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Abstract: With the increasing adoption of semantic 3D city models, the relevance of applications in 

the field of Urban Building Energy Modelling (UBEM) has rapidly grown, as the building sector 

accounts for a large part of the total energy consumption. UBEM allows us to better understand the 

energy performance of the building stock and can contribute to defining refurbishment strategies. 

However, UBEM applications require lots of heterogeneous data, eventually advocating for stand-

ards for data interoperability. The Energy Application Domain Extension has been created to cope 

with UBEM data requirements and offers a standardised data model that builds upon the CityGML 

standard. The Energy ADE 1.0, released in 2018, creates new classes and adds new properties to 

existing classes of the CityGML 2.0 Core and Building modules. CityGML 3.0, released in 2021, has 

introduced several changes to the data model and its ADE mechanism. These changes render the 

Energy ADE incompatible with CityGML 3.0. This article presents how the Energy ADE has been 

ported to CityGML 3.0 to allow, on the one hand, for a lossless data conversion and, on the other 

hand, to exploit the new characteristics of CityGML 3.0 while keeping a logical symmetry between 

the ADE classes of both CityGML versions. The article describes the chosen methodology, the map-

ping strategies, the implementation steps, as well as the data conversion tests to check the validity 

of the “new” Energy ADE for CityGML 3.0. 

Keywords: CityGML; Energy ADE; model-driven mapping; data modelling; UBEM 

 

1. Introduction 

Standardised data models can play a vital role in areas where complex information 

is handled by various stakeholders coming from different backgrounds as they ensure 

lossless data exchange, facilitate the development of reliable software solutions and, 

therefore, enhance the overall data interoperability. 

Urban Building Energy Modelling (UBEM) represents a good example in this regard. 

In UBEM, different scenarios of the energy demand and supply of a city can be simulated 

at the individual building level [1]. As such, UBEM serves as a valuable set of approaches, 

methods, and tools to support decision-makers in detecting energy-saving potentials and 

in subsequently allocating required resources for retrofitting purposes [2]. However, 

UBEM requires large and heterogeneous quantities of information, such as data regarding 

energy consumption, local climate, occupant behaviour, physical properties of the build-

ings and their geometries [3,4]. 

The international standard City Geography Markup Language (CityGML), issued by 

the Open Geospatial Consortium (OGC), offers the possibility to model urban environ-

ments, including buildings, in a 3D space. CityGML defines “basic entities, attributes, and 
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relations” of relevant urban objects, functioning both as a conceptual data model for se-

mantically enriched 3D city models and as a storage and exchange format [5]. Currently, 

the most widely used version is CityGML 2.0, which was released in 2012. 

CityGML is intentionally designed to be application-independent. Nevertheless, in 

certain cases, additional classes or attributes may be needed for specific domains. For this 

reason, CityGML can be extended following two approaches. The first one allows for the 

definition of so-called generic attributes and generic city objects without the need to ex-

tend the conceptual data model. The second one, on the other hand, offers more modelling 

capabilities but demands an extension of the data model. This second approach is referred 

to as the Application Domain Extension (ADE) mechanism. 

The Energy ADE version 1.0 is such an extension for CityGML. It builds upon the 

CityGML 2.0 Core and Building modules and extends them by means of additional classes 

and properties. As such, it has been conceived and designed as a solution to model and 

store relevant data needed for UBEM. It offers the possibility to model both data serving 

as input for energy-related applications and data storing the application results, in order 

to facilitate further building or city-wide energy assessments. The ultimate goal is to pro-

mote data interoperability between different UBEM stakeholders by means of a standard-

ised data model [6]. The Energy ADE 1.0 was released in 2018 through a joint effort of 

various international parties and stakeholders (familiar/expert with/in either CityGML or 

UBEM). It is mentioned in the literature as a best-practice example when it comes to ADE 

development due to its technical maturity and available documentation. As a result, the 

Energy ADE has already been used in several national and international projects [7,8]. 

In September 2021, version 3.0 of the CityGML standard was released by the OGC. 

The new version introduces considerable changes to the Core module with a revised ge-

ometry concept and a newly established space concept. Furthermore, new modules for 

time-dependent properties and man-made constructions have been added. Moreover, it 

is now possible to include several ADEs at once thanks to an improved ADE mechanism 

[7]. 

These changes directly affect the portability of the Energy ADE to CityGML 3.0. First, 

the Energy ADE is not compatible with the revised ADE mechanism. Second, some classes 

have been changed in terms of name, attributes, or overall hierarchical position in the data 

model. Thus, they do not link seamlessly to the existing Energy ADE data model anymore. 

Furthermore, some classes and properties in the Energy ADE are now already natively 

incorporated in CityGML 3.0. This makes certain Energy ADE classes obsolete or redun-

dant—which is against the main raison d’être of an ADE, i.e., to extend the data model 

only where necessary. Finally, CityGML 3.0 introduces many additional classes, which 

potentially represent a better semantic fit from which to derive ADE classes. 

The Energy ADE covers a variety of technical aspects and is a good example of how 

ADEs can incorporate and take advantage of new functionalities of CityGML 3.0. Addi-

tionally, there are currently no well-documented and published examples of existing ADEs 

being ported from CityGML 2.0 to CityGML 3.0. For this reason, this article presents the 

work carried out to map the Energy ADE to CityGML 3.0. The challenge and the goal have 

been to map the Energy ADE classes, wherever and whenever necessary, to the CityGML 

3.0 data model, without any losses in terms of semantics and functional modelling capa-

bilities. Eventually, data modelled according to CityGML 2.0 and Energy ADE 1.0 must 

fulfil the requirement to be convertible to CityGML 3.0 extended with the “new” Energy 

ADE and without any data losses. The conceptual work carried out in this process and the 

main implementation steps will be presented, including the data conversion and tests car-

ried out to evaluate the mapping. Particular attention is paid to establishing a uniform, 

rule-based mapping and its reasoning. 

Keeping these overall goals in mind, the core of the investigation has been dedicated 

to understanding to which extent the Energy ADE for CityGML 2.0 needs to be adapted 

in order to be conformant with the newly released CityGML 3.0 standard. Throughout 

this process, the Energy ADE 1.0 classes that become obsolete, those that need to be 
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adapted, and those that can be mostly taken over have been identified. The resulting 

“new” Energy ADE for CityGML 3.0 is available both as a UML class diagram and as an 

XML schema definition (XSD) file. Lastly, data conversion tests are carried out using Safe 

Software’s FME. 

When it comes to CityGML 2.0, a lot of experience has already been reported in the 

past decade regarding the creation of ADEs. Biljecki et al. [8] provide an extensive review 

of many heterogeneous ADEs created for different application domains. Additionally, a 

formal UML-based approach to create ADEs has been proposed by van den Brink et al. 

[9] which is based on the well-established model-driven approach and has also been ap-

plied to the development of CityGML 3.0 [10]. 

However, due to the relatively recent publication of the CityGML 3.0 conceptual 

model, not much literature has been published up to now regarding ADEs for CityGML 

3.0 or the mapping of existing ADEs to the new CityGML version. 

Biljecki et al. [11] propose how to extend CityGML 3.0 in order to convert data from 

IFC to CityGML 3.0. Starting from the awareness that differences in the scope and intent 

between IFC and CityGML lead to inevitable data losses when converting the former to 

the latter, the authors identify a subset of IFC data that is beneficial to keep and convert to 

CityGML by means of an ad hoc ADE. 

In the context of Underground Land Administration (ULA), Seidian et al. [12,13] have 

recently dealt with the modelling of underground legal boundaries, in order to tackle the 

lack of a link between underground physical and legal data in current practices. As a re-

sult, they propose to extend CityGML 3.0 by means of the so-called VicULA (Victoria Un-

derground Land Administration) ADE, in which underground legal data elements can be 

logically embedded into a 3D data model. The VicULA ADE has been specifically devel-

oped for Victoria, Australia, however, according to the authors, the proposed model and 

approach can be used and replicated in other jurisdictions by adjusting the data require-

ments for underground legal boundaries. 

The Utility Network ADE [14] represents a valuable source of inspiration for map-

ping an existing ADE from CityGML 2.0 to 3.0—which best resembles the core of the work 

presented in this article. The Utility Network ADE is openly available on GitHub not only 

as a UML diagram. It also includes the derived XSD schema and the accompanying con-

figuration files to carry out the conversion using ShapeChange (more details will be pro-

vided later in the article). However, unfortunately, neither scientific publications nor de-

tailed documentation of the process is currently available. 

Finally, Bachert [15] has recently and specifically dealt with the conversion of the 

Energy ADE from CityGML 2.0 to 3.0. This article is extracted from and extends this work. 

Therefore, as a result of the relative scarcity of available publications, this article can rep-

resent a reference for other existing ADEs to be converted to CityGML 3.0. 

The following sections will provide more details on each of the above-mentioned 

steps. The article is structured as follows: Section 2 describes the applied method, followed 

in Section 3 by some theoretical background on the Energy ADE and the description of 

some updates in CityGML 3.0 that are relevant to this article. In this context, we would 

like to point out that we assume that the reader is already familiar with the general con-

cepts of CityGML 2.0, CityGML 3.0, and UML modelling. The same applies to the Energy 

ADE, for which we only provide an overview of its main characteristics while referencing 

further existing literature for the reader who may want (or need) to read more extensively 

about it. 

Section 4 contains a detailed explanation of the mapping and its logic, followed by 

further steps of the implementation in Section 5. Section 6 presents and discusses the result 

and Section 7 contains the conclusions, as well as the outlook. 

Although several UML excerpts from the Energy ADE, CityGML 2.0 and CityGML 

3.0 are provided throughout the article, we nevertheless heartily advise the reader to have 

the full UML class diagrams at hand. They can be retrieved at the following links: 
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• Energy ADE 1.0: https://www.citygmlwiki.org/index.php/CityGML_Energy_ADE 

(accessed on 31 March 2024) 

• CityGML 2.0 and 3.0: https://www.ogc.org/standard/citygml (accessed on 31 March 

2024). 

2. Methodology Overview 

The work presented in the article follows and adapts the UML-based approach to 

create ADEs by van den Brink et al. [9]. The creation of the “new” Energy ADE is comple-

mented with the actual transformation of test data from CityGML 2.0 + Energy 1.0 to 

CityGML 3.0 + the “new” Energy ADE, in order to test and verify the conversion from one 

data model to the other without any data losses. 

Overall, the developed methodology consists of three steps which are summarised 

in Figure 1. Following the above-mentioned model-driven approach, first, a data model is 

defined at the conceptual level including its required classes, properties and relations. For 

this purpose, UML is chosen as the formal modelling language to define the mapped ADE. 

The conceptual mapping process constitutes the core of this work and is first carried out 

module by module in a “pen-and-paper” approach. Only afterwards, the UML class dia-

grams are created using the modelling software Enterprise Architect v. 13. This first step 

is shown in Figure 1 in dark transparent green. 

In the second step, depicted in Figure 1 in light transparent green, the transfer format 

is derived from the UML data model. Here, based on the GML target encoding, an XSD 

schema file is derived. It specifies how to correctly read, write and validate Energy ADE 

GML files for CityGML 3.0. The XSD schema is created using the Java tool ShapeChange 

v. 2.11, which requires a specified configuration file and then automatically applies the 

encoding rules to the UML class diagrams. 

The last, third step, depicted in light transparent blue in Figure 1, consists of creating 

a CityGML 2.0 + Energy ADE test dataset which is then converted to a CityGML 3.0 + 

“new” Energy ADE dataset. This third step is meant to test the overall applicability of the 

newly mapped ADE and to prove whether data can be indeed converted without data 

losses. Therefore, the test dataset has been intentionally prepared to cover every feature 

type, property and relation of the Energy ADE at least once. Both the dataset creation and 

the conversion are implemented with the ETL software FME Desktop v. 2022. The conver-

sion workspace builds upon a pre-existing template available on the FME Hub, which 

converts the Building module and other frequently used classes to CityGML 3.0 [16]. The 

methodology briefly presented here will be described in more detail in the coming sec-

tions. 
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Figure 1. Schematic workflow to map and convert the Energy ADE to CityGML 3.0. Image 

adapted from [9]. 

3. Theoretical Background 

This section provides the most important background knowledge regarding the En-

ergy ADE for CityGML 2.0 and the changes in CityGML 3.0 that are relevant in this con-

text. The goal is thereby not to cover every aspect of these data models, but to focus only 

on those that are most important to understand the mapping process. 

3.1. Energy ADE 1.0 for CityGML 2.0 in a Nutshell 

The Energy ADE builds upon the CityGML 2.0 Core and Building modules. It con-

sists of six thematic modules in which either new classes or classes extending CityGML 

classes are defined, together with additional data types, several codelists, and enumera-

tions. Figure 2 shows the overview of the ADE packages and depicts the dependencies 

between the different modules. The thematic modules are briefly described below, 

whereas a more detailed explanation is given alongside the selected examples in Section 

4. 

• The Energy ADE Core module (in light pink) defines additional attributes for the 

CityGML Building::_AbstractBuilding and CityGML Core::_CityObject classes. It also 

provides new abstract base classes for the other modules and establishes additional 

data types and enumerations; 

• The Occupant behaviour module (in light green) defines classes to model different 

usage zones and how they are utilised by occupants and facilities such as electrical 

appliances. By including schedules, it is possible to represent their behaviour over 

the day, year, etc.; 

• The Material and construction module (in blue) enables the modelling of the com-

position of construction surfaces through different layers and their physical proper-

ties; 
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• The Energy systems module (in orange) provides classes to model the energy stor-

age, distribution, emission, and conversion systems of a building and interrelates 

them to represent the respective energy exchange; 

• The Building physics module (in light yellow) defines classes for thermal zones, 

thermal boundaries and thermal openings to model the thermal hull of a building (or 

subparts of it); 

• The Supporting classes module (in yellow) comprises classes for different schedules 

and time series. They are used to add time-dependent values to the other module 

parameters. Additionally, a WeatherStation class is defined herein. 

A complete description of the Energy ADE, its overall structure, as well as its classes 

is provided by Agugiaro et al. [6]. Please note that the colours presented in the package 

diagram depicted in Figure 2 are also adopted in the remainder of the article for better 

readability. Classes belonging to the ADE modules are represented using the same afore-

mentioned colours, while all classes used for CityGML (both version 2.0 and 3.0) are al-

ways depicted in cyan. 

 

Figure 2. Package overview of the Energy ADE 1.0 for CityGML 2.0. The colours representing the 

different packages will be used throughout the article. 

3.2. Relevant Changes in CityGML 3.0 

CityGML 3.0 comes with several changes intended to increase its suitability for vari-

ous user groups and expand its range of potential applications in fields such as urban 

planning, energy and environment simulations, traffic analyses, Internet of Things, and 

Smart Cities. Overall, the revisions in CityGML 3.0 can be categorised into five aspects. 

First, the standard applies a model-driven approach, i.e., it is now formally defined 

through a platform-independent Conceptual UML Model from which various exchange 

formats can automatically be derived. Second, as seen in Figure 3, new modules are intro-

duced (Construction, Versioning, Dynamizer, PointCloud) and existing ones are revised 

(Generics, Core, Building, Transportation). These new modules allow the representation 

of the dynamic behaviour of city models, to model the transportation infrastructure and 

constructions in more detail and to represent the geometries of city objects by 3D point 

clouds. Third, there is a newly introduced space concept. All geometries, including an 
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updated LOD concept, are defined now in the Core module. Fourth, a refined ADE mech-

anism allows now for the inclusion of several ADEs simultaneously and, furthermore, 

supports their creation based on the model-driven approach [10]. Finally, the interopera-

bility with the European Union directive INSPIRE, as well as with various other standards 

such as IndoorGML and IFC and with linked data and Semantic Web Technologies such 

as RDF, was improved. 

 

Figure 3. The modules in CityGML 3.0. Image adapted from [10]. 

Since the new space concept and the adapted ADE mechanism play an important role 

throughout this research, they are explained here in more detail. For an in-depth intro-

duction to the other changes in CityGML 3.0 please refer to Kutzner et al. [10]. 

3.2.1. Space Concept 

In the Core module, new abstract classes defining different notions of space are in-

troduced. All city objects now derive directly or indirectly from one of these abstract clas-

ses, adding an additional level of semantic meaning. An overview of the classes and their 

relation is given in Figure 4. 
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Figure 4. Overview of the classes making up the space concept in the CityGML 3.0 Core module. 

Image adapted from [7]. 

First, every city object is distinguished based on whether it is of volumetric (Ab-

stractSpace) or areal extent (AbstractSpaceBoundary). With an AbstractSpace class, real-world 

volumetric objects can be modelled, whereas an AbstractSpaceBoundary class describes ob-

jects which bound or delimit volumetric objects from each other, e.g., wall surfaces (Figure 

5). 

 

Figure 5. Representation of the classes AbstractSpace (orange) and AbstractSpaceBoundary (blue) us-

ing the example of a building. Image adapted from [10]. 

One level further, AbstractSpace is subdivided into AbstractLogicalSpace and Ab-

stractPhysicalSpace. The latter represents physically tangible objects which are “fully or 

partially bounded by physical objects” such as buildings bounded by walls and a roof 

[10]. On the contrary, an AbstractLogicalSpace is an entity defined by a thematic meaning 

that can also have a virtual boundary. Examples can be abstract such as a traffic zone, or 

more tangible such as an apartment consisting of several physical spaces (Figure 6). 
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Figure 6. Representation of the classes AbstractPhysicalSpace (green) and AbstractLogicalSpace 

(brown) using the example of a building. Image adapted from [10]. 

Lastly, AbtractPhysicalSpace is further subclassed into AbstractUnoccupiedSpace and 

AbstractOccupiedSpace. AbstractOccupiedSpace describes volumetric objects which prevent 

the placement of other city objects at that place. Consequently, an AbstractUnoccupiedSpace 

object models volumetric objects that are free to put other things in or to walk through 

[10]. The example of a building, as seen in Figure 7, helps to illustrate this concept. The 

building as a whole constitutes an AbstractOccupiedSpace as nothing else can be placed in 

this specific space anymore. In turn, rooms within the building are empty volumetric ob-

jects and thus AbstractUnoccupiedSpaces. Furniture placed inside the rooms occupies space 

and is therefore modelled as an AbstractOccupiedSpace. 

 

Figure 7. Representation of the classes OccupiedSpace and UnoccupiedSpace using the example of a 

building. Image taken from [10] 

3.2.2. ADE Mechanism 

As in previous versions of the standard, the CityGML 3.0 data model can be extended 

by means of ADEs. New is that they now have to be defined through UML class diagrams 

in order to be encoding-independent. Moreover, the ADE hook mechanism has been re-

designed in order to facilitate the integration of multiple ADEs at once [7]. 

ADEs allow the extension of the CityGML data model in two ways. Both of them are 

depicted in Figure 8 using examples. The first one introduces new classes by deriving 

them from AbstractFeature (or as shown in the figure, from a semantically fitting subclass 
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of AbstractFeature such as AbstractLogicalSpace). As such, the extension mechanism through 

specialisation classes remains the same as in CityGML 2.0. 

Using the second possibility, also referred to as the ADE hook mechanism, additional 

properties can be added to existing CityGML classes. The way to do this has been updated 

so that subclassing the respective CityGML classes is not necessary anymore, as was the 

case in CityGML 2.0. Every CityGML class has now an attribute “adeOfFeatureTypeName” 

of type “ADEOfFeatureTypeName”, with FeatureTypeName being replaced by the corre-

sponding CityGML class name (e.g., adeOfWallSurface of type ADEOfWallSurface). The new 

properties are injected into the CityGML class by subclassing the corresponding data type 

“ADEOfFeatureTypeName”. In the example of Figure 8, ThermalHull is defined as a new 

class derived from AbstractLogicalSpace and the EnergyProperties data type defines new 

properties for the class AbstractBuilding. 

 

Figure 8. Example of extending the existing CityGML 3.0 class AbstractBuilding by means of the ADE 

hook mechanism (EnergyProperties, via ADEOfAbstractBuilding) and by deriving a new class (Ther-

malHull) from the existing class AbstractLogicalSpace. 

4. Mapping the Energy ADE to CityGML 3.0 

As described in Section 2, the methodology to map the Energy ADE to CityGML 3.0 

consists of three main steps. This section describes the first step which comprises the de-

tailed mapping process. In order to do so, rules that generally apply throughout all mod-

ules are defined beforehand. Section 5 will further elaborate on the remaining two steps, 

namely the corresponding XSD file derivation and the creation of test data based on 

CityGML 2.0 and Energy ADE 1.0, as well as its conversion to CityGML 3.0 + “new” En-

ergy ADE. 

The goal is to perform the mapping without changing the contents of the Energy ADE 

and, thus, to convey the same information as before. However, in order to ensure logical 

consistency and a coherent modelling style throughout all modules, a set of mapping 

guidelines has been established. 

4.1. Mapping Principles 

The general mapping principles provide general instructions on how classes should be 

mapped, especially if there are several alternative possibilities. On the other hand, the 

overarching mapping decisions are more concrete. They are distinctive mapping rules which 

apply to all ADE classes and/or relations. 

When it comes to the general mapping principles, they are: 

• “Integrate as much as possible”: According to this principle, Energy ADE classes 

should be integrated as “deep” into the CityGML 3.0 UML model as possible. This 

allows for the use of the new space and geometry concept and, thus, adds another 

layer of semantic meaning to the classes. In addition, the ADE classes do not need to 

define their own geometries anymore and can benefit from a multiple LOD represen-

tation, inherited directly from the CityGML 3.0 Core module. An alternative would 

be to keep the ADE classes closer to each other at a very high level in the UML model 
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(i.e., deriving them, for example, directly from AbstractFeature). However, as a conse-

quence, the geometry and space concept would not apply to them—which in fact 

would disregard one of the main changes in CityGML 3.0. 

• “Maintain logical symmetry”: This principle suggests that classes that are similar in 

the Energy ADE should be mapped in a similar way to CityGML 3.0 in order to obtain 

a logically consistent mapping. For example, ADE classes with a similar meaning, or 

at the same conceptual level, should be mapped to the same hierarchy level or be 

derived from the same parent class in the CityGML 3.0 data model. 

On the individual level, the integration of an Energy ADE class into CityGML 3.0 

depends on various factors. The primary factor is the compatibility between the ADE class 

and its potential parent class. An ADE class might fit multiple CityGML 3.0 classes within 

their specialisation path (e.g., AbstractBuilding or Building). In such cases, it has to be as-

sessed whether additional properties and relationships of the more specialised class add 

value to the ADE class, or not. Additionally, a comparison is made on how similar classes 

are mapped to fulfil the second general modelling principle. It is also necessary to examine 

whether the decision might inadvertently impact other ADE classes, such as by introduc-

ing properties inherited by another ADE class. 

While, in the first moment, these mapping principles may seem abstract, they will 

become clearer through the provided examples later on. It is however essential to note 

that these principles allow flexibility, sometimes offering multiple solutions in specific 

scenarios. Eventually, the decision is made at the level of the individual classes. Nonethe-

less, some specific overarching mapping decisions account for all classes and are summa-

rised in the following list. 

When it comes to the overarching mapping decisions, they are: 

• “AbstractFeatureWithLifespan over AbstractFeature”: AbstractFeatureWithLifespan is al-

ways preferred as the parent class over AbstractFeature. This allows for the inclusion 

of properties such as validFrom and validTo. Therefore, every ADE object can be de-

picted in various versions across its historical timeline; 

• “Maintain abstract classes”: Abstract classes enable the modular structure of UML 

class diagrams and facilitate a clear connection between the different modules. On 

top of that, they are kept for symmetry reasons between the original and the “new” 

Energy ADE; 

• “Keep multiplicities, relations and properties”: The multiplicities, relations and prop-

erties remain as they are unless there is a specific reason to change them in the “new” 

Energy ADE version. 

The following part demonstrates by means of examples how the Energy ADE is con-

cretely mapped to CityGML 3.0 with explanations of the reasoning behind it. Due to the 

size of the Energy ADE, the given cases cover only the most important aspects and partic-

ularities of the mapping. However, the detailed full mapping can be found in [15]. The 

examples are organised by modules and are always preceded by a brief explanation of 

how the module is defined in the Energy ADE for CityGML 2.0. 

4.2. The Core Module in the Energy ADE for CityGML 2.0 

The Core module, depicted in Figure 9, extends the CityGML abstract classes 

_CityObject and _AbstractBuilding. The CityGML 2.0 class _AbstractBuilding is extended by 

means of the ADE hook mechanism to include properties needed for the computation of 

the building energy demand. This includes attributes regarding its geometry (e.g., volume, 

floorArea), construction typology (constructionWeight) and energy archetype of building 

(buildingType). Additionally, information regarding WeatherData or EnergyDemand can be 

associated with every _CityObject. WeatherData information is needed either to perform 

accurate simulations or to store the pre-computed weather-related information (e.g., from 

solar irradiation pre-processing). EnergyDemand, on the other hand, is used to describe an 

object’s time-dependent energy demand, be it in terms of electricity, (natural) gas, etc. 
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Additionally, the Core module establishes anchor points to the remaining ADE modules 

by means of other abstract classes (e.g., AbstractThermalZone, AbstractUsageZone) and dis-

plays their interrelations. Finally, it defines new base classes for the remaining modules 

and introduces new enumerations and codelists. 

 

Figure 9. The Core module of the Energy ADE for CityGML 2.0. 
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4.3. Mapping the Core Module to CityGML 3.0 

4.3.1. BuildingProperties 

As previously mentioned, additional properties are injected into AbstractBuilding via 

the ADE hook mechanism. In CityGML 3.0, the new data type BuildingProperties is derived 

from ADEOfAbstractBuilding and is used to add the corresponding Energy ADE properties 

to CityGML 3.0 AbstractBuilding. The fully mapped Core module of the Energy ADE for 

CityGML 3.0 is depicted in Figure 10. 

 

Figure 10. The Core module of the Energy ADE for CityGML 3.0. 

Conveniently, some Energy ADE properties can be “replaced” by equivalent ones 

already provided in CityGML 3.0, i.e., volume, floorArea, and heightAboveGround. How the 
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properties are transferred is shown using the example of volume in Figure 11. Likewise, 

floorArea is mapped to the area property of AbstractSpace and heightAboveGround to the 

property height of AbstractConstruction in the newly added Construction module of 

CityGML 3.0. Finally, as CityGML 3.0 centralises all geometries in the Core module, En-

ergy ADE geometry properties such as the referencePoint are mapped directly to the al-

ready existing lod0Point property. 

 

Figure 11. Mapping the volume attribute of _AbstractBuilding in the Energy ADE for CityGML 2.0 

(on the left) to the volume attribute of AbstractSpace in CityGML 3.0 (on the right). The correspond-

ing complex data types are matched accordingly. 

4.3.2. EnergyDemand 

According to the Energy ADE for CityGML 2.0 (see Figure 9) a _CityObject (including 

its specialisation classes) can demand multiple EnergyDemand instances. However, associ-

ation relationships cannot be added directly to any CityGML class, as this would alter the 

original data model. Consequently, the CityGML 2.0 _CityObject class itself must be ex-

tended by means of the ADE hook, from which the relation to the EnergyDemand class can 

be defined. In this case, the new data type EnergyADECityObjectProperties is created for 

the CityGML 3.0 class AbstractCityObject. From here, the relation to EnergyDemand is 

made. 

When it comes to the EnergyDemand class, the mandatory property energyAmount is 

linked to a further class that is used to model time series. For CityGML 3.0, the Energy 

ADE AbstractTimeSeries class (and its subclasses) is largely integrated into CityGML 3.0’s 

Dynamizer module. Thus, the way how properties are modelled for time-varying proper-

ties has changed considerably. Similarly, all Energy ADE classes having a property linked 

to a time-dependent class now require a relation to AbstractDynamizer. CityGML 3.0 al-

ready provides a relation from any AbstractCityObject to AbstractDynamizer (as can be seen 

in the CityGML 3.0 Core module). Yet, EnergyDemand is derived from AbstractFeatureWith-

Lifespan and therefore this relation needs to be created additionally. This is achieved by a 

relation from EnergyDemand to AbstractDynamizer with the role name dynamizer. The mul-

tiplicity of 1 makes it a mandatory relation. As the property energyAmount itself is obliga-

tory for EnergyDemand, the multiplicity of 1 ensures the connection to AbstractDynamizer 

and, thus, serves as a security check for the modelling of time-varying property values. 

Beyond this, the specifics of the Dynamizer module and the time series data are explained 

in further detail later on, in Section 4.9. 
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4.4. The Building Physics Module in the Energy ADE for CityGML 2.0 

According to the Energy ADE, a building can be subdivided into one or several ther-

mal zones (corresponding to class ThermalZone), with each zone having its own thermal 

behaviour. The thermal zones are delimited from each other or the exterior of the building 

by thermal boundaries (class ThermalBoundary). Doors, windows or other openings within 

the thermal boundary represent thermal openings (class ThermalOpening). 

Each one of these three classes can be optionally associated with a geometry (a Solid 

for the ThermalZone, and a MultiSurface for ThermalBoundary and ThermalOpening) to rep-

resent their explicit geometry. Please note that, by decision of the Energy ADE designers, 

such properties (i.e., volumeGeometry and surfaceGeometry) allow only for a single repre-

sentation and, thus, are decoupled from the usual LOD representation typical of CityGML 

[6]. ThermalZones can furthermore contain multiple UsageZone instances, the respective 

abstract class AbstractUsageZone is depicted in the Core module. Beyond this, the thermal 

and optical properties of ThermalOpening and ThermalBoundary can be described through 

their relation to AbstractConstruction. Figure 12 depicts an overview of the Building phys-

ics module of the Energy ADE. 
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Figure 12. The Building physics module in the Energy ADE for CityGML 2.0. 

4.5. Mapping the Building Physics Module to CityGML 3.0 

As already mentioned, there is usually more than one possibility to perform a map-

ping. The Building physics module is a good example thereof as it also illustrates how the 

mapping principles presented in Section 4.1 come to fruition. 
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The first mapping option is to derive the ThermalZone, ThermalBoundary and Ther-

malOpening classes directly from AbstractCityObject, shown in Figure 13. As such, the im-

plementation would be very similar to the one in the Energy ADE for CityGML 2.0. Con-

sequently, the classes stay close together at the same hierarchy level within CityGML 3.0. 

All properties remain unchanged, and the geometries are explicitly defined within the 

new classes. 

 

Figure 13. Option to map the Building Physics module classes to CityGML 3.0 by deriving them all 

from AbstractCityObject and, thus, keeping them closer together within the UML class diagram. 

Alternatively, the ADE classes can be integrated deeper into the CityGML 3.0 data 

model depending on their best semantic fit. For example, the class ThermalZone can be 

subclassed from AbstractSpace, while the classes ThermalBoundary and ThermalOpening be-

come a specialisation of AbstractSpaceBoundary (see Figure 14). In this way, some of the 

Energy ADE properties can be mapped to already existing CityGML 3.0 ones, as seen be-

fore in the case of AbstractBuilding. Additionally, the geometries do not need to be explic-

itly defined inside the ADE classes anymore, as they are now inherited from those existing 

in the CityGML 3.0 Core module. Besides, the space concept in the Core module enriches 

the ADE classes with an additional level of semantic meaning. 

Due to these reasons, the latter mapping approach is the preferred one and is further 

pursued. In the following, it is discussed how the three Energy ADE classes are modelled 

in detail. 
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Figure 14. Option to map the Building physics module classes to CityGML 3.0 by their best semantic 

match. 

4.5.1. AbstractThermalZone and ThermalZone 

In CityGML 3.0, an AbstractLogicalSpace class and its subclasses are defined via the-

matic considerations and, thus, they fit the intrinsically logical concept of a ThermalZone. 

Although AbstractLogicalSpace is a suitable superclass itself, it is relatively generic com-

pared to its more specialised subclasses. Moreover, the mapping principles foresee the 

integration of ADE classes as deep as possible into the CityGML 3.0 data model to add 

value. Hence, a closer look at BuildingUnit as a potential parent class is taken. A Build-

ingUnit is a “logical subdivision of a Building […] formed according to some homogene-

ous property” [7]. In the case of the ThermalZone class, this homogeneous property relates 

to the isothermal volume making up a thermal zone. However, having BuildingUnit as the 

parent class for ThermalZone results in an interrelation conflict with the Energy ADE class 

BuildingUnit in the Occupant behaviour module. Anticipating some mapping decisions in 

the Occupant behaviour module, the ADE BuildingUnit is merged into the CityGML 3.0 

BuildingUnit by adding properties via the usual ADE hook mechanism. However, these 

additional properties could then also be inherited by ThermalZone, eventually leading to a 

logical inconsistency (the details of this reasoning will become more evident when de-

scribing the mapping of the Occupant behaviour module in Section 4.7). In order to avoid 

such logical inconsistencies, AbstractThermalZone is subclassed from AbstractBuildingSub-

division. Figure 15 illustrates the different mapping options. 

As seen before, the attributes floorArea and volume can be replaced through this map-

ping by area and volume of AbstractSpace. Furthermore, the geometry property volume-

Geometry of ThermalZone can be replaced (i.e., inherited) by the geometry defined in the 

CityGML 3.0 Core module. 
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Figure 15. Example of several options for the parent class of AbstractThermalZone. Eventually, Ab-

stractBuildingSubdivision is chosen. 

4.5.2. ThermalBoundary and ThermalOpening 

In order to utilise the CityGML 3.0 properties for the Energy ADE ThermalBoundary 

and ThermalOpening classes, they have to be derived from the class AbstractThematicSurface 

or one of its specialised thematic surface classes. For visual reference, an excerpt of the 

CityGML 3.0 UML class diagram for thematic surfaces is provided in Figure 16. 

 

Figure 16. Excerpt of the CityGML 3.0 Construction module showing the different thematic surfaces. 

Again, several mapping possibilities exist. One option is to derive the class Thermal-

Boundary from AbstractConstructionSurface and the class ThermalOpening from Abstract-

FillingSurface. In this case, the relation fillingSurface between the CityGML 3.0 parent clas-

ses (see Figure 16) could replace the contained relationship between ThermalBoundary and 

ThermalOpening in the Energy ADE (see Figure 12). 

Although the class ThermalOpening fits semantically well with AbstractFillingSurface, 

there is a slight mismatch between ThermalBoundary and AbstractConstructionSurface. The 

AbstractConstructionSurface class is meant to bind CityGML 3.0 Construction features (a 

subclass of AbstractOccupiedSpace). However, a ThermalZone is a logical space and does not 

fall under the category of a construction. Hence, ThermalZone cannot be bound by a con-

struction surface. 
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Technically, it is possible to model the Energy ADE classes at different “levels” in the 

CityGML 3.0 UML diagram. But according to the general mapping principles, similar clas-

ses should ideally be derived from the same or comparable parent classes. As such, logical 

consistency and therefore an easier understanding of the UML diagrams can be ensured. 

Eventually, a semantically correct mapping, together with the principle of maintaining 

logical symmetry, outweighs the deeper integration into the CityGML 3.0 UML data 

model. As a result, ThermalBoundary and ThermalOpening are both mapped to the more 

generic CityGML 3.0 class AbstractThematicSurface. Regarding attributes, area in Thermal-

Boundary and ThermalOpening can be replaced by the area property of AbstractThematicSur-

face. The surface geometries are also replaced by the corresponding CityGML 3.0 geome-

tries defined in its Core module. 

The complete UML diagram of the resulting mapped Building Physics module is 

shown in Figure 17. 

 

Figure 17. The Building physics module in the Energy ADE for CityGML 3.0. 
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4.6. The Occupant Behaviour Module in the Energy ADE for CityGML 2.0 

In the Energy ADE, the Occupant behaviour module defines classes to model differ-

ent usage zones and how they are utilised by occupants and facilities such as electrical 

appliances (see Figure 18). By including schedules, it is possible to represent their behav-

iour over the day, year, etc. Central to the module is the class UsageZone, which defines 

regions of homogenous usage with regard to their occupants and included facilities. Its 

properties describe factors affecting the indoor temperature (heatingSchedule, coolingSched-

ule, ventilationSchedule) and the usage type (usageZoneType). Moreover, a UsageZone may 

contain several BuildingUnit instances, which specify ownership information. To further 

specify internal heat gains, BuildingUnit and UsageZone both have relations to Occupants 

and Facilities (LightingFacilities, DHWFacilities, ElectricalAppliances). 

Similarly to what was mentioned before for the Building physics module, class Us-

ageZone can be optionally associated with a solid geometry. Also, in this case, the volume-

Geometry property allows only for a single representation and, thus, is decoupled from the 

usual LOD representation of CityGML. 

 

Figure 18. The Occupant behaviour module in the Energy ADE for CityGML 2.0. 

4.7. Mapping the Occupant Behaviour Module to CityGML 3.0 

4.7.1. AbstractUsageZone and UsageZone 

Given the previous definition of the CityGML 3.0 BuildingUnit class, it qualifies as a 

fitting parent class for the Energy ADE’s UsageZone. Since UsageZone shows similar traits 
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to ThermalZone in the Building physics module, the same issue of potentially inheriting 

unwanted properties occurs when the class BuildingUnit is extended via the ADE hook 

(see Figure 19). Consequently, AbstractUsageZone is also mapped to the next higher gen-

eralisation class, AbstractBuildingSubdivision. As a result, BuildingUnit does not serve as a 

generalisation class for AbstractUsageZone and AbstractThermalZone and unwanted prop-

erties are not passed on to them. In addition, this solution satisfies the principle of logical 

symmetry between the two similar classes ThermalZone and UsageZone. 

 

Figure 19. Example of a problematic mapping scenario. When rigidly sticking to the mapping prin-

ciples, UsageZone and ThermalZone should both be derived from CityGML 3.0’s BuildingUnit. As 

BuildingUnit is extended by the ADE properties of class BuildingUnitOccupancy, the ADE properties 

would also be inherited by UsageZone and ThermalZone, which is not desired. If both classes are 

derived instead from AbstractBuildingSubdivision, the mapping does not adhere to the “integrate as 

much as possible” principle, however, it solves the aforementioned problem of undesired class in-

heritance. 

4.7.2. BuildingUnit 

The concepts of the CityGML 3.0 BuildingUnit and of the Energy ADE BuildingUnit, 

which specifies ownership information, match rather well. Because the classes already 

have the same name and also fit semantically, the CityGML 3.0 class is extended through 

the ADE hook mechanism to include the additional properties (via the DataType Build-

ingUnitOccupancy). This eventually leads to the mapping shown in Figure 20. 

A positive side-effect of this mapping solution is that BuildUnit now inherits a prop-

erty for a volumetric geometry through its integration with the CityGML 3.0 space and 

geometry concept. The property floorArea is mapped to the corresponding CityGML 3.0 

property and the relation to Address is also already provided. 
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Figure 20. Excerpt of the Occupant behaviour module in the Energy ADE for CityGML 3.0. The full 

module is depicted in [15]. 
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4.8. The TimeSeries Classes in the Energy ADE for CityGML 2.0 

In the Energy ADE, the time series classes are meant to facilitate the modelling of 

time-varying attribute values. For this, properties in other modules have the property type 

AbstractTimeSeries (see e.g. property energyAmount of class EnergyDemand shown in Figure 

21). 

 

Figure 21. Class EnergyDemand in the Energy ADE for CityGML 2.0 with the property energyAmount 

which references a time series through its property type AbstractTimeSeries. 

Figure 22 shows how the AbstractTimeSeries class is further specialised into four sub-

classes to deal with either regular or irregular time series, possibly stored in-line or in 

external files. Regular time series have a given time period (temporalExtent) and time in-

terval (timeInterval) for the measurements. Irregular time series, on the other hand, pro-

vide a specific timestamp for every measurement value. Additionally, some metadata can 

be provided via associated enumeration classes. 

 

Figure 22. The time series classes in the Energy ADE for CityGML 2.0. 

4.9. Mapping the TimeSeries Classes to the Dynamizer Module in CityGML 3.0 

One of the major additions to CityGML 3.0 is the ability to model time-dependent 

attribute values by means of the Dynamizer module. A Dynamizer object can be associ-

ated with each property of an AbstractCityObject class (and therefore all its subclasses) via 

the relation to AbstractDynamizer. The details on the modelling of such properties are be-

yond the scope of this article; however, further information can be found in [17]. 

In the Energy ADE, the classes EnergyDemand, WeatherData and EnergyFlow have the 

time-dependent properties energyAmount, values, and energyAmount, respectively. How-

ever, as these classes are derived from AbstractFeatureWithLifespan and not from Ab-

stractCityObject, they do not inherit the relation to AbstractDynamizer. Thus, a new ad hoc 
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relation must be modelled from the respective ADE class to AbstractDynamizer. Because 

the time-varying properties in the Energy ADE are mandatory, they are required to be 

referenced by a Dynamizer instance. This is emphasised through the multiplicity of 1 from 

the respective ADE class to AbstractDynamizer. In addition, a descriptive note states in the 

UML diagram which of the properties is to be referenced by Dynamizer. 

With the new modelling technique of time-varying properties, their property types 

also need to be updated, as they are now expressed as a static value in the respective class. 

Therefore, as time series consist of values of complex type measure (i.e., value + unit of 

measure), their type must be set to Measure. An example in terms of UML is shown in 

Figure 23 for the classes EnergyDemand (property energyAmount) and WeatherData (prop-

erty values). 

 

Figure 23. Excerpt of the Energy ADE for CityGML 3.0, showcasing the UML modelling of time-

varying properties. 

4.9.1. IrregularTimeSeries 

The class IrregularTimeSeries of the Energy ADE conceptually corresponds to the class 

GenericTimeseries of the Dynamizer module. The time-value pair itself (Energy ADE: Meas-

urementPoint/CityGML 3.0: TimeValuePair) is modelled in both cases with a property for 

the timestamp (time/timestamp) and one for the value (value/doubleValue) and, thus, can be 

mapped directly. However, the uom attribute of the class is mapped to the uom attribute 

of the class AbstractAtomicTimeseries. 

4.9.2. IrregularTimeSeriesFile 

In a similar way, IrregularTimeSeriesFile is mapped to TabulatedFileTimeseries. Only the 

property recordSeparator cannot be mapped to any of the CityGML 3.0 properties and is 

therefore added via the ADE hook mechanism through the new data type subclass Tabu-

latedFileTimeseriesExtension. In addition to the CityGML 3.0 class TabulatedFileTimeseries, 

another class also handles externally stored time series: StandardFileTimeseries. It refer-

ences files in standardised formats such as the OGC Observations & Measurements Stand-

ard or OGC TimeseriesML [7]. Nevertheless, mapping IrregularTimeSeriesFile to this class 

is not suitable as this would require altering the input file or losing properties. 

4.9.3. RegularTimeSeries 

In the Energy ADE, RegularTimeSeries stores an array of time-dependent values to-

gether with its total temporal extent, defined as start and end timestamps, and the interval 

between the timestamp of each value. However, the Dynamizer module of CityGML 3.0 

does not offer an equivalent class to the Energy ADE RegularTimeSeries. The closest candi-

date would be GenericTimeseries, which however requires that each time-dependent value 

be stored together with its accompanying timestamp. The additional timestamps for each 

value could be computed using the information provided by the original Energy ADE 

RegularTimeSeries data. Choosing the GenericTimeseries as target class would, however, 

lead to a far less compact representation compared to the Energy ADE RegularTimeSeries. 
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Thus, opting for this mapping strategy—besides being rather impractical—contradicts the 

purpose of a compact encoding by the RegularTimeSeries. 

As a result, an alternative mapping strategy is preferred: A new class Regu-

larTimeseries (please note the small s in Timeseries to match the naming style of other Dy-

namizer classes) is derived from AbstractAtomicTimeseries. The goal is to overcome the 

above-mentioned limitations. Furthermore, the attribute temporalExtent is mapped to the 

properties firstTimestamp and lastTimestamp of the Dynamizer class AbstractTimeseries. 

4.9.4. RegularTimeSeriesFile 

Also, for the Energy ADE class RegularTimeSeriesFile there is no predefined class in 

the Dynamizer module. The closest option, TabulatedFileTimeseries, requires a value for ei-

ther timeColumnNo or timeColumnName, meaning that a column containing the timestamps 

must be specified. However, such a column does not exist in a regular time series file. 

Several options were considered on how to best map the RegularTimeSeriesFile to the Dy-

namizer module. Among them are manually adapting the input file, creating a separate 

ADE class, or creating a shared AbstractRegularTimeseries class for RegularTimeseries and 

RegularTimeseriesFile. All of them are discussed in detail in [15]. 

Eventually, the implemented mapping uses the TabulatedFileTimeseries nonetheless, 

but with a workaround for the OCL constraint. One of the required properties, which 

indicates the column for the timestamps in the referenced file (timeColumnName), asks for 

a CharacterString data type. When using the TabulatedFileTimeseries class for regular time 

series files, this property can simply be given a NaN (Not a Number) or string value ex-

pressing that such a column is not included. Additionally, the ADE property timeInterval 

is added to TabulatedFileTimeseries via the ADE hook mechanism. This solution has the 

advantage of using existing classes rather than creating new ones. Therefore, the UML 

model remains more compact and avoids modelling repetitive information. Last but not 

least, it follows the mapping principles of logical symmetry and integrating as much as 

possible. The resulting final UML class diagram, covering the mapping of the Energy ADE 

classes for time series, is provided in Figure 24. 
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Figure 24. The Dynamizer module of CityGML 3.0 (in cyan) extended with the mapped time series 

of the Energy ADE (in yellow). 

4.10. The Schedules Classes in the Energy ADE for CityGML 2.0 

Class AbstractSchedule and its subclasses, as seen in Figure 25, are part of the Support-

ing classes module of the Energy ADE. Therefore, they are referenced by the other mod-

ules in a similar way as the AbstractTimeSeries class. Schedules are used to describe to 

which extent features or appliances are operated in a certain time period. 

The specialisation classes of AbstractSchedule are characterised by increasing degrees 

of freedom regarding how the schedules can be designed. The most general option is Con-

stantValueSchedule which specifies one single value for average usage. Further, 

DualValueSchedule differentiates between idle and operating times. The DailyPatternSched-

ule models change operation times based on the period of the year and the day. Lastly, the 
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TimeSeriesSchedule gives complete freedom by modelling the usage through a custom-de-

fined time series. 

 

Figure 25. The Schedule classes in the Energy ADE for CityGML 2.0. 

4.11. Mapping the Schedule Classes to CityGML 3.0 

When it comes to mapping the Energy ADE schedules, no directly corresponding 

concept exists in CityGML 3.0. Thus, they can be mapped in a simpler way than the time 

series, although some adjustments are still required. 

For example, in the Energy ADE, the classes have the stereotype «type». Within 

CityGML 3.0, this stereotype is not used anymore for application schemas. Nevertheless, 

to be able to reference the schedules via XLinks, as is very often the case in this context, 

the new stereotype requires a unique identifier. Because of this reason, «DataType» cannot 

be used for this purpose. Instead, the classes are given the stereotype «FeatureType». 

As AbstractSchedule needs to be linked to one of the existing classes within the 

CityGML 3.0 model, the parent class AbstractFeatureWithLifespan is selected. Choosing in-

stead AbstractCityObject as a parent class would not be a conceptually logical solution, 

because schedules are neither a city object nor do they have a spatial extent. At a higher 

level, AbstractFeature would be a possible choice, as it is more general. Still, in coherence 

with the general mapping principles, this is not the preferred option. AbstractFeatureWith-

Lifespan offers instead a deeper integration into the data model and furthermore ensures 

logical symmetry with AbstractDynamizer, which also derives from it. The excerpt from 

the UML class diagram depicted in Figure 26 shows these relations. 
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Figure 26. The Schedule classes of the Energy ADE for CityGML 3.0. 

The properties of the mapped Energy ADE classes that are described via schedules 

have now the property type AbstractSchedule. This in-line representation (in the original 

Energy ADE) is de facto the same as the relation by reference from a feature type to Ab-

stractSchedule (see Figure 27) in the mapped version for CityGML 3.0. 

 

Figure 27. The property occupancyRate represented in-line and highlighted in red (left) equals the 

by-reference representation (right). 

4.11.1. ConstantValueSchedule and DualValueSchedule 

The classes are changed to «FeatureType» and are subclassed from AbstractSchedule. 

None of their properties can be mapped to CityGML 3.0, therefore, the overall structure 

remains nearly identical to the original Energy ADE. 

4.11.2. TimeSeriesSchedule 

The only property timeDependingValues specifies, as a ratio, how much something is 

used over a given time and, as such, does not need a unit of measure. The time-dependent 

values can be modelled through a connection to AbstractDynamizer. Here, the user is free 

to choose which class in the Dynamizer module best describes the intended time series. 

4.11.3. DailyPatternSchedule 

Two options for mapping the class DailyPatternSchedule were considered. In the first 

one, the original Energy ADE structure (i.e., as compositions of PeriodOfYear and Dai-

lySchedule) is simply recreated for CityGML 3.0. Alternatively, the CompositeTimeseries and 

TimeseriesComponent in the Dynamizer module are used to re-model the nested structure 

of the Energy ADE class DailyPatternSchedule. This second mapping choice is made possi-

ble in CityGML 3.0 because the class CompositeTimeseries can contain multiple instances of 
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the class TimeseriesComponent, which are themselves associated with any of the available 

time series derived from the class AbstractTimeseries (see Figure 28). 

 

Figure 28. Excerpt of the CityGML 3.0 Dynamizer module. 

To pursue this second modelling approach, the Energy ADE class DailySchedule is 

mapped to the data type TimeseriesComponent. Yet, its property dayType cannot be included 

in TimeseriesComponent, because the ADE hook mechanism does not apply to data types. 

As a workaround dayType is added to AbstractAtomicTimeseries through an ADE hook in-

stead because every TimeseriesComponent is eventually described by the other time series. 

Furthermore, the period property of the class PeriodOfYear has to be mapped to two differ-

ent classes within the Dynamizer module due to the flexibility the nested structure of Dai-

lyPatternSchedule gives. If a DailyPatternSchedule has only one time period, the property can 

be added to CompositeTimeseries with the ADE hook mechanism. If a DailyPatternSchedule 

has multiple time periods (PeriodOfYear), the period property is directly attached to the 

time series. This is realised through a hook to the class AbstractAtomicTimeseries. The new 

properties added to the Dynamizer module for the DailyPatternSchedule are summarised 

in Figure 29. 

With this mapping solution, even though it is rather complex, the class DailyPattern-

Schedule for CityGML 3.0 requires only the property timeDependingValues and a connection 

to AbstractDynamizer. As such, it makes use of the concepts already available in CityGML 

3.0 and adheres to the general mapping principles. 

 

Figure 29. Excerpt of the CityGML 3.0 Dynamizer module (in cyan) with the added properties (in 

yellow) to map the DailyPatternSchedule. 
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5. Further Steps 

Following the UML-based mapping, the data model is first derived as an XSD schema 

file in order to create and validate respective data. The applicability of the final mapping 

is then tested with a sample dataset which is converted to CityGML 3.0 + “new” Energy 

ADE. 

5.1. XSD Schema Derivation 

For the XML-based encoding of CityGML (and any associated ADEs), XML Schema 

Definition (XSD) files are required. They encode, in a machine-readable way, the data 

model and its constraints therefore defining how data can be written and automatically 

validated. 

The required XSD schema for the Energy ADE for CityGML 3.0 is automatically de-

rived from the UML class diagrams by means of the software tool ShapeChange v. 2.11.In 

order to do so, ShapeChange requires a custom configuration file which specifies, for ex-

ample, the UML diagrams to process, the target encoding and the output directory. 

To simplify the task, an already existing configuration file from the Utility Network 

ADE [14] has been adapted to match the requirements of the Energy ADE. The resulting 

XSD file can be found on GitHub [18]. The generated XSD file was carefully checked also 

manually to ensure the correctness of the classes and properties. 

5.2. Test Data Creation and Conversion 

To test the validity of the “new” Energy ADE for CityGML 3.0, a test dataset with 

CityGML 2.0 and Energy ADE 1.0 data was first created and then successively converted 

to a dataset with the “new” Energy ADE for CityGML 3.0. The test dataset contains every 

Energy ADE class and property at least once in order to verify that the data conversion is 

carried out correctly and without any loss of data. Both of these steps are implemented in 

an FME Workbench and are briefly described in the following. Both the FME workbench 

and the test dataset can be retrieved from the GitHub repository, too. 

The test dataset builds upon an artificial CityGML 2.0 city model with 12 buildings 

(as seen in Figure 30) that are already enriched with some Energy ADE properties. They 

are modelled in LOD2 through their boundary surfaces WallSurface, RoofSurface and 

GroundSurface. In addition, the buildings have geometries via the referencePoint and 

lod0FootPrint properties. Every building has one ThermalZone and one UsageZone with ge-

ometries following the CityGML boundary surfaces. Moreover, ThermalBoundary and 

ThermalOpening are defined by Constructions through Layer, LayerComponent and Material. 

Additionally, each building has a set of Households, Occupants and Facilities as well as an 

occupancyRate schedule and an EnergyDemand time series. Lastly, the test data have one 

WeatherStation containing temperature and humidity information. 

All classes and properties that are not already present in the original test dataset are 

added through an FME Workspace. This mainly includes data covering the whole Energy 

systems module, some additional individual properties and feature types, as well as ex-

amples of RegularTimeSeries and DailyPatternSchedule. Eventually, the created dataset co-

vers all important aspects of the Energy ADE and serves as input for the conversion to 

Energy ADE for CityGML 3.0. 
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Figure 30. Visualisation of the test dataset in the FZK ModelViewer. Upper picture: the CityModel 

with its LOD2 buildings and properties. Lower picture: the UsageZone of Building “Yoda’s Hut” 

with its properties and own geometry. 

For the conversion, an FME template that transforms the Building module to 

CityGML 3.0 is used as a starting point [16]. The data are imported with a CityGML 

Reader and exported with a GML Writer which is provided with the XSD schema files (for 

both CityGML 3.0 and the “new” Energy ADE). The reason for doing so is that FME did 

not support CityGML 3.0 natively when the mapping was carried out (beginning of 2023). 

In this context, only the main overarching concepts of the conversion are presented. 

A more detailed explanation is provided in [15] and in the GitHub repository [18]. Figure 

31 provides a schematic overview of the whole conversion process in FME. Large parts 

are dedicated to renaming attributes according to their altered FME encoding. Moreover, 

ADE geometries are transferred to the corresponding CityGML 3.0 ones wherever possi-

ble. Furthermore, Schedule, TimeSeries and WeatherData objects have now their own FME 

Writer due to their stereotype being changed to «FeatureType» in the Energy ADE for 

CityGML 3.0. Thus, the associated information is separated and further handled to con-

nect them to their new corresponding FME Writer. Finally, the conversion handles indi-

vidual changes of mapped properties and property values. 
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Figure 31. Schematic overview of the data conversion from Energy ADE for CityGML 2.0 to Energy 

ADE for CityGML 3.0 in FME. The “Input A” block stands for input class A, e.g., ThermalZone, and 

the “Output A” block for the respective output after the conversion. Unlike in CityGML 2.0, the 

Schedule and Dynamizer now have their own classes in the Energy ADE for CityGML 3.0, which is 

why they also have their own blocks to write the final output. 

6. Results and Discussion 

In this section, the results are presented, and the implemented mapping strategy, its 

implications, and the lessons learnt are discussed. The reflection will cover mainly the 

chosen level of integration between the Energy ADE and the CityGML 3.0 data model, the 

resulting geometry representation and how the gained insights can be beneficial for the 

development (or conversion) of other ADEs in the context of CityGML 3.0. 

Regarding the mapping results, an excerpt is contained in Table 1. It contains three 

classes, indicating how much they have changed during the mapping process, as well as 

some relevant details. The classes shown in Table 1 are chosen to provide three representa-

tive examples. For space and readability reasons, the table containing all classes is pre-

sented in Appendix A. 

In the table, the status “Mostly taken over” means that only some minor changes 

were necessary to fit CityGML 3.0. “Adapted” refers to some major adjustments and “Ob-

solete” tells that the Energy ADE class was completely replaced by a CityGML 3.0 one. 

For example, the ADE properties for _AbstractBuilding were mapped to native CityGML 

3.0 properties wherever possible and were furthermore adapted according to the restruc-

tured ADE hook mechanism. These are not structural changes, which is why this mapping 

is categorised as “Mostly taken over”. On the other hand, the class AbstractEnergySystem 

was mapped to a new generalisation class which integrates it into the new space and ge-

ometry concept. In the Energy ADE for CityGML 2.0, the class could not be represented 

geometrically. These changes alter the structure of the Energy ADE class, which is thus 

assigned the status “Adapted”. 

Table 1. Selected classes representing the results of the mapping. The “Status” column refers to the 

degree of change through the mapping, while the “Details” column gives condensed information 

about the mapping. 

Energy ADE 

Module 
Class Status Details 

Core 

_AbstractBuilding/BuildingProper

ties 

Mostly taken 

over 

Adapted to new hook mechanism, some 

properties replaced by CityGML 3.0 ones 

AbstractEnergySystem Adapted 

New generalisation class: AbstractOccupiedSpace, 

incorporation into space and geometry concept, 

property yearOfManufacture replaced by 

CityGML 3.0 property 
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Time Series 

AbstractTimeSeries Obsolete 
Property variableProperties is mapped to 

AbstractTimeseries with the ADE hook 

IrregularTimeSeries/GenericTimes

eries 
Obsolete 

Replaced by GenericTimeseries in the Dynamizer 

module  

RegularTimeSeriesFile, 

IrregularTimeSeriesFile/Tabulated

FileTimeseries 

Obsolete, 

Adapted 

Both classes largely replaced by 

TabulatedFileTimeseries in the Dynamizer module, 

addition of properties recordSeparator and 

timeInterval with the ADE hook 

6.1. Level of Integration 

The resulting data model of the Energy ADE for CityGML 3.0, together with the de-

veloped XSD file and FME workbench, prove that a data conversion can be successfully 

carried out without any data losses. The mapping procedure has followed the guidelines 

listed in Section 4.1, which allow for a uniform mapping on a logical and conceptual level. 

However, sometimes there is more than one possible solution to perform the mapping. 

Thus, for the sake of completeness, two possible alternative mapping strategies are briefly 

outlined in the following subsections, although they were ultimately not implemented 

and only the mapping strategy presented in Section 4 was used to obtain the XSD file and 

the FME workbench. We have called them “minimum“ and “middle ground” mapping 

strategies. 

6.1.1. Minimum Mapping 

The so-called “minimum mapping” approach could be seen as a sort of brute-force 

mapping, in which only strictly necessary “technical” adjustments would be made for the 

Energy ADE to work with CityGML 3.0. In other words, all Energy ADE classes would be 

derived directly from CityGML 3.0 AbstractCityObject or AbstractFeature, without any fur-

ther reasoning on exploiting the new classes and concepts of CityGML 3.0. 

Some of the strictly necessary “technical” adjustments would be required due to the 

revised ADE hook mechanism of CityGML 3.0. Moreover, the generalisation class names 

would need to be updated according to the new standard (e.g., from _CityObject to Ab-

stractCityObject). At last, the stereotype «type» in ServiceLife, WeatherData, the time series 

and schedules classes would need to be adapted to a viable alternative. It remains open to 

further investigation how time series could be dealt with in this scenario. The closest op-

tion to the original Energy ADE would be to change the classes to the stereotype «Feature-

Type» and use AbstractFeature as the parent class for AbstractTimeSeries. This solution, not 

further followed in our mapping of time series, however, was used to map the Energy 

ADE schedules. 

The result of a “minimum mapping” approach would lead to a resulting data model 

that is “closer” to the original Energy ADE for CityGML 2.0. On the one hand, it would 

offer a less complex solution than the proposed one by keeping the classes closer together 

and deriving them all from CityGML 3.0 classes that are rather high up in the hierarchy 

(AbstractFeature, AbstractCityObject). On the other hand, it would not take into account 

many of the changes in CityGML 3.0. None of the classes would be derived from classes 

of a lower hierarchy level than AbstractCityObject and would thus not utilise the newly 

introduced space and geometry concept. Therefore, the geometries would need to be ex-

plicitly defined, none of the properties could be replaced by CityGML 3.0 ones, and the 

ADE classes would furthermore not benefit from any of the additionally provided seman-

tics. As a result, a lot of redundant information would be created through this mapping 

approach, which is not the purpose of an extension of the given data model. 
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6.1.2. Middle Ground 

A second possible alternative could consist of a compromise between the “minimum 

mapping” approach and its opposite one, i.e., the implemented “integrate as much as pos-

sible” approach. Here, the ADE classes could be integrated into the CityGML 3.0 space 

and geometry concept where the semantic relation is evident. However, only abstract 

space classes would be considered. AbstractThermalZone would then for instance either be 

subclassed from AbstractSpace or AbstractLogicalSpace. Furthermore, Energy ADE classes 

without geometries would remain subclassed from AbstractCityObject (i.e., Facilities). For 

the remaining classes, it would remain open to discussion whether to derive them from 

AbstractFeature or AbstractFeatureWithLifespan. 

This middle-ground solution would utilise the CityGML 3.0 geometries where appli-

cable, while not giving new ones to ADE classes that did not have them before. Addition-

ally, it would also provide some additional contextual information. Thus, this strategy 

would benefit from some of the updates in CityGML 3.0, and at the same time, keep the 

Energy ADE closer to the original one. 

Both herewith discussed alternative mapping approaches could probably be imple-

mented, also without any loss of information. The only major difference would consist in 

the different levels of integration with CityGML 3.0 and, therefore, how much additional 

context is provided. Yet, as opposed to these two mapping options, the actually imple-

mented one accounts for all changes and new features in CityGML 3.0. It adheres to the 

strategy proposed in the CityGML 3.0 Conceptual Model Standard, i.e., to derive the clas-

ses according to their best semantic fit. Moreover, it also complies with the CityGML 3.0 

developers’ ideal that as little as possible be derived from AbstractCityObject itself. 

6.2. Geometry Representation 

Several Energy ADE classes which were formerly derived from _CityObject are now 

subclassed from CityGML 3.0 classes further down in the hierarchy. This tighter integra-

tion with the space and geometry concepts has several advantages. 

First, the existing CityGML 3.0 geometries are now reused instead of explicitly defin-

ing them in the ADE classes themselves. Through this, a multi-geometry representation 

in different LODs of the Energy ADE classes is now possible for Energy ADE classes de-

rived from AbstractCityObject or its subclasses. In the Energy ADE for CityGML 2.0, only 

one geometry representation is foreseen per class. Since this restriction does not apply 

anymore in the case of the Energy ADE for CityGML 3.0, guidelines should be provided 

on how to best apply these new modelling possibilities. For instance, it is now possible to 

model a ThermalZone in LOD2 or in LOD3. But how and when? We believe that, in general, 

a good starting point is the common LOD notion as defined in CityGML 3.0, that could be 

applied and adapted to the use case. 

Another result of the deeper integration into the CityGML 3.0 data model is that some 

Energy ADE classes can now be represented through geometries as opposed to before. 

This is the case for all classes which formerly derived from _CityObject such as Facilities or 

subclasses of AbstractEnergySystem. However, their geometric representation remains op-

tional, so that no additional conditions are required. 

Nevertheless, some additional specific rules for the geometry representation of indi-

vidual classes should be defined, such as a maximum LOD or mandatory relations to other 

classes and their geometries (i.e., geometry representation of Facilities only through 

lod0Point). However, these particular definitions go beyond the scope of this research. 

Seemingly, this contradicts the aim of this work to map the Energy ADE without any 

changes in its content and functionalities. While this is true to some extent, the pros of the 

overall logic and consistent mapping outweigh the resulting cons. The resulting issue of 

the extended functionality could be circumvented by restricting the geometric modelling 

of those classes as described before. This way, the CityGML 3.0 modelling style would be 

respected without extending the functionalities of the Energy ADE. 
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6.3. Considerations beyond Mapping 

The goal of this research was to map the Energy ADE to CityGML 3.0 without chang-

ing its content or functionalities. However, the thorough examination of both those data 

models resulted in insights/possibilities on changes beyond mere mapping. While these 

options were not implemented, they are nonetheless briefly presented at this point. For a 

more detailed explanation, the reader is invited to refer to [15]. 

First, the mandatory relation to the Dynamizer for the Energy ADE classes with time-

dependent properties could be instead modelled as optional. This way, such properties 

could also be represented in a simplified way by a single static value. Second, the ADE 

class RegularTimeseries, which is added to the Dynamizer module, only accepts numeric 

values for its property values. Yet, the similar CityGML 3.0 class GenericTimeseries also al-

lows other data types for the values such as Booleans or strings. Allowing them in Regu-

larTimeseries as well would make the class more flexible and also more coherent to 

CityGML 3.0. 

These examples show that not all changes of CityGML 3.0 can be used with the ap-

plied mapping approach. One reason for this is that the original Energy ADE was devel-

oped for CityGML 2.0. A newly modelled Energy ADE specifically for CityGML 3.0 would 

thus most likely lead to a different result. 

On this note, we would also like to suggest the incorporation of class Regu-

larTimeseries into future releases of CityGML 3.0. The modelling solution that we propose 

represents a more space-efficient encoding compared to the current GenericTimeseries. 

7. Conclusions 

The release of CityGML 3.0 comes with many changes, which, on the one hand, imply 

that Application Domain Extensions developed for its previous version cannot function 

anymore with the latest version unless some adjustments are made. On the other hand, 

CityGML 3.0 opens up new opportunities for ADEs to make use of its extended function-

alities such as the centrally defined space and geometry concepts, newly introduced clas-

ses and properties, as well as the possibility to model time-dependent attribute values 

using the Dynamizer. 

This article has investigated the possibilities of how these changes affect ADEs using 

the example of the Energy ADE, and how an ADE can be mapped to CityGML 3.0 without 

reducing its modelling capabilities. The Energy ADE was chosen as it is one of the most 

complex (and best documented) ADEs currently available for CityGML 2.0 and it covers 

different data modelling strategies when it comes to extending CityGML, as well as dif-

ferent simple and complex data types, including codelists and enumerations. 

The mapping of the Energy ADE from CityGML 2.0 to 3.0 was carried out following 

a model-driven approach, as it is the suggested approach for CityGML 2.0 ADEs and upon 

which CityGML 3.0 was developed, too. To test the validity of the mapping and the actual 

data transformation, a CityGML 2.0 + Energy ADE sample dataset was created and suc-

cessfully converted to CityGML 3.0 + “new” Energy ADE in FME. The resulting FME 

workbench, as well as the generated XSD schema file for the Energy ADE, are publicly 

available via a GitHub repository. 

The results show that a mapping of the Energy ADE to CityGML 3.0 is indeed possi-

ble. When performing the mapping, the “integrate as much as possible” approach was 

chosen and implemented, although other alternative approaches (also briefly mentioned 

in this article) could have been adopted. As a result, the “new” Energy ADE has become 

more compact through the mapping of attributes and the replacement of all geometries 

by means of the centrally defined geometry concept in CityGML 3.0. Furthermore, the 

ADE classes are now semantically richer due to the new space concept and their mapping 

to more specialised classes within the CityGML 3.0 data model. Some time series classes 

could be fully replaced by CityGML 3.0 classes in the Dynamizer module. 
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Of course, only more testing and further implementations will show the overall ap-

plicability of the developed mapping approach, for the Energy ADE in this specific case, 

but also for other existing ADEs to be ported to CityGML 3.0. Nevertheless, given the 

scarcity of existing publications and documentation on this specific topic, together with 

the limited number of available examples, we believe that our experience may contribute 

to narrowing the knowledge gap and serve as an example for other ADEs to follow. 

Author Contributions: Conceptualisation, Carolin Bachert, Camilo León-Sánchez, Tatjana Kutzner, 

Giorgio Agugiaro; methodology, Carolin Bachert, Camilo León-Sánchez, Tatjana Kutzner, Giorgio 

Agugiaro; software, Carolin Bachert, Tatjana Kutzner; data curation, Carolin Bachert, Giorgio Agug-

iaro; writing—original draft preparation, Carolin Bachert, Giorgio Agugiaro writing—review & ed-

iting, Carolin Bachert, Camilo León-Sánchez, Tatjana Kutzner, Giorgio Agugiaro; visualisation, Car-

olin Bachert, Camilo León-Sánchez; supervision, Camilo León-Sánchez, Tatjana Kutzner, Giorgio 

Agugiaro. All authors have read and agreed to the published version of the manuscript. 

Data Availability Statement: All materials created in this research are available in the GitHub re-

pository [18]. The description of the contents is available in the readme file. 

Funding: This research received no external funding. 

Conflicts of Interest: Author Carolin Bachert was employed by the company con terra GmbH. The 

author declares that the research was conducted in the absence of any commercial or financial rela-

tionships that could be construed as a potential conflict of interest. 

Appendix A 

Module Class Status Details 

Core 

_AbstractBuilding/BuildingProper

ties 

Mostly taken 

over 

Adapted to new hook mechanism, some 

properties replaced by CityGML 3.0 ones 

AbstractEnergySystem Adapted 

New generalisation class: AbstractOccupiedSpace, 

incorporation into space and geometry concept, 

property yearOfManufacture replaced by 

CityGML 3.0 property 

EnergyDemand, WeatherData 
Mostly taken 

over 

Adapted to the new hook mechanism, relation to 

AbstractDynamizer to represent time-varying 

property 

Building Physics 

ThermalZone Adapted 

New generalisation class: 

AbstractBuildingSubdivision, incorporation into 

space and geometry concept, replacement of 

properties floorArea and volume by CityGML 3.0 

properties 

ThermalBoundary, 

ThermalOpening 
Adapted 

New generalisation class: AbstractThematicSurface, 

incorporation into space and geometry concept, 

replacement of area property 

Material and 

Construction/Laye

ring 

Construction/LayeredMaterial, 

ReverseConstruction/ReverseLayer

edMaterial 

Adapted 
Changed name due to semantic mismatch with 

CityGML 3.0 concept of construction 

Layer, LayerComponent 
Mostly taken 

over 

New generalisation class: 

AbstractFeatureWithLifespan 

AbstractMaterial, Gas, 

SolidMaterial 

Mostly taken 

over 

New generalisation class: 

AbstractFeatureWithLifespan 

ImageTexture 
Mostly taken 

over 

New generalisation class: 

AbstractFeatureWithLifespan 

Occupant 

Behaviour 
UsageZone Adapted 

New generalisation class: 

AbstractBuildingSubdivision, incorporation into 
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space and geometry concept, replacement of 

property floorArea by CityGML 3.0 properties 

BuildingUnit Adapted 

Now extends CityGML 3.0 BuildingUnit with 

additional properties through ADE hook, 

incorporation into space and geometry concept, 

replacement of property floorArea by CityGML 

3.0 property 

Occupants, Household 
Mostly taken 

over 

New generalisation class: 

AbstractFeatureWithLifespan 

Facilities, DHWFacilities, 

LightingFacilities, 

ElectricalAppliances 

Adapted 
New generalisation class: AbstractOccupiedSpace, 

incorporation into space and geometry concept 

Energy Systems 

AbstractEnergy 

ConversionSystem, Boiler, 

ElectricalResistance, 

CombinedHeatPower, 

MechanicalVentilation, 

AirCompressor, Chiller, 

GenericConversion 

System, HeatPump, 

HeatExchanger, 

AbstractSolarEnergy 

System, Photovoltaic 

System, SolarThermal 

System, Photovoltaic 

ThermalSystem 

Mostly taken 

over 

Incorporation into space and geometry concept, 

generalisation class derives from 

AbstractOccupiedSpace 

AbstractEnergy 

DistributionSystem, 

ThermalDistribution 

System, Power DistributionSystem 

Mostly taken 

over 

Incorporation into space and geometry concept, 

generalisation class derives from 

AbstractOccupiedSpace 

AbstractStorageSystem, 

ThermalStorageSystem, 

PowerStorageSystem 

Mostly taken 

over 
Incorporation into space and geometry concept 

EmitterSystem 
Mostly taken 

over 
Incorporation into space and geometry concept 

EnergyFlow, EnergySource 
Mostly taken 

over 

Relation to AbstractDynamizer to represent time-

varying property 

SystemOperation 
Mostly taken 

over 

New generalisation class: 

AbstractFeatureWithLifespan 

Support classes: 

Time Series 

AbstractTimeSeries Obsolete 
variableProperties are mapped to 

AbstractTimeseries with the ADE hook 

RegularTimeSeries/RegularTimese

ries 
Adapted 

Incorporated into the CityGML 3.0 Dynamizer 

module as specialisation class of 

AbstractAtomicTimeseries 

IrregularTimeSeries/GenericTimes

eries 
Obsolete 

Replaced by GenericTimeseries in the Dynamizer 

module  

RegularTimeSeriesFile, 

IrregularTimeSeriesFile/ 

TabulatedFileTimeseries 

Obsolete, 

Adapted 

Both classes largely replaced by 

TabulatedFileTimeseries in the Dynamizer module, 

addition of properties recordSeparator and 

timeInterval with the ADE hook 
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Support classes: 

Schedules 

AbstractSchedule, 

ConstantValueSchedule, 

DualValueSchedule 

Adapted 
Changed to stereotype «FeatureType», new way 

for properties to reference to schedules 

DailyPatternSchedule Adapted 

Changed to stereotype «FeatureType», only one 

property containing time-depending values, 

relation to AbstractDynamizer, complex time 

series are now covered through 

CompositeTimeseries in the Dynamizer module 

TimeSeriesSchedule/TimeseriesSch

edule 
Adapted 

Changed to stereotype «FeatureType», relation to 

AbstractDynamizer 

Support classes: 

other 
WeatherStation Adapted 

New generalisation class: AbstractPhysicalSpace. 

Incorporation into space and geometry concept 
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