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Abstract

Counterfactual explanations offer an intuitive and straightfor-
ward way to explain black-box models and offer algorithmic
recourse to individuals. To address the need for plausible ex-
planations, existing work has primarily relied on surrogate
models to learn how the input data is distributed. This effec-
tively reallocates the task of learning realistic explanations
for the data from the model itself to the surrogate. Conse-
quently, the generated explanations may seem plausible to
humans but need not necessarily describe the behaviour of
the black-box model faithfully. We formalize this notion of
faithfulness through the introduction of a tailored evaluation
metric and propose a novel algorithmic framework for gen-
erating Energy-Constrained Conformal Counterfactuals that
are only as plausible as the model permits. Through exten-
sive empirical studies, we demonstrate that ECCCo recon-
ciles the need for faithfulness and plausibility. In particular,
we show that for models with gradient access, it is possi-
ble to achieve state-of-the-art performance without the need
for surrogate models. To do so, our framework relies solely
on properties defining the black-box model itself by leverag-
ing recent advances in energy-based modelling and confor-
mal prediction. To our knowledge, this is the first venture in
this direction for generating faithful counterfactual explana-
tions. Thus, we anticipate that ECCCo can serve as a baseline
for future research. We believe that our work opens avenues
for researchers and practitioners seeking tools to better dis-
tinguish trustworthy from unreliable models.

Introduction
Counterfactual explanations provide a powerful, flexible and
intuitive way to not only explain black-box models but also
offer the possibility of algorithmic recourse to affected indi-
viduals. Instead of opening the black box, counterfactual ex-
planations work under the premise of strategically perturb-
ing model inputs to understand model behaviour (Wachter,
Mittelstadt, and Russell 2017). Intuitively speaking, we gen-
erate explanations in this context by asking what-if questions
of the following nature: ‘Our credit risk model currently pre-
dicts that this individual is not credit-worthy. What if they
reduced their monthly expenditures by 10%?’

This is typically implemented by defining a target out-
come y+ ∈ Y for some individual x ∈ X = RD described

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

by D attributes, for which the model Mθ : X 7→ Y ini-
tially predicts a different outcome: Mθ(x) ̸= y+. Counter-
factuals are then searched by minimizing a loss function that
compares the predicted model output to the target outcome:
yloss(Mθ(x),y

+). Since counterfactual explanations work
directly with the black-box model, valid counterfactuals al-
ways have full local fidelity by construction where fidelity is
defined as the degree to which explanations approximate the
predictions of a black-box model (Molnar 2022).

In situations where full fidelity is a requirement, counter-
factual explanations offer a more appropriate solution to Ex-
plainable Artificial Intelligence (XAI) than other popular ap-
proaches like LIME (Ribeiro, Singh, and Guestrin 2016) and
SHAP (Lundberg and Lee 2017), which involve local surro-
gate models. But even full fidelity is not a sufficient condi-
tion for ensuring that an explanation faithfully describes the
behaviour of a model. That is because multiple distinct ex-
planations can lead to the same model prediction, especially
when dealing with heavily parameterized models like deep
neural networks, which are underspecified by the data (Wil-
son 2020). In the context of counterfactuals, the idea that no
two explanations are the same arises almost naturally. A key
focus in the literature has therefore been to identify those
explanations that are most appropriate based on a myriad of
desiderata such as closeness (Wachter, Mittelstadt, and Rus-
sell 2017), sparsity (Schut et al. 2021), actionability (Ustun,
Spangher, and Liu 2019) and plausibility (Joshi et al. 2019).

In this work, we draw closer attention to modelling faith-
fulness rather than fidelity as a desideratum for counterfac-
tuals. We define faithfulness as the degree to which coun-
terfactuals are consistent with what the model has learned
about the data. Our key contributions are as follows: first,
we show that fidelity is an insufficient evaluation metric for
counterfactuals (Section ) and propose a definition of faith-
fulness that gives rise to more suitable metrics (Section ).
Next, we introduce a ECCCo: a novel algorithmic approach
aimed at generating energy-constrained conformal counter-
factuals that faithfully explain model behaviour in Section .
Finally, we provide extensive empirical evidence demon-
strating that ECCCo faithfully explains model behaviour and
attains plausibility only when appropriate (Section ).

To our knowledge, this is the first venture in this direc-
tion for generating faithful counterfactuals. Thus, we antici-
pate that ECCCo can serve as a baseline for future research.
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We believe that our work opens avenues for researchers and
practitioners seeking tools to better distinguish trustworthy
from unreliable models.

Background
While counterfactual explanations (CE) can also be gener-
ated for arbitrary regression models (Spooner et al. 2021),
existing work has primarily focused on classification prob-
lems. Let Y = (0, 1)K denote the one-hot-encoded output
domain with K classes. Then most counterfactual genera-
tors rely on gradient descent to optimize different flavours
of the following counterfactual search objective:

min
Z′∈ZL

{
yloss(Mθ(f(Z

′)),y+) + λcost(f(Z′))
}

(1)

Here yloss(·) denotes the primary loss function, f(·) is a
function that maps from the counterfactual state space to the
feature space and cost(·) is either a single penalty or a collec-
tion of penalties that are used to impose constraints through
regularization. Equation 1 restates the baseline approach to
gradient-based counterfactual search proposed by Wachter,
Mittelstadt, and Russell (2017) in general form as intro-
duced by Altmeyer et al. (2023). To explicitly account for
the multiplicity of explanations, Z′ = {zl}L denotes an L-
dimensional array of counterfactual states.

The baseline approach, which we will simply refer to as
Wachter, searches a single counterfactual directly in the fea-
ture space and penalizes its distance to the original factual.
In this case, f(·) is simply the identity function and Z cor-
responds to the feature space itself. Many derivative works
of Wachter, Mittelstadt, and Russell (2017) have proposed
new flavours of Equation 1, each of them designed to ad-
dress specific desiderata that counterfactuals ought to meet
in order to properly serve both AI practitioners and individ-
uals affected by algorithmic decision-making systems. The
list of desiderata includes but is not limited to the follow-
ing: sparsity, closeness (Wachter, Mittelstadt, and Russell
2017), actionability (Ustun, Spangher, and Liu 2019), diver-
sity (Mothilal, Sharma, and Tan 2020), plausibility (Joshi
et al. 2019; Poyiadzi et al. 2020; Schut et al. 2021), ro-
bustness (Upadhyay, Joshi, and Lakkaraju 2021; Pawelczyk
et al. 2023; Altmeyer et al. 2023) and causality (Karimi,
Schölkopf, and Valera 2021). Different counterfactual gen-
erators addressing these needs have been extensively sur-
veyed and evaluated in various studies (Verma et al. 2022;
Karimi et al. 2021; Pawelczyk et al. 2021; Artelt et al. 2021;
Guidotti 2022).

The notion of plausibility is central to all of the desider-
ata. For example, Artelt et al. (2021) find that plausibility
typically also leads to improved robustness. Similarly, plau-
sibility has also been connected to causality in the sense that
plausible counterfactuals respect causal relationships (Ma-
hajan, Tan, and Sharma 2020). Consequently, the plausibil-
ity of counterfactuals has been among the primary concerns
for researchers. Achieving plausibility is equivalent to ensur-
ing that the generated counterfactuals comply with the true
and unobserved data-generating process (DGP). We define
plausibility formally in this work as follows:

Definition 1 (Plausible Counterfactuals). Let X|y+ =
p(x|y+) denote the true conditional distribution of samples
in the target class y+. Then for x′ to be considered a plau-
sible counterfactual, we need: x′ ∼ X|y+.

To generate plausible counterfactuals, we first need to
quantify the conditional distribution of samples in the target
class (X|y+). We can then ensure that we generate counter-
factuals that comply with that distribution.

One straightforward way to do this is to use surrogate
models for the task. Joshi et al. (2019), for example, suggest
that instead of searching counterfactuals in the feature space
X , we can traverse a latent embedding Z (Equation 1) that
implicitly codifies the DGP. To learn the latent embedding,
they propose using a generative model such as a Variational
Autoencoder (VAE). Provided the surrogate model is well-
specified, their proposed approach REVISE can yield plausi-
ble explanations. Others have proposed similar approaches:
Dombrowski, Gerken, and Kessel (2021) traverse the base
space of a normalizing flow to solve Equation 1; Poyiadzi
et al. (2020) use density estimators (p̂ : X 7→ [0, 1]) to
constrain the counterfactuals to dense regions in the feature
space; finally, Karimi, Schölkopf, and Valera (2021) assume
knowledge about the causal graph that generates the data.

A competing approach towards plausibility that is also
closely related to this work instead relies on the black-box
model itself. Schut et al. (2021) show that to meet the plau-
sibility objective we need not explicitly model the input dis-
tribution. Pointing to the undesirable engineering overhead
induced by surrogate models, they propose to rely on the im-
plicit minimization of predictive uncertainty instead. Their
proposed methodology, which we will refer to as Schut,
solves Equation 1 by greedily applying Jacobian-Based
Saliency Map Attacks (JSMA) in the feature space with
cross-entropy loss and no penalty at all. The authors demon-
strate theoretically and empirically that their approach yields
counterfactuals for which the model Mθ predicts the tar-
get label y+ with high confidence. Provided the model is
well-specified, these counterfactuals are plausible. This idea
hinges on the assumption that the black-box model provides
well-calibrated predictive uncertainty estimates.

Why Fidelity Is Not Enough: A Motivational
Example

As discussed in the introduction, any valid counterfactual
also has full fidelity by construction: solutions to Equation 1
are considered valid as soon as the label predicted by the
model matches the target class. So while fidelity always ap-
plies, counterfactuals that address the various desiderata in-
troduced above can look vastly different from each other.

To demonstrate this with an example, we have trained
a simple image classifier Mθ on the well-known MNIST
dataset (LeCun 1998): a Multi-Layer Perceptron (MLP) with
test set accuracy > 0.9. No measures have been taken to im-
prove the model’s adversarial robustness or its capacity for
predictive uncertainty quantification. The far left panel of
Figure 1 shows a random sample drawn from the dataset.
The underlying classifier correctly predicts the label ‘nine’
for this image. For the given factual image and model, we
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Figure 1: Counterfactuals for turning a 9 (nine) into a 7
(seven): original image (left), then the counterfactuals gen-
erated using Wachter, Schut and REVISE.

have used Wachter, Schut and REVISE to generate one coun-
terfactual each in the target class ‘seven’. The perturbed im-
ages are shown next to the factual image from left to right
in Figure 1. Captions on top of the images indicate the gen-
erator along with the predicted probability that the image
belongs to the target class. In all cases, that probability is
very high, while the counterfactuals look very different.

Since Wachter is only concerned with closeness, the gen-
erated counterfactual is almost indistinguishable from the
factual. Schut expects a well-calibrated model that can gen-
erate predictive uncertainty estimates. Since this is not the
case, the generated counterfactual looks like an adversarial
example. Finally, the counterfactual generated by REVISE
looks much more plausible than the other two. But is it also
more faithful to the behaviour of our MNIST classifier? That
is much less clear because the surrogate used by REVISE in-
troduces friction: explanations no longer depend exclusively
on the black-box model itself.

So which of the counterfactuals most faithfully explains
the behaviour of our image classifier? Fidelity cannot help us
to make that judgement, because all of these counterfactuals
have full fidelity. Thus, fidelity is an insufficient evaluation
metric to assess the faithfulness of CE.

Faithful First, Plausible Second
Considering the limitations of fidelity as demonstrated in the
previous section, analogous to Definition 1, we introduce a
new notion of faithfulness in the context of CE:
Definition 2 (Faithful Counterfactuals). Let Xθ|y+ =
pθ(x|y+) denote the conditional distribution of x in the tar-
get class y+, where θ denotes the parameters of model Mθ.
Then for x′ to be considered a faithful counterfactual, we
need: x′ ∼ Xθ|y+.

In doing this, we merge in and nuance the concept of
plausibility (Definition 1) where the notion of ‘consistent
with the data’ becomes ‘consistent with what the model has
learned about the data’.

Quantifying the Model’s Generative Property
To assess counterfactuals with respect to Definition 2, we
need a way to quantify the posterior conditional distribution
pθ(x|y+). To this end, we draw on ideas from energy-based
modelling (EBM), a subdomain of machine learning that is
concerned with generative or hybrid modelling (Grathwohl
et al. 2020; Du and Mordatch 2020). In particular, note that
if we fix y to our target value y+, we can conditionally draw
from pθ(x|y+) by randomly initializing x0 and then using
Stochastic Gradient Langevin Dynamics (SGLD) as follows,

xj+1 ← xj −
ϵ2j
2
Eθ(xj |y+) + ϵjrj , j = 1, ..., J (2)

where rj ∼ N (0, I) is the stochastic term and the step-
size ϵj is typically polynomially decayed (Welling and Teh
2011). The term Eθ(xj |y+) denotes the model energy con-
ditioned on the target class label y+ which we specify as the
negative logit corresponding to y+. To allow for faster sam-
pling, we follow the common practice of choosing the step-
size ϵj and the standard deviation of rj separately. While xJ

is only guaranteed to distribute as pθ(x|y+) if ϵ → 0 and
J →∞, the bias introduced for a small finite ϵ is negligible
in practice (Murphy 2023).

Generating multiple samples using SGLD thus yields an
empirical distribution X̂θ,y+ that approximates what the
model has learned about the input data. While in the context
of EBM, this is usually done during training, we propose to
repurpose this approach during inference in order to eval-
uate the faithfulness of model explanations. The appendix
provides additional implementation details for any tasks re-
lated to energy-based modelling1.

Quantifying the Model’s Predictive Uncertainty
Faithful counterfactuals can be expected to also be plausible
if the learned conditional distribution Xθ|y+ (Defintion 2)
is close to the true conditional distribution X|y+ (Defini-
tion 1). We can further improve the plausibility of coun-
terfactuals without the need for surrogate models that may
interfere with faithfulness by minimizing predictive uncer-
tainty (Schut et al. 2021). Unfortunately, this idea relies on
the assumption that the model itself provides predictive un-
certainty estimates, which may be too restrictive in practice.

To relax this assumption, we use conformal prediction
(CP), an approach to predictive uncertainty quantification
that has recently gained popularity (Angelopoulos and Bates
2022; Manokhin 2022). Crucially for our intended appli-
cation, CP is model-agnostic and can be applied during
inference without placing any restrictions on model train-
ing. It works under the premise of turning heuristic notions
of uncertainty into rigorous estimates by repeatedly sifting
through the training data or a dedicated calibration dataset.
Calibration data is used to compute so-called nonconformity
scores: S = {s(xi,yi)}i∈Dcal where s : (X ,Y) 7→ R is re-
ferred to as score function (see appendix for details).

Conformal classifiers produce prediction sets for individ-
ual inputs that include all output labels that can be reason-
ably attributed to the input. These sets are formed as follows,

Cθ(xi;α) = {y : s(xi,y) ≤ q̂} (3)

where q̂ denotes the (1− α)-quantile of S and α is a pre-
determined error rate. These sets tend to be larger for inputs
that do not conform with the training data and are character-
ized by high predictive uncertainty. To leverage this notion
of predictive uncertainty in the context of gradient-based

1The supplementary appendix can be found here:
https://arxiv.org/abs/2312.10648.
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counterfactual search, we use a smooth set size penalty in-
troduced by Stutz et al. (2022):

Ω(Cθ(x;α)) = max

0,
∑
y∈Y

Cθ,y(xi;α)− κ

 (4)

Here, κ ∈ {0, 1} is a hyper-parameter and Cθ,y(xi;α)
can be interpreted as the probability of label y being in-
cluded in the prediction set (see appendix for details). In
order to compute this penalty for any black-box model, we
merely need to perform a single calibration pass through a
holdout set Dcal. Arguably, data is typically abundant and in
most applications, practitioners tend to hold out a test data
set anyway. Consequently, CP removes the restriction on the
family of predictive models, at the small cost of reserving
a subset of the available data for calibration. This particular
case of conformal prediction is referred to as split conformal
prediction (SCP) as it involves splitting the training data into
a proper training dataset and a calibration dataset.

Evaluating Plausibility and Faithfulness
The parallels between our definitions of plausibility and
faithfulness imply that we can also use similar evaluation
metrics in both cases. Since existing work has focused heav-
ily on plausibility, it offers a useful starting point. In partic-
ular, Guidotti (2022) have proposed an implausibility met-
ric that measures the distance of the counterfactual from its
nearest neighbour in the target class. As this distance is re-
duced, counterfactuals get more plausible under the assump-
tion that the nearest neighbour itself is plausible in the sense
of Definition 1. In this work, we use the following adapted
implausibility metric,

impl(x′,Xy+) =
1

|Xy+ |
∑

x∈Xy+

dist(x′,x) (5)

where x′ denotes the counterfactual and Xy+ is a subsam-
ple of the training data in the target class y+. By averaging
over multiple samples in this manner, we avoid the risk that
the nearest neighbour of x′ itself is not plausible according
to Definition 1 (e.g. an outlier).

Equation 5 gives rise to a similar evaluation metric for
unfaithfulness. We swap out the subsample of observed in-
dividuals in the target class for the set of samples generated
through SGLD (X̂θ,y+ ):

unfaith(x′, X̂θ,y+) =
1

|X̂θ,y+ |

∑
x∈X̂θ,y+

dist(x′,x) (6)

Our default choice for the dist(·) function in both cases
is the Euclidean Norm. Depending on the type of input data
other choices may be more adequate (see Section ).

Energy-Constrained Conformal
Counterfactuals

Given our proposed notion of faithfulness, we now describe
ECCCo, our proposed framework for generating Energy-
Constrained Conformal Counterfactuals. It is based on the

premise that counterfactuals should first and foremost be
faithful. Plausibility, as a secondary concern, is then still at-
tainable to the degree that the black-box model itself has
learned plausible explanations for the underlying data.

We begin by substituting the loss function in Equation 1,

min
Z′∈ZL

{LJEM(f(Z′);Mθ,y
+) + λcost(f(Z′))} (7)

where LJEM(f(Z′);Mθ,y
+) is a hybrid loss function

used in joint-energy modelling evaluated at a given coun-
terfactual state for a given model and target outcome:

LJEM(f(Z′); ·) = Lclf(f(Z
′); ·) + Lgen(f(Z

′); ·) (8)

The first term, Lclf, is any standard classification loss
function such as cross-entropy loss. The second term, Lgen,
is used to measure loss with respect to the generative task2.
In the context of joint-energy training, Lgen induces changes
in model parameters θ that decrease the energy of ob-
served samples and increase the energy of samples generated
through SGLD (Du and Mordatch 2020).

The key observation in our context is that we can rely
solely on decreasing the energy of the counterfactual itself.
This is sufficient to capture the generative property of the un-
derlying model since it is implicitly captured by its parame-
ters θ. Importantly, this means that we do not need to gener-
ate conditional samples through SGLD during our counter-
factual search at all (see appendix for details).

This observation leads to the following simple objective
function for ECCCo:

min
Z′∈ZL

{Lclf(f(Z
′);Mθ,y

+) + λ1cost(f(Z′))

+ λ2Eθ(f(Z′)|y+) + λ3Ω(Cθ(f(Z
′);α))}

(9)

The first penalty term involving λ1 induces closeness
like in Wachter, Mittelstadt, and Russell (2017). The second
penalty term involving λ2 induces faithfulness by constrain-
ing the energy of the generated counterfactual. The third and
final penalty term involving λ3 ensures that the generated
counterfactual is associated with low predictive uncertainty.
To tune these hyperparameters we have relied on grid search.

Concerning feature autoencoding (f : Z 7→ X ), EC-
CCo does not rely on latent space search to achieve its pri-
mary objective of faithfulness. By default, we choose f(·)
to be the identity function as in Wachter. This is generally
also enough to achieve plausibility, provided the model has
learned plausible explanations for the data. In some cases,
plausibility can be improved further by mapping counterfac-
tuals to a lower-dimensional latent space. In the following,
we refer to this approach as ECCCo+: that is, ECCCo plus
dimensionality reduction.

Figure 2 illustrates how the different components in Equa-
tion 9 affect the counterfactual search for a synthetic dataset.
The underlying classifier is a Joint Energy Model (JEM) that

2In practice, regularization loss is typically also added. We fol-
low this convention but have omitted the term here for simplicity.
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Figure 2: Gradient fields and counterfactual paths for different generators. The objective is to generate a counterfactual in the
blue class for a sample from the orange class. Bright yellow stars indicate conditional samples generated through SGLD. The
underlying classifier is a Joint Energy Model.

was trained to predict the output class (blue or orange) and
generate class-conditional samples (Grathwohl et al. 2020).
We have used four different generator flavours to produce
a counterfactual in the blue class for a sample from the
orange class: Wachter, which only uses the first penalty
(λ2 = λ3 = 0); ECCCo (no EBM), which does not con-
strain energy (λ2 = 0); ECCCo (no CP), which involves no
set size penalty (λ3 = 0); and, finally, ECCCo, which in-
volves all penalties defined in Equation 9. Arrows indicate
(negative) gradients with respect to the objective function at
different points in the feature space.

While Wachter generates a valid counterfactual, it ends up
close to the original starting point consistent with its objec-
tive. ECCCo (no EBM) avoids regions of high predictive un-
certainty near the decision boundary, but the outcome is still
not plausible. The counterfactual produced by ECCCo (no
CP) is energy-constrained. Since the JEM has learned the
conditional input distribution reasonably well in this case,
the counterfactual is both faithful and plausible. Finally, the
outcome for ECCCo looks similar, but the additional smooth
set size penalty leads to somewhat faster convergence.

Empirical Analysis
Our goal in this section is to shed light on the following re-
search questions:

Research Question 1 (Faithfulness). To what extent are
counterfactuals generated by ECCCo more faithful than
those produced by state-of-the-art generators?

Research Question 2 (Balancing Desiderata). Compared to
state-of-the-art generators, how does ECCCo balance the
two key objectives of faithfulness and plausibility?

The second question is motivated by the intuition that
faithfulness and plausibility should coincide for models that
have learned plausible explanations of the data.

Experimental Setup
To assess and benchmark the performance of our proposed
generator against the state of the art, we generate multiple
counterfactuals for different models and datasets. In partic-
ular, we compare ECCCo and its variants to the following
counterfactual generators that were introduced above: firstly,
Schut, which works under the premise of minimizing predic-
tive uncertainty; secondly, REVISE, which is state-of-the-art

(SOTA) with respect to plausibility; and, finally, Wachter,
which serves as our baseline. In the case of ECCCo+, we
use principal component analysis (PCA) for dimensionality
reduction: the latent space Z is spanned by the first nz prin-
cipal components where we choose nz to be equal to the
latent dimension of the VAE used by REVISE.

For the predictive modelling tasks, we use multi-layer
perceptrons (MLP), deep ensembles, joint energy mod-
els (JEM) and convolutional neural networks (LeNet-5
CNN (LeCun et al. 1998)). Both joint-energy modelling and
ensembling have been associated with improved generative
properties and adversarial robustness (Grathwohl et al. 2020;
Lakshminarayanan, Pritzel, and Blundell 2017), so we ex-
pect this to enhance the plausibility of ECCCo. To account
for stochasticity, we generate many counterfactuals for each
target class, generator, model and dataset over multiple runs.

We perform benchmarks on eight datasets from different
domains. From the credit and finance domain we include
three tabular datasets: Give Me Some Credit (GMSC) (Kag-
gle 2011), German Credit (Hoffman 1994) and California
Housing (Pace and Barry 1997). All of these are commonly
used in the related literature (Karimi et al. 2021; Altmeyer
et al. 2023; Pawelczyk et al. 2021). Following related lit-
erature (Schut et al. 2021; Dhurandhar et al. 2018) we also
include two image datasets: MNIST (LeCun 1998) and Fash-
ion MNIST (Xiao, Rasul, and Vollgraf 2017).

Full details concerning model training as well as detailed
descriptions and results for all datasets can be found in the
appendix. In the following, we focus on the most relevant re-
sults highlighted in Tables 1 and 2. They show sample aver-
ages along with standard deviations across multiple runs for
our key evaluation metrics for the California Housing and
GMSC datasets (Table 1) and the MNIST dataset (Table 2).
For each metric, the best outcomes are in bold. Asterisks in-
dicate that a given value is more than one (*) or two (**)
standard deviations away from the baseline (Wachter). For
the tabular datasets, we use the Euclidian distance to mea-
sure unfaithfulness and implausibility as defined in Equa-
tions 6 and 5, respectively. For the vision datasets, we rely
on measuring the structural dissimilarity between images for
our unfaithfulness and implausibility metrics (Wang, Simon-
celli, and Bovik 2003). The third metric presented in Table 1
quantifies the predictive uncertainty of the counterfactual as
measured by Equation 4.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

10833



Figure 3: Counterfactuals for turning a 3 into a 5: factual
(left), then the counterfactuals generated by ECCCo, EC-
CCo+, REVISE, Schut and Wachter.

Faithfulness
Overall, we find strong empirical evidence suggesting that
ECCCo consistently achieves state-of-the-art faithfulness.
Across all models and datasets highlighted here, different
variations of ECCCo consistently outperform other genera-
tors with respect to faithfulness, in many cases substantially.
This pattern is mostly robust across all other datasets.

In particular, we note that the best results are generally ob-
tained when using the full ECCCo objective (Equation 9). In
other words, constraining both energy and predictive uncer-
tainty typically yields the most faithful counterfactuals. We
expected the former to play a more significant role in this
context and that is typically what we find across all datasets.
The results in Table 1 indicate that faithfulness can be im-
proved substantially by relying solely on the energy con-
straint (ECCCo (no CP)). In most cases, however, the full
objective yields the most faithful counterfactuals. This indi-
cates that predictive uncertainty minimization plays an im-
portant role in achieving faithfulness.

We also generally find that latent space search does not
impede faithfulness for ECCCo. In most cases ECCCo+ is
either on par with ECCCo or outperforms it. There are some
notable exceptions though. Cases in which ECCCo achieves
substantially better faithfulness without latent space search
tend to involve more vulnerable models like the MLP for
MNIST in Table 2. We explain this finding as follows: even
though dimensionality reduction through PCA in the case
of ECCCo+ can be considered a relatively mild form of in-
tervention, the first nz principal components fail to capture
some of the variation in the data. More vulnerable models
may be particularly sensitive to this residual variation in the
data.

Consistent with this finding, we also observe that REVISE
ranks higher for faithfulness, if the model itself has learned
more plausible representations of the underlying data: RE-
VISE generates more faithful counterfactuals than the base-
line for the JEM Ensemble in Table 1 and the LeNet-5
CNN in Table 2. This demonstrates that the two desiderata—
faithfulness and plausibility—are not mutually exclusive.

Balancing Desiderata
Overall, we find strong empirical evidence suggesting that
ECCCo can achieve near state-of-the-art plausibility with-
out sacrificing faithfulness. Figure 3 shows one such exam-
ple taken from the MNIST benchmark where the objective is
to turn the factual ‘three’ (far left) into a ‘five’. The under-
lying model is a LeNet-5 CNN. The different images show
the counterfactuals produced by the generators, of which all
but the one produced by Schut are valid. Both variations of

ECCCo produce plausible counterfactuals.
Looking at the benchmark results presented in Tables 1

and 2 we firstly note that although REVISE generally per-
forms best, ECCCo and in particular ECCCo+ often ap-
proach SOTA performance. Upon visual inspection of the
generated images we actually find that ECCCo+ performs
much better than REVISE (see appendix). Zooming in on the
details we observe that ECCCo and its variations do particu-
larly well, whenever the underlying model has been explic-
itly trained to learn plausible representations of the data. For
both tabular datasets in Table 1, ECCCo improves plausibil-
ity substantially compared to the baseline. This broad pattern
is mostly consistent for all other datasets, although there are
notable exceptions for which ECCCo takes the lead on both
plausibility and faithfulness.

While we maintain that generally speaking plausibility
should hinge on the quality of the model, our results also
indicate that it is possible to balance faithfulness and plausi-
bility if needed: ECCCo+ generally outperforms other vari-
ants of ECCCo in this context, occasionally at the small cost
of slightly reduced faithfulness. For the vision datasets es-
pecially, we find that ECCCo+ is consistently second only
to REVISE for all models and regularly substantially better
than the baseline. Looking at the California Housing data,
latent space search markedly improves plausibility without
sacrificing faithfulness: for the JEM Ensemble, ECCCo+
performs substantially better than the baseline and only
marginally worse than REVISE. Importantly, ECCCo+ does
not attain plausibility at all costs: for the MLP Ensemble,
plausibility is still very low but this seems to faithfully rep-
resent what the model has learned.

We conclude from the findings presented thus far that EC-
CCo enables us to reconcile the objectives of faithfulness
and plausibility. It produces plausible counterfactuals if and
only if the model itself has learned plausible explanations
for the data. It thus avoids the risk of generating plausible
but potentially misleading explanations for models that are
highly susceptible to implausible explanations.

Additional Desiderata
While we have deliberately focused on our key metrics of
interest so far, it is worth briefly considering other common
desiderata for counterfactuals. With reference to the right-
most columns for each dataset in Table 1, we firstly note that
ECCCo typically reduces predictive uncertainty as intended.
Consistent with its design, Schut performs well on this met-
ric even though it does not explicitly address uncertainty as
measured by conformal prediction set sizes.

Another commonly discussed desideratum is close-
ness (Wachter, Mittelstadt, and Russell 2017): counterfactu-
als that are closer to their factuals are associated with smaller
costs to individuals in the context of algorithmic recourse.
As evident from the additional tables in the appendix, the
closeness desideratum tends to be negatively correlated with
plausibility and faithfulness. Consequently, both REVISE
and ECCCo generally yield more costly counterfactuals than
the baseline. Nonetheless, ECCCo does not seem to stretch
costs unnecessarily: in Figure 3 useful parts of the factual
‘three’ are clearly retained.
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California Housing GMSC

Model Generator Unfaithfulness ↓ Implausibility ↓ Uncertainty ↓ Unfaithfulness ↓ Implausibility ↓ Uncertainty ↓

ECCCo 3.69 ± 0.08** 1.94 ± 0.13 0.09 ± 0.01** 3.84 ± 0.07** 2.13 ± 0.08 0.23 ± 0.01**
ECCCo+ 3.88 ± 0.07** 1.20 ± 0.09 0.15 ± 0.02 3.79 ± 0.05** 1.81 ± 0.05 0.30 ± 0.01*
ECCCo (no CP) 3.70 ± 0.08** 1.94 ± 0.13 0.10 ± 0.01** 3.85 ± 0.07** 2.13 ± 0.08 0.23 ± 0.01**
ECCCo (no EBM) 4.03 ± 0.07 1.12 ± 0.12 0.14 ± 0.01** 4.08 ± 0.06 0.97 ± 0.08 0.31 ± 0.01*
REVISE 3.96 ± 0.07* 0.58 ± 0.03** 0.17 ± 0.03 4.09 ± 0.07 0.63 ± 0.02** 0.33 ± 0.06
Schut 4.00 ± 0.06 1.15 ± 0.12 0.10 ± 0.01** 4.04 ± 0.08 1.21 ± 0.08 0.30 ± 0.01*

MLP

Wachter 4.04 ± 0.07 1.13 ± 0.12 0.16 ± 0.01 4.10 ± 0.07 0.95 ± 0.08 0.32 ± 0.01

ECCCo 1.40 ± 0.08** 0.69 ± 0.05** 0.11 ± 0.00** 1.20 ± 0.06* 0.78 ± 0.07** 0.38 ± 0.01
ECCCo+ 1.28 ± 0.08** 0.60 ± 0.04** 0.11 ± 0.00** 1.01 ± 0.07** 0.70 ± 0.07** 0.37 ± 0.01
ECCCo (no CP) 1.39 ± 0.08** 0.69 ± 0.05** 0.11 ± 0.00** 1.21 ± 0.07* 0.77 ± 0.07** 0.39 ± 0.01
ECCCo (no EBM) 1.70 ± 0.09 0.99 ± 0.08 0.14 ± 0.00* 1.31 ± 0.07 0.97 ± 0.10 0.32 ± 0.01**
REVISE 1.39 ± 0.15** 0.59 ± 0.04** 0.25 ± 0.07 1.01 ± 0.07** 0.63 ± 0.04** 0.33 ± 0.07
Schut 1.59 ± 0.10* 1.10 ± 0.06 0.09 ± 0.00** 1.34 ± 0.07 1.21 ± 0.10 0.26 ± 0.01**

JEM

Wachter 1.71 ± 0.09 0.99 ± 0.08 0.14 ± 0.00 1.31 ± 0.08 0.95 ± 0.10 0.33 ± 0.01

Table 1: Results for tabular datasets: sample averages +/- one standard deviation across valid counterfactuals. Model ensembling
was used in both cases. The best outcomes are highlighted in bold. Asterisks indicate that the given value is more than one (*)
or two (**) standard deviations away from the baseline (Wachter).

MNIST

Model Generator Unfaithfulness ↓ Implausibility ↓

ECCCo 0.243 ± 0.000** 0.420 ± 0.001
ECCCo+ 0.246 ± 0.000* 0.306 ± 0.001**
REVISE 0.248 ± 0.000 0.301 ± 0.004**
Schut 0.247 ± 0.001 0.303 ± 0.008**

MLP

Wachter 0.247 ± 0.000 0.344 ± 0.002

ECCCo 0.248 ± 0.000** 0.387 ± 0.002
ECCCo+ 0.248 ± 0.000** 0.310 ± 0.002**
REVISE 0.248 ± 0.000** 0.301 ± 0.002**
Schut 0.250 ± 0.002 0.289 ± 0.024*

LeNet-5

Wachter 0.249 ± 0.000 0.335 ± 0.002

Table 2: Results for vision dataset. No model ensembling
was used. Formatting details are the same as in Table 1.

Limitations
Despite having taken considerable measures to study our
methodology carefully, limitations can still be identified.

Firstly, we recognize that our proposed distance-based
evaluation metrics for plausibility and faithfulness may not
be universally applicable to all types of data. They depend
on choosing a distance metric on a case-by-case basis, as we
have done in this work. Arguably, commonly used metrics
for measuring other desiderata such as closeness suffer from
the same pitfall. We therefore think that future work could
benefit from defining universal evaluation metrics.

Relatedly, we note that our proposed metric for measuring
faithfulness depends on the availability of samples gener-
ated through SGLD, which in turn requires gradient access
for models. This means it cannot be used to evaluate non-
differentiable classifiers. Consequently, we also have not ap-

plied ECCCo to some machine learning models commonly
used for classification such as decision trees. Since ECCCo
itself does not rely on SGLD, its defining penalty functions
are indeed applicable to gradient-free counterfactual gener-
ators. This is an interesting avenue for future research.

Next, common challenges associated with energy-based
modelling including sensitivity to scale, training instabilities
and sensitivity to hyperparameters also apply to ECCCo to
some extent. In grid searches for optimal hyperparameters,
we have noticed that unless properly regularized, ECCCo is
sometimes prone to overshoot for the energy constraint.

Finally, while we have used ablation to understand the
roles of the different components of ECCCo, the scope of
this work has prevented us from investigating the role of
conformal prediction in this context more thoroughly. We
have exclusively relied on split conformal prediction and
have used fixed values for the predetermined error rate and
other hyperparameters. Future work could benefit from more
extensive ablation studies that tune hyperparameters and in-
vestigate different approaches to conformal prediction.

Conclusion
This work leverages ideas from energy-based modelling and
conformal prediction in the context of counterfactual expla-
nations. We have proposed a new way to generate counter-
factuals that are maximally faithful to the black-box model
they aim to explain. Our proposed generator, ECCCo, pro-
duces plausible counterfactuals iff the black-box model it-
self has learned realistic explanations for the data, which we
have demonstrated through rigorous empirical analysis. This
should enable researchers and practitioners to use counter-
factuals in order to discern trustworthy models from unreli-
able ones. While the scope of this work limits its generaliz-
ability, we believe that ECCCo offers a solid base for future
work on faithful counterfactual explanations.
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