods, uses a
linear weighted combination of the ψf and covariance Pf to construct the re-initialization
ψa and Pa, based on the measurements and error covariance of both the forecast as the
measurements. This combination is chosen to minimize the total variance in the updated
state ψa. The linear update is ideal for updating velocity fields which are divergence free
(which will be the case in this study), because of the fact that any linear combination of
divergence free fields will again result in a divergence free field. This allows for re-initializing
the model without being concerned about creating a non-divergence free initial condition.
The EnKF will retain this property as will be discussed later.

The Kalman Filter only applies under the assumption of multivariate Gaussian pdf. This
assumption can only hold true if: the prior is multivariate Gaussian, and the prior remains
multivariate Gaussian during integration. This requires the condition that the dynamical
model is linear as is shown by (3.2) and (3.4).

3.1.2 Ensemble Kalman Filter

When dealing with non-linear systems, multivariate Gaussianity of the pdf is not maintained
when integrating forward in time. In order to still give a reasonable estimation of the first
two moments (mean and variance) of a pdf, integrated by a non-linear model, the EnKF was
developed. The EnKF is based on the idea that you can approximate the pdf by an ensemble
of model states. These states are then integrated forward in time individually to create a new
ensemble with which the first two moment can be calculated again. This method can still
handle small non-linearity as shown by e.g. (Anderson (2001), Annan et al. (2005), Yang and
Delsole (2009).

Again following Evensen (2003) we will discus how the EnKF is built up. The first extension
by the EnKF over the KF is the representation of a pdf using an ensemble of model states.
When an infinite amount of different samples are drawn from a pdf any statistical moment
of this pdf can be calculated using this ensemble. The EnKF uses only a finite ensemble size
and will therefore always only give an approximation of these moments. However, the error
of this Monte Carlo sampling will decrease proportional to 1/

√
N . This can be done for a full

model consisting of dimensions n with an ensemble size of N . This cloud of model states can
be used as an approximation to the actual pdf, not necessarily a Gaussian pdf, of the model
without the need of storing all moments separately.

The next part of the EnKF is the propagation of the pdf forward in time. The stochastic
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differential equation for a non-perfect nonlinear model can be written as:

dψ = f(ψ)dt+ g(ψ)dq. (3.13)

This equation represents the change in the model state dψ as a combination of the model
propagation by f(ψ) and the random contribution from a stochastic forcing term g(ψ)dq
representing the model errors. dq is a vector Brownian motion process with covariance Qdt.
When additive Gaussian model errors forming a Markov process are used, Kolmogorov’s
equation (also called Fokker-Planck equation) can be derived describing the time evolution of
the pdf φ(ψ) of the model state using Jazwinski (1970):

δφ

δt
+
∑
i

δ(fiφ)

δψi
=

1

2

∑
i,j

δ2φ(gQgT )ij
δψiδψj

, (3.14)

where gQgT represents the covariance matrix for the model errors and fi is the ith component
number of the model operator f. (3.14) contains no approximations and the solutions of this
equation can be assumed exact. These solutions can then be used to calculate the moments
of the pdf such as mean and variance and can be applied to the analysis step of the KF.
However, in many problems (3.14) is difficult to solve exactly in the case of non-linear systems,
therefore, the EnKF uses a method called the Markov Chain Monte Carlo (MCMC) method
to approximately solve (3.14). As described above, a pdf can be described by an ensemble
of model states. This ensemble is then integrated forward in time using (3.13). The new
ensemble is an equivalent to solving (3.14) under the assumptions that the ensemble is large
enough to describe all moments of the pdf. If the dynamical model is linear and the initial
ensemble is drawn from a normal distribution the pdf can be described by its mean and
variance for all time, reducing the EnKF to the KF. Other methods already exist for solving
the Fokker-Planck equation, which are used for the standard KF, but are not applicable for
non-linear systems. If the model dynamics are non-linear, the pdf cannot be described by
just its mean and covariance. However, the mean and covariance of the pdf still determine
the mean path and dispersion about that path (anamolies). The MCMC used by the EnKF
can still give an approximation to the solution of (3.14) and is therefore and extension of the
KF using non-linear models. If the non-linearities in the model dynamics become weaker, the
EnKF error estimations become more accurate and will look more like a regular KF.

The final analysis scheme of the EnKF can be formulated either as a single update of the
complete ensemble or as a combination of an update of the mean and an update of the
anomalies around that mean. In this thesis we will describe the analysis scheme of the EnKF
as the later and will follow Sakov et al. (2010).

Let N be the ensemble size, n the number of model states and m be the number of obser-
vations. Then E ∈ Rn×N is a matrix holding an ensemble of size N of n model states. The

M.Sc. Thesis C.W.Schoemakers



16 Methodology

ensemble average x and the anomalies A can be given by:

x =
1

N
E1, (3.15)

A = E

(
I− 1

N
11T

)
, (3.16)

where 1 ∈ RN is a vector of ones, and I ∈ RN×N is the identity matrix. Letting superscript
f and a refer to the forecast and the analysis variables. The linear ensemble update can then
be written as a change in the mean

xa − xf ≡ δx = AfGs, (3.17)

and a change in the anomalies

Aa −Af ≡ δA = AfT, (3.18)

where s ∈ Rm is the scaled innovation vector

s = R−1/2(d−HAf )/
√
N − 1, (3.19)

where d ∈ Rm is the vector of observations. R ∈ Rm×m contains the observation error
covariance, and H ∈ Rm×n is a matrix of interpolation coefficients mapping the variables
from the state to the observations. Matrices G and T can be represented in terms of the
scaled ensemble observations anomalies S ∈ RN×m:

S ≡ R−1/2HAf
√
N − 1. (3.20)

Matrix G ∈ RN×m can be written in two ways:

G = (I + STS)−1ST (3.21a)

= ST (I + SST )−1. (3.21b)

Eq. 3.21a requires the inverse of a N×N matrix while (3.21b) requires the inverse of a m×m
matrix and either one may be used to minimize computational cost.
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3.1 EnKF 17

There are numerous types of EnKF’s e.g. Deterministic EnKF (DEnKF), Ensemble Transform
KF (ETKF), Localized Ensemble Transform KF (LETKF), Localized EnKF (LEnKF). All
of these types update the mean in an equivalent way but only differ in the definition of T for
(3.18). For this thesis only two types of the EnKF were studied: the traditional EnKF with
perturbed observation (Evensen (1994), Burgers et al. (1998)) and the ’deterministic’ EnKF
(DEnKF by Sakov and Oke (2008)). Both will be used in this thesis in order to investigate
optimal estimations for the given problem.

The traditional EnKF uses the method of perturbed observations. It uses a scaled matrix D
∈ Rm×N of random perturbations sampled from a Gaussian distribution.

D =
R−1/2D̃√
N − 1

, (3.22)

where D̃ has the properties so that D̃1 = 0 and D̃D̃
T

N−1 → R when N → ∞. This matrix is
used to create T as

T = G(D-S). (3.23)

The DEnKF updates the covariance estimate in a ’deterministic’ way and represents a sub-
optimal scheme equivalent to the ensemble square root filter (ESRF) in the case of small
corrections. Due to the fact that the problem is essentially steady state, corrections are ex-
pected to be small, affirming the decision to also applying the DEnKF for this problem. The
transform matrix T for the DEnKF is given as

T = −1

2
GS. (3.24)

The parameter estimation can be included in the EnKF by simply augmenting the state space
E with the parameters. The EnKF will handle the parameters similar to flow variable in the
unobserved domain. Also, it should be noted from (3.17)-(3.16) that the EnKF still updates
the state of the system by a linear combination of the different ensemble members. Therefore,
if the initial ensemble is divergence free, the updated ensemble will also be divergence free.

Eqs. (3.17)-(3.24) form the main set of equations used for the EnKF and have been imple-
mented in Matlab.
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3.1.3 EnKF for steady state problem

The EnKF is originally designed to create updates for time-dependent systems. The problem
at hand is quasi-steady state problem and the EnKF will therefore reduce to a type of steady
state EnKF (SSEnKF). If the problem were to be truly steady and more importantly the
prior was multivariate Gaussian, the EnKF would not need to integrate the ensemble update
forward in time, i.e. Ef = Ea, and the filter would converge to a steady state estimation of
the field and parameters within a couple updates. As will be discussed more extensively later
on in Chapter 4, this method will fail for the case of quasi-steady DBD actuator due to the
non-Gaussianity in the prior. The non-Gaussianity of the prior causes a loss of connection
between the model state and the parameters after an assimilation step. Therefore, in order
to return the correct connection between the flow variables and parameters, a new variation
of the SSEnKF is suggested similar to Sørensen (2004). This new variation suggested in this
thesis, called the Semi Steady State EnKF (SSS-EnKF), is to integrate the ensemble members

forward in time by some random time step dT creating Ef
t=tu+dT where tu represents the last

time the ensemble was updated. Now Ef
t=tu+dT is used for the data assimilation. This

procedure is repeated until the parameters converge to a specific value. The use of forward
time integration between update steps will allow information about the parameters to ’flow’
back into the state variables, correcting for previous sub-optimal update steps. The EnKF
is expected to converge, although slower than the true SSEnKF. When the covariance of
the parameters reduces, the system will start to look more and more linear in this small
range of model parameters. The locally semi-linear model will create pdf’s which look more
Gaussian during integration and allows to assume that the final converged error estimation
are a good approximation to the true error. Low values of estimated covariance dependent
on the resolution of the observations as well as the correctness of the parameterization of the
body force, both of which will be discussed later on.

Imperfections in the model, such as again the non-linearity of the model, sub-optimal update
steps, the imperfect parameterization of the body force and other physics not incorporated
in the model can cause the EnKF to converge to the wrong values. These imperfections can
cause the the EnKF to converge too fast, finding only a local minimum. There are numerous
ways to account for these model imperfections, but for this thesis, only multiplicative inflation
is used (Anderson, 2001). Multiplicative inflation grows the anomalies after each update by
a certain percentage of the anomalies itself, mostly between 1 and 5 %. This is a simple but
rather ad-hoc way of introducing additional error in the ensemble to incorporate for the model
imperfection. However, the analysis of the impact of different values of inflation or different
inflation techniques is beyond the scope of this study and therefore the value of multiplicative
inflation will be set to a value of 3%.

3.1.4 Initial EnKF requirements

For the EnKF to give a good estimation of the mean of the both the field and the parameters
several requirements need to be met. The term good estimation is defined as an estimation
close to the true values, as if the forecast model was very close to linear. The following list
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of requirements are expected to be met:

1. Small variance in the ensemble resulting in a close to multivariate Gaussian ensemble
because the non-linear system is expected to behave close to linear when covariance in
the ensemble is small. This can be achieved by using very accurate measurements and
will be discussed in Section 3.2.

2. Unbiased observations. The error in the observations should be limited to unbiased error
so after multiple analysis steps the average is close to the true solution. (Subsection
3.2.2)

3. Unbiased forecast. This is a very strong requirement due to the complexity of the
underlying physics of the DBD actuator determining the body force. (Section 3.4)

4. The prior needs to be able to capture flow field sufficiently well in order to recreate the
observations by linear combinations of the prior ensemble, while maintaining sufficient
connectivity between state variables and parameters to avoid divergence. (Section 3.4)

5. Enough inflation needs to be added during assimilation to avoid divergence of the es-
timated mean to a local minimum or losing the true solution, both due to sub-optimal
update steps.

6. Observation operator H needs to be linear. (Section 3.3)

For the EnKF to give a good estimation of the variance or more correctly, for non-linear
systems, dispersion about the mean path, additional criteria need to be met:

1. Correct estimation of the parameter mean.

2. Good estimation of the observational error covariance. (Section 3.2.2)

3. Covariance inflation should be able to correctly account for model imperfections. This
can only be achieved if the all sources of error ( model error, non-linearies, sub-optimal
updates) can be quantified.

4. Ensemble size should be sufficiently large to capture the dispersion about the mean
path.

As discussed above, aspects concerning the requirements for covariance inflation are left out
of this study.

3.2 PIV measurements as observations

As described above the EnKF combines observations with a prior generated from a forecast
model. The observations used in this thesis were made using particle imaging velocimetry
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(PIV) of a series of plasma actuation configurations in quiescent flow. All measurements were
done before the start of this study by Marios Kotsonis (Delft University of Technology). The
following section gives an overview of the different actuator cases that have been studied, and
give a discussion about the different possible sources of error, both bias and variance, and
will explain how the bias error is reduced and the variance is quantified. For a more extended
description of the acquisition of the measurements see Kotsonis (2012).

3.2.1 Actuator set-up

Figure 3.1: DBD geometric layout

In total seven cases will be studied
in this thesis. The plasma actua-
tor configuration is kept fixed while
only fac and the maximum volt-
age is changed of a sine HV signal.
Table 3.1 shows the parameters of
the DBD configuration which were
kept at a fixed value. Table 3.2
shows the different values for the
fac and HV used to create the total
of seven cases. Figure 3.1 shows a
schematic overview of the geomet-
ric parameters defined in Table 3.1. All experiments had been conducted in quiescent air.
This was ensured by placing the actuator in a large closed plexiglass box, where the actua-
tor was flushed with the bottom of the box. The box was 500 mm wide, in an attempt to
create fully 2D flow. The assumption of 2D flow will be elaborated on later on. For further
specification about the PIV setup the reader is referred to Appendix A.

In order to create a quasi-steady flow field the PIV measurements were averaged over 1000
frames (0.1 s) for all cases. This series of frames was taken 0.04 s after the start of the
actuation in order to ensure minimum error introduced by the initial transient period.

Table 3.1: DBD configuration

upper electrode length (lu) 5 mm
lower electrode length (ll) 15 mm
horizontal gap (g) 0 mm
dielectric thickness (td) 0.06 mm
electrode thickness (tu, tl) 0.06 mm
electrode material copper
dielectric material Kapton R©polyimide (εr = 3.4)
voltage waveform sine
free stream velocity 0 m/s
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Table 3.2: DBD cases
Case # actuator frequency (fac) applied voltage (V)

1 2 kHz 8 kV
1 2 kHz 10 kV
2 2 kHz 12 kV
3 2 kHz 14 kV
4 2 kHz 16 kV
5 1 kHz 10 kV
6 3 kHz 10 kV
7 4 kHz 10 kV

3.2.2 Observational error

As discussed briefly in Section 3.1.4, it is important for the observations to have the following
properites:

1. Negligible bias error.

2. Error quantifiable in terms of variance.

3. Observational variance to be very small.

Bias error in observations

If the observations are biased, the EnKF would not be able to find the true solution because
it will not be included in the prior set of ensemble members. This bias can be introduced into
the observations through e.g. 3D flow effects, wall reflection of the laser, compressibility, PIV
analysis method. However, free stream velocities do not exceed 6 m/s and can therefore be
assumed fully incompressible.

The wall effect is the naming of the reflection of laser light by the wall. This causes the
measurements to become very inaccurate. This reflection can be seen during the PIV data
analysis in the form of very high signal to noise ratios and non zero values for tangential and
normal velocities at the wall. To reduce the bias error this wall effect causes, the observational
domain is cropped. The four lowest points of the PIV data are removed. High signal to noise
ratios can also be found near the east, west, and north edges of the observational domain.
This is due to particles leaving or entering the domain, resulting in suboptimal use of the
cross-correlation techniques. This source of error is also corrected by cropping of some points
on those sides of the domain. Other sources of error due to the PIV analysis method are
assumed to be negligible.

It is assumed that the new observational domain includes enough information to correctly
identify the parameters. This also allows for the reconstruction of induced jet flow close to
the wall during the data assimilation. This could be of interest for many experimentalists
using PIV, and there have been previous attempts in reconstructing boundary layers in the
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Figure 3.2: Example of total velocity profiles for the observational domain: Full observational
domain (top) and cropped observational domain (bottom).

recent past (Sciacchitano et al., 2011). Figure 3.2 shows the observational domain before and
after cropping. Figure 3.2b is used for the data assimilation with the EnKF.

The 3D flow effects can be observed as the divergence of the field under the valid assumption
of fully incompressible flow (Umax ' 5ms ). Figure 3.3 shows the divergence of the flow field
for case 2. It can be seen that divergence is very large in the region close to the wall, which is
most likely caused by the wall reflection rather than 3D flow effects. This divergence of the
field cannot quantify this error in terms of the velocity i.e. ∇u has units of s−1. Therefore, use
is made of the Helmholtz decomposition in order to come up with a quantitative estimation of
the divergence error. The Helmholtz theorem states that any vector field can be decomposed
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Figure 3.3: Divergence of the flow field in full observational domain for actuator case 2 in s−1
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into a solenoidal part and an irrotational part.

U = Uirrot + Usol = ∇φ+∇×A (3.25)

The magnitude of the solenoidal part of the velocity components in the x and y direction
could give some of a quantitative estimation of the bias error in the total flow field for each
case. However, the method used to decompose the field is essential to the magnitude of the
solenoidal part, and any conclusion to these results should be done with care. This is because
(3.25) has an unique solution for a given set of boundary condition, where as in most cases
this boundary condition is not exactly know. One way of finding the irrotational part of the
flow field is by taking the divergence of (3.25):

∇U = ∇2φ. (3.26)

Eq. (3.26) is a Poisson problem and can be solved for φ, which can be used to determine the
Uirrot and Usol. The boundary condition for the Poisson problem were to be taken of the
Dirichlet type (φ′ = ∇U) with values equal to the values of the velocity found from the PIV.
However, this method is most likely to fail because of the incorrect boundary conditions due
to the high error in the lower region of the PIV domain.

A different method of decomposing the field is to use Sequential Matching Pursuit filtering
(SMP) proposed by Schiavazzi et al. (2012), proposes to decompose the velocity field as a
linear combination of local solenoidal waveforms. This method has additional advantages over
most other methods in that large local errors will not be propagated to neighboring velocities.

Figures 3.4 and 3.5 show the results of the SMP method.1 For this method the cropped of
version of the PIV window is used, in an attempt to only quantify the bias error that will
be included during the data assimilation. Both figures show larger values for the irrotational
part of the flow field near the regions of high divergence, as expected. Especially the velocity
in the y-direction shows high relative error near the region of plasma actuation. The bias
error around the region of the plasma actuator could be contributed to the transient start
up of the actuator still present or the averaging method used to construct the quasi-steady
flow field. Even more points could be cropped off the bottom of the PIV window to reduce
this error further, with the risk of losing potential essential information about the flow field.
The data assimilation has be done using the unfiltered data. This is done because it is not
directly evident that the divergence free field shown in figures 3.4 and 3.5 is the ’true’ field.
i.e. any different method of decomposition could result in a different divergence free field.

Other systematic error can also be present in the measurements due to for example misalign-
ment of the field of view etc. These types of bias error are not quantified in this thesis and
are assumed to be negligible.

1A code set-up by Ir. I. Iliass Azijli was used to compute the decomposition.
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Figure 3.4: Helmholtz decomposition results velocity in x-direction u. From top to bottom: u
from PIV, usol, uirrot.
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Figure 3.5: Helmholtz decomposition results velocity in y-direction v. From top to bottom: v
from PIV, vsol, virrot.
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Quantification of variance in observations

Table 3.3: Values used to calculate relative
variance of PIV data (using (3.27))

value

σ∆t 1e−9 s
σ∆x 1.56e−4 m
∆t 0.1e−3 s
∆x 1.25e−5 m
σU
U 0.0125

For the EnKF to give a good estimation of
both the mean and the associated error of
the estimated parameters it is essential that
the system becomes as close to linear as pos-
sible. This is achieved by using observations
with very small, and unbiased error. When
running the modified version of the EnKF,
the ensemble covariance will reduce to values
smaller then the covariance in the observa-
tions. The smaller the ensemble covariance,
the more the model behaves as a linear sys-
tem in the range of the ensemble.

In order to start the EnKF, this unbiased error needs to be quantified in terms of variance. A
simple method of approximating this error is to follow Raf (2007) which suggest that PIV error
is typically around 0.1*pixel size. Using Scarano (2007) we can come up with an analytical
estimation of the relative variance of the PIV.

σU
U

=

√(σ∆t

∆t

)2
+
(σ∆x

∆x

)2
, (3.27)

where, σ∆t is the time between the two short time measured PIV window, σ∆x is the 0.1 *
pixel size, ∆t is the laser pulse frequency, ∆x is a quarter of the PIV interrogation window.

Table 3.3 shows the values used to calculated the observation variance. The value of 0.0125*U
will be used for all cases. Additional observation error of 0.01 m

s is added to incorporate for
extra unknown error.
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3.3 Incompressible flow solver as forecast model

As has been discussed in 2.1 a plasma actuator can be simulated using various different models.
For this thesis a phenomenological model is used in the form of a laminar incompressible
Navier-Stokes solver. The assumption of incompressibility and laminar flow has been verified
by several studies (e.g. Kotsonis (2012)). The momentum transfer between the ionized
particles and the neutral particles in the air will be simulated using a body force field. This
body force can be parameterized reducing the different number of parameters and therefore
simplifying the problem. First an overview will be given of the set-up of the flow solver. In
the data assimilation jargon this flow solver will be used as forecast model. The forecast
model should meet the following criteria:

1. Discretization error, both in space and time, should be negligible compared to measure-
ment error. This allows the variance in the forecast ensemble only to be caused by the
perturbed set of parameter and no bias is introduced. (Note, the forecast model was
initially set-up to also be able to use time dependent body force implementations)

2. Computationally as cheap as possible without violating criteria 1.

3. Able to handle a wide range of different shapes and magnitudes of body forces.

The following section will cover the description of the flow solver constructed and will discuss
how the flow solver meets the criteria above. A discretization scheme that proved to meet
these criteria was a central in space and forward Euler in time discretization.

The governing equations of the dimensional incompressible Navier-Stokes which are solved
for read as follows:

Conservation of mass,

∇ · u = 0. (3.28)

Conservation of momentum,

Du

Dt
− ν∆u = −∇p

ρ
+

f

ρ
. (3.29)

where, u is the vector field containing the velocities in the x and y direction, ν is the kinematic
viscosity, ρ is the air density, p is the pressure field and f is the vector field of the body force
distribution.

A staggered grid approach is used. In such a grid, the pressures are defined at the midpoints
of the cell and the velocities are defined at the midpoints of the walls of the cell.
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3.3.1 Conservation of Mass

A finite volume approach is used to discretize the equations. A control volume is taken around
the point where the pressure is defined. The continuity equation (3.28) is then integrated over
this volume.

∫
Ωk

∇ · udΩk = 0 (3.30)

To convert this volume integral to an integral over the boundaries of the cell, Gauss’ Theorem
is applied. This leads to (3.31).

∫
∂Ωk

u ·ndS ≈ 0 (3.31)

In order to discretize (3.31), the boundary integral is split along the sides of the control volume
and each integral is then evaluated using the midpoint rule. The finite volume discretization
of the equation leads to,

ui+ 1
2
,j .hj + vi,j+ 1

2
.hi − ui− 1

2
,j .hj − vi,j− 1

2
.hi = 0. (3.32)

The terms hi and hj represent the width and the height of the cell respectively.

3.3.2 Conservation of momentum

The conservation of momentum equations is defined by equation 3.29. Rewriting the momen-
tum equation in the x-direction,

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+
∂p

∂x
= ν

(
∂2u

∂x2
+
∂2u

∂y2

)
+

fx
ρ
, (3.33)

which can be rewritten in the gradient form as,

∂u

∂t
+
→
∇ ·
(
u2 + p− ν ∂u∂x
uv − ν ∂u∂y

)
=

fx
ρ
. (3.34)
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Integrating (3.34) over the control volume Ωk yields,

0 =

∫
Ωk

[
− fx
ρ

+
∂u

∂t
+
→
∇ ·
(
u2 + p+ ν ∂u∂x
uv − ν ∂u∂y

)]
dΩ (3.35)

=

∫
Ωk

− fx
ρ

+
∂u

∂t
dΩ +

∫
∂Ωk

(
u2 + p− nu∂u∂x
uv − 1

Re
∂u
∂y

)
·
(
nx
ny

)
· dS. (3.36)

Where, −→n = (nx, ny)
T is the unit normal pointing outwards from the boundary of the control

volume Ωk.

Equation 3.36, is discretized over a control volume surrounding the unknown velocity.

When solving this equation for the velocity at the next time level one gets:

un+1
i+ 1

2
,j

= −∆t.
pi+1,j − pi,j
1
2(hi + hi+1)

+Rui+ 1
2
,j . (3.37)

where Ru is given by:

Rui+ 1
2
,j =

fx(i+ 1
2
,j)

ρ
∆t+ un

i+ 1
2
,j

1

2
(hi + hi+1) (3.38)

−

[
u2
i+1,j − u2

i,j

hi+hi+1

2

]
+

[uvi+ 1
2
,j+ 1

2
− uvi+ 1

2
,j− 1

2

hj

]

+ ν∆t


(
∂u
∂x

)
i+1,j

−
(
∂u
∂x

)
i,j

hi+hi+1

2

+

(
∂u
∂y

)
i+ 1

2
,j+ 1

2

−
(
∂u
∂y

)
i+ 1

2
,j− 1

2

hj

 .

A similar discretization can be done for the y-momentum resulting in:

vn+1
i,j+ 1

2

= −∆t.
pi,j+1 − pi,j
1
2(hj + hj+1)

+Rvi,j+ 1
2
. (3.39)

with Rv being given by:
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Rvi,j+ 1
2

=
fy(i,j+ 1

2
)

ρ
∆t+ vn

i,j+ 1
2

1

2
(hj + hj+1) (3.40)

−

[
v2
i,j+1 − v2

i,j

hj+hj+1

2

]
+

[uvi+ 1
2
,j+ 1

2
− uvi− 1

2
,j+ 1

2

hi

]

+ ν∆t


(
∂v
∂y

)
i,j+1

−
(
∂v
∂y

)
i,j

hj+hj+1

2

+

(
∂v
∂x

)
i+ 1

2
,j+ 1

2
−
(
∂v
∂x

)
i− 1

2
,j+ 1

2

hi

 .

In order to satisfy the conservation of mass (3.28), (3.37) and (3.39) are substituted into
(3.32) for u and v.

Rui+ 1
2
,j .hj −∆t

pi+1,j − pi,j
1
2(hi + hi+1)

.hj +Rvi,j+ 1
2
.hi −∆t

pi,j+1 − pi,j
1
2(hj + hj+1)

.hi (3.41)

−Rui− 1
2
,j .hj −∆t

pi,j − pi−1,j
1
2(hi−1 + hi)

.hj −Rvi,j− 1
2
.hi −∆t

pi,j − pi,j−1
1
2(hj−1 + hj)

.hi = 0.

This completely eliminates the flow variables at the next time level and results in a linear
system of equations which can be solved for the pressure. This pressure field satisfies the
continuity and can be used to calculate u at the next time level using eq. 3.37, and eq.
3.39. The partial derivatives of u and v as well as the square terms and the cross terms are
approximated using a finite difference as follows:

(
∂u

∂x

)
i,j

=
ui+ 1

2
,j − ui− 1

2
,j

hi
, (3.42)

(
∂u

∂y

)
i,j

=
ui,j+ 1

2
− ui,j− 1

2

hj+hj+1

2

, (3.43)

u2
i,j ≈

u2
i+ 1

2
,j + u2

i− 1
2
,j

2
, (3.44)

uvi+ 1
2
,j+ 1

2
≈ 2

(
hj .ui+ 1

2
,j+1 + hj+1.ui+ 1

2
,j

hj + hj+1
.
hi.vi+1,j+ 1

2
+ hi+1.vi,j+ 1

2

hi + hi+1

)
(3.45)
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3.3.3 Time integration

The scheme described in the previous section is conditionally stable. During simulation, the
time stepping is not only restricted by this conditional stability but also by the necessity of
very low discretization error in time. As stated earlier, the discretization error should be
sufficiently small so it can be ignored during the data assimilation compared to the variance
introduced by the variance in parameters. Therefore, a list of restriction can be set-up for
the largest time step:

dt ≤ h2
min

4ν
, (3.46)

dt ≤ 2ν

(|u|+ |v|
, (3.47)

dt ≤ ∆tdisc, (3.48)

where ∆tdisc is a user specified time step to ensure sufficiently low discretization error. The
time step used by the solver is based on the smallest of the values specified by eq. 3.46, 3.47,
3.48.

Other time schemes have been investigated for the time integration. The forward Euler scheme
described above is only first order accurate in time. If higher temporal resolution is needed,
perhaps in future studies which investigate the fully time resolved bodyforce field instead of
the quasi-steady state force field, higher order schemes are needed. To achieve this higher
order explicit schemes can be used, such as central difference in time or even a runge-kutta
implementation. However, when dealing with incompressible flow, it is not evident that a
higher order time discretization for the velocity will directly result in an equal increase in
accuracy. This is due to the fact that the pressure field will still be solved with only first
order accuracy and will therefore reduce the accuracy of the calculated velocity field. For a
good overview of higher order explicit runge-kutta schemes for incompressible flow the reader
is referred to Sanderse and Koren (2012).

3.3.4 Boundary conditions and grid

The initial condition is condition is specified in every case as zero velocity in the whole domain
at t = 0. The quasi-steady plasma actuator can further be simulated using a constant in-time
body force field. Different set of boundary conditions can be specified in order to correctly
simulate the flow field generated by the plasma actuator. When starting the simulation a
start-up vortex can be observed which needs to either move out of the domain or far away
from the area of interest to ensure a steady state solution. The integration forward in time
to steady state should be as efficient as possible due to the fact that this procedure has to be
applied to each individual ensemble member.

Let Ω denote the domain with δΩ its boundaries. Let δΩ = δΩw ∪ δΩo. δΩw is the boundary
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of the wall, and δΩo denotes the open boundaries of the domain. The bottom of the domain
is simulated as a flat plate with zero slip velocity and zero normal velocity.

u = 0 on δΩw. (3.49)

For the open domain δΩo, two main approaches have been studied in order to meet the criteria
given in section 3.3 with slight variations in boundary conditions.

1. Small computational domain where the start-up vortex moves out of the domain com-
pletely. Has as main advantage very low computational cost due to small amount of
grid points.

2. Large computational domain with coarsening of the grid towards the sides of the domain
where the start-up vortex is always simulated while it dissipates. Has higher compu-
tational costs then option 1 due to larger number of grid points and longer time until
convergence to steady state. This option could prove more robust because there will be
no boundary reflections when changing the bodyforce during data assimilation and has
already been used by Kotsonis (2012) in simulating the flow field.

Several different sets of boundary conditions for the small domain have been studied in order
to let the start-up vortex move out of the domain without reflections. Ranging from constant
pressure boundaries (3.50), to a combination of zeros shear stress and total velocity,pressure
combination.

pn = 0 on δΩo, (3.50)

pn− νn · ∇u = 0 on δΩo, (3.51)

pn +
1

2
|u|2 · n = 0 on δΩo, (3.52)

pn− νn · ∇u +
1

2
|u|2 · n = 0 on δΩo, (3.53)

pn− νn · ∇u +

[
1

2
|u|2So(n · u)

]
· n = 0 on δΩo, (3.54)

Figure 3.6: Picture of complete grid

where n denotes the unit normal
vector of the boundary, and So is
a smoothing function suggested by
Dong et al. (2014) in order to re-
duce outflow boundary reflections.
These boundary conditions have
been implemented in the flow solver
described above, but have proven
unable to handle the start up vor-
tex. Even though these type of
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boundary conditions have proven to do reasonably well for most simulations (reference some-
thing), the reflections could be caused by the absence of a free flow velocity moving any
reflection out of the domain.

Therefore, the large domain approach was used. For the large domain the
same initial condition with zero velocity were used. Boundaries conditions have
been set to constant pressure (3.50) and zero velocity at the wall (3.49). The
grid needs to be able to capture the full jet inside the PIV window while be-
ing able to dissipate the start-up vortex and any other start up anomalies.

Table 3.4: Grid specifications
value

Size PIV window 16.03× 3.35 (mm)
Cells PIV window 322× 74

Size numerical domain 2.39× 0.40 (m)
Cells numerical domain 534× 189

dx|y=0 0.05 (mm)
dy|y=0 0.05 (mm)

For simplicity and accuracy the computational grid
inside the PIV window is taken equal to that of the
PIV measurements. The grid is then coarsened with a
linearly towards the sides, and finally an extra layer of
10-20 lines is added with exponentially growing spac-
ing. These exponential layers have been added be-
cause the flow solver needs to run for longer periods
of time and be more robust to different force fields.
Any vorticity to move into this region is expected to
dissipate before it reaches the boundary. Table 3.4
shows the characteristic values for the grid and figure 3.6 shows a picture of the numerical
grid used. The flow solver was tested by running a body force field determined in Kotsonis
(2012) for case 5, which displays the highest induced velocities. Figure 3.7 shows this compar-
ison. Difference between the solutions can be contributed by different time stepping schemes
and the difference in grid resolution.

3.3.5 Measurement operator

The mapping from the forecast domain to the observational domain is done by linear inter-
polation of the staggered grid to the non-staggered PIV domain. The observational operator
H is therefore completely linear.
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Figure 3.7: Comparison numerical solver. Above: Kotsonis (2012) using OpenFoam, below:
Matlab code using grid defined by table 3.4
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3.4 Initial set-up

3.4.1 Body force parameterization

For the EnKF to be able to estimate the parameters correctly, the parameterization has to be
able to capture the solution sufficiently well to be able describe the flow field with reasonable
accuracy. If not, the EnKF might not be able to find a good solution, and might even diverge.
However, the number of parameters should also be kept relatively low, and should be mostly
restricted to physical shapes and magnitudes. This is to ensure minimum computational cost
by lower number of ensemble members necessary.

Parameters added to the state space do not necessarily need to be identifiable i.e. the forecast
state in the observational domain depends on the parameter. Due to the stochastic nature
of the EnKF, these parameters will automatically grow their covariance towards a uniform
distribution. However, one interesting aspect concerning the DBD plasma actuator arises
when using only velocity based measurements in determining the body force field. Starting
with the incompressible steady Navier-Stokes equation:

CD(u) = −∇p+ f, (3.55)

where CD(u) are the convective and diffusive terms. CD(u) can be calculated using the PIV
data. This leaves the right hand side of (3.55) in the form of the pressure and the body force
as unknowns. The pressure will adapt in order to satisfy the conservation of mass, however,
it is not evident that this makes the problem unique. Using Helmholtz decomposition to
decompose the body force in an irrotational part φf and a solenoidal part Af we get:

CD(u) = −∇p+∇φf +∇×Af (3.56)

= −∇(p+ φf ) +∇×Af . (3.57)

(3.57) shows that when using only the velocity based data, no distinction can be made between
the pressure and the irrotational part of the body force. Only the solenodial part of the body
force field Af will be unique. One way to solve this problem is to state that the pressure
gradients are relative small and can be ignored. However, in an attempt to improve on the
body force field estimation a different approach will be used in this thesis. This is done by
using a fixed parameterization of the body force field which will have a unique value for φf
and Af for all parameters. If this parameterization is assumed to be physical, any resulting
pressure gradient can be assumed physical as well.

As described in section 2.1.4, numerous ways of body force parameterizations exist. For the
application to this EnKF problem it was chosen to work with an adaption of the body force
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parameterization used by Singh and Roy (2008). This force parameterization was done using
a full electostatic model to which a Gaussian fit was applied. The adaption made to the
existing model parameterization were to ensure physical solutions when the Kalman Filter is
running. The existing parameterization by Singh and Roy (2008) is:

f = Fx0φ
4
oexp{−

[
x− x0 − y − y0

y2

]2

−βx(y−y0)2)̂i+Fy0φ
4
oexp(−

[
x− x0

y

]2

−βy(y−y0)2}ĵ,

(3.58)

where Fxoφ
4
o and Fyoφ

4
o are the maximum force magnitude in the x- and y-direction dependent

on the actuator HV. y0 and x0 determine the position of the force, and again y0 together with
βx and βy are forming parameters for the shape of the field. In order to restrict the body force
to a more physical set of solutions the following adaptations were made: First, the fourth
order increase in maximum force dependent on the actuator HV was removed. Secondly, the
shape of the force field in both x- and y-direction are coupled. Thirdly, the values for β
and y0 are taken to be absolute values. Negative values for these parameters result in very
’strange’ force fields which could prove the flow solver to fail. Taking the absolute value
for these parameters does create some high non-linearities when the ensemble includes both
positive and negative values for this parameter. Lastly, an extra parameter is added to be
able to move the complete force field up and down. The resulting parameterization is given
as follows:

f = (Axî+Ay ĵ)exp{−
[
x− x0 − y − yoff − |yo|

y − yoff

]2

− |β|(y − yoff − |y0|)2}. (3.59)

It is assumed that (3.59) can sufficiently well capture the body force field generated by the
DBD actuators studied in this thesis. This parameterization is especially attractive for the
EnKF because of its low number of parameters and low cost of implementation (i.e. no
additional models need to be solved for). The main downside of the parameterization is that
it still cannot perfectly capture the physical body force, most likely increasing the final root
mean square error of the system. Also, the use of taking the absolute values for β and yo is
not ideal for the EnKF. It is assumed that if the ensemble only occasionally includes negative
values for these parameters, and will therefore not influence the mean and error estimation
significantly.

3.4.2 Solver stability

Due to the fact that a conditionally unstable time integration scheme is used, some extra
aspects of concern arise. The forecast model has been set up to check the restrictions on the
time step given by (3.46)-(3.48) every forward integration step it computes. This ensures the
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stability of the forecast model during integration. However, the most stringent time constraint
using the set-up described in section 3.3.4 is (3.47) dependent on the flow velocity. As will be
shown in later on in Chapter 4, the linear update method used during assimilation applied
to the non-linear system creates very high velocities in the far field. These nonphysical high
velocities cause the forecast model to become computationally unfeasible. In an attempt to
make the integration computationally cheaper a ’sponge-layer ’ was introduced. This sponge-
layer is a function fsponge(x, y) ranging between one, inside the PIV window, and a ratio
between the maximum velocity existing inside the PIV window and maximum velocity existing
in the far field rsponge = UmaxPIV

Umaxfarfield
, at the far field. The value UmaxPIV is selected from

the flow fields of all ensemble members, whereas Umaxfarfield is determined only by a single
ensemble member. The function decreases linearly from one to rsponge in the ’buffer’ region
where the grid spacing increases linearly. This function is multiplied with the flow field of a
single ensemble member if Umaxfarfield > (UmaxPIV + 1). The resulting ensemble will have
reduced the far field velocities of equal order of magnitude as flow velocities inside the PIV
window.

This method of reducing far field velocities can introduce additional bias into the system. If
high bias i.e. high values of rsponge, are used, the results of the EnKF can become useless.
Therefore, the EnKF is set up to stop filtering as soon as rsponge drops below 0.05. These
very high sponge ratios can emerge due to high anomalies occurring close to the PIV window,
inside the buffer region, and are not suppressed sufficiently by the proposed sponge-layer
method.
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Chapter 4

Twin Problem

In order to study the capability of the EnKF, in combination with the forecast model described
above, to capture the true solution of a plasma actuator body force, a twin problem is set
up. A twin problem in data assimilation is the use of artificially created measurements as
observations in order to remove the aspect of bias observations, as well as knowing the true
solution. This gives a controlled environment in which the sensitivity of the problem to
different settings of the EnKF can be analyzed.

The main goal of the twin problem is to prove the feasibility of finding a true set of parameters
describing the quasi steady body force field in the high non-linear system of Navier-Stokes.
Sensitivity of the solution will be measured with respect to:

1. Ensemble size (N).

2. Initial prior integration time (To).

3. Initial prior random seed initialization.

4. Initial prior mean and covariance.

5. Integration time between assimilation steps (dT ).

6. Use of a bias body force.

Initial prior denotes the prior which is used for the first update of the EnKF, Ef
To

, where To
is the integration time from initial quiescent flow. A total of 24 different initial priors have
been set up.

The chapter will first cover the set-up of the twin problem and the results of the twin problem
will be discussed in the second part. The last part of the chapter includes recommended
settings for the data assimilation with PIV data as observations.
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4.1 Set-up

This section will cover the set-up of the twin problem, including the creation of the artificial
observations and the creation of the initial prior used to start the filtering. The statistical
properties of the initial priors are described by some of their univariate and bivariate statistical
properties. The last part of this section the parameter sensitivity of the forecast model is
discussed and an overview is given of the different filter settings used for the twin problem.

4.1.1 Creation of the artificial observations

Table 4.1: Parameter values of
true solution

Parameter value

Fx [N/m2] 3000
Fy [N/m2] -2000

xo [m] 0.001
yo [m] 0.001

β 1e6

yoffset [m] 0

A true solution of the flow field will be used to create
the artificial observations for the twin problem. This
true solution is created using the forecast model. The
forecast model is initialized with quiescent flow with a
fixed set of body force parameters. The grid has been
refined by doubling the number of points in order to
account make the true solution more accurate then
the forecast model can predict. The model is then in-
tegrated forward in time to t = 1.0 s. From this point
the integration continues to t = 2.0 s, while saving all
the flow variables every 0.1 ms. These flow variables
are then used to create the observations using:

d = Hxtrue + ε. (4.1)

The parameters settings used for the creation of the true solution are given in table 4.1.
The averaging method described in Section 3.2 does not result in observations without any
unbiased noise and the observational error used to create the observations from the true
solution in (4.1) is therefore taken to be zero (ε ∼ N (0, 0)).

4.1.2 Creation of the initial prior

The initial priors can be defined by; (1) parameters mean and covariance, (2) ensemble size,
(3) integration time, and(4) random seed initialization. The priors are created by constructing
an ensemble Et=0 ∈ Rn×N with the flow variables set to zero and the parameters are sampled
from a Gaussian distribution based on the initial parameter mean and variance. Et=0 is
integrated to three different times: T = 0.5 s, t = 0.75 s, and t = 1.0 s. The integration
forward in time from quiescent flow is done in an attempt to maintain full connectivity
between the parameter values and its flow variables. A total of eight different prior settings
are integrated forward in time, resulting in a total of 24 different initial priors. In order to
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Table 4.2: Initial prior set-up for twin problem; mean and variance of the parameters, µ (σ2)

# Fx [N/m2] Fy [N/m2] xo [m] yo [m] β yoffset [m] N seed

1a 3000 (500) -2000 (500) 0.001 (1e−8) 0.001 (1e−8) 1e6 (1e6) 0 (1e−6) 60 1
1b 3000 (500) -2000 (500) 0.001 (1e−8) 0.001 (1e−8) 1e6 (1e6) 0 (1e−6) 80 1
2a 2800 (500) -1800 (500) 0 (1e−8) 0.001 (2e−8) 2e6 (1e6) 1e−4 (1e−6) 60 1
2b 2800 (500) -1800 (500) 0 (1e−8) 0.001 (2e−8) 2e6 (1e6) 1e−4 (1e−6) 80 1
3a 3500 (500) -1500 (500) -0.002 (1e−8) 0.001 (2e−8) 2e6 (1e6) 1e−4 (1e−6) 60 1
3b 3500 (500) -1500 (500) -0.002 (1e−8) 0.001 (2e−8) 2e6 (1e6) 1e−4 (1e−6) 80 1
4 3500 (500) -1500 (500) -0.002 (1e−8) 0.001 (2e−8) 2e6 (1e6) 1e−4 (1e−6) 60 2
5 3500 (50) -1500 (50) -0.002 (1e−12) 0.001 (2e−12) 2e6 (1e3) 1e−12 (1e−6) 60 1
6 2800 (00) -1800 (500) 0 (1e−8) 0.001 (2e−8) 2e6 (1e6) 1e−4 (1e−6) 60 2

study the sensitivity of the EnKF solution, all priors are different from each other in certain
aspects. Priors 1 through 3 have been set up for both an ensemble size of N = 60 and N = 80,
in order to determine the influence of ensemble size of the solution. Prior 1a/b are set up with
parameter means equal to those used to create the true solution. The results of the EnKF
using initial prior 1a/b can show how much the non-multivariate Gaussianity included in the
ensemble introduced by the non-linear dynamics will influence the parameter estimation of
the EnKF. Prior 2a/b have been set up with the parameter means set to different values from
the true solution. The initial parameter variance is selected in an attempt so that the true
solution can be constructed using interpolation of the ensemble members. Prior 3a/b have
been set up with again a different mean for the parameters, and the same variance. Prior 4,
uses the same mean as for prior 2 but now with a different random seed initialization to create
the initial ensemble and prior 5 uses a very low variance for the parameters, not allowing for
the interpolation between ensemble member to create the updated ensemble. Table 4.2 gives
a full overview of the settings used to create the initial priors. The values in between brackets
denote the variance used for the given parameter.

4.1.3 Univariate statistics of initial priors

One of the things to ensure the proper working of the EnKF, especially in steady state, is the
necessity of close to multivariate Gaussian initial priors. Due to the fact that it is difficult to
study whether this Gaussianity is met for the full state space of n dimensions, this section
will be restricted to univariate statistics of the initial priors. Many statistical moments can be
calculated from the initial prior ensemble Ef

To. However, this study will restrict itself to the
calculation of the mean, variance, skewness and kurtosis. The skewness of a single ensemble
member Ej of Ef

To can be calculated as:

sk =

√
N(N − 1)

N − 1

1
N

∑N
i=1(Eji − µj)3(√

1
N

∑N
i=1(Eji − µj)2

)3 , (4.2)
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where µj is the mean of the ensemble member Ej. The kurtosis of single ensemble member
can be calculated as:

k =
N − 1

(N − 2)(N − 3)

(N + 1)
1
N

∑N
i=1(Eji − µj)4(

1
N

∑N
i=1(Eji − µj)2

)2 − 3(N − 1)

+ 3. (4.3)

Using (4.2) and (4.3) an expected value for a perfect Gaussian pdf is zero for the skewness and
three for the kurtosis. The finite number of ensemble members already allow the calculated
values to perturb from these expected values a little. High values for the skewness and kurtosis
can be contributed to the non-linear dynamics of the forecast model. Figures 4.2 and 4.3 show
an example of the calculated field statistics. Both figures show the univariate statistics of flow
variables inside the PIV window, however the contour range is set to the maximum and min-
imum values found in the whole flow domain. Figure 4.2 show the statistics of flow variables
in the x-direction, and figure 4.3 shows the statistics of flow variables in the y-direction. This
can be done for all different initial priors and the full overview of these statistics is given in B.
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Figure 4.1: |Ef
To − HxTo| for prior 2b at To = 0.5s.

top; x-velocity. bottom; y-velocity

The top left graph shows the mean
of the flow variables in Ef

To. Infor-
mation about the loss of connectiv-
ity between the mean of the flow
variables in the observational do-
main (HxTo) and the mean of the
parameters can be obtained from
this statistics by comparing HxTo
to the flow field of a single fore-
cast model integration with param-
eters equal to the input mean of
parameters in Ef

To. If the forecast
model were to be linear, the differ-
ence between HxTo and Ef

To would
be zero. Figure 4.1 shows this dif-

ference for the prior case 2b at To = 0.5 s. This difference is of similar order of magnitude as
the perturbations contained in the ensemble, as is shown in the top right graph of figures 4.2
and 4.3. This could mean that after an update of the EnKF the parameters mean contained
in Ea would be estimated incorrectly by an order equal to the original variance used to create
the prior. This is a result of the non-linear forecast model and is the main reason why the
new SSS-EnKF method is purposed, as described in section 3.1.3.

The top right graph of figures 4.2 and 4.3 show the variance of Ef
To inside the PIV window.

This quantity shows the response of the solution with respect to the initial parameter spread.
It can be noted that, using the parametrization described by (3.59) and the parameter spread
used for prior 2b the flow solution is highly sensitive in the region around x = 0 and y = 0.5
mm. This also shows that if too many points were to be cropped off the bottom of the
domain, to reduce the bias error of the observations, the most important flow information
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Figure 4.2: Univariate statistics of prior 2b x-velocity, To = 50; µ (top left), σ2 (top right), sk
(bottom left), and k (bottom right)

would be lost. In such a case it would be difficult, or nearly impossible to identify the true
parameters. This reasoning only holds if the body force parameterization is assumed to be a
good representation of the true force field and the initial parameter spread used to create the
prior encapsulates the true solution, which is the case for the twin problem but not necessarily
for the problem using PIV data.

Furthermore, the bottom two graphs of figures 4.2 and 4.3 show the skewness (left) and the

kurtosis (right) of the flow variables on Ef
To. These two quantities can give a measure of

non-Gaussianty in Ef
To. However, it should be noted that even if the skewness is equal to zero

or the kurtosis equal to three, this does not guarantee a Gaussian distribution. E.g. if the
skewness is equal to zero this only shows the mean is equal to the median, while both tails
of the pdf can still have significant perturbations around the tails of a Gaussian distribution.
The kurtosis can be interpreted as the heaviness of the tails of a pdf.

Comparing the statistics for other initial priors with each other, it can be noted that the
integration of the forecast model to values of t = 0.75 s and t = 1.0 s show a significant
reduction of skewness and kurtosis inside the PIV window. This could be interpreted as that
not all ensemble members included in Ef

To=0.5 have reached a steady state solution in the
observational domain. However, the maximum and minimum for skewness and kurtosis do
not reduce with longer integration times, signifying the non-linear dynamics of the forecast
model mainly present in the far field.

Inspection of the far field statistics (not shown in any figure) show high values of variance.
This is most likely due to difference in the start-up vortex with different sets of parameters.
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Figure 4.3: Univariate statistics of prior 2b y-velocity, To = 50; µ (top left), σ2 (top right), sk
(bottom left), and k (bottom right)

Unless these perturbations are multi-variant Gaussian distributed with respect to values inside
the observational domain, these flow variables can take on highly non-physical values, after
the first update of the EnKF.

Finally, these statistics can also give an indication how well the ensemble can calculate the
variance as perturbation around the mean. This can be done by comparing the distribution
and magnitude of the variance for initial priors with the same parameter mean and variance
but different ensemble sizes, or seed initialization. The comparison of variance distribution
between prior with equal parameter mean and variance, show a large dependence on the
random seed initial. Therefore, it can be concluded that the ensemble size is too small to
accurately capture the perturbation around the mean for the initial prior.

4.1.4 Bivariate statistics of initial priors

Due to the high number of variables contained in the problem, only a limited study of the
bivariate statistics will be given in this section. The visualization of the bivariate statistics is
given by plotting the ensemble members of two variables vs one another. If the model were to
behave linear, the points would form a straight line, with the highest concentration of points
somewhere in the center of the line. The offset of the ensemble member from this line signify
the non-linearity in the model and therefore also the non-Gaussianity.

One interesting result of the bivariate statistics is the probability distribution between vari-
ables in the far field with high variance and variable inside to observable domain. Non-
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Figure 4.4: Ensemble members of initial prior 2b, To = 1.0s of a far field flow variable vs a flow
variable in the observational domain

Gaussian bivariate distributions between these variable can predict high nonphysical flow
velocities in the far field due to very poor initial updates of the ensemble. Figure 4.4 shows
the bivariate distribution between flow variable in the observational domain and one in the
far field. The flow variables have been selected based on highest calculated variance. Figure
4.4 shows that the bivariate distribution shows very little signs of a Gaussian distribution at
all. Therefore, it is expected that after the initial update, which is based on the flow variables
in the observational domain, the far field flow parameter can take on high nonphysical values.

A second interesting bivariate distribution would be that between flow variables in the observ-
able domain and parameters. The non-Gaussianity can measure an initial loss of connectivity
between parameter and flow variable after the first update step. Figure 4.5 shows the bi-
variate distributions of a flow variable with high variance in the observable domain with the
initial parameter values. Most distribution plots show very little signs of Guassianity. Only
the flow variable yoffset shows an inverse Gaussian distribution. This is only the bivariate
distribution of one single flow variable. The analysis uses all the flow variables inside the
observational domain, and the system could therefore still look worse or better overall in
terms of Gaussianity.
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Figure 4.5: Ensemble members of initial prior 2b, To = 1.0s of a far field flow variable vs initial
parameters

4.1.5 Twin problem filter settings

Numerous runs of the EnKF have been done using slight variation in the initial settings in an
attempt to further understand the problem. A total of four different filter setting are used.

Table 4.3: Overview of twin problem EnKF settings
Version setting #

v1 v2 v3 v4

Prior
1, 2(a/b), 3(a/b),
4, 5, 6

2(a/b), 3(a/b) 2(a/b), 3(a/b) 2(a/b), 3(a/b)

To [s] 0.5, 0.75, 1.0 1.0 1.0 0.5, 0.75, 1.0

dT [ms] 0.1 0.05 0.2 0.1

filter EnKF/DEnKF EnKF/DEnKF EnKF/DEnKF EnKF/DEnKF

inflation multiplicative 3 % multiplicative 3 % multiplicative 3 % multiplicative 3 %

bias force - - - yo

All settings are set up in a way to be able to see the effects of type of filter and ensemble size
on the final results. Versions 2 and 3 are setup to study the sensitivity to different integration
times between updates (dT ), while v4 is set up to study the ability of the (D)EnKF to capture
the body force even if the force parameterization is biased. This bias force is created by setting
the parameter yo to a constant value of 2 mm. For all settings, inflation of 3 percent is used
in the form of multiplicative inflation.

4.2 Twin Problem Results

A standard approach to evaluate the convergence of the parameters in a steady state EnKF
problem is to run the filter until the parameters and variance stop changing. However,
due to the addition of bias through the sponge-layer in the forecast model to suppress high
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nonphysical flow velocities, it is not always possible to run the data assimilation for large
periods of time. This bias can cause the parameters to diverge away from the true value,
sometimes causing the forecast model to force quits due to extremely high sponge ratios.
Therefore, the converged parameters are taken those parameters included in the ensemble
creating the lowest root mean square error in the observable domain (RMSEo) defined as:

RMSEo =

√∑m
i=1(di − (Hx)i)

2

m
. (4.4)

The usage of lowest RMSEo to determine the converged parameters is only a fix to determine
the ’so far’ best estimation before very large bias error is introduced into the system.

An additional quantity for the evaluation of the parameter estimation is proposed in the form
of the force field root mean square error (RMSEf). This quantity can only be calculated
when the true parameter values are known.

RMSEf =

√∑m
i=1(f truex − festimatex )2

m
+

√∑m
i=1(f truey − festimatey )2

m
. (4.5)

ftrue and festimate are the force field created by the set of true parameters and estimated
parameters, respectively, in the observational domain.

The (D)EnKF has the problem of filter divergence. Filter divergence occurs when the analysis
preformed moves the updated ensemble away from the true solution while still decreasing its
covariance, therefore also called covariance divergence. This reduction in covariance gives
a false impression that the filter is working correctly. The divergence can be due to many
factors such as: Limited ensemble size, method to create prior, non-Gaussianty, high levels of
bias error etc. It should be noted that the filter can still converge to the true solution even
if it diverged in previous update steps. Another type of divergence can also occur but is less
likely called catastrophic divergence (Harlim and Majda, 2010) and is defined as the ensemble
reaching values of machine infinity in finite time.

For the specific problem of the parameter estimation, two types of covariance divergence are of
interest. First is the divergence of the observable flow field away from the true flow field while
reducing the average variance in the observable domain, i.e. RMSEo increases while average
variance decreases. From now on this type will be referred to as standard filter divergence.
Average variance in the observable domain (S) is defined by (4.6).

S =
Σm
i=1σ

2
i

m
(4.6)
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The second type of divergence is parameter divergence, where the parameters move away
from the true parameters (RMSEf increases, while the RMSEo decreases). This type will
be referred to as parameter divergence. Both type of filter divergence can cause the filter to
move away from the global minimum, finding a local minimum instead. It is expected that the
current method of the SSS-EnKF proposed, will always converge to atleast a local minimum,
even if previous update steps diverged. In the current case this might not be always true
because the addition of the sponge layer causes the response surface to potentially change
drastically, and does not allow the time for a full convergence to the minimum in some cases.

4.2.1 Steady State EnKF

Table 4.4: Results SSEnKF using prior 1a/b; Final parameter estimation with corresponding
RMSEo and RMSEf

Fxo [ N
m2 ] Fyo [ N

m2 ] xo [mm] yo [mm] β [-] yoffset [mm] RMSEo [m/s] RMSEf [N/m]

Truth 3000.00 -2000.00 1.00 1.00 1.00E+06 0 - -
To = 1.0 s µ 2807.57 -1776.37 1.04 1.13 9.97E+05 -3.15E-02 0.012619 35.007

N = 60 σ2 2.01 0.85 2.12E-10 2.24E-10 3.28E+04 6.22E-11 0.012619 35.007
To= 1.0 s µ 3200.43 -2023.41 1.02 0.99 9.91E+05 -1.13E-02 0.012812 22.464

N = 80 σ2 5.06 1.36 2.08E-10 6.28E-10 5.49E+04 1.23E-10 0.012812 22.464
To= 0.5 s µ 2850.52 -1996.74 1.04 1.10 1.00E+06 -3.86E-02 0.019617 20.977

N = 60 σ2 1.27 0.30 2.21E-10 2.10E-10 3.81E+03 9.62E-11 0.019617 20.977
To = 0.5 s µ 3264.42 -2164.12 0.97 0.93 9.86E+05 1.98E-02 0.019573 22.234

N = 80 σ2 2.82 0.84 2.33E-10 4.45E-10 1.45E+04 1.95E-10 0.019573 22.234
To = 0.75 s µ 2902.76 -1840.41 1.09 1.10 9.85E+05 -3.76E-02 0.015830 22.076

N = 60 σ2 2.47 0.94 2.16E-10 1.99E-10 2.87E+04 5.84E-11 0.015830 22.076
To =0.75 s µ 2885.21 -1986.21 1.01 1.03 9.93E+05 -1.40E-02 0.013751 8.411

N = 80 σ2 2.47 0.84 1.98E-10 3.23E-10 4.69E+04 9.94E-11 0.013751 8.411

As has been discussed in section 3.1, the non-linearities introduced in the initial priors are
most likely to let the steady state EnKF diverge during the update step and converge to
parameter values away from the true parameter values. This is demonstrated in this section
by using the EnKF in steady state with initial prior 1a/b, a total of six different runs. This
initial prior has parameter means equal to that of the true state, and if the system was
linear it is expected to converge towards the true parameter mean. Table 4.4 shows the
final parameter estimation for the SSEnKF runs. The final parameter means are offset by
values larger than the corresponding variance. As can be seen in figure 4.6, the incorrect
parameter estimation is due to high levels of parameter divergence, which shows the values
for RMSEo, RMSEf and S for a particular run. Looking at the low values for RMSEo, the
filter seems to be able to reconstruct the flow field well given the initial ensemble, however,
while RMSEo and S decrease with every iteration, RMSEf increases, indicating parameter
divergence. This parameter divergence was expected due to the high non-linearities included
in the initial prior, proving the necessity for an alternative method such as the SSS-EnKF
method. Figure 4.7 shows the parameter estimation development for the same run. Showing
the fast initial decrease in variance while moving away from the true parameter values. A full
overview of the results is given in Appendix C.
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Figure 4.8: Plot of RMSEo vs RMSEf for the EnKF. Different colors represent different filter
version settings; red (v1), blue (v2), cyan (v3), black (v4). The different symbols represent the
different initial priors; * (prior 1a/b), + (prior 2a/b), o (prior 3a/b), � (prior 4), x (prior 5), �
(prior 6)

4.2.2 Semi Steady State Filtering

This section will show the ability of the SSS(D)EnKF to estimate the mean of the true
parameters with reasonable accuracy. A discussion about the consistency of the results is
given at the end of the section. The results from the twin problem will determine the best
settings for the data assimilation with PIV data, within the range of parameter settings the
study is conducted in. A complete overview of the results is given in Appendix D.

RMSEo vs RMSEf

As discussed above the minimum value for RMSEo will determine the optimal estimation of
the filter. RMSEo together with RMSEf, and S will be used as indication of the correct
working of the filter. To capture the best parameter estimation during a single run, it is
essential that the RMSEo is a good indication of the correct working of the filter. The
calculated values for minimum RMSEo and its corresponding RMSEf can be plotted against
each other to give an indication of whether this is true.

Figures 4.8 and 4.9 indicate that RMSEo can be used as a good estimation of the correct
working of the filter when RMSEf is unknown, especially in the region where RMSEo is small.
The logarithmic axis are used to be able to show the wide range of results. The relationship
does not seem to be exact, therefore, results should be examined closely to ensure no outlier
is found.
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Figure 4.9: Plot of RMSEo vs RMSEf for the DEnKF. Different colors represent different filter
version settings; red (v1), blue (v2), cyan (v3), black (v4). The different symbols represent the
different initial priors; * (prior 1a/b), + (prior 2a/b), o (prior 3a/b), � (prior 4), x (prior 5), �
(prior 6)

Filter Divergence

Almost all of the data assimilation runs conducted show parameter divergence in at least
the first couple of update step, i.e. the RMSEo is reduced while the RMSEf increases.
This happens even with prior 1, with the initial prior mean equal to the true mean, shown
in figure 4.12. This parameter divergence using prior 1 signifies the non-linearity between
the observable flow variable and the force parameters. Only for some priors no parameter
divergence is observed, most likely due to high values for initial RMSEf.

Standard filter divergence is observed when low values of sponge ratios occur, which therefore
seems to be the driving factor of standard divergence in this problem. This also shows the
high dependence on the initial prior mean, i.e. if the initial prior contains more ensemble
members far away from the true, this is more likely to trigger the sponge layer with very low
ratios. This can clearly be seen in prior 5, shown in figure 4.10, where initial low values of
sponge ratio cause the filter to diverge dramatically.

All prior show a fast reduction RMSEo and S in the first couple of update steps. For the
DEnKF, S is increased again after this initial period of reduction, while the EnKF continues
to keep S at low levels. The increase in total variance could help reduce the loss in connectivity
between the observable flow variable and the estimated parameters.

The initial rapid decrease and then increase of RMSEo, can be explained by the fact that the
initial prior includes ensemble member well suited to reproduce the observations, however,
due to the sub optimal update (due to non-Gaussianity in initial prior see Section 4.1.4),
incorrect parameter values are created. After some integration forward in time these incorrect

M.Sc. Thesis C.W.Schoemakers



50 Twin Problem

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

time from initial update [s]

Figure 4.10: SSS-EnKF results prior 5v1, N = 60, To = 1.0 s; RMSEo ·100[m/s] (* black solid
line), RMSEf

100 [N/m2] (x black dashed line), Σ
10 [m/s] (* blue line), Sponge ratio [-] (red stars)

parameters cause all ensemble members to move away from the observations, increasing the
RMSEo again. This rapid decrease of RMSEo can be called an initialization period and
values of RMSEo during this period will be ignored when determining the best parameter
estimation during the filtering process. The initialization period can clearly be seen in figure
4.11. If the parameters created during this initialization period do not differ much from the
true parameter, it is expected that the RMSEo will continue to decrease, as could be the
case for runs using prior 1, with parameter mean equal to the true parameter values. This
further reduction in RMSEo for prior 1 can be seen in figure 4.12.

Looking at the results for filter settings v4, for which the bias forecast is used, it becomes clear
that consistently finding an minimum is difficult for the (D)EnKF. This can can especially
become clear when looking at figure 4.11. Especially high values for sponge ratio cause most of
the runs to diverge and finally force quit. This could be explain because the new minimum,
with one force parameter fixed, may lay farther away from the initial prior, causing more
significant changes in the flow field after the first couple of updates.

A large overview of results including RMSE values is given in Appendix D.2.

Initial prior with equal initial parameter covariance

The four characteristics of the initial priors excluding excluding initial parameter covariance
are: (1)initial parameter mean, (2) random seed initialization, (3) ensemble size (N), and (4)
initial integration time (To).
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Figure 4.11: SSS-EnKF results prior 2v4, N = 80, To = 0.5 s; RMSEo ·100[m/s] (* black solid
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Figure 4.12: SSS-EnKF results prior 1v1, N = 80, To = 1.0 s; RMSEo ·100[m/s] (* black solid
line), RMSEf

100 [N/m2] (x black dashed line), Σ
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The influence of the ensemble size changes due to insufficient Ensemble convergence. En-
semble convergence occurs when the the ensemble size is sufficiently large to capture the
dispersion around the mean path. As has been discussed in section 4.1, the ensemble size
is not sufficiently large for the initial prior to capture the initial anomalies. Therefore, the
initial priors used with different ensemble sizes can be categorized as a different initial priors
similar to priors with a different seed initialization.
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Figure 4.13: RMSEf for different initial integration
times for initial priors 1a/b, 2a/b, and 3a/b. Red line
denotes the average RMSEf for a single To

Table 4.5 shows the results in terms
of RMSEf for three different pri-
ors with equal initial parameter co-
variance. This table includes both
ensemble sizes used as well as the
different random seed initialization
used with an ensemble size of 60.
This table shows that the results
of the filter, regardless of whether
the EnKF or DEnKF is used, is
highly dependents on the initial
prior. The overall best results are
generated using Prior 1, which is
expected as it has the initial param-
eter mean equal to the true mean.

Figure 4.13 shows the sensitivity
of the solution with regards to To.
The figure shows the change in
RMSEf for the initial priors with
different To. The red line indicates
the average RMSEf for different
To. The slight average decrease in

RMSEf lets us select To = 1.0s for the data assimilation with PIV data. The fact that longer
initial integration times yield better results could be partially due to the fact that these more
of the ensemble members in the initial prior are close to a fully steady state solution and
might therefore look more linear inside and close to the observational domain.

The high dependence on initial prior mean and random seed initialization shown by table 4.5
show that the initial prior should be chosen to the best knowledge to be as close to the true
solution as possible.
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Table 4.5: Overview of RMSEf results for first three prior with settings v1
EnKF DEnKF

N60 N80 N60 (different seed) N60 N80 N60 (different seed)

Run1 v1 To = 1.0s 4.04867 5.789693 - 4.998477 2.686038 -
Run1 v1 To = 0.5s 1.937466 2.594744 - 2.308943 1.477406 -

Run1 v1 To = 0.75s 4.852966 2.184703 - 3.093261 1.707207 -
Run2 v1 To = 1.0s 7.125184 1.580311 8.705444 6.693855 2.792824 8.634252
Run2 v1 To = 0.5s 24.568347 64.098989 179.5478 10.130504 9.188797 278.316118

Run2 v1 To = 0.75s 20.947549 2.889824 300.939745 0.746923 1.672794 84.61234
Run3 v1 To = 1.0s 52.632515 533.971447 2.294111 12.623451 457.74524 2.322017
Run3 v1 To = 0.5s 45.183572 324.724818 111.683055 240.06895 97.81616 15.52464

Run3 v1 To = 0.75s 343.88384 83.671094 7.708306 313.58203 3.031682 5.99999
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Figure 4.14: RMSEf for Priors 2a and 3a with dif-
ferent integration times between updates. Red line de-
noting the average of the runs.

For the determination of the sen-
sitivity of the solution with respect
to the integration time between up-
dates (dT ), we can compare the re-
sults obtained from priors 2 and 3,
in combination with the filter set-
tings v1, v2, and v3. The RMSEf

for these solutions is plotted versus
the integration time and is shown in
figure 4.14. When compared to fig-
ure 4.13 and table 4.5 it can be seen
that the solution is far less sensitive
to dT then to the initial prior.

EnKF vs DEnKF

A comparison between the EnKF
and the DEnKF is made by com-
paring the average of RMSEo and
RMSEf for priors 1,2,3,4 and 6
for the filter settings v1. These
runs are selected because they show
some convergence and it eliminates
most of the runs having very high
values for RMSEo and RMSEf. Table 4.6 shows the results of this averaging. It can be seen
that the DEnKF out preforms the EnKF on average. However, figure 4.15 shows however
that for some runs the EnKF still outperforms the DEnKF.
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Table 4.6: Average RMSEo and RMSEf of priors 1,2,3,4, and 6 for settings v1

RMSEo [m/s] RMSEf[N/m
2]

EnKF 0.055417 89.065175

DEnKF 0.031543 65.323912
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Figure 4.15: Comparison EnKF with DEnKF through RMSEf
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Bias forecast

For the data assimilation with PIV data, it is important to know that the filter will be able to
find a solution even if the body force field parameterization cannot exactly capture the true
body force field. This additional bias in the forecast model is introduced using filter settings
v4, where parameter yo is fixed.

Table 4.7 gives an overview of some of the main results comparing the unbias forecast (v1)
with the bias forecast (v4). The table includes the thrust in the x- and y-direction. Thrust
is defined as sum of the force F acting on each volume element in the fluid.

F =

∫
V

f dV ≈ fi∆xi∆yi (4.7)

From table 4.7, it can be seen that the filter has a very difficult time of consistently finding
the optimal solution. The RMSEo and RMSEf have increased compared to the unbias
forecast model. Also, the thrust calculations for v4 show a lot more results compared to the
unbias forecast model. This could indicate multiple local minima. This table shows that the
filter will still be able to find an approximation to body force field, even if the force field
parameterization is sub-optimal, but also shows the high dependence on a good body force
parameterization.

Table 4.7: Comparison results using unbias (v1) and bias (v4) forecast model, True thrust: Tx
= 9.6615 mN, Ty = -6.4410 mN

RMSEo [m/s] RMSEf [N/m2] Tx [mN] Ty [mN]
v1 v4 v1 v4 v1 v4 v1 v4

EnKF

Prior2a To = 1.0 0.004753 0.070660 7.125184 257.651149 9.594057 5.950986 -6.344845 -4.438080
Prior2b To = 1.0 0.003012 0.065205 1.580311 314.999823 9.587875 0.835538 -6.419829 -0.615857
Prior2a To = 0.5 0.022300 0.063677 24.568347 209.277802 8.893971 6.686986 -6.036223 -4.572315
Prior2b To = 0.5 0.039801 0.066401 64.098989 217.633816 8.973406 6.900636 -5.509677 -5.186866

Prior2a To = 0.75 0.010355 0.072508 20.947549 192.945570 9.246991 7.639213 -5.924780 -5.070867
Prior2b To = 0.75 0.001867 0.063860 2.889824 138.691273 9.554835 9.143641 -6.372159 -7.047977
Prior3a To = 1.0 0.040553 0.015268 52.632515 664.764125 8.464730 30.026637 -6.084292 -20.747224
Prior3b To = 1.0 0.207523 0.293826 533.971447 323.262812 11.226887 3.607185 -60.049972 -1.599068
Prior3a To = 0.5 0.026560 0.064281 45.183572 405.651678 8.600225 9.979255 -5.518458 -4.338725
Prior3b To = 0.5 0.182317 0.205118 324.724818 312.024874 2.054722 0.000675 2.774787 0.001002

Prior3a To = 0.75 0.225693 0.248163 343.883838 313.534468 2.149835 -0.236246 -6.589707 -1.070156
Prior3b To = 0.75 0.076248 0.263169 83.671094 576.890477 7.315910 23.643758 -6.088595 -10.404322

DEnKF
Prior2a To = 1.0 0.003192 0.062165 6.693855 212.43899 9.428300 7.928106 -6.309200 -5.888899
Prior2b To = 1.0 0.002131 0.062416 2.792824 231.54174 9.574122 7.272614 -6.368241 -5.328976
Prior2a To = 0.5 0.010472 0.057586 10.130504 274.33992 9.706522 4.912000 -6.426109 -3.615058
Prior2b To = 0.5 0.007717 0.055577 9.188797 234.90218 9.678292 6.686149 -6.350092 -4.618676

Prior2a To = 0.75 0.001428 0.059450 0.746923 228.07016 9.637648 7.443291 -6.429121 -5.600916
Prior2b To = 0.75 0.001856 0.058113 1.672794 215.88054 9.636508 7.074899 -6.418666 -5.760596
Prior3a To = 1.0 0.006215 0.171724 12.623451 310.27041 9.227268 0.533805 -6.243999 0.366590
Prior3b To = 1.0 0.140357 0.154811 457.74524 319.58075 9.889679 0.246162 -32.674926 2.886233
Prior3a To = 0.5 0.107581 0.148908 240.06895 322.28607 2.940730 4.452373 -2.757108 -1.204374
Prior3b To = 0.5 0.036023 0.174116 97.81616 1347.6445 7.355778 120.739288 -4.617651 -37.298858

Prior3a To = 0.75 0.172389 0.186952 313.58203 345.87434 1.117000 -1.942379 -0.629666 3.886130
Prior3b To = 0.75 0.001787 0.148742 3.031682 312.01778 9.551118 0.014515 -6.363651 -0.009230

Consistency of the method

The method of the SSS-EnKF is assumed to be able to find a the true minimum independent
of the initial prior, assuming the filter is allowed to run for indefinite periods of time. The
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addition of the sponge layer, removes this consistency of the method by introducing very high
values of bias and finally causing the forecast model to force quit. If the filter could run for
indefinite periods of time, all ensemble members are allowed to reach complete steady state,
and the filter will be able to find a (local) true minimum. The only dependence of the results
on the initial prior will be how long the filter needs to run before all ensemble member would
reach complete steady state.

The current parameter mean estimations in the twin problem are assumed to be incorrect with
regards to the theoretical EnKF in steady state due to mostly the non-steady state ensemble
members. The non-steady state ensemble members also cause for an incorrect parameter error
estimate. The current twin problem results show extremely low values for parameter error,
not sufficiently large to capture the true parameter values. These results can be found in table
D.1. If all ensemble member were allowed to reach complete steady state, the parameter error
estimation would mostly be affected by the non-linearities caused by the forecast model, and
would generate much better results.

Given the current forecast model used, the performance of the filter can therefore be deter-
mined by a relative constant RMSEo for longer periods of integration time. This allows for
more ensemble members to reach steady state, and ensure a true minimum is found.

4.2.3 Optimal settings for PIV

The previous sections have shown some of the results of the sensitivity of the filter results to
different filter settings. The range of parameter setting values studied is not sufficiently large
to draw any definite conclusions about optimal settings. However, the best settings using the
current range of parameter setting values recommended for the data assimilation with PIV
data are given in table 4.8. For filter settings with low average sensitivity to the result, such
as N and dT , the settings with lowest computational cost have been selected. This is not
expected to cause significant additional bias error. The average results seemed not highly
dependent on the filter type and the DEnKF is selected based on the slightly better average
performance. The initial integration time selected is To = 1.0s in an attempt to create mostly
steady state ensemble members.

Table 4.8: Filter settings used for data assimilation with PIV

N 60

To 1.0 s

dT 0.05 ms

Filter DEnKF
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Figure 4.16: Semi steady State DEnKF results prior 2v1, N = 60, To = 0.75 s; RMSEo

100 [m/s]

(* black solid line), RMSEf

100 [N/m2] (x black dashed line), Σ[m/s] (* blue line), Sponge ratio [-]
(red * )

0

2000

F
x
o
 [
N

/m
2
]

−2000

−1000

0

F
y
o
 [
N

/m
2
]

0

5

10
x 10

−4

x
o
 [
m

]

0

1

2
x 10

−3

y
o
 [
m

]

0

1

2
x 10

6

B
 [
−

]

0 50 100 150 200 250 300 350 400 450 500
−8
−6
−4
−2

0
2
4

x 10
−4

y
o
ff
s
e
t [

m
]

time from update [s]

Figure 4.17: Semi steady State DEnKF parameter estimation development for prior 2v1, N = 60,
To = 0.75 s; parameter mean and ±3σ error bars. Lines of constant values are equal to true
parameter value.
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Chapter 5

Semi Steady State filtering with PIV data

This chapter discusses the results obtained from data assimalation using the DEnKF in com-
bination with PIV data of eight different quasi-steady flow fields generated by plasma actuator
in quiescent flow. First, a short introduction of how initial priors are selected for the filtering
with PIV data for the different scenarios is given. The last part of the chapter will discuss the
results and compare thrust, a characteristic value of plasma actuator, to previous findings by
Kotsonis (2012).

5.1 Initial Priors for PIV

As is shown in chapter 4, the results of the filter highly depend on the initial prior. The prior
should therefore be picked using our best knowledge. The method used in determining the
initial parameter values was to first obtain some characteristic values from Shyy et al. (2002).
These values are scaled up or down to cover the range of cases to be studied. As is know from
previous results (Kotsonis, 2012), the body force field is expected to increase in both size and
intensity when the voltage is increased. In the case of increasing actuator frequency (fac),
the body force field is expected to increase in intensity. Table 5.1 shows the settings used to
set-up the priors. The variance used is equal to that of the twin problem. An ensemble size
of N = 60 is used, and all initial priors are integrated to To = 1.0 s.

To increase the chances of a successful filter run, a single prior is used for different cases. The
determination of which initial prior to re-use for which case is based on the comparison of
the maximum mean flow velocity observed in the initial prior and that observed in the PIV
data. Table 5.2 shows which priors are used with which case.
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60 Semi Steady State filtering with PIV data

Table 5.1: Initial prior set-up; mean and variance of the parameters, µ (σ2)

# Fx [N/m2] Fy [N/m2] xo [m] yo [m] β yoffset [m]

1 2500 (500) -1500 (500) 1e−3 (1e−8) 1e−3 (1e−8) 1e6 (1e6) −1e6 (1e−6)
2 4000 (500) - 4000 (500) 3e−4 (1e−8) 2.6e−4 (1e−8) 1.4e6 (1e6) −6e−4 (1e−6)
3 1500 (500) - 1500 (500) 1.0e−3 (1e−8) 1.2e−3 (1e−8) 2e6 (1e6) −8.8e−4 (1e−6)
4 800 (500) -800 (500) 1.1e−3 (1e−8) 1.2e−3 (1e−8) 2e6 (1e6) −8.8e−4 (1e−6)
5 5000 (500) -5000 (500) 1.1e−3 (1e−8) 1.3e−3 (1e−8) 2e6 (1e6) −8.8e−4 (1e−6)
6 3200 (500) -3200 (500) 1.1e−3 (1e−8) 1.3e−3 (1e−8) 1.5e6 (1e6) −8.8e−4 (1e−6)
7 8000 (500) -8000 (500) 1.1e−3 (1e−8) 1.5e−3 (1e−8) 1e6 (1e6) −8.8e−4 (1e−6)
8 4700 (500) -4700(500) 1.1e−3 (1e−8) 1.4e−3 (1e−8) 1e6 (1e6) −8.8e−4 (1e−6)
9 6000 (500) -6000 (500) 1e−3 (1e−8) 1e−3 (1e−8) 1e6 (1e6) −1e−3 (1e−6)

Table 5.2: Priors used for different cases
Prior 1 2 3 4 5 6 7 8 9

Case 1 x x x
Case 2 x x x
Case 3 x x x x
Case 4 x x x
Case 5 x x x
Case 6 x x x x
Case 7 x x x
Case 8 x x x

5.2 Parameter estimation

A list of the results obtained from the filtering using the priors as described in section 5.1
are given in tables E.1 and E.2 in Appendix E.1. The tables include the parameter mean
and error estimations, as well as the RMSEo and the thrust in the x- and y-direction. The
determination of the best filter results is based on the lowest RMSEo value. To further
visualize the resulting body force fields, contour plots of all force fields found per case are
given in Appendix E.2.
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Table 5.3: Best parameter estimations per case
Case # Fxo [ N

m2 ] Fyo [ N
m2 ] xo [m] yo [m] β [-] yoffset [m] RMSEo Tx [mN] Ty [mN]

1 µ 9.63E+02 -9.73E+02 1.01E-03 -9.31E-04 1.29E+07 -6.23E-04 1.98E-02 7.58E-01 -7.66E-01

σ2 5.34E-01 6.67E+00 7.82E-13 5.13E-13 6.65E+08 3.65E-13 - - -

2 µ 1.48E+03 -1.30E+03 1.25E-03 -1.18E-03 4.57E+06 -8.81E-04 5.06E-02 2.29E+00 -2.00E+00

σ2 5.70E-01 4.53E+00 5.17E-13 4.87E-13 2.52E+07 2.54E-13 - - -

3 µ 2.65E+03 6.27E+03 1.85E-03 1.09E-03 3.20E+05 -2.28E-03 1.28E-01 7.41E+00 1.75E+01

σ2 4.19E+00 5.66E+01 1.23E-12 1.59E-12 3.63E+04 2.62E-13 - - -

4 µ 9.04E+02 1.65E+03 5.22E-03 4.27E-03 2.11E+06 -3.78E-03 2.76E-01 7.22E+00 1.32E+01

σ2 6.99E-02 1.82E+01 1.96E-11 2.29E-11 9.98E+05 2.29E-11 - - -

5 µ 2.26E+03 -1.87E+03 4.45E-03 4.08E-03 2.46E+06 -3.50E-03 3.52E-01 1.70E+01 -1.41E+01

σ2 2.07E-01 4.30E+01 4.46E-12 2.32E-12 8.12E+05 2.30E-12 - - -

6 µ 4.68E+03 -2.90E+03 -1.70E-04 1.51E-04 4.61E+05 -1.68E-03 5.16E-02 3.30E+00 -2.04E+00

σ2 1.03E+01 2.65E+02 3.13E-12 4.12E-14 6.22E+04 3.56E-13 - - -

7 µ 8.51E+03 -1.65E+04 -4.13E-04 -9.85E-05 4.30E+05 -1.71E-03 8.22E-02 6.00E+00 -1.16E+01

σ2 3.58E+00 8.67E+01 7.51E-13 2.32E-14 1.52E+04 2.02E-13 - - -

8 µ 2.64E+03 -2.67E+04 -9.99E-05 3.44E-03 6.38E+05 -4.36E-03 1.90E-01 7.48E+00 -7.57E+01

σ2 5.20E+00 1.08E+03 1.98E-12 1.18E-12 5.82E+04 1.13E-12 - - -

5.2.1 Best force field estimates

The results for the best parameter estimation per case is given in table 5.3. The force
fields created by the estimated parameter means per case are given in figure 5.1. Some
characteristics of the force field already determined by Kotsonis (2012) can be seen from
this figure. The force field increases in size when voltage is increased, while when frequency
is increased the field stays relatively similar in shape both increases in intensity. However,
especially case 3 and 8 seem to have significant trouble with the estimation of the force in
the y-direction. Case 3 even shows a positive force in the y-direction, while case 8 shows very
high negative values.

5.2.2 Filter performance

A full overview of all divergence plots and parameter estimation development is given in
Appendix E.2. An estimation of the filter performance can be concluded from these plots. A
good run should have a RMSEo which remains about constant for longer integration times,
signifying a minimum, while allowing the RMSEf to decrease as was seen in the twin problem.
This is happening for the results from cases 1, 2, 6, and 7. These cases are therefore expected
to be good estimations of the force field, given the current force parameterization. The results
for these cases will mostly be influenced by bias of the force parameterization, non-Gaussianity
in the ensemble, and the finite ensemble size. The cases 3, 4, 5, and 8 however, show an almost
continuous increase of RMSEo after the initialization period. This is most likely due to high
bias error introduced through the sponge layer, but can also be due to very high bias error in
the force parameterization. The results for these cases are assumed to be poor estimations of
the force fields.

For successful results (cases 1, 2, 6 and 7), it is expected that influence on the incorrect
estimation due to non-Gaussianity and finite ensemble size can be neglected due to the very
small variance in the ensemble. Therefore, the bias of the force model is expected to dominate
the finalRMSEo value. The lowRMSEo values for the successful cases therefore indicate that
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Figure 5.1: Force field when RMSEo is lowest. Left from top to bottom, cases 1 through 5,
with increasing Voltage. Right from top to bottom case 6,2,7,8, with increasing fac

the current force parameterization is a good approximation to the force field for reconstructing
the flow generated by the plasma actuators.

5.2.3 Thrust comparison

To somewhat validate the body force fields a comparison between thrust values obtained
using the proposed semi-steady state filtering results and results from Kotsonis (2012) are
used. Kotsonis (2012) uses two benchmark methods in the form of a load cell for the horizontal
thrust and an integral of momentum balance over a control volume using the flow velocities
for thrust measurements in the x- and y-direction. It should be noted that these two methods
include the shear stress at the wall and are therefore expected to yield higher values in thrust
for the x-direction. Two more methods are used to calculate the thrust: the reduced method,
and the gradient method. The reduced method is based on the assumption that, if initial
conditions of zero velocity are used, the convective, viscous and pressure gradient terms in
(3.29) can be assumed relative small and can be neglected. This assumption reduces (3.29)
to:

δU

δt
=

f

ρ
. (5.1)

The reduced method can only be used for the first moments of actuation.

For the gradient method, the Navier-Stokes equation is differentiated in time after which is it
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Figure 5.2: Comparison between results obtained by Kotsonis (2012) and the SSS-EnKF method.
NOTE: SSS-EnKF results are plotted with errorbars of 100·σ2

integrated from the initial conditions of zeros flow velocity and zero pressure gradient. Both
methods compute the complete body force field and thrust can be calculated using (4.7).

The comparison between results from Kotsonis (2012) and the filtering method are shown
in figure 5.2. An error estimation for the thrust can be computed using the parameter error
estimates given in terms of variance. This thrust variance is calculated using the Monte Carlo
method with ensemble size of N = 100. The calculated thrust variance times 100 is shown in
figure 5.2 as errorbars. The multiplication is used to be able to show the relative estimated
variance between cases. These low values for thrust error show the potential of the current
method of high accurate thrust estimations.

Figure 5.2 gives a comparison of the EnKF method results and results obtain by (Kotsonis,
2012). The estimated thrust in the x-direction seems to show similar values as the benchmark
values. Even the filter runs which were identified as having poor results, still show good
agreement with the benchmark results for the thrust in the x-direction.

The thrust in the y-direction seems to be incorrectly estimated for most cases. Especially
case 3, which has a positive value for the thrust in the y-direction, seems to be completely
incorrect. whereas the thrust in the y-direction seems to be be completely off for cases with
higher flow velocities. Even for case 7 (fac = 3 kHz) the thrust in the y-direction seems to be
overestimated.

5.2.4 Pressure correction

This incorrect estimation of the thrust force can be partially due to the existence of a steady
pressure gradient, counteracting parts of the body force. The current parameterization of the
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body force might allow for such a steady state pressure gradient as describe in section 3.4.1.
This pressure gradient might not be physical and solely dependents on the force parameteri-
zation chosen. A new definition of total thrust in both the x and y-direction can be created
incorporating both the pressure gradient as well as the force field.

F =

∫
V

(f +∇p) dV (5.2)

The pressure field used to calculate the integrated force is generated by a single forecast run
to steady state using the mean of the estimated parameters. This method of acquiring the
pressure field however does not allow for a thrust error estimation using the ensemble method
due to very high computational costs, and will therefore not be given when using (5.2). The
calculated force fields with the pressure correction are shown in figure 5.3. For comparison, the
force fields calculated using the gradient method by Kotsonis (2012), are shown in figure 5.4.
It can be seen that the force fields calculated for cases which were expected to be successful
(cases 1 (8kVpp), 2 (10kVpp/fac = 2 kHz), 6 (fac = 1 kHz) and 7(fac = 4 kHz)), show good
agreement now with the results of the gradient method. Main differences can be contributed
to relative simple parameterization of the force field used by the EnKF method.
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Figure 5.3: f−∇p. Left from top to bottom, cases 1 through 5, with increasing Voltage. Right
from top to bottom case 6,2,7,8, with increasing fac
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cases 1 through 5, with increasing Voltage. Right from top to bottom case 6,2,7,8, with increasing
fac

M.Sc. Thesis C.W.Schoemakers



66 Semi Steady State filtering with PIV data

Figure 5.5 shows the results using (5.2) for the calculation of thrust. It can be noted that the
thrust in the x-direction is not much affected by the incorporation of the pressure gradient.
The thrust in the y-direction however does change significantly. Case 7 (fac = 3 kHz), which
previously overestimated the thrust in the y-direction now shows fairly good agreement with
the benchmark values. Also the thrust estimation for case 3 (12kVpp) and case 5 (16kVpp)
moved towards the benchmark results.
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Figure 5.5: Comparison between results obtained by Kotsonis (2012) and the SSS-EnKF method.
Incorporation the pressure gradient in the thrust calculation
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Chapter 6

Conclusion

An initial study into the use of the EnKF, and derivatives of this method, for the parameter
estimation describing the force field generated by a plasma actuator was conducted in the form
of a twin problem and an application to quasi-steady plasma actuator configurations. A finite
difference solver was created solving the full laminar Navier-stokes equation to use as forecast
model. Observations were used in the form of high resolution time averaged PIV data for
eight different plasma actuator configurations. Initial priors were created based on zero flow
conditions with an initial estimation of parameter mean and variance. A slight modification
to the EnKF was made, resulting in the Semi Steady State EnKF (SSS-EnKF), to correct
for sub-optimal update steps. The correction is necessary due to the loss of connectivity
between parameters and the observed flow variables caused by non-Gaussianity in the initial
priors. The idea of the SSS-EnKF is to integrate the full ensemble state forward in time
by a given time step, in order to let information of the parameters to flow back into the
flow variables, ensuring that all ensemble members are at steady state for the corresponding
parameter values.

The semi steady state filter method in the current configuration could prove useful to estimate
the body force field generated by a plasma actuator. Different force model parameterizations
could be tested using this method including the error estimation for the parameters describing
the force model used. The study of the twin problem showed that most filter settings as
integration between updates, type of filter (EnKF vs DEnKF) and ensemble size, do not
greatly affect the solution. However, the current set-up, especially with regards to the forecast
model used, causes the SSS-EnKF to become highly sensitive to the initial prior. If the initial
prior contains members far away from the final solution, a lot of bias will be introduced into
the system to keep the ensemble members stable. When this happens, the estimation of
the parameter mean and variance will be dominated by bias error, resulting in poor results.
Parameter estimation with EnKF using PIV data could theoretically yield force fields with
better accuracy then current techniques using velocity based experimental measurements.
This thesis is therefore only a preliminary study into the application of parameter estimation
with EnKF using PIV data. Further research could improve upon the current method to
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make it more robust and even estimate time dependent parameters.

Recommendations

If further research in the area of parameter estimation using data assimilation for quasi-steady
state characteristics of the plasma actuator were to be of interest the following recommenda-
tion would be made to improve the method.

For EnKF parameter estimation with plasma actuators in general:

1. More robust forecast model. Use of a forecast model in which the initial start-up
vortex leaves the domain completely, reducing the chance of very high flow velocities
in the far field and making the use of the sponge layer obsolete. This will most likely
cause the method to become far less dependent on the initial prior.

2. Improvement of the linearity of the initial prior. Using a different initial integra-
tion time per ensemble member, allowing each ensemble member to reach steady state
independently.

3. Body fore parameterization The parameterization should contain the lowest possible
parameters (smoother response surface), while describing the body force as accurate as
possible (reducing bias in the forecast). Improvements could be made by solving for an
approximate electrical field with only a parameterization of the charge distribution.

4. Time dependent periodic body force field. Use the EnKF to determine the tem-
poral body force field. This allow the EnKF to use its ability to increase the accuracy
of the flow field not only spatially, but also in time.

Semi steady state filtering with quasi steady state flow field generated by plasma actuator:

1. New type of inflation. In order keep the true parameter values inside the range of
the ensemble members, use can be made of some sort of limiting inflation, ensuring the
total variance only decreases by a limited amount, never losing the true solution inside
the range of ensemble members.

2. Replacing unstable ensemble members. Ensemble members with high flow ve-
locity, causing the introduction of bias through the sponge layer, can be replaced by a
different stable ensemble member, or some interpolation between random stable ensem-
ble members.

3. Ensure steady state. Integrate each ensemble member with variable integration time
in between updates. The variable integration time is then determined by the time for
the ensemble member to reach steady state.
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PIV setup
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Table A.1: PIV setup

camera Photron Fastcam SA1 high speed CMOS
sensor size 1024 x 512

acquisition rate 10 kHz
lens Nikkor 105 mm

f-stop 4 + extension tubes
magnification 0.8

FOV 15x6 mm
seeding particles olive oil droplets ( 1 µm diameter)

laser Quantronix Darwin-Duo 80 W at 3 kHz
light sheet thickness 2 mm
Analizing software Davis 7.4 (Lavision GmbH)

interrogation window size 12x12 pixels
overlap 75 %
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Twin problem initial prior statistics

M.Sc. Thesis C.W.Schoemakers



76 Twin problem initial prior statistics

H

X [m]

Y
 [
m

]

 

 

−2 0 2 4 6 8 10 12

x 10
−3

0

1

2

3

4
x 10

−3

[m
/s

]

−1

−0.5

0

0.5

1

1.5

2

X [m]

Y
 [
m

]

 

 

−2 0 2 4 6 8 10 12

x 10
−3

0

1

2

3

4
x 10

−3

[m
/s

]

0.05

0.1

0.15

0.2

0.25

X [m]

Y
 [
m

]

 

 

−2 0 2 4 6 8 10 12

x 10
−3

0

1

2

3

4
x 10

−3

[−
]

−6

−4

−2

0

2

4

6

X [m]

Y
 [
m

]

 

 

−2 0 2 4 6 8 10 12

x 10
−3

0

1

2

3

4
x 10

−3

[−
]

10

20

30

40

50

Figure B.1: Uni-variant statistics of prior 2a x-velocity, To = 50; µ (top left), σ2 (top right), sk
(bottom left), and k (bottom right)
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Figure B.2: Uni-variant statistics of prior 2a y-velocity, To = 50; µ (top left), σ2 (top right), sk
(bottom left), and k (bottom right)
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Figure B.3: Uni-variant statistics of prior 2a x-velocity, To = 75; µ (top left), σ2 (top right), sk
(bottom left), and k (bottom right)
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Figure B.4: Uni-variant statistics of prior 2a y-velocity, To = 75; µ (top left), σ2 (top right), sk
(bottom left), and k (bottom right)
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Figure B.5: Uni-variant statistics of prior 2a x-velocity, To = 100; µ (top left), σ2 (top right),
sk (bottom left), and k (bottom right)
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Figure B.6: Uni-variant statistics of prior 2a y-velocity, To = 100; µ (top left), σ2 (top right),
sk (bottom left), and k (bottom right)
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Figure B.7: Uni-variant statistics of prior 2b x-velocity, To = 50; µ (top left), σ2 (top right), sk
(bottom left), and k (bottom right)
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Figure B.8: Uni-variant statistics of prior 2b y-velocity, To = 50; µ (top left), σ2 (top right), sk
(bottom left), and k (bottom right)
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Figure B.9: Uni-variant statistics of prior 2b x-velocity, To = 75; µ (top left), σ2 (top right), sk
(bottom left), and k (bottom right)
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Figure B.10: Uni-variant statistics of prior 2b y-velocity, To = 75; µ (top left), σ2 (top right),
sk (bottom left), and k (bottom right)
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Figure B.11: Uni-variant statistics of prior 2b x-velocity, To = 100; µ (top left), σ2 (top right),
sk (bottom left), and k (bottom right)
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Figure B.12: Uni-variant statistics of prior 2b y-velocity, To = 100; µ (top left), σ2 (top right),
sk (bottom left), and k (bottom right)
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Figure B.13: Uni-variant statistics of prior 3a x-velocity, To = 50; µ (top left), σ2 (top right),
sk (bottom left), and k (bottom right)
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Figure B.14: Uni-variant statistics of prior 3a y-velocity, To = 50; µ (top left), σ2 (top right),
sk (bottom left), and k (bottom right)
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Figure B.15: Uni-variant statistics of prior 3a x-velocity, To = 75; µ (top left), σ2 (top right),
sk (bottom left), and k (bottom right)
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Figure B.16: Uni-variant statistics of prior 3a y-velocity, To = 7; µ (top left), σ2 (top right), sk
(bottom left), and k (bottom right)
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Figure B.17: Uni-variant statistics of prior 3a x-velocity, To = 100; µ (top left), σ2 (top right),
sk (bottom left), and k (bottom right)
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Figure B.18: Uni-variant statistics of prior 3a y-velocity, To = 100; µ (top left), σ2 (top right),
sk (bottom left), and k (bottom right)
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Figure B.19: Uni-variant statistics of prior 3b x-velocity, To = 50; µ (top left), σ2 (top right),
sk (bottom left), and k (bottom right)
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Figure B.20: Uni-variant statistics of prior 3b y-velocity, To = 50; µ (top left), σ2 (top right),
sk (bottom left), and k (bottom right)
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Figure B.21: Uni-variant statistics of prior 3b x-velocity, To = 75; µ (top left), σ2 (top right),
sk (bottom left), and k (bottom right)

X [m]

Y
 [
m

]

 

 

−2 0 2 4 6 8 10 12

x 10
−3

0

1

2

3

4
x 10

−3

[m
/s

]

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

X [m]

Y
 [
m

]

 

 

−2 0 2 4 6 8 10 12

x 10
−3

0

1

2

3

4
x 10

−3

[m
/s

]

0

0.05

0.1

0.15

X [m]

Y
 [
m

]

 

 

−2 0 2 4 6 8 10 12

x 10
−3

0

1

2

3

4
x 10

−3

[−
]

−5

0

5

X [m]

Y
 [
m

]

 

 

−2 0 2 4 6 8 10 12

x 10
−3

0

1

2

3

4
x 10

−3

[−
]

10

20

30

40

50

60

70

80

Figure B.22: Uni-variant statistics of prior 3b y-velocity, To = 75; µ (top left), σ2 (top right),
sk (bottom left), and k (bottom right)

C.W.Schoemakers M.Sc. Thesis



87

X [m]

Y
 [

m
]

 

 

−2 0 2 4 6 8 10 12

x 10
−3

0

1

2

3

4
x 10

−3

[m
/s

]

0

0.5

1

1.5

2

X [m]

Y
 [

m
]

 

 

−2 0 2 4 6 8 10 12

x 10
−3

0

1

2

3

4
x 10

−3

[m
/s

]

0.2

0.4

0.6

0.8

1

1.2

1.4

X [m]

Y
 [

m
]

 

 

−2 0 2 4 6 8 10 12

x 10
−3

0

1

2

3

4
x 10

−3

[−
]

−6

−4

−2

0

2

4

6

8

X [m]

Y
 [

m
]

 

 

−2 0 2 4 6 8 10 12

x 10
−3

0

1

2

3

4
x 10

−3

[−
]

10

20

30

40

50

60

70

80

Figure B.23: Uni-variant statistics of prior 3b x-velocity, To = 100; µ (top left), σ2 (top right),
sk (bottom left), and k (bottom right)
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Figure B.24: Uni-variant statistics of prior 3b y-velocity, To = 100; µ (top left), σ2 (top right),
sk (bottom left), and k (bottom right)
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Figure B.25: Uni-variant statistics of prior 4 x-velocity, To = 100; µ (top left), σ2 (top right),
sk (bottom left), and k (bottom right)
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Figure B.26: Uni-variant statistics of prior 4 y-velocity, To = 100; µ (top left), σ2 (top right),
sk (bottom left), and k (bottom right)
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Figure B.27: Uni-variant statistics of prior 5 x-velocity, To = 100; µ (top left), σ2 (top right),
sk (bottom left), and k (bottom right)
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Figure B.28: Uni-variant statistics of prior 5 y-velocity, To = 100; µ (top left), σ2 (top right),
sk (bottom left), and k (bottom right)
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Figure B.29: Uni-variant statistics of prior 6 x-velocity, To = 100; µ (top left), σ2 (top right),
sk (bottom left), and k (bottom right)
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Figure B.30: Uni-variant statistics of prior 6 y-velocity, To = 100; µ (top left), σ2 (top right),
sk (bottom left), and k (bottom right)
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92 SSEnKF Results

C.1 Parameter development SSEnKF

For all figures: parameter mean and ±3σ error bars. Lines of constant values are equal to
true parameter value.
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Figure C.1: Steady State EnKF; prior
1a, To = 0.5 s
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Figure C.2: Steady State EnKF; prior
1a, To = 0.5 s

2800
2900
3000

F
x
o
 [

N
/m

2
]

−2000
−1900
−1800

F
y
o
 [

N
/m

2
]

0.8
1

1.2
x 10

−3

x
o
 [

m
]

0.8
1

1.2
x 10

−3

y
o
 [

m
]

9.9
9.95

10
x 10

5

B
 [

−
]

0 5 10 15 20 25 30 35 40 45

−2
0
2

x 10
−4

y
o
ff
s
e
t [

m
]

time from update [s]

Figure C.3: Steady State EnKF; prior
1a, To = 1.0 s
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Figure C.4: Steady State EnKF; prior
1b, To = 0.5 s
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Figure C.5: Steady State EnKF; prior
1b, To = 0.75 s
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Figure C.6: Steady State EnKF; prior
1b, To = 1.0 s

C.2 Divergence plots SSEnKF

For all figures: RMSEo
100 [m/s] (black solid line), RMSEf

100 [N/m2] (black dashed line), S [m/s]
(blue line)
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Figure C.7: Steady State EnKF; prior
1a, To = 0.5 s
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Figure C.8: Steady State EnKF; prior
1a, To = 0.5 s
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Figure C.9: Steady State EnKF; prior
1a, To = 1.0 s
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Figure C.10: Steady State EnKF;
prior 1b, To = 0.5 s
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Figure C.11: Steady State EnKF;
prior 1b, To = 0.75 s
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Figure C.12: Steady State EnKF;
prior 1b, To = 1.0 s
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D.1 Final parameter estimation

Table D.1: Full results of the data assimilation for the twin problem

EnKF Fxo [ N
m2 ] Fyo [ N

m2 ] xo [m] yo [m] β [-] yoffset [m] RMSEo [m/s] RMSEf [N/m2]

Prior 1 v1 µ 3.0126E+03 -1.9926E+03 9.9126E-04 1.0016E-03 1.0140E+06 -8.6250E-07 0.008 4.049

To =100 N = 60 σ2 1.9760E-01 1.4520E-01 2.6598E-14 5.3771E-14 6.0442E+04 1.7859E-14 0.008 4.049

Prior 1 v1 µ 3.0086E+03 -1.9714E+03 9.9566E-04 9.9871E-04 1.0053E+06 7.6392E-06 0.009 5.790

To = 100 N = 80 σ2 2.4677E-01 1.6394E-01 2.9758E-14 7.1843E-14 1.0968E+05 1.9351E-14 0.009 5.790

Prior 1 v1 µ 3.0110E+03 -1.9925E+03 1.0070E-03 1.0084E-03 1.0071E+06 -3.1693E-06 0.003 1.937

To = 50 N = 60 σ2 1.5782E-01 1.0055E-01 2.4502E-14 3.5011E-14 3.4525E+04 1.7855E-14 0.003 1.937

Prior 1 v1 µ 3.0134E+03 -2.0016E+03 1.0019E-03 9.9965E-04 9.9282E+05 -2.5464E-06 0.004 2.595

To = 50 N = 80 σ2 2.3165E-01 1.2694E-01 2.3261E-14 4.1728E-14 6.1652E+04 1.4356E-14 0.004 2.595

Prior 1 v1 µ 3.0219E+03 -1.9604E+03 1.0092E-03 1.0146E-03 1.0280E+06 -2.4286E-06 0.004 4.853

To = 75 N = 60 σ2 2.3247E-01 1.2199E-01 2.3862E-14 4.4165E-14 5.3470E+04 1.8991E-14 0.004 4.853

Prior 1 v1 µ 3.0036E+03 -2.0040E+03 1.0008E-03 1.0048E-03 1.0093E+06 7.2885E-07 0.004 2.185

To = 75 N = 80 σ2 2.4199E-01 1.7155E-01 3.0374E-14 6.0933E-14 9.1075E+04 1.8546E-14 0.004 2.185

Prior 2 v1 µ 2.9576E+03 -1.9559E+03 1.0140E-03 1.0335E-03 1.0423E+06 -9.7229E-06 0.005 7.125

To =100 N = 60 σ2 2.3953E-01 8.5326E-02 1.5488E-14 3.2902E-14 6.4169E+04 1.2549E-14 0.005 7.125

Prior 2 v1 µ 2.9927E+03 -2.0039E+03 1.0011E-03 9.9750E-04 1.0054E+06 1.9699E-06 0.003 1.580

To = 100 N = 80 σ2 2.3383E-01 9.8953E-02 1.8143E-14 5.0615E-14 9.0497E+04 1.3166E-14 0.003 1.580

Prior 2 v1 µ 2.8715E+03 -1.9488E+03 1.0012E-03 1.0196E-03 1.1094E+06 1.9595E-05 0.022 24.568

To = 50 N = 60 σ2 1.3492E-01 8.6711E-02 1.9512E-14 2.5494E-14 8.7779E+04 1.4621E-14 0.022 24.568

Prior 2 v1 µ 2.5913E+03 -1.5911E+03 1.0527E-03 1.2864E-03 1.3682E+06 -1.2174E-04 0.040 64.099

To = 50 N = 80 σ2 1.3128E-01 8.9035E-02 3.0674E-14 4.0438E-14 1.0804E+05 3.0161E-14 0.040 64.099

Prior 2 v1 µ 2.9576E+03 -1.8950E+03 1.0006E-03 1.0160E-03 1.0838E+06 1.7188E-05 0.010 20.948

To = 75 N = 60 σ2 1.5152E-01 7.7782E-02 2.1362E-14 3.7214E-14 7.0260E+04 1.7004E-14 0.010 20.948

Prior 2 v1 µ 2.9867E+03 -1.9919E+03 9.9854E-04 9.9970E-04 1.0117E+06 2.1420E-06 0.002 2.890

To = 75 N = 80 σ2 2.1477E-01 1.2624E-01 2.0730E-14 4.9359E-14 1.2212E+05 1.3312E-14 0.002 2.890

Prior 2 v2 µ 2.9449E+03 -1.9959E+03 9.9632E-04 1.0023E-03 1.0404E+06 4.1915E-06 0.004 8.552

To =100 N = 60 σ2 1.7010E-01 1.1922E-01 1.9125E-14 6.0237E-14 1.8917E+05 1.4610E-14 0.004 8.552

Prior 2 v2 µ 3.0037E+03 -1.9928E+03 1.0066E-03 1.0013E-03 1.0154E+06 2.9780E-07 0.003 2.753

To = 100 N = 80 σ2 4.0158E-01 1.4695E-01 2.5300E-14 7.0459E-14 1.4912E+05 1.8054E-14 0.003 2.753

Prior 2 v3 µ 2.9500E+03 -1.9325E+03 1.0071E-03 1.0270E-03 1.0435E+06 -3.1447E-06 0.006 10.366

To = 100 N = 60 σ2 1.3912E-01 8.0790E-02 1.8592E-14 4.0800E-14 7.8559E+04 1.5028E-14 0.006 10.366

Prior 2 v3 µ 2.9591E+03 -1.9811E+03 9.9351E-04 1.0062E-03 1.0326E+06 3.4626E-06 0.004 8.570

To = 100 N = 80 σ2 1.6867E-01 9.1939E-02 1.5762E-14 4.2789E-14 7.9750E+04 1.1621E-14 0.004 8.570

Prior 2 v4 µ 1.8817E+03 -1.4033E+03 1.4518E-03 1.2822E-03 1.4527E+06 -7.2040E-04 0.071 257.651

To =100 N = 60 σ2 5.0274E-02 3.7219E-02 2.7110E-14 4.1940E-13 6.9151E+04 2.5921E-15 0.071 257.651

Prior 2 v4 µ 1.9301E+03 -1.4226E+03 1.4367E-03 1.8658E-04 1.5610E+06 -7.3515E-04 0.065 315.000

To = 100 N = 80 σ2 5.6770E-02 4.9009E-02 2.9501E-14 9.4091E-10 1.4016E+05 3.8264E-15 0.065 315.000

Prior 2 v4 µ 1.9092E+03 -1.3054E+03 1.3878E-03 1.5295E-03 1.8003E+06 -7.3679E-04 0.064 209.278

To = 50 N = 60 σ2 4.5157E-02 4.2306E-02 2.5204E-14 1.5446E-13 6.5838E+04 2.6033E-15 0.064 209.278

Prior 2 v4 µ 1.8623E+03 -1.3998E+03 1.4913E-03 1.5138E-03 1.5578E+06 -7.4178E-04 0.066 217.634

To = 50 N = 80 σ2 7.0020E-02 5.3906E-02 3.9057E-14 8.9619E-13 1.2959E+05 3.1739E-15 0.066 217.634

Prior 2 v4 µ 1.9560E+03 -1.2984E+03 1.4224E-03 1.5566E-03 1.5011E+06 -7.1658E-04 0.073 192.946

To = 75 N = 60 σ2 3.9796E-02 7.6137E-02 3.4668E-14 8.7189E-14 1.4488E+05 3.4406E-15 0.073 192.946

Prior 2 v4 µ 1.9192E+03 -1.4794E+03 1.4937E-03 1.8532E-03 1.4701E+06 -7.3902E-04 0.064 138.691

To = 75 N = 80 σ2 6.1603E-02 5.2989E-02 3.3285E-14 5.8849E-12 1.4510E+05 4.7200E-15 0.064 138.691

Prior 3 v1 µ 2.3524E+03 -1.6909E+03 1.0535E-03 -1.1895E-03 1.0967E+06 -8.8688E-05 0.041 52.633

To =100 N = 60 σ2 7.6604E-02 4.3389E-02 3.6882E-14 5.3482E-14 6.3320E+04 2.8755E-14 0.041 52.633

Prior 3 v1 µ 3.5268E+02 -1.8864E+03 -3.2204E-04 -6.1261E-03 2.2331E+05 -4.2472E-03 0.208 533.971

To = 100 N = 80 σ2 7.8437E-03 9.2543E-02 2.8175E-13 1.0702E-12 6.2228E+03 8.3967E-13 0.208 533.971

Prior 3 v1 µ 2.7167E+03 -1.7432E+03 1.0895E-03 -1.1546E-03 1.3289E+06 -3.2218E-05 0.027 45.184

To = 50 N = 60 σ2 1.6083E-01 9.4547E-02 2.4813E-14 4.8973E-14 7.7887E+04 2.8666E-14 0.027 45.184

Prior 3 v1 µ 4.0748E+02 5.5028E+02 -1.6810E-05 -2.4781E-03 2.3173E+06 -1.5272E-03 0.182 324.725

To = 50 N = 80 σ2 3.8001E-02 3.9107E-01 3.4473E-13 2.4614E-13 2.7505E+04 2.0753E-13 0.182 324.725

Prior 3 v1 µ 3.2136E+02 -9.8504E+02 -4.4417E-03 -5.3945E-03 1.9941E+06 -2.0576E-03 0.226 343.884

To = 75 N = 60 σ2 7.3170E-03 2.0774E-01 2.4792E-13 9.5731E-13 8.2131E+04 7.9772E-13 0.226 343.884

Prior 3 v1 µ 1.8947E+03 -1.5769E+03 1.1281E-03 -1.2773E-03 1.0890E+06 -1.9027E-04 0.076 83.671

To = 75 N = 80 σ2 5.9622E-02 5.4352E-02 5.7474E-14 6.6276E-14 1.1323E+05 5.6980E-14 0.076 83.671

Prior 3 v2 µ 2.5951E+03 -1.8941E+03 1.1122E-03 -1.2301E-03 1.0671E+06 -1.5788E-04 0.023 40.507

To =100 N = 60 σ2 1.6759E-01 1.5848E-01 4.1973E-14 8.9051E-14 7.4635E+04 4.7538E-14 0.023 40.507

Prior 3 v2 µ 4.1481E+02 -2.0845E+03 -9.1139E-04 -7.2871E-03 1.3167E+05 -5.2345E-03 0.130 669.516

To = 100 N = 80 σ2 1.2666E-02 2.5872E-01 3.7841E-13 1.5691E-12 4.7785E+04 1.2736E-12 0.130 669.516
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D.1 Final parameter estimation 97

Prior 3 v3 µ 7.6817E+02 -1.1405E+03 2.9400E-04 -2.5454E-03 2.7230E+06 -8.3383E-04 0.229 265.275

To = 100 N = 60 σ2 8.9783E-03 1.7343E-02 6.3906E-14 1.7901E-13 6.0144E+04 1.5477E-13 0.229 265.275

Prior 3 v3 µ 2.7366E+02 -5.9511E+02 -5.7645E-04 -3.1276E-03 1.6896E+06 -9.3452E-04 0.277 307.879

To = 100 N = 80 σ2 3.4396E-03 5.3000E-02 1.9679E-13 6.0344E-13 1.7995E+05 5.7465E-13 0.277 307.879

Prior 3 v4 µ 2.8857E+03 -1.9939E+03 9.7170E-04 -4.1513E-03 1.1148E+06 2.6620E-05 0.015 664.764

To =100 N = 60 σ2 8.8599E-02 9.5540E-02 1.0278E-14 6.2386E-11 3.2938E+04 3.8782E-15 0.015 664.764

Prior 3 v4 µ 7.3174E+02 -3.2438E+02 -2.8493E-03 -2.2077E-03 1.6603E+06 4.6819E-04 0.294 323.263

To = 100 N = 80 σ2 3.2266E-02 7.6441E-02 5.3392E-14 2.2804E-12 7.9822E+04 5.5821E-15 0.294 323.263

Prior 3 v4 µ 3.3400E+03 -1.4522E+03 1.0075E-03 -5.3874E-03 1.1588E+06 7.9396E-05 0.064 405.652

To = 50 N = 60 σ2 1.1942E-01 7.0626E-02 1.0717E-14 6.3044E-12 5.0777E+04 2.9213E-15 0.064 405.652

Prior 3 v4 µ 5.7458E+03 8.5216E+03 -6.0923E-03 -2.6760E-03 1.7852E+06 -4.8789E-03 0.205 312.025

To = 50 N = 80 σ2 2.9163E+01 2.7725E+01 4.6033E-11 2.1486E-12 7.4540E+04 7.8348E-13 0.205 312.025

Prior 3 v4 µ -5.6000E+01 -2.5367E+02 -3.9510E-03 -3.0828E-03 2.4598E+06 2.3585E-04 0.248 313.535

To = 75 N = 60 σ2 1.0053E-02 4.1836E-02 2.1049E-14 1.2505E-12 8.8239E+04 1.7616E-14 0.248 313.535

Prior 3 v4 µ 4.3007E+03 -1.8925E+03 -5.9310E-03 -5.2030E-03 1.4291E+06 -2.3841E-03 0.263 576.891

To = 75 N = 80 σ2 9.3670E+00 6.7844E+01 1.3068E-12 2.7281E-12 1.1097E+05 2.1173E-13 0.263 576.891

Prior 4 v1 µ 2.9155E+03 -2.0510E+03 9.9356E-04 -9.9678E-04 9.9961E+05 1.1458E-06 0.009 8.705

To =100 N = 60 σ2 1.6886E-01 1.1002E-01 2.0260E-14 5.2720E-14 9.8281E+04 1.2194E-14 0.009 8.705

Prior 4 v1 µ 1.5036E+03 -7.7034E+02 1.3676E-03 -2.1003E-03 2.3833E+06 -7.5776E-04 0.129 179.548

To = 50 N = 60 σ2 2.4245E-02 4.9130E-02 4.7008E-14 7.9321E-14 5.4885E+04 7.7393E-14 0.129 179.548

Prior 4 v1 µ 3.2955E+01 -5.0317E+02 -6.5733E-04 -2.7411E-03 1.9234E+06 -1.0242E-03 0.251 300.940

To =75 N = 60 σ2 7.1748E-03 3.6014E-02 4.9535E-14 8.2932E-14 2.6944E+04 6.9638E-14 0.251 300.940

Prior 5 v1 µ -1.6337E+03 1.4553E+03 -1.6740E-03 -1.3823E-03 1.9992E+06 -3.1568E-04 0.235 389.002

To =100 N = 60 σ2 2.2914E-01 6.5543E-02 2.6934E-14 2.0905E-14 3.8293E+02 1.7040E-14 0.235 389.002

Prior 5 v1 µ -2.0181E+03 3.5575E+02 -1.6175E-03 -1.7485E-03 2.0116E+06 -6.2235E-04 0.228 387.637

To = 50 N = 60 σ2 1.5466E-01 2.9731E-02 1.9487E-14 2.4768E-14 2.8609E+02 1.8531E-14 0.228 387.637

Prior 5 v1 µ -1.7616E+03 1.1270E+03 -1.3312E-03 -1.7522E-03 2.0136E+06 -6.8686E-04 0.228 414.931

To =75 N = 60 σ2 9.8658E-02 1.0489E-02 1.0770E-14 8.8741E-15 5.2772E+01 6.2561E-15 0.228 414.931

Prior 6 v1 µ 2.9861E+03 -1.9961E+03 1.0016E-03 1.0021E-03 1.0129E+06 -1.1805E-06 0.003 2.294

To =100 N = 60 σ2 1.7765E-01 8.0858E-02 2.5528E-14 6.6592E-14 5.9803E+04 2.3536E-14 0.003 2.294

Prior 6 v1 µ 2.5587E+03 -1.2237E+03 1.0865E-03 1.4075E-03 1.9967E+06 -1.6323E-04 0.059 111.683

To = 50 N = 60 σ2 9.9123E-02 8.9494E-02 4.7685E-14 5.4417E-14 2.3645E+04 5.0181E-14 0.059 111.683

Prior 6 v1 µ 2.9319E+03 -1.9767E+03 9.9833E-04 1.0160E-03 1.0254E+06 -4.3207E-06 0.007 7.708

To =75 N = 60 σ2 1.6539E-01 8.5067E-02 2.4722E-14 5.2229E-14 6.2541E+04 2.0842E-14 0.007 7.708

DEnKF

Prior 1 v1 µ 2.9922E+03 -1.9746E+03 1.0033E-03 1.0108E-03 1.0294E+06 5.7322E-07 0.006 4.998

To =100 N = 60 σ2 3.7347E-01 2.7014E-01 5.0880E-14 9.1718E-14 1.1719E+05 3.0586E-14 0.006 4.998

Prior 1 v1 µ 3.0187E+03 -1.9812E+03 1.0017E-03 1.0050E-03 1.0046E+06 -1.1039E-06 0.003 2.686

To = 100 N = 80 σ2 4.3770E-01 3.0294E-01 4.9447E-14 1.0045E-13 1.8252E+05 3.3691E-14 0.003 2.686

Prior 1 v1 µ 2.9918E+03 -2.0037E+03 1.0047E-03 1.0021E-03 9.9773E+05 -2.8339E-06 0.004 2.309

To = 50 N = 60 σ2 5.0752E-01 3.2925E-01 5.9137E-14 1.0139E-13 1.5361E+05 3.9233E-14 0.004 2.309

Prior 1 v1 µ 3.0040E+03 -1.9928E+03 1.0035E-03 1.0036E-03 1.0014E+06 -2.8019E-06 0.002 1.477

To = 50 N = 80 σ2 5.4466E-01 3.7996E-01 6.2751E-14 1.1246E-13 2.2540E+05 4.0597E-14 0.002 1.477

Prior 1 v1 µ 3.0208E+03 -1.9792E+03 1.0024E-03 1.0064E-03 9.9825E+05 -3.3690E-06 0.003 3.093

To = 75 N = 60 σ2 4.6925E-01 3.0933E-01 5.6440E-14 1.0528E-13 1.5430E+05 3.5287E-14 0.003 3.093

Prior 1 v1 µ 2.9907E+03 -1.9893E+03 1.0037E-03 1.0075E-03 1.0120E+06 -2.1271E-06 0.003 1.707

To = 75 N = 80 σ2 4.7600E-01 3.4520E-01 5.7180E-14 1.1021E-13 2.0589E+05 3.8457E-14 0.003 1.707

Prior 2 v1 µ 2.9711E+03 -1.9882E+03 9.9982E-04 1.0069E-03 1.0389E+06 2.6306E-06 0.003 6.694

To =100 N = 60 σ2 3.0176E-01 1.5395E-01 3.0833E-14 6.9019E-14 9.5072E+04 2.3051E-14 0.003 6.694

Prior 2 v1 µ 2.9848E+03 -1.9853E+03 1.0062E-03 1.0068E-03 1.0186E+06 -1.5973E-06 0.002 2.793

To = 100 N = 80 σ2 3.5242E-01 1.8313E-01 3.4555E-14 7.5159E-14 1.1908E+05 2.3378E-14 0.002 2.793

Prior 2 v1 µ 2.9728E+03 -1.9681E+03 1.0439E-03 1.0412E-03 1.0428E+06 -1.8253E-05 0.010 10.131

To = 50 N = 60 σ2 3.1764E-01 1.5975E-01 3.4249E-14 6.6874E-14 1.4865E+05 3.0396E-14 0.010 10.131

Prior 2 v1 µ 2.9386E+03 -1.9281E+03 1.0262E-03 1.0500E-03 1.0410E+06 -1.5542E-05 0.008 9.189

To = 50 N = 80 σ2 3.4863E-01 2.1464E-01 4.3704E-14 7.6838E-14 1.6716E+05 3.7389E-14 0.008 9.189

Prior 2 v1 µ 2.9967E+03 -1.9991E+03 1.0024E-03 1.0019E-03 1.0056E+06 -5.1548E-07 0.001 0.747

To = 75 N = 60 σ2 3.1478E-01 1.6736E-01 3.1471E-14 7.1058E-14 1.2824E+05 2.2124E-14 0.001 0.747

Prior 2 v1 µ 2.9881E+03 -1.9903E+03 1.0047E-03 1.0089E-03 1.0121E+06 -2.9797E-06 0.002 1.673

To = 75 N = 80 σ2 3.8720E-01 1.9069E-01 3.7429E-14 7.6135E-14 1.3454E+05 2.7808E-14 0.002 1.673

Prior 2 v2 µ 2.9862E+03 -1.9967E+03 1.0053E-03 1.0084E-03 1.0531E+06 -1.2390E-07 0.003 6.181

To =100 N = 60 σ2 4.3758E-01 2.5353E-01 4.2038E-14 9.0952E-14 1.6623E+05 3.3361E-14 0.003 6.181

Prior 2 v2 µ 3.0052E+03 -1.9998E+03 1.0024E-03 9.9971E-04 1.0112E+06 -1.0721E-07 0.002 1.844

To = 100 N = 80 σ2 4.9118E-01 2.9041E-01 4.9936E-14 1.1272E-13 2.2727E+05 3.5569E-14 0.002 1.844

Prior 2 v3 µ 2.9400E+03 -1.9162E+03 1.0162E-03 1.0447E-03 1.0569E+06 -8.4135E-06 0.007 12.516
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98 Results Twin problem

To = 100 N = 60 σ2 2.5529E-01 1.1495E-01 2.9186E-14 6.1024E-14 7.2659E+04 2.4036E-14 0.007 12.516

Prior 2 v3 µ 2.9703E+03 -1.9846E+03 1.0010E-03 1.0061E-03 1.0205E+06 8.1813E-07 0.002 4.501

To = 100 N = 80 σ2 2.9200E-01 1.4651E-01 2.8608E-14 6.6064E-14 8.7642E+04 1.9678E-14 0.002 4.501

Prior 2 v4 µ 1.9164E+03 -1.4235E+03 1.4663E-03 1.5063E-03 1.2174E+06 -7.5654E-04 0.062 212.439

To =100 N = 60 σ2 9.1053E-02 1.2439E-01 6.6259E-14 8.6844E-13 1.4430E+05 8.5693E-15 0.062 212.439

Prior 2 v4 µ 1.9284E+03 -1.4131E+03 1.4441E-03 1.4145E-03 1.2683E+06 -7.5219E-04 0.062 231.542

To = 100 N = 80 σ2 9.2183E-02 1.2274E-01 5.4803E-14 1.7775E-12 1.5855E+05 7.1540E-15 0.062 231.542

Prior 2 v4 µ 1.8851E+03 -1.3873E+03 1.3424E-03 1.2270E-03 1.9125E+06 -7.4134E-04 0.058 274.340

To = 50 N = 60 σ2 1.3271E-01 1.9490E-01 7.3312E-14 5.8337E-13 2.9058E+05 7.1594E-15 0.058 274.340

Prior 2 v4 µ 1.9477E+03 -1.3454E+03 1.3686E-03 1.3620E-03 1.4189E+06 -7.2742E-04 0.056 234.902

To = 50 N = 80 σ2 1.4456E-01 1.9575E-01 8.7073E-14 1.1084E-12 4.3621E+05 8.2194E-15 0.056 234.902

Prior 2 v4 µ 1.9401E+03 -1.4599E+03 1.4420E-03 1.4280E-03 1.2537E+06 -7.5056E-04 0.059 228.070

To = 75 N = 60 σ2 1.0042E-01 1.7380E-01 7.3789E-14 4.9468E-13 2.3095E+05 8.2857E-15 0.059 228.070

Prior 2 v4 µ 1.8184E+03 -1.4806E+03 1.4691E-03 1.5241E-03 1.4208E+06 -7.6207E-04 0.058 215.881

To = 75 N = 80 σ2 1.3113E-01 1.3806E-01 6.6877E-14 1.7684E-12 4.2263E+05 8.7664E-15 0.058 215.881

Prior 3 v1 µ 2.9082E+03 -1.9680E+03 9.9401E-04 -1.0069E-03 1.0392E+06 5.9220E-06 0.006 12.623

To =100 N = 60 σ2 2.7285E-01 1.4869E-01 3.2622E-14 6.9626E-14 9.3320E+04 2.4297E-14 0.006 12.623

Prior 3 v1 µ 7.1237E+02 -2.3536E+03 -2.0068E-03 -6.7496E-03 1.2504E+06 -5.0396E-03 0.140 457.745

To = 100 N = 80 σ2 2.0349E-02 6.5169E-01 8.3338E-13 1.3812E-12 3.5265E+05 1.2766E-12 0.140 457.745

Prior 3 v1 µ 1.0421E+03 -9.7704E+02 5.2418E-04 -1.3354E-03 2.2113E+06 4.6023E-05 0.108 240.069

To = 50 N = 60 σ2 1.3406E-01 1.6254E-01 1.2020E-13 1.6847E-13 2.8300E+05 9.9833E-14 0.108 240.069

Prior 3 v1 µ 2.2868E+03 -1.4355E+03 1.0596E-03 -1.3089E-03 1.6376E+06 -1.0717E-04 0.036 97.816

To = 50 N = 80 σ2 2.1592E-01 1.6574E-01 7.9844E-14 1.0753E-13 4.8037E+05 9.1269E-14 0.036 97.816

Prior 3 v1 µ 2.7501E+02 -1.5503E+02 -3.2687E-03 -2.5015E-03 2.6126E+06 4.6036E-04 0.172 313.582

To = 75 N = 60 σ2 1.9169E-02 2.1875E-01 1.0185E-12 3.0684E-12 7.2713E+05 2.6944E-12 0.172 313.582

Prior 3 v1 µ 2.9851E+03 -1.9889E+03 1.0013E-03 -1.0016E-03 1.0146E+06 2.0835E-06 0.002 3.032

To = 75 N = 80 σ2 3.5421E-01 1.9419E-01 3.4571E-14 7.6417E-14 1.7257E+05 2.5135E-14 0.002 3.032

Prior 3 v2 µ 2.9719E+03 -1.9790E+03 1.0028E-03 -1.0043E-03 1.0456E+06 1.0070E-06 0.004 7.350

To =100 N = 60 σ2 4.0601E-01 2.9271E-01 5.3829E-14 1.0301E-13 1.8197E+05 4.3955E-14 0.004 7.350

Prior 3 v2 µ 4.3537E+02 -1.1533E+03 -5.2146E-04 -5.4132E-03 1.2868E+06 -3.9312E-03 0.105 289.617

To = 100 N = 80 σ2 2.8460E-02 1.0397E+00 6.3879E-12 1.2188E-11 2.2099E+06 1.1590E-11 0.105 289.617

Prior 3 v3 µ 2.8300E+03 -1.9128E+03 1.0101E-03 -1.0545E-03 1.0715E+06 -9.0199E-06 0.012 20.779

To = 100 N = 60 σ2 1.9533E-01 9.7657E-02 3.1531E-14 5.7339E-14 7.2424E+04 2.6217E-14 0.012 20.779

Prior 3 v3 µ 5.5636E+02 -1.5425E+03 -1.3984E-03 -5.7613E-03 1.5861E+06 -4.1062E-03 0.184 338.234

To = 100 N = 80 σ2 2.4974E-02 4.7670E-01 5.1037E-13 8.0857E-13 2.5855E+05 7.3022E-13 0.184 338.234

Prior 3 v4 µ 6.2025E+02 4.2596E+02 -3.1066E-04 -1.7435E-04 1.4428E+06 -9.8063E-05 0.172 310.270

To =100 N = 60 σ2 9.6817E-02 3.0617E-01 2.5008E-13 6.0692E-12 8.2383E+05 5.9308E-14 0.172 310.270

Prior 3 v4 µ 3.6186E+01 4.2428E+02 -2.5977E-03 2.5548E-03 1.1479E+06 -3.2749E-04 0.155 319.581

To = 100 N = 80 σ2 7.2640E-02 2.1668E-01 1.3504E-12 2.1379E-11 2.0170E+06 1.6949E-13 0.155 319.581

Prior 3 v4 µ 6.3455E+02 -1.7165E+02 -1.3382E-03 -3.2388E-03 1.8691E+06 2.3382E-04 0.149 322.286

To = 50 N = 60 σ2 7.3763E-02 1.4842E-01 5.5049E-14 8.6181E-12 2.4599E+05 9.2321E-15 0.149 322.286

Prior 3 v4 µ 7.6520E+03 -2.3639E+03 -6.9729E-03 -1.6416E-02 1.5240E+06 -1.5578E-02 0.174 1347.644

To = 50 N = 80 σ2 3.7606E+02 3.0987E+02 8.7309E-10 2.7946E-10 1.0425E+06 3.7381E-10 0.174 1347.644

Prior 3 v4 µ -1.7865E+03 3.5743E+03 -5.7623E-04 -7.9261E-03 2.8949E+06 -8.4950E-03 0.187 345.874

To = 75 N = 60 σ2 7.2798E+01 4.4856E+02 7.1822E-11 5.5531E-11 1.1326E+06 1.0329E-10 0.187 345.874

Prior 3 v4 µ 1.4800E+04 -9.4108E+03 -1.8852E-02 -5.8287E-03 1.5216E+06 -7.3195E-03 0.149 312.018

To = 75 N = 80 σ2 6.0430E+02 8.9723E+02 2.1683E-10 2.7776E-11 1.9086E+06 1.7441E-11 0.149 312.018

Prior 4 v1 µ 2.9223E+03 -1.9530E+03 1.0202E-03 -1.0408E-03 1.0508E+06 -1.2596E-05 0.007 8.634

To =100 N = 60 σ2 2.8345E-01 1.7482E-01 3.5700E-14 6.8658E-14 1.3532E+05 3.0264E-14 0.007 8.634

Prior 4 v1 µ 8.8545E+02 2.8991E+02 1.0043E-03 -3.3435E-03 1.7109E+06 -2.0498E-03 0.138 278.316

To = 50 N = 60 σ2 4.4286E-02 2.7224E-01 5.2946E-13 5.3867E-13 4.3652E+04 4.8070E-13 0.138 278.316

Prior 4 v1 µ 2.4068E+03 -1.2764E+03 1.3138E-03 -1.4034E-03 1.0742E+06 -2.5741E-04 0.075 84.612

To =75 N = 60 σ2 1.0151E-01 1.1262E-01 5.3250E-14 8.1023E-14 1.3878E+05 6.0515E-14 0.075 84.612

Prior 5 v1 µ 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.953 312.025

To =100 N = 60 σ2 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.953 312.025

Prior 5 v1 µ 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.953 312.025

To = 50 N = 60 σ2 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.953 312.025

Prior 5 v1 µ 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.953 312.025

To =75 N = 60 σ2 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.953 312.025

Prior 6 v1 µ 2.9957E+03 -1.9838E+03 1.0052E-03 1.0075E-03 1.0179E+06 -2.6688E-06 0.003 2.322

To =100 N = 60 σ2 3.0478E-01 1.5169E-01 3.2427E-14 6.6411E-14 9.2324E+04 2.1561E-14 0.003 2.322

Prior 6 v1 µ 2.9593E+03 -2.0765E+03 1.0316E-03 1.0193E-03 9.6376E+05 -1.3325E-05 0.016 15.525

To = 50 N = 60 σ2 2.2225E-01 1.2199E-01 3.3465E-14 6.1278E-14 6.2235E+04 2.4834E-14 0.016 15.525

Prior 6 v1 µ 2.9434E+03 -1.9950E+03 1.0101E-03 1.0147E-03 1.0400E+06 -3.3534E-06 0.005 6.000

To =75 N = 60 σ2 2.8609E-01 1.5868E-01 3.2039E-14 7.1410E-14 1.2415E+05 2.6664E-14 0.005 6.000
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D.2 Parameter estimation development and divergence plots

Only results using initial priors with To = 1.0 s are shown. SSSEnKF results; TOP: RMSEo∗
100[m/s] (* black solid line), RMSEf

100 [N/m2] (x black dashed line), Σ
10 [m/s] (* blue line).

BOTTOM: parameter mean and ±3σ error bars. Lines of constant values are equal to true
parameter value.
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Figure D.1: EnKF: prior 1v1, N = 60
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Figure D.2: EnKF: prior 1v1, N = 80
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Figure D.3: EnKF: prior 2v1, N = 60
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Figure D.4: EnKF: prior 2v1, N = 80
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Figure D.5: EnKF: prior 3v1, N = 60
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Figure D.6: EnKF: prior 3v1, N = 80
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Figure D.7: EnKF: prior 4v1, N = 60
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Figure D.8: EnKF: prior 5v1, N = 60
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Figure D.9: EnKF: prior 6v1, N = 60

0 0.005 0.01 0.015 0.02 0.025 0.03
0

0.5

1

1.5

2

2.5

3

3.5

4

time from initial update [s]

2000
2500
3000

F
x
o
 [

N
/m

2
]

−2000

−1500

−1000

F
y
o
 [

N
/m

2
]

0
5

10
x 10

−4

x
o
 [

m
]

1

1.5

2
x 10

−3
y

o
 [

m
]

1

1.5

2
x 10

6

B
 [

−
]

0 100 200 300 400 500 600
−8
−6
−4
−2

0
2
4

x 10
−4

y
o
ff
s
e
t [

m
]

time from update [s]

Figure D.10: EnKF: prior 2v2, N =
60
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Figure D.11: EnKF: prior 2v2, N =
80
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Figure D.12: EnKF: prior 3v2, N =
60
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Figure D.13: EnKF: prior 3v2, N =
80

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0

0.5

1

1.5

2

2.5

3

3.5

4

time from initial update [s]

0
1000
2000
3000

F
x
o
 [

N
/m

2
]

−2000

−1000

0

F
y
o
 [

N
/m

2
]

0
5

10
x 10

−4

x
o
 [

m
]

0

1

x 10
−3

y
o
 [

m
]

0

1

2
x 10

6

B
 [

−
]

0 50 100 150 200 250 300 350 400 450
−8
−6
−4
−2

0
2
4

x 10
−4

y
o

ff
s
e

t [
m

]

time from update [s]

Figure D.14: EnKF: prior 2v3, N =
60
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Figure D.15: EnKF: prior 2v3, N =
80

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0

0.5

1

1.5

2

2.5

3

3.5

4

time from initial update [s]

0

2000

F
x
o
 [

N
/m

2
]

−2000

−1000

0

F
y
o
 [

N
/m

2
]

−2
−1

0
1

x 10
−3

x
o
 [

m
]

−3
−2
−1

0
1

x 10
−3

y
o
 [

m
]

0
1
2

x 10
6

B
 [

−
]

0 50 100 150 200 250 300 350 400 450

−2
0
2

x 10
−3

y
o

ff
s
e

t [
m

]

time from update [s]

Figure D.16: EnKF: prior 3v3, N =
60
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Figure D.17: EnKF: prior 3v3, N =
80
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Figure D.18: EnKF: prior 2v4, N =
60
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Figure D.19: EnKF: prior 2v4, N =
80
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Figure D.20: EnKF: prior 3v4, N =
60
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Figure D.21: EnKF: prior 3v4, N =
80
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Figure D.22: DEnKF: prior 1v1, N =
60
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Figure D.23: DEnKF: prior 1v1, N =
80
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Figure D.24: DEnKF: prior 2v1, N =
60
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Figure D.25: DEnKF: prior 2v1, N =
80

C.W.Schoemakers M.Sc. Thesis



D.2 Parameter estimation development and divergence plots 107

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

0.5

1

1.5

2

2.5

3

3.5

4

time from initial update [s]

0

2000

F
x
o
 [

N
/m

2
]

−2000

−1000

0

F
y
o
 [

N
/m

2
]

−2
−1

0
1

x 10
−3

x
o
 [

m
]

−2
−1

0
1

x 10
−3

y
o
 [

m
]

0

1

2
x 10

6

B
 [

−
]

0 50 100 150 200 250 300 350 400 450 500

−2
0
2

x 10
−3

y
o

ff
s
e

t [
m

]

time from update [s]

Figure D.26: DEnKF: prior 3v1, N =
60

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

time from initial update [s]

0

2000

F
x
o
 [

N
/m

2
]

−2000
−1000

0

F
y
o
 [

N
/m

2
]

−4

−2

0
x 10

−3

x
o
 [

m
]

−6
−4
−2

0
x 10

−3
y

o
 [

m
]

0

1

2
x 10

6

B
 [

−
]

0 50 100 150 200 250 300 350 400 450 500
−6
−4
−2

0
2

x 10
−3

y
o

ff
s
e

t [
m

]

time from update [s]

Figure D.27: DEnKF: prior 3v1, N =
80
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Figure D.28: DEnKF: prior 4v1, N =
60
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Figure D.29: DEnKF: prior 5v1, N =
60
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Figure D.30: DEnKF: prior 6v1, N =
60
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Figure D.31: DEnKF: prior 2v2, N =
60
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Figure D.32: DEnKF: prior 2v2, N =
80
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Figure D.33: DEnKF: prior 3v2, N =
60
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Figure D.34: DEnKF: prior 3v2, N =
80
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Figure D.35: DEnKF: prior 2v3, N =
60
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Figure D.36: DEnKF: prior 2v3, N =
80
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Figure D.37: DEnKF: prior 3v3, N =
60
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Figure D.38: DEnKF: prior 3v3, N =
80
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Figure D.39: DEnKF: prior 2v4, N =
60
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Figure D.40: DEnKF: prior 2v4, N =
80
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Figure D.41: DEnKF: prior 3v4, N =
60
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Figure D.42: DEnKF: prior 3v4, N =
80
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E.1 Parameter estimation results

Table E.1: Results DEnKF with PIV data, case 1-4
Case 1

Prior # Fxo [ N
m2 ] Fyo [ N

m2 ] xo [m] yo [m] β [-] yoffset [m] RMSEo Tx [N] Ty [N]

2 µ 9.63E+02 -9.73E+02 1.01E-03 -9.31E-04 1.29E+07 -6.23E-04 1.98E-02 7.58E-01 -7.66E-01

σ2 5.34E-01 6.67E+00 7.82E-13 5.13E-13 6.65E+08 3.65E-13 - - -

3 µ 1.10E+03 -1.29E+03 7.56E-04 7.62E-04 2.80E+06 -7.97E-04 2.02E-02 1.08E+00 -1.27E+00

σ2 7.98E+00 3.94E+01 4.21E-12 3.04E-12 1.28E+07 5.54E-13 - - -

4 µ -1.30E+04 -7.66E+03 7.21E-03 6.50E-03 2.60E+06 -7.95E-03 3.22E-02 -9.63E-02 -5.66E-02

σ2 4.02E+03 7.52E+04 4.48E-10 4.04E-10 1.96E+08 3.50E-10 - - -

Case 2

Fxo [ N
m2 ] Fyo [ N

m2 ] xo [m] yo [m] β [-] yoffset [m] RMSEo Tx [N] Ty [N]

1 µ 1.48E+03 -1.30E+03 1.25E-03 -1.18E-03 4.57E+06 -8.81E-04 5.06E-02 2.29E+00 -2.00E+00

σ2 5.70E-01 4.53E+00 5.17E-13 4.87E-13 2.52E+07 2.54E-13 - - -

3 µ -4.72E+02 9.65E+02 3.69E-03 -1.90E-03 2.85E+04 -1.04E-03 7.24E-02 -2.31E+01 4.73E+01

σ2 6.84E-02 1.30E-01 8.93E-13 1.50E-12 6.59E+03 8.94E-13 - - -

5 µ 1.47E+03 -1.37E+03 1.15E-03 1.15E-03 3.82E+06 -8.71E-04 5.14E-02 2.37E+00 -2.22E+00

σ2 5.56E-01 5.02E+00 6.65E-13 5.20E-13 1.16E+07 3.00E-13 - - -

6 µ 2.20E+03 3.91E+03 1.32E-03 5.86E-04 6.21E+05 -1.34E-03 5.50E-02 3.22E+00 5.74E+00

σ2 3.06E+00 3.05E+01 8.65E-13 1.16E-12 2.81E+05 2.59E-13 - - -

Case 3

Fxo [ N
m2 ] Fyo [ N

m2 ] xo [m] yo [m] β [-] yoffset [m] RMSEo Tx [N] Ty [N]

10 µ 2.65E+03 6.27E+03 1.85E-03 1.09E-03 3.20E+05 -2.28E-03 1.28E-01 7.41E+00 1.75E+01

σ2 4.19E+00 5.66E+01 1.23E-12 1.59E-12 3.63E+04 2.62E-13 - - -

5 µ 1.20E+03 -1.78E+03 3.01E-03 3.26E-04 1.62E+06 3.82E-03 2.08E-01 1.53E+00 -2.27E+00

σ2 2.06E+00 2.63E+00 7.13E-14 1.58E-14 9.59E+05 2.88E-14 - - -

6 µ 5.30E+02 3.02E+02 2.39E-03 -1.68E-05 1.37E+06 1.04E-03 1.91E-01 6.14E-01 3.50E-01

σ2 6.50E-01 1.29E+00 4.17E-13 1.44E-12 3.27E+06 1.70E-13 - - -

8 µ 6.63E+02 2.33E+02 1.61E-03 1.10E-05 1.24E+06 1.18E-03 1.93E-01 8.66E-01 3.05E-01

σ2 2.25E-01 3.53E-01 2.86E-13 4.57E-14 3.58E+05 1.01E-13 - - -

Case 4

Fxo [ N
m2 ] Fyo [ N

m2 ] xo [m] yo [m] β [-] yoffset [m] RMSEo Tx [N] Ty [N]

9 µ 9.04E+02 1.65E+03 5.22E-03 4.27E-03 2.11E+06 -3.78E-03 2.76E-01 7.22E+00 1.32E+01

σ2 6.99E-02 1.82E+01 1.96E-11 2.29E-11 9.98E+05 2.29E-11 - - -

7 µ 1.18E+03 -9.04E+03 2.47E-03 7.16E-03 7.55E+05 -7.62E-03 2.83E-01 9.87E+00 -7.59E+01

σ2 5.64E-01 1.37E+02 1.10E-11 7.44E-12 2.75E+05 8.09E-12 - - -

8 µ 1.86E+03 -1.79E+03 2.82E-03 2.97E-03 3.26E+06 -2.42E-03 2.30E-01 9.04E+00 -8.71E+00

σ2 2.37E-01 6.28E+00 1.13E-12 8.31E-13 2.22E+06 8.04E-13 - - -
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Table E.2: Results DEnKF with PIV data, case 5-8
Case 5

Prior # Fxo [ N
m2 ] Fyo [ N

m2 ] xo [m] yo [m] β [-] yoffset [m] RMSEo Tx [N] Ty [N]

9 µ 2.26E+03 -1.87E+03 4.45E-03 4.08E-03 2.46E+06 -3.50E-03 3.52E-01 1.70E+01 -1.41E+01

σ2 2.07E-01 4.30E+01 4.46E-12 2.32E-12 8.12E+05 2.30E-12 - - -

7 µ 5.48E+03 -1.65E+04 3.20E-04 3.36E-03 9.17E+04 -5.87E-03 3.74E-01 5.62E+01 -1.69E+02

σ2 1.43E+01 2.34E+02 4.57E-12 3.39E-12 2.78E+03 2.89E-12 - - -

8 µ 2.31E+03 -2.71E+03 4.95E-03 4.93E-03 2.67E+06 -4.31E-03 3.57E-01 2.06E+01 -2.41E+01

σ2 2.14E-01 7.22E+00 1.27E-12 1.15E-12 7.81E+05 1.11E-12 0 0 0

Case 6

Fxo [ N
m2 ] Fyo [ N

m2 ] xo [m] yo [m] β [-] yoffset [m] RMSEo Tx [mN] Ty [mN]

1 µ 8.92E+02 -5.21E+04 1.09E+00 8.22E-01 1.78E+06 -8.21E-01 6.56E-02 5.36E+00 -3.13E+02

σ2 2.60E+00 1.93E+04 4.69E-06 1.38E-06 1.18E+07 1.38E-06 - - -

2 µ 4.68E+03 -2.90E+03 -1.70E-04 1.51E-04 4.61E+05 -1.68E-03 5.16E-02 3.30E+00 -2.04E+00

σ2 1.03E+01 2.65E+02 3.13E-12 4.12E-14 6.22E+04 3.56E-13 - - -

3 µ -8.44E+04 -2.42E+06 5.15E-03 2.83E-03 3.06E+08 -2.94E-03 6.86E-02 -1.30E-01 -3.74E+00

σ2 1.84E+04 3.33E+06 4.21E-12 1.16E-11 1.73E+10 1.17E-11 - - -

6 µ 8.18E+02 -8.34E+02 1.20E-03 -1.56E-03 1.16E+06 -1.61E-03 5.30E-02 2.39E+00 -2.43E+00

σ2 1.47E+00 1.09E+01 4.04E-12 2.55E-12 7.46E+05 6.41E-13 - - -

Case 7

Fxo [ N
m2 ] Fyo [ N

m2 ] xo [m] yo [m] β [-] yoffset [m] RMSEo Tx [mN] Ty [mN]

9 µ 3.95E+03 -1.12E+04 -1.82E-04 -3.16E-04 5.75E+05 -1.22E-03 9.06E-02 4.67E+00 -1.33E+01

σ2 8.75E-01 2.06E+01 2.79E-13 5.02E-14 4.65E+04 6.72E-14 - - -

5 µ 2.46E+03 3.84E+03 1.29E-03 6.71E-04 2.95E+05 -2.02E-03 1.05E-01 5.78E+00 9.02E+00

σ2 1.71E+00 2.13E+01 1.12E-12 1.62E-12 5.05E+04 4.07E-13 - - -

6 µ 8.51E+03 -1.65E+04 -4.13E-04 -9.85E-05 4.30E+05 -1.71E-03 8.22E-02 6.00E+00 -1.16E+01

σ2 3.58E+00 8.67E+01 7.51E-13 2.32E-14 1.52E+04 2.02E-13 - - -

Case 8

Fxo [ N
m2 ] Fyo [ N

m2 ] xo [m] yo [m] β [-] yoffset [m] RMSEo Tx [N] Ty [N]

5 µ 9.88E+02 -9.43E+02 -4.31E-04 2.50E-03 2.67E+06 1.20E-03 2.73E-01 4.75E+00 -4.54E+00

σ2 1.29E-01 1.76E-01 3.77E-13 5.04E-13 3.86E+06 6.54E-13 - - -

7 µ 2.64E+03 -2.67E+04 -9.99E-05 3.44E-03 6.38E+05 -4.36E-03 1.90E-01 7.48E+00 -7.57E+01

σ2 5.20E+00 1.08E+03 1.98E-12 1.18E-12 5.82E+04 1.13E-12 - - -

8 µ 3.10E+03 -3.87E+03 4.60E-04 -5.32E-04 8.64E+05 -9.03E-04 1.99E-01 4.57E+00 -5.70E+00

σ2 1.23E+01 1.56E+01 4.04E-13 4.24E-13 4.89E+05 8.45E-14 - - -
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E.2 Force field plots all cases
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Figure E.1: Force field contours for case 1
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Figure E.2: Force field contours for case 2
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Figure E.3: Force field contours for case 3
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Figure E.4: Force field contours for case 4
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Figure E.6: Force field contours for case 6
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Figure E.7: Force field contours for case 7
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122 PIV filtering with DEnKF results

E.3 Parameter estimation development and divergence plots

SSSEnKF results; TOP: RMSEo∗100[m/s] (* black solid line), RMSEf
100 [N/m2] (x black dashed

line), Σ
[ m/s] (* blue line). BOTTOM: parameter mean and ±3σ error bars. Lines of constant

values are equal to true parameter value.
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Figure E.9: Case 1, prior 2, DEnKF
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Figure E.10: Case 1, prior 3, DEnKF
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Figure E.11: Case 1, prior 4, DEnKF
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Figure E.12: Case 2, prior 1, DEnKF
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Figure E.13: Case 2, prior 3, DEnKF
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Figure E.14: Case 2, prior 5, DEnKF
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Figure E.15: Case 2, prior 6, DEnKF
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Figure E.16: Case 3, prior 5, DEnKF
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Figure E.17: Case 3, prior 6, DEnKF
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Figure E.18: Case 3, prior 8, DEnKF
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Figure E.19: Case 3, prior 9, DEnKF
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Figure E.20: Case 4, prior 7, DEnKF
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Figure E.21: Case 4, prior 8, DEnKF
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Figure E.22: Case 4, prior 9, DEnKF
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Figure E.23: Case 5, prior 7, DEnKF
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Figure E.24: Case 5, prior 8, DEnKF
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Figure E.25: Case 5, prior 9, DEnKF
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Figure E.26: Case 6, prior 1, DEnKF
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Figure E.27: Case 6, prior 3, DEnKF
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Figure E.28: Case 6, prior 6, DEnKF

M.Sc. Thesis C.W.Schoemakers



128 PIV filtering with DEnKF results

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

0.5

1

1.5

2

2.5

3

3.5

4

time from initial update [s]

0

5

10

15

20

25

30

35

40

45

0

5000

F
x
o
 [

N
/m

2
]

−6000
−4000
−2000

0
2000
4000

F
y
o
 [

N
/m

2
]

0

2

4
x 10

−3

x
o
 [

m
]

0

2

4
x 10

−3

y
o
 [

m
]

0

1

2
x 10

6

B
 [

−
]

0 100 200 300 400 500 600 700 800 900 1000
−4
−2

0
2

x 10
−3

y
o

ff
s
e

t [
m

]

time from update [s]

Figure E.29: Case 7, prior 5, DEnKF
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Figure E.30: Case 7, prior 6, DEnKF
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Figure E.31: Case 7, prior 9, DEnKF
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Figure E.32: Case 8, prior 5, DEnKF
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Figure E.33: Case 8, prior 8, DEnKF
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Figure E.34: Case 8, prior 9, DEnKF
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