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All-microwave Lamb shift engineering for
a fixed frequency multi-level
superconducting qubit

M| Check for updates

Byoung-moo Ann® 204 & Gary A. Steele ®'

It is known that the electromagnetic vacuum is responsible for the Lamb shift, which is a crucial
phenomenon in quantum electrodynamics (QED). In circuit QED, the readout or bus resonators that are
dispersively coupled can result in a significant Lamb shift of the qubit. However, previous approaches
or proposals for controlling the Lamb shift in circuit QED demand overheads in circuit designs or non-
perturbative renormalization of the system’s eigenbases, which can impose formidable limitations. In
this work, we propose and demonstrate an all-microwave method for controlling the Lamb shift of
fixed-frequency transmons. We employ the drive-induced longitudinal coupling between the
transmon and resonator. By simply using an off-resonant monochromatic drive near the resonator
frequency, we can control the net Lamb shift up to +30 MHz and engineer it to zero with the drive-
induced longitudinal coupling without facing the aforementioned challenges. Our work establishes an
efficient way of engineering the fundamental effects of the electromagnetic vacuum and provides
greater flexibility in non-parametric frequency controls of multilevel systems.

The rise of modern quantum electrodynamics (QED) was motivated by
the need to comprehend the effects of vacuum'”. One representative
phenomenon that accompanied the development of QED is the Lamb
shift, which refers to the renormalization of energy levels induced by the
electromagnetic fluctuations of the vacuum. Originally, the Lamb shift
concerned systems placed in free space. However, the advent of cavity
and circuit-QED’” inspired studies of engineered vacuum. In particular,
in circuit-QED, qubits are almost always accompanied by microwave
modes in the strong dispersive regime, and Lamb shifts induced by these
resonators take significant portions of the bare transition frequency of
the qubits®?,

Thus, controlling the Lamb shift could provide more flexibility in
engineering the transition frequencies of superconducting qubits. In circuit-
QED, however, Lamb shift control requires daunting overheads such as
flux-tunability®”, voltage biasing", or collective states'*. Lamb shift can also
be controlled without the aforementioned costs using external drivings, as
proposed in"*"". Unfortunately, one cannot avoid mixing among the
eigenstates in this manner. Consequently, the properties of the systems will
undergo unwanted renormalization'*".

In this work, we propose and demonstrate an all-microwave approach
for Lamb shift control in a typical circuit-QED configuration comprising a

transmon®’ dispersively coupled to a single resonator mode. We introduce
strong drive fields off-resonant to both the transmon and resonator, indu-
cing drive-induced longitudinal coupling (DLC).

This results in state-dependent frequency shifts of the transmon which
exist only when the resonator mode is dispersively coupled and therefore
can be used to control the Lamb-shift, representing the core-principle of our
Lamb shift engineering scheme. We demonstrate large tuning of the Lamb
shift ~30 MHz while minimizing undesired renormalization of the other
properties of the transmon-resonator system.

Results
Theoretical descriptions
For a dispersively coupled transmon and resonator system, the renorma-
lized interaction in the strong drive limit has been experimentally verified in
our previous work'’. Unfortuately, the renormalized interaction sig-
nificantly changes not only the Lamb shift of the transmon, but also other
properties such as lifetime, Rabi frequency, and cross-nonlinearity. In this
work, we substantially engineer the Lamb shift while avoiding these
unwanted renormalization, which was not dealt with in".

Figure 1 (a) describes an experimental configuration used in this work.
We consider a dispersively coupled transmon and resonator. The drive is
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Fig. 1 | Description of drive-induced Lamb shift ( a)
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N, ¢, and a refer to cooper-pair number, superconducting phase, and
resonator field operator. E, Ej, and N, are the charging, Josephson energies,

and offset cooper-pair numbers of the trasmon. anb) and w, mean the

resonator drive amplitude and frequency. g is the coupling strength between
the transmon and resonator.

To efficiently capture renormalization of the transmon-resonator
m%lerbz)ictlon H,, we apgly a dlsplac%ment operator U ¥ etnd £ wa
H ™. Here, &(t) = 53 e~ iwat — 'zd et A, and 2,4 are w, — wy and
w, + w, respectively. Note that this {ransformation is only valid when A, ; is
much larger than the linewidth of the resonator. Then, the transformed
Hamiltonian reads

We 1ntr0duce unitary transformations U and U, which transform
H, + H, and H to effective static Hamiltonian K ,and K respectlvely' . We
deplct the energy levels of K and K in Fig. 1c, d. We define @,,, the
transmon frequency between n- th and m-th states of K. Wealso deﬁne a)
(w ), which refers to the transmon (resonator) transition frequency when
the resonator (transmon) is in the k-th (I-th) state. To efficiently distinguish
the transmon and resonator states, we label the lowest four states of the
transmon by g, e, f, and d, respectively.

The difference between K and K is originated from the interaction
between the transmon and resonator Particularly, the discrepancy between
@’ and @,, can be interpreted as a transmon frequency shift when the
resonator is in vacuum. Therefore, we can define renormalized Lamb shift
L, = =a, - @, and resonator frequency pulling P = @& —w,. Alw,,,
Wy an, and P are adiabatically connected to w,,,;;, wﬁm, > and P with
Q4 — 0. We further define AC Stark shift of the transmon
8,y = @ppy — Wy We also define ok, = Z)ﬁm — ok . For far off-
resonant drives, 8w,,,, ~ dwk, is satisfied since the 1nterplay between AC
Stark and Lamb shift is negligible.

To gain an intuition of how the transmon-resonator interaction
accounts for the difference in @,, and @, it is useful to define the
renormalized interaction Hamiltonian'®

H U(dls) [H(lab) t] U(dlb”
=H +H,+H +Q;Ncosw,t . ) S S
1 I r u H; =iglU,NU (@ — ah “
H . ~ i(n— i(n—m— ~ ~
“ 2§ 3, (e — R ) (@ — ),
nm
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Fig. 2 | Identifying drive-induced longitudinal coupling (DLC) from multi-level
spectroscopy. We investigate drive frequency wy near wf. Circles denote experi-
mental data. Lines indicate theoretical calculation based on the corresponding
Hamiltonian models in legend. a, b We plot the frequency shifts in ge transition
(8w23) with respect to that of gf transition (ngf) for wy/2m = f; = 4.24 GHz and
wy/2m = f; = 4.14 GHz, respectively. ¢, d We plot dimensionless quantities qgf =
38w /8w |g, o and iy = 3 0w}, /8wl lg, o> while sweeping wg. Errors are less
than the size of symbols, and thus not presented in the plots. The errors are statistical
and originated when extracting 8w’ from data.
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Fig. 3 | Lamb shift and other renormalized quantities with respect to drive
amplitude Q. Drive frequency wy/27 is 4.2 GHz for all cases. Circles and lines
denote experimental data and theoretical calculation, respectively. We plot the
renormalized transmon transition frequency (525 and @,,) in a, Lamb shift (fge) in
b, resonator frequency (@®) in ¢, and cross-nonlinearity (y) in d. Errors are less than
the size of symbols, and thus not presented in the plots. Errors are statistical and
originated when extracting 8w’ from data.

Here, |n) is the eigenstate of H o For the discussion later, we define Hp, o the
renormalized interaction Hamiltonian containing only drive-induced
longitudinal coupling (DLC)

Hppe =13 Gnle' — ")) (nl(a — a"). )
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Fig. 4 | Linewidth broadening by the drive-induced dephasing. Drive frequency
wy/2mis set by 4.2 GHz. a The transmon’s two-tone spectroscopy data with respect to
various Q. w, refers to probe frequency. Corresponding renormalized Lamb shift
L, are also presented. Circles and lines denote data and Lorentzian fits. b Extracted
linewidths with respect to Q. Line is obtained by theoretical model. The linewidth
broadening is originated by the finite lifetime of the resonator. Errors are less than
the size of symbols, and thus not presented in the plots. The errors in b are statistical
and originated when extracting the linewidth from a.

For far off-resonant drives, the magnitudes of static components
(n —m==1)inEq. (3) remain nearly invariant. Also, the magnitudes of oft-
diagonal dynamical components (n # m and n — m # + 1) are much smaller
compared to those of the static components. In this work, we focus on the
DLC terms in Eq. (4), which in turn significantly contribute to L,,,.

In Fig. 1e, f, we theoretically calculate some elements of static (gge) and
DLC terms (ggg‘ o) for several Agy = w,, — wyand QBased on ref. 18. These
mainly determine L,,. The parameters used in the calculation are the same
as the experimental values. In Fig. 1(e), we observe the discrepancy between
g, | and [g,,| for both far-off-resonant (red and blue) and near-resonant
(green) drive fields. For two-state (TS) systems, |§gg| = |g,,| always holds.
Figure 1f presents |§ge|(: |§eg [). As we can confirm in Fig. 1(f), near-
resonant driving significantly renormalizes g,. For far-off-resonant driving,
the static components remain nearly the same. In addition, the magnitude of
other off-diagonal dynamical terms are negligible (not present in Fig. 1f).
Therefore, the transverse part in the renormalized interaction Hamiltonian
can be approximated to H,.

Eventually, taking only the static and DLC components into con-
sideration, we can approximate L, , 41 by

7 2 S 2_ 2
"L'n‘nJrl ~ ngn‘n+1| + |grm| - |gn+1.,n+1 ) (5)
' Wy pt1 — Wy Wy — W,

Eq. (5) provides a rough estimation of L, ,,, ; when 18 411 <|@g, — @, |and
18] 18,0 L1l <Klwy — w, | are satisfied. The first term describes the Lamb
shift induced by the static components in Eq. (3). The second term corre-
sponds to the Lamb shift induced by DLC. When w, is closed to w,, the
DLC-induced Lamb shift can contribute significantly to L, ,,; keep-

ing gn7n+1 ~ gnJH—l' - .

This scheme is not possible for two-state system for |g, | = |g.,|. In
Supplementary Note 2, we generalize the theoretical description in this
subsection to arbitrary multi-level systems coupled to resonator modes
based on Floquet formalism.

Experimental conditions

We obtain the experimental data from two cooldowns due to an accidental
interruption in the experiment caused by a technical issue. The circuit
parameters for each round are distinguished by unbracketed (Ist) and
bracketed values (2nd). The data in Fig. 2 is obtained in the first round.
Figures 3 and 4 are obtained from the data in the second round. From the
pulsed qubit spectroscopy, we obtain wge /27 ~ 5.901(5.867) GHz,
wly /21 ~ 5.749(5.715) GHz, wf, /21 ~ 5.587(5.553) GHz, and w} /27 ~
4.290(4.289) GHz. We also obtain w,/27 = 4.335(4.335) GHz by driving the
transmon to unconfined states’’. Based on these, we extract bare qubit
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parameters and coupling, we./27 = 5.869(5.835) GHz, w27 = 5.708(5.676)
GHz, wg/2m = 5.539(5.510) GHz, and g/2m ~ 248(245) MHz. The
extracted parameters are consistent with the observed self and cross-non-
linearity, A = wp, — wj ~27x152(150) MHz and y = wf —wf~
27 % 5.8(6.0) MHz, respectively. Please see Supplementary Note 1, Sup-
plementary Table 1 and 2 for detailed information on system parameters
and variables.

Resolving drive-induced longitudinal coupling

Experimentally verifying the existence of drive-induced longitudinal cou-
pling (DLC) is non-trivial. Both DLC and AC Stark shifts yields
80, ~ O(Q2), and thus, one cannot distinguish them just simply mea-
suring the changes in «?, without independent calibration of Q. Instead,
we investigate the ratios among 6w?,, to identify the DLC. We introduce the
following dimensionless quantities.

My = 5 00l /0w lo, o

n __1 n n
Ned = géwgd/é\wge'QdHO'

©)

We will compare experimentally obtained # to the theory with and without
considering DLC, and thereby verify the effects of the DLC. Note that
finding experimental # does not demand calibrating Q, since it is inde-
pendent of Q.

In Fig. 2, we measure both #, and #°, from multi-level spectroscopy™”.
Please see Supplementary Note 3 for details on the experimental methods. In
Fig. 2a, b, we present the observed dw?, with respect to 8a)§f (circles) for two
different drive frequencies near wy, 424 GHz (a) and 4.14 GHz (b),
respectively. We choose w, to be close enough to w, since the effects
of the DLC scale linearly with 1/(w; — w,) as shown in Eq. (5). We con-
ﬁrm linear correlations among experimentally observed dw? gefgd 10T
Sa? Woe of od 4/2mS10MHz as seen in Fig. 2a, b. In Fig. 2c, d we sweep w, from
3.55 GHz to 4.25 GHz and present corresponding 7" o and 1%, from the
experiments (circles).

The solid, single-dashed, and dot- dashed lines refer to the theoretical
calculations based on Kq +H, +H, K, + H,+Hpc+H,, and
K + H, + H,, respectively. We apply Floquet theor}f} ** to the above
Hamlltomans and calculate the theoretical values. The calculations are
numerically done by QuTip™*

The first model presents a full description of the driven system, which
excellently explains the experimental data. The second and third models
differs only by a term Hypy . Therefore, the disagreements between these
models can be interpreted as the effects from the DLC. The breakdown of
the dot-dashed lines in Fig. 2a-d, and the excellent consistency among the
experiment, the solid and single-dashed lines indicate clear evidences for the
DLC. As expected from Eq. (5), we can confirm that the DLC effect is larger
with smaller |w,; — w,| in Fig. 2a, b. Such tendency is also clearly confirmed in
Fig. 2¢, d.

From the investigation of this section, we conclude that calibrating 0,
cannot be precisely achieved only using AC Stark shift theory since the DLC
should take a significant portion of the frequency shifts. In the following
section, we use a more rigorous approach to find Q, and thereby extract the
Lamb shifts at arbitrary drives.

Lamb shift renormalization at arbitrary drive strengths
In the previous section, we have proven the existence of DLC effects, and
thereby learned employing AC Stark shift theory alone is an inappropriate
approach to calibrate Q; From now on, we use Eq. (2), including the
resonator and interaction terms, to obtain Q) in the experiment. We then
quantify the renormalized Lamb shift at arbitrary Q. We cross-check our
quantification from the shifts in the resonator frequency and cross-
nonlinearity. Note that the AC Stark shift alone cannot explain these shifts
simultaneously.

Figure 3 present experimentally observed @_,, @¢, and ¥ (circles) for
w421 = 4.2 GHz. We first obtain the conversion factor y(w,) that satisfies

w(wy)\/Py = Q , where P, indicates the driving power measured at the
signal generator. We set y = 138.9, with which all quantities are simulta-
neously explained by the theories.

In Fig. 3a, we compare experimentally observed @_, to theoretical
expectation (solid line). For a comparison, we plot the @ Wg, (dot dashed hne)
theoretically calculated based on K, ¢ An arrow 1nd1cates Lg = e — W
There is a crossing between the data and dot-dashed line, which means the
sign of L is flipped at that drive amplitude. In Fig. 3b, c, we plot experi-
mentally observed Ly, and @ with the theoretical expectation (lines). L,
varies from 32to —30 MHz. The changes in the resonator frequency pulhng
P= @* — w, is relatively less than those of L . All the theoretical calcula-
tions in (a—c) are based on Floquet theory and numerically performed by
QuTipzs’Z(’.

We present the renormalized cross-nonlinearities (x) of the driven
transmon-resonator system in Fig. 3(d). The circles and lines indicate the
experimental and theoretical calculation, respectively. We investigate the
origin of Q; dependence of y. In the analytlcal theory (dashed line), we use
the per’(urbatlve calculation y ~ ggeA / (w — @’ —A)”, and use the
approx1mat10n gge N g, Here, A is the renormahzed self-nonlinearity,
Ege - @, We do not make any approximation on A in the analytical
calculation. The analytical theory is consistent with the experimental data as
well as the numerical calculation based on Floquet theory (solid line).
Therefore, we can conclude that the approximation g, ~ g,, is satisfied.
The disagreement between solid and dashed lines at large Q; in Fig. 3d can
be attributed to undesired sideband transitions between the transmon and
resonator. See Supplementary Note 3 for more detailed discussion.

Drive-induced dephasing

In Fig. 4, we investigate how the transmon’s linewidth varies while engi-
neeringL from 32 to —30 MHz. Figure 4a shows two-tone spectroscopy of
g — e transition for various Q. Corresponding L . is also presented beside.

Weobtain Y ~ 1 MHzand Fq ~ 2 MHz from tlme domain measurement,

where T? and Fq are energy relaxatlon and pure dephasing rates of the
transmon. Correspondmg linewidth in two-tone spectroscopy is approxi-
mately 830 kHz without probe power broadening and measurement-
induced dephasing”**. We also obtain the similar linewidth from two-tone
spectroscopy in the experiment, when the calibrated pump strength is
approximately 110 kHz, and measurement photon number is far less than
unity. There are almost no qualitative changes in the spectrum presented in
Fig. 4a with increasing Q. However, we notice the linewidth increases by a
significant amount. Figure 4b shows the extracted linewidth from Lor-
entzian fitting (circles). We name such effect drive-induced dephasing
(DID) in this paper.

We reveal that the cooperative effects from the driving and finite
resonator lifetime can explain the linewidth broadening. The amount of
DID is defined by I‘g‘DID. The same phenomenon is also theoretically pre-
dicted in”, but has been rarely demonstrated experimentally. Based on
Eq.33 of ', we obtain the approximated form of T§ 1y,

, A,

y Y= SUCHE (7)
¢,DID ) Ard 2 A )

Aqd and A, are given by @ @), — wy and @F — w,, respectively. I’} (w) is the
resonator-bath coupling. We have I"(wf) = 13.47 MHz from the resonator
decay rate, which is mainly accounted for by the external coupling to the
feedline. The theory curve in Fig. 4(b) is based on Eq. (7). I'[(w,) is
determined by some unknown factors such as the cable resonances of
feedlines, and empirically known slowly varying over a few hundreds MHz
frequency scale. Thus, we set I'{ (w,) as a free-fitting parameter and obtain
the value of (0.83 £0.05) X I (wf) from the least chi-square method. See
also extended data in Supplementary Note 5, Supplementary Figs. 6 and 7.

If we directly drive the transmon using a separate charge-line, instead
indirectly drive through the resonator, the DID can be suppressed
approximately by a factor of g/A,,”. For the system in the dispersive

Communications Physics| (2024)7:347


www.nature.com/commsphys

https://doi.org/10.1038/s42005-024-01841-0

Article

coupling regime, g/A,, <1 is satisfied. Hence, the DID can be significantly
reduced. Since FZ,DID scale linearly with I'] (w,), the DID becomes negligible
for high-coherence resonators when I'{ (w) is negligible around w ~ w,. For
readout resonators that need sufficient external couplings to the feedlines for
high readout efficiencies, one can engineer the interface between resonators
and feedlines suppressing I (w,) while keep large enough I'/(wf), as a
similar strategy is used for Purcell filters.

The magnitude of the DID when we tune the Lamb shift to zero is
approximately 1 MHz. We can suppress this to 1 kHz with g/ A, =0.1and
I'l(w;) = 10 kHz, which are achievable values in typical circuit QED
experiments. Nonetheless, it is undeniable that the suggested measures do
not thoroughly eliminate the DID and complicate the circuit design.
Therefore, our scheme might not be practical when a superconducting qubit
of extremely low pure dephasing rate less than 1 kHz is required. However,
our approach is still available for the other applications where moderate

coherence times are acceptable’ ™",

Conclusion

To summarize, we experimentally realize a large tuning of the Lamb shift
~30 MHz with drive strength while minimizing undesired renormalization
of the other properties of the transmon-resonator system. We show that the
Lamb shift can be engineered even to zero. Our observation is consistent
with multi-level transmon spectroscopy as well as other renormalized
quantities such as cross-nonlinearities and resonator frequency pulling. The
observation also agrees excellently with Floquet theory.

Controlling the Lamb shift could provide more flexibilities in engi-
neering the transition frequencies of superconducting qubits. The feasibility
of tuning the Lamb shift to zero possesses other practical implications. Our
approach can also be implemented to multi-qubit device without substantial
complexities. We provide specific application examples using the above
merits in Supplementary Note 4.

Methods

Eigenenergy calculation

In this work, we utilize QuTiP to apply Floquet theory to the driven
Hamiltonian models presented in the main text. Our goal is to find the
quasi-eigenenergies of the driven Hamiltonians (En‘ o) that are adiabatically
connected to the eigenenergies of the undriven Hamiltonians (E,) when the
drive amplitudes are turned off (Q; — 0). We use the ‘floquet modes’
method of QuTiP, which returns the quasi-eigenenergies in the first Floquet
Brillouin zone of the given Hamiltonian, i.e., E,, , for all n. However, these
values are not sequentially arranged with respect to 1, and the sequence even
changes as Q) varies. Therefore, we need to take additional steps to find the
proper Floquet mode number a,, and quasi-eigenenergies. We gradually
increase Q) with a sufficiently small step size and, at every step, find the
proper En,o and corresponding a,, such that they are adiabatically connected
to the values obtained in the previous step. At the beginning, when Q;=01is
satisfied, we can find E,, using the ‘eigenenergies’ method without Floquet
theory, and therefore finding the proper mode numbers is unnecessary. We
properly adjust the step size when increasing Q) to balance accuracy and
computation time.

Device fabrication and measurement

The device and cryogenic setup used in this work are identical to those in our
previous work'®. The device consists of a transmon coupled to two coplanar
waveguide resonators, but only one of the resonators is used in this work
because the other one is weakly coupled with a cross-nonlinearity of less
than 100 kHz, and therefore not effective in the experiments. The transmon
and resonators are defined on a 100 nm niobium titanium nitride (NbTiN)
film on a 525 um thick silicon substrate™. The Al-AlOx-Al Josephson
junction of the transmon is fabricated by typical double-angle shadow
evaporation. The device is mounted on the mixing chamber plate of a
dilution fridge (LD-400) and shielded from radiation and magnetic field
using Cooper and Aluminum cans. The optical microscope image of the
device is presented in'*,

Data availability
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