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Abstract
Detecting cancer at an initial stage could change
the course of the disease’s development. A non-
invasive examination consists of the liquid biopsy
of blood, revealing biomarkers that could provide
information about the existence of a tumour or not
in the organism. The research touches upon the
relevance of DNA fragments, precisely the length
of fragments, in the detection of cancer. An in-
depth interpretation of the fragment length distri-
bution for predicting the state of a patient as being
healthy or sick with cancer was approached. The
distribution was explored from four perspectives:
the complete fragment length distribution, the size
range from 90 to 150 bp, important lengths selected
by the feature extraction methods and the Fourier
Transform of the initial data. These were input in
three machine learning models. Using the fragment
lengths between 93 and 98 produced accuracy and
AUC scores of over 0.85 for all supervised classifi-
cation models. Processing the data with the Fourier
Transform and using the amplitude of spectrums as
features in the Random Forest model resulted in an
AUC of 0.99.

1 Introduction
Cancer is defined in [1] as a disease that influences the
uncontrollable multiplication of certain cells, which leads to
their spreading into other organs. Cancer cells are the result
of mutations in cells and may proliferate without control.
Therefore they tend not to die when it would be the case,
causing the development of the tumor. DNA fragments
originated from cancerous cells and tumours end up in the
bloodstream. The cancerous genetic material is referenced
as circulating tumour DNA (ctDNA). The genetic changes
found in cell-free DNA (cfDNA), characteristics of ctDNA,
could have a significant implication in the detection of cancer
[2].

An early detection of cancer could be a vital step in determin-
ing an effective treatment, according to [3]. An accessible
method for detecting cancer would be the analysis of blood
measurements. The patient is subject to a non-invasive inves-
tigation, a blood test, that can detect biomarkers helping in
the diagnosis of cancer [4]. The relevant biomarkers collected
from blood that can be observed are the DNA fragments.
The study of the DNA fragment’s characteristics contributes
to the detection of cancer. The length of fragments is one
of the features that give an insight into the classification of
a blood sample from a healthy person or a patient with cancer.

The research intends to delve deeper into the understanding
of fragmentomics features for helping detect cancer by
classifying the patients into healthy or not with supervised
and unsupervised learning models. In [5], the analysis of
fragmentomics features suggests a difference in fragmen-
tation patterns of cfDNA in the case of healthy persons

and patients with cancer. Moreover, it is mentioned that
the cancer’s source tissue could be determined through the
fragmentation profile. An unsupervised approach for detect-
ing cancer is described in [6]. The inspection of fragment
length patterns in cfDNA is realised using a non-negative
matrix factorization (NMF) way. The understanding of the
implication of fragmentomics features in classification is still
lacking.

The analysis of the fragment length distribution in the clas-
sification of individuals as being healthy or as having cancer
is tackled in this paper. This can be visualised in Figure 1
for a breast cancer sample and a control sample. The goal of
this work is to compare various tumour detection approaches
based on the fragment length distribution of cell-free DNA
molecules. To this end, we aim to determine which features
can we extract from the given distribution, and whether a
simple binary rule could achieve good classification perfor-
mance. Furthermore, we will also investigate what machine
learning models can be used in detection, and for which type
of cancer the optimal approach performs better.

Figure 1: The fragment length distribution for a breast cancer sample
and a control sample.

The paper emphasises on the study of fragment length dis-
tribution in the classification of patients. The research work
includes a processing of the data into a format that could
reflect the distribution. An exploration of the interpretation
of the distribution is establish. For concluding the best
approach of extracting the information, a comparison of the
performance of models taking different inputs is presented.

Section 2 presents a description of the design decisions along-
side the selected algorithms. An analysis of the results is ex-
pressed in Section 3. Further discussions are reported in Sec-
tion 4. Section 5 raises the ethical aspects of the study and
the issues that can be encountered when reproducing the ex-
periment. Finally, Section 6 summarizes the work presented
in the paper, and provides indications for future work.



2 Methodology
Research Approach
To address the research question, an analysis of the influence
of the fragment length distribution in classification is con-
ducted. Four approaches that determine the information to
extract from the distribution are studied for understanding the
effect of fragments’ lengths in detecting cancer. The first idea
was to assess the entire fragment length distribution. Next,
the size range from 90 to 150 bp was considered, because
of its relevance for ctDNA [7]. Further, an exploration of
the most important features’ estimated effectiveness was
addressed. Lastly, the presence of oscillatory patterns in
the distribution [8] motivated the implication of the Fourier
Transform in the processing of the initial data. The complete
distribution of each sample was input into the fft function
from the NumPy library, resulting in a one-dimensional
discrete Fourier Transform computed with the Fast Fourier
Transform algorithm [9]. The absolute values of the transfor-
mations, representing the amplitude of the spectrums, were
determined as features for the classification models.

To evaluate the significance of the four approaches in the de-
tection of cancer, supervised and unsupervised learning mod-
els are compared. Starting from the supported literature, the
Random Forest and NMF methods were considered. Addi-
tionally, the evaluation was conducted by adopting a naive
classification decision and an SVM model. The performance
was determined by the accuracy and the area under the re-
ceiver operating characteristic curve (ROC-AUC).

Dataset
The dataset provided for this research is the same as the
one handled in [5]. The data consists of samples of plasma
from healthy patients and patients with cancer. The types of
cancer present in the data are breast, lung and colorectal. The
252 samples include 104 healthy patients, 49 breast cancer
patients, 22 colorectal cancer patients and 77 lung cancer
patients.

Each representative in the data was in the form of a Bi-
nary Alignment Map (.bam) file. A bam file represents
the sequence alignment in a binary format. A processing
step of these files was necessary so that the information
could be human-readable. The files were transformed into
a text file, consisting of the insert size metrics and the
histogram data that is represented by the insert size and its
corresponding number of read pairs. The conversion was
achieved with the CollectInsertSizeMetrics tool from Picard
[10]. Then, the information from the text files was collected
in a comma-separated value (CSV) file. For gathering the
data, the minimum and maximum length of all the samples
was established. In the CSV file, each sample has a column
with its name, its label (1 for cancer and 0 for healthy)
and columns defining all the lengths in the range from the
minimum to the maximum length. The lengths columns have
as value the density, which was computed as the number of
read pairs for a size over the total number of read pairs, or 0
if the length is missing for the sample. The size of the data

features is 250 since the minimum length determined was 38
and the maximum 287.

The dataset was split into 67% training data and 33% testing
data. The decision to make the split only into train and test
sets was supported by the action of tuning the hyperparame-
ters with RandomizedSearchCV from the scikit-learn library.
The RandomizedSearchCV method explores different sets of
parameters through cross-validation that could optimize the
learning models’ scoring. AUC score was chosen to be max-
imised for this research.

Feature Importance
Selecting a specific set of features could provide more
insights into the classification of plasma samples into healthy
or cancerous. Three selection methods were proposed for
identifying the lengths from the complete distribution, and
the frequencies from the amplitude of the spectrum obtained
with Fourier. The selected features could be informative for
the classification problem. The techniques were Recursive
feature elimination with cross-validation (RFECV), Selec-
tKBest and feature importances function from Random
Forest model.

One of the methods presented by the scikit-learn library for
selecting the important features is RFECV. Features with a
small impact on the classification are recursively eliminated,
and using cross-validation, the optimal collection of features
is decided. A Random Forest model with the default hyper-
parameters and random state settled was initialized for being
the estimator instance of RFECV.

SelectKBest is a feature selection approach from the scikit-
learn library applied in supervised models. The method
picks the k features with the highest score retrieved from an
univariate statistical test. The number of dominant features,
k, was chosen to be equal to six as that was the set’s size
output by RFECV. Mutual information was preferred as a test
score for the relationship between the lengths. The problem
that is solved in the research is a classification problem,
treating sparse data, so the two test options were chi-squared
and mutual information. Chi-squared was discarded because
of its suitability to categorical data, a property not covered
by the dataset used in the research.

The Random Forest classifier provides a method called fea-
ture importances that determines the significance of a fea-
ture in the classification process by computing the Gini im-
portance. The model has to be trained so that the method can
be accessible. As for the RFECV, the Random Forest model
had set the default hyperparameters and random state.

Baseline Model
Two simple binary classification rules, one focused on the
entire distribution and the other for only a specific set of
lengths, were implemented as a baseline. The first step
of the model for the complete distribution is to compute
the mean fragment length for each data sample, which is
then normalized. After the train-test split of the data, the



normalized mean lengths of the samples from the train
set are transformed in the range (0, 1) using the sigmoid
function, 1 − 1

1+e−x where x represents the mean. The
threshold is established from the ROC curve with Youden’s
J statistic [11]. The probability of the samples from the
testing set is calculated with the aforementioned formula. If
the probability is greater or equal to the threshold then the
plasma sample is noted to be from a patient with cancer.

A second classification rule was formulated for the size range
90-150 bp, the lengths with the most importance and the
Fourier Transform features. From the training data, the mean
density of cancer and healthy patients was computed, setting
the threshold of the classification in the middle of the two. A
sample is classified as cancerous if the mean density of the
lengths is greater than the threshold.

Support Vector Machine Model
To separate different classes, SVM produces a hyper-plane or
a set of hyper-planes that aim to maximize the margin. In the
experiments, the C-Support Vector Classification (SVC) class
from the scikit-learn library was used. The tuning of the hy-
perparameters was realized with RandomizedSearchCV and
having as parameters setting the following values:

• Regularization parameter - uniform(0.01, 100)

• Kernel type - {′linear′,′ poly′,′ rbf ′,′ sigmoid′}
• Degree of the polynomial kernel function -
randint(2, 5)

• Kernel coefficient - {′scale′,′ auto′}
• coef0 - uniform(0, 1)

Random Forest Model
Random Forest improves the predictive accuracy by fitting
multiple decision trees over subsets of data. The set of pos-
sible parameters of the RandomForestClassifier from which
the model tuning selected the optimal values was as follows:

• Number of trees in the forest - randint(100, 2000)

• Function that measures the quality of a split -
{′gini′,′ entropy′,′ log loss′}

• Maximum depth of a tree - randint(10, 110)

• Minimum number of samples for splitting an internal
node - randint(2, 10)

• Minimum number of samples needed to be at a leaf node
- randint(1, 5)

• Number of features to consider for the best split -
{′sqrt′,′ log2′}

• Bootstrap sample - {True, False}

Non-Negative Matrix Factorization
An unsupervised approach was implemented to have a sense
of the performance of the two ways. The classification
method had the focus on NMF as described in [6]. Since a
binary classification problem needs to be solved, we have
decided to use NMF with two components. In this way,

two weighted vectors and two signatures were resulted. The
reasoning for choosing two components is that we can now
associate the signatures with the two labels: cancerous, or
healthy. Given the assumption that the signature with a lower
mean fragment length is cancer-related, the two weights of
the weight matrix were compared. Assuming that the weight
corresponding to the cancer signature is greater, the sample
is classified as originating from a patient with cancer.

Furthermore, the classification was accomplished based on
a threshold chosen from the ROC curve as well. After the
two weighted vectors and the two signatures were returned,
the probability of samples being cancerous was computed.
Having the probabilities, the threshold was picked from the
ROC curve using Youden’s J index [11]. The sample was
characterized as cancerous if the probability was greater or
equal to the threshold.

3 Results
Data Characteristics
The data employed in the research was analyzed to identify
distinctive attributes. Computing the mean of the fragment
length distribution for the two classes facilitated the under-
standing of the data trends. Figure 2 presents the mean frag-
ment length distribution captured for cancer and healthy sam-
ples. The average length of data originating from the patients
with cancer is 165 bp, smaller than for the healthy data which
has a value of 167 bp. Furthermore, in Figure 2 the fragments
with size between 80 and 160 bp seem to be more common
in cancer data as opposed to fragments ranging from 180 to
230 bp. The healthy data exposes a mean density of 0.0039
in the range from 80 to 160 bp, and as for the other class, the
mean density is 0.0046. The values of the mean density be-
tween 180 and 230 bp for the cancer and healthy samples are
0.0034, and 0.0043 respectively. According to [5], the short
fragments have lengths from 100 to 150 bp while the long
fragments have lengths from 150 to 220 bp. In light of this
categorization, the range size of short fragments is prevalent
in cancer samples.

Figure 2: The mean fragment length distribution over the cancer and
healthy samples.



Feature Importance Results
The results of the three feature selection methods described
in Section 2 for the initial complete fragment length dis-
tribution are outlined next. RFECV selected Length 93-98
as being valuable features in classification. The second ap-
proach, SelectKBest, highlighted Length 92-98. The fea-
ture importances attribute of the Random Forest classifier
returned the list of lengths in decreasing order based on the
Gini importance. The first 10 features with the highest score
resulted from the feature importances method were plotted,
Figure 3. The features derived from the three approaches have
a set of common lengths that was decided to be used as the
third possibility of features for the detection of cancer. As
noticed the frequent set of lengths is Length 93-98.

Figure 3: The first 10 most important features extracted by the fea-
ture importances model from Random Forest.

The determination of these specific lengths could have been
influenced by their distinct characteristic for the two classes.
Figure 4 illustrates through a boxplot a comprehension of
data collected from cancer and healthy patients. The boxplot
depicts the distribution and any outliers of cancer and healthy
data for the lengths chosen in the feature importance step.
It can be observed that there is a clear separation between
the cancer and healthy patients data. There is a consistently
higher median and interquartile range for the cancer samples.

Figure 4: Comparison of cancer (label 1) data and healthy (label 0)
data for the lengths selected through feature importance methods.

The feature selection techniques were applied to the ampli-
tude of spectrums from the Fourier Transform likewise. The
RFECV established a set of 136 frequencies to be informa-
tive in the classification, more than half of the feature set’s
size. A larger set of Fourier Transform features imply to cap-
ture variations in data that support the classification problem.
Considering the first six features with the highest Gini im-
portance derived from the feature importances and the Se-
lectKBest methods, the same collection of frequencies was
revealed: 107, 108, 115, 135, 142 and 143.

Evaluation
To understand the importance of the fragment lengths dis-
tribution and the specific characteristics they present for de-
tecting cancer, an evaluation of the four approaches listed in
Section 2 was conducted. The sets of features representing
all lengths, the lengths in size 90 to 150 bp, the important
lengths selected and the DFT amplitude spectrums were anal-
ysed against the baseline model, the SVM model and the Ran-
dom Forest model. The NMF method made use of the whole
distribution. The performance was measured with regards to
two global measures of diagnostic accuracy [12], accuracy
and AUC. The two were taken into consideration, because of
their different goals. The accuracy metric outputs the percent-
age of correct predictions, while AUC provides insights into
measuring the model sensitivity and specificity.

Baseline Classification Model
The performance of the benchmark predictive model was
compared between the four types of information taken from
the data distribution and the results can be viewed in Table
1. A significant difference was noticed. The lengths selected
by the feature importance methods (lengths 93-98) performed
better for this model in comparison to the set of amplitude
spectrums. The results of the performance for the complete
distribution and the set of lengths in the range from 90 to 150
bp seem to be relatively close. The ROC curves for the four
setups are visible in Figure 5.

Accuracy AUC
Complete Distribution 0.75 0.795

Range 90 - 150 bp 0.702 0.767
Important Lengths 0.857 0.910

Amplitude Spectrums 0.666 0.683

Table 1: Results obtained after performing the classification with the
baseline model.

Support Vector Machine Model
The four approaches for identifying valuable information
from the distribution were input in the SVM model, results
being present in Table 2. The classifier had a similar perfor-
mance when using unprocessed data from the initial dataset.
Applying the Fourier Transform to the data collection could
have made it harder for the model to differentiate between
the two classes. As observed in Figure 6 the set of amplitude
spectrums presents an AUC score lower than the others with
0.1.



Figure 5: ROC curve of baseline model having different information
from the data.

Accuracy AUC
Complete Distribution 0.892 0.965

Range 90 - 150 bp 0.869 0.962
Important Lengths 0.892 0.968

Amplitude Spectrums 0.809 0.872

Table 2: Results obtained after performing the classification with the
SVM model.

Figure 6: ROC curve of SVM model having different information
from the data.

Random Forest Model
The sets of possible features were analysed with the Random
Forest model as well, Table 3. The best performance in terms
of both accuracy and AUC score was achieved by the set of
features represented by the amplitude spectrums. The other
three approaches have an accuracy above 0.9 and an AUC
score above 0.95, relatively close to each other. Overall, the
model tends to capture more informative data from the set of
amplitude spectrums. Figure 7 illustrates the sensitivity and
specificity of the model in the report with the four sets of
features.

Non-Negative Matrix Factorization
A difference in AUC score was noticed when implementing
the NMF model as stated in [6] (AUC = 0.742) for the set of

Accuracy AUC
Complete Distribution 0.916 0.989

Range 90 - 150 bp 0.916 0.985
Important Lengths 0.916 0.966

Amplitude Spectrums 0.940 0.986

Table 3: Results obtained after performing the classification with the
Random Forest model.

Figure 7: ROC curve of Random Forest model having different in-
formation from the data.

data used in this research. The same data samples were en-
gaged, however with a lack of five types of cancer for the set
of this research. That could lead to the two dissimilar scores.
The evaluation of the NMF model with a change in choosing
the threshold from the ROC curve for the predictive task was
done. In Table 4 a distinction in accuracy can be observed.
The value of the threshold after computing the ROC between
the true labels and probabilities of samples from the train data
to be cancerous was 0.47, Figure 8.

Accuracy AUC
NMF from [6] 0.761 0.808

NMF using threshold from ROC curve 0.821 0.81

Table 4: Results obtained after performing the classification with the
NMF.

Evaluation of the Optimal Setting for Each Type of
Cancer
The Random Forest model with the amplitude of spectrums
as features for classification was the setting with the optimal
performance. Further analysis of its behaviour was done for
the three types of cancer available in the dataset, Table 5. The
model accurately predicted for each group whether the sam-
ple belongs to a healthy or a cancer patient as seen in Figure
9. No additional conclusion can be taken since the size of
data for each cancer type and for healthy is not balanced.

4 Discussion
The comparisons investigated in Section 3 could lead to
an understanding of the fragment lengths influence in the



Figure 8: ROC curve for the NMF that is using the threshold from
the curve.

Accuracy AUC
Breast Cancer 0.941 0.991

Colorectal Cancer 0.928 0.915
Lung Cancer Cancer 0.950 0.980

Table 5: Results obtained after performing the classification with
the Random Forest model and amplitude of spectrums as data fea-
tures. The classification of samples into healthy or cancerous was
performed on each type of cancer.

detection of cancer in the blood samples. Using the set of
lengths resulting from the feature selection methods seemed
to have a notable performance improvement over models that
use the complete distribution. This implementation manages
to achieve an accuracy and AUC score above 0.85. However,
the set of data features represented by the amplitude of
spectrums obtained from the Fourier Transform had a higher
result when the predictive task was executed by the Random
Forest model. It can be reasoned that using a Fourier
Transform for the preprocessing step and the Random Forest
model is the most favorable for the classification of plasma
samples into healthy or cancer.

Figure 9: ROC curve of Random Forest model and amplitude
of spectrums as data features. The classification of samples into
healthy or cancerous was performed on each type of cancer.

In a previous work [8] the prediction of tumor content using
statistical learning was employed with Fourier and wavelet
transforms for a particular range of fragment lengths. The
main distinction between the existing work and the one
done in this research is the use of the Fourier transform in
processing the distribution. It was considered that a study
of the amplitude of spectrums captured from the Fourier
Transform for the complete distribution would be relevant.
This approach could bring more insights than only limiting
to a smaller range. The use of complete distribution provides
an understanding of the data’s pattern for the two classes.
Observation referring to the different characteristics of
cancer and healthy data noticed in Figure 2 supports the
decision of analysing the entire range of lengths.

The work proposed in [7] concluded that an enhancement in
fragments with lengths from 90 to 150 bp is distinguishable
for the ctDNA. The Random Forest model performed better
compared to the other models for this range. Furthermore,
an interesting finding was that the lengths resulting from the
feature selection methods lie between 90 and 150 bp. The sig-
nificant lengths for the classification were from 93 to 98 bp,
which demonstrated a generally favorable performance when
input into the learning models considered. The selection of
sizes from 93 to 98 bp could be due to the altered genes rep-
resentative of cancer patients. The genomic regions bound by
the regulatory proteins can be determined by the fragments
with lengths smaller than 100 bp [13]. An important factor
between cancer and healthy patients is the presence of Tumor
Protein 53 (TP53), mutated gene p53 characteristic in human
cancer [14]. p53 is a regulatory protein that controls the cell
cycle and suppresses the tumor.

5 Responsible Research
The ethical aspects of the research and the reproducibility
of the methods should be brought to attention to ensure a
responsible research process. The description of the experi-
ment in the previous sections should give the reader guidance
for reproducing the steps of the research. The conclusions
stated in the paper could have an impact on the diagnosis of
patients, and thus a thorough discussion regarding the ethical
implications has to be mentioned. A critical reflection on the
ethical considerations and methodological reproducibility
ensures the integrity and transparency of the research.

The dataset used for performing the experiments is the one
that was employed in [5]. The data was stored in the database
of Genotypes and Phenotypes, from where it was retrieved
for the research of cancer detection. In [5] is specified
that the samples were collected under Institutional Review
Board protocols. Furthermore, all the participants gave
their consent to have their blood samples taken for research
purposes. The samples were provided anonymized and no
correlation with the donor can be realized. No other extra
assessments of the data quality were concluded during the
research.

The detailed description of the methods is presented in Sec-



tion 2, ensuring the reproducibility of those. However, slight
differences can be noticed in results, since machine learn-
ing experiments are naturally stochastic. It is important to
maintain the hyperparameters set along the research the same
when reproducing the experiment, to obtain similar results. A
processing of the data into a format that could be inserted into
the learning models was necessary, a report of the approach
realized to accomplish the transformation is found in Section
2.

6 Conclusions and Future Work
The research aimed to fill the knowledge gap regarding the
implication of fragmentomics features in the detection of
cancer. The work proposed in this paper highlighted the
understanding of the complete fragment length distribution’s
influence in predicting the origin of liquid biopsy samples.
Considerations of information derived from the distribution
were evaluated against a baseline classification, SVM,
Random Forest, and NMF models. The complete fragment
length distribution, the size range from 90 to 150 bp, the
set of lengths resulting from the feature extraction, and the
Fourier Transform’s amplitude of spectrums were compared.

After performing the experiments, it was concluded that
using the lengths extracted by the feature selection methods
gave a considerable performance boost for all three super-
vised machine learning models. The cancer and healthy data
presents representative characteristics for this specific set of
lengths ranging from 93 to 98 bp. These differences between
the two classes impact the classification task. Nonetheless,
the Random Forest classifier with the amplitude of spectrums
had the best performance with an accuracy of 0.94 and an
AUC score of 0.99.

The optimal setting was analysed against each cancer type
available. The classification of blood samples into healthy or
cancer was fairly precise. However, because of the imbal-
ance between the size of healthy data and the size of each
type of cancer, a detailed conclusion cannot be drawn. The
absence of more data samples for the already available types
of cancer was considered to be one of the study’s limitations.
Additionally, a broad dataset with more various types could
give a more accurate interpretation of the models’ behaviour.
Finally, an in-depth analysis of the implication of the Fourier
Transform in the prediction of blood samples would be rec-
ommended for future research.
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