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Summary

A well-maintained train fleet is a top priority for the Nederlandse Spoorwegen (NS), given that they
provide a vital service to the Dutch society. This research focuses on improving the robustness of de-
cisions made by decision makers of the NS train maintenance system, considering the uncertainty and
risks that NS faces in maintaining their rolling stock during the next 10-15 years. The maintenance
system that this research focuses on consists of the four maintenance locations that NS has: Leidschen-
dam, Maastricht, Onnen & Watergraafsmeer. Within these locations, equipment and mechanics form
the maintenance capacity. While the current maintenance capacity performs adequately for now, deep
uncertainty arises regarding the impact of the outside world on the future performance of NS train
maintenance. Current methods applied by NS decision makers do not permit to take deep uncertainty
into account.

This research aimed to show the potential benefit decisionmakers may have by including robust de-
cision making methods. While this research scope regards train maintenance, methods applied in this
thesis could be applied in many other complex systems where deep uncertainty is present. Within this
research, an agent-based simulation model that simulates the train maintenance until 2035 has been
developed. Themodel allowed for the evaluation of different future scenario’s whilemonitoring the per-
formance of the maintenance capacity. Experts within NS have been consulted to gain knowledge on
how train maintenance performance is measured. It became evident that four key performance indica-
tors should be implemented in the model: maintenance throughput time, train withdrawal, equipment
occupancy & delivery reliability.

AnyLogic was used to build the simulation model, where entities in the form of trains, maintenance
locations, equipment and mechanics are included as separate ’agents’. Two types of maintenance have
been distinguished within the simulation model: scheduled and unscheduled maintenance. Trains fol-
low several steps within scheduled maintenance, of which some are obligatory and some are optional.
The optional tasks are based on the train condition as it enters scheduled maintenance. Some equip-
ment can only be used to maintain one specific type of train, while others can be used interdisciplinary.
Future uncertainty arises concerning train condition, duration of maintenance tasks, mechanic avail-
ability and the number of kilometers trains daily drive within operation.

Through exploratory modeling and analysis 2000 scenario’s have been tested. The scenario’s are
constructed by sampling over the uncertainty space of all model uncertainties. Latin Hypercube Sam-
pling (LHS) enabled generating scenario’s which allowed for elaborate exploring of the impact of all
uncertainties on future train maintenance. The simulationmodel responded sensitively to three model
uncertainties: the number of available mechanics, the daily number of kilometers intercity’s drive, and
the number of kilometers sprinter train types drive on a daily basis. Scenario discovery showed that
thesemodel uncertainties were found to be of significant contribution towards desiredmodel outcomes.
If less mechanics will be available compared to the current number of mechanics, issues within train
maintenance might arise. In case intercity’s and sprinters increase daily driven kilometers by 34% and
17% respectively, issues within train maintenance might occur. For NS it is adviced to monitor these
uncertainties carefully.

Few policy interventions were tested, of which the trade-off between those policies has been pre-
sented. The advice towards NS is to use this simulation model to evaluate more policies based on what
future decisions will be made. This approach is advised to be used as a support tool for deciding where
to maintain new train types, as it allows for the quantification of future maintenance performance in-
cluding those new train types.
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Regarding future research, it is recommended to improve current methods by including mechanic
qualifications within the simulation model. In addition, it is recommended to compare the effect of
current methods with assigning more intelligence to agents within the simulation model. Another rec-
ommendation is to evaluate structural uncertainty within the train maintenance system, which could
narrow down the scope of what needs to be carefully addressed when making decisions regarding fu-
ture train maintenance capacity. A final recommendation for further research would be to include the
effect of geographic location of the fourmaintenance locations of NS, given that some trains operate far
from Maastricht & Onnen. Maintaining them at Maastricht or Onnen could lead to implications that
has been out of scope of this research, but seems valuable for NS to quantify in the near future.

In short, it can be concluded that this research has illustrated the relevance of decision making un-
der deep uncertainty within the train maintenance context. Furthermore, to enhance decision making
within NS, the methods used in this research should be applied more extensively. Rather than focusing
on optimization issues, the focus should lie on organizing train maintenance to absorb any future per-
turbations flexibly. This would severely improve future robustness, which is what modern day society
requires: reliable train service provided by NS, backed up by a robust future maintenance system.
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1
Introduction

Ensuring a safe, comfortable, and punctual journey for all customers is one of the top priorities of the
Dutch railway operator Nederlandse Spoorwegen (NS). To successfully do so, their trains will have to
bemaintained on a regular basis, which is done at one of the fewmaintenanceworkshops located in The
Netherlands. NS wishes to make robust decisions regarding their train maintenance to cope with deep
uncertainty that they face in their long-term planning. Uncertainties arise at different aspects, such
as (future) train failure, future train fleet size, travel demand, and the lack of knowledge concerning
futuremaintenance tasks. Creating insights into the effect of these uncertainties allows decisionmakers
(DMs) to translate operational issues to strategically relevant information that will enable them tomake
relevant decisions regarding the future of train maintenance. This will permit NS to create policies
that will benefit their future robustness. Beside the interest of NS, it is highly relevant for society to
have a well-functioning public transport system in the future. Substituting non-sustainable modes of
transport for travelling by train is in line with the government’s policy that aims for a climate neutral
society by 2050 (Ministry of Economic Affairs & Climate Policy, 2020). In addition, NS provides a vital
service for the Dutch society (Ministry of Justice & Safety, 2021), which demonstrates the relevance of
having a well-maintained train fleet.

1.1. Train Maintenance System
Maintenance is currently performed in one of the 4workshops of NS: Onnen (O),Watergraafsmeer (W),
Leidschendam (L), andMaastricht (M). Figure 1.1 displays eachmaintenance location on themap of the
Netherlands. Currently, trainmaintenance is performed based on either a time or a distance constraint.
Once a train exceeds this constraint, a train is shunted to itsmaintenance shop. Eachmaintenance shop
handles specific types of trains, pointed out on the right side of figure 1.1.

Once a train arrives at a workshop to perform regular maintenance, it follows a fixed sequence of
maintenance tasks: empty the toilet reservoir, replace/fix parts of the carriage, polish thewheels and/or
replace the chassis (both tasks are performed only if considered necessary), perform extensive in- and
outside cleaning, and finally perform tests to ensure that the train is ready to go into operation. All in
all, it takes about 6 to 8 shifts (8 hours per shift) before a train is ready to go back into operation.

Thus, the arrival of a train into a workshop is done based on preventive maintenance, whereas most
tasks within the maintenance stop are condition-based. For example, an air conditioner or chassis is
replaced if a mechanic determines, after inspection, that the current state of the part is due for replace-
ment. Wear causes the train wheels to vibrate slightly, which is measured by sensors. If these sensors
indicate the presence of vibrations, the wheels are polished and calibrated.

1



1.2. Complexity & Uncertainty 2

Figure 1.1: Maintenance shop locations of NS together with the specific train types that a workshop maintains

Beside regular scheduled maintenance, a train can also be shunted to a workshop in case of a failure or
systemerror. Themechanics of theworkshop then perform so-called pitstops. This regards unexpected,
unscheduled maintenance triggered by train failure or a requirement of immediate repair. Mechanics
of a workshop aim to fix this train within 24 hours, to minimize the withdrawal time of a train. As soon
as a train enters the workshop for a pitstop, a timer begins at 24:00:00 and starts counting down to 0.
Tv screens placed throughout the workshop show the time that mechanics have left to repair the train
and send it back into operation. This is a way of dealing with sudden train failure to ensure a minimal
time of train withdrawal.

1.2. Complexity & Uncertainty
The NS maintenance system, consisting of trains, workshops, and mechanics is a complex adaptive
system (Vander Lei, Bekebrede, &Nikolic, 2010). It is an emergent systemof dependencies, interaction,
and adaptation. Train maintenance frequency depends on its reliability, their reliability depends on
investments and maintenance performance, and future investments are done based on for example
maintenance capacity and peak hour demand. In addition, the maintenance system responds slowly to
system interventions. Activities such as building new facilities, training mechanics, or acquiring new
trains are time-consuming. Furthermore, developments regarding self-operating trains and new safety
systems such as ERTMS (European Union Agency for Railways, 2023) creates additional uncertainty
regarding future train maintenance. The latter system safely shortens the distance that trains have to
keep with respect to each other, so that more trains can move on a specific section of the rail track,
allowing for a larger frequency of movements.

New trains require different types of maintenance, since equipment of new trains is placed on the
roof of the train instead of the bottom of the train. Therefore, uncertainty arises as to what type of
maintenance will have to be performed, and how long each task will take. The train roof is less acces-
sible than the bottom, which requires elevated platforms so that mechanics are work efficiently. Not
all workshops have unlimited capacity of using these elevated platforms, making the maintenance ap-
proach more complex.
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1.3. Decision making on the NS train maintenance system
Within NS, a workgroup decides what plans should be made for the mid long-term concerning train
maintenance. This plan will be sent to a control group, that will have to agree with these plans. Once
formally agreed by the control group, the plan will move to the portfolio board. The portfolio board
evaluates plans on all kinds of topics within NS, not just future maintenance plans. They will have to
decide if a specific maintenance plan is worth executing, when comparing to other plans that are on
the table. In case the plan requires a large investment, the board of directors will evaluate based on a
business case whether the plan is worth executing.

Decision makers are tasked with safeguarding the future of NS, while dealing with uncertainty that
is inherent with the complexity of the system (Litescu, Viswanathan, Aydt, & Knoll, 2016). Incorrect
forecasts can lead to a mismatch between maintenance- demand and capacity, resulting in either ex-
cessive costs (overcapacity) or insufficient operational trains (undercapacity). Stranded assets as a
consequence of overinvestments, or as a consequence of having to perform less maintenance than an-
ticipated, is costly and should thus be avoided. Currently, the main measure that forms the basis for
a DM is the financial benefit that a policy will have for NS. While investing in robustness to deal with
deep uncertainty might be more expensive in the short term, it might bring along financial benefits in
the long termwhen situations occur that were less anticipated for. Therefore, an interesting task would
be to educate DMs to not only focus on the financial benefit based on the current state of the train
maintenance system, but also allow for implementing plans that perform well under a large variety of
scenarios.

1.4. Robust policies
Rather than searching for a single optimal solution, policy makers dealing with deep uncertainty wish
to aim for creating policies that perform well under different scenarios, also defined as robust policies.
Hence, the objective of this research is to support policy-making of NS by analyzing the workflows of
workshops, exploring responses of the train maintenance system in case of interventions, and evaluat-
ing system robustness under small perturbations (Gribble, 2001). Since incorporating robustness in
policy-making is a rather novel approach, especially in the train maintenance field, this research will
have an important contribution to scientific knowledge in general.

The robustness perspective is not only relevant for trainmaintenance systems, but could and should
be applied more extensively within any type of asset management where uncertainty is present. Uncer-
tainty could rise in the form of unclear effect of relations within the system, while uncertainty could
also be present in the form of more detailed specifics such as future capacity or financial resources.
This research aims to show that making an effort to understand a system’s uncertainties, and model
them adequately, would benefit the needs of any decision-maker, not only within train maintenance
(the latter being the scope of this research).

1.5. Relevance
Given the grand challenge to successfully transport travelers during the next years, while dealing with
the large proportion of uncertainty, this research is perfectly aligned with the EPA-program. It is highly
relevant for society to preserve the well-organized train system in the future, which is a challenge that
this research aims to contribute to. NS provides a vital service to the Dutch society, which highlights
the importance of adequate business continuity. If NS wishes to incentivize people tomakemore use of
public transportation, it needs to offer a reliable, sustainable transportation system that is backed up by
robust maintenance. While the NS train maintenance system may never be fully robust, this research
attempts to provide an important contribution into raising awareness on the importance of dealing
with uncertainties. Modern day society demands a different approach than what has been done so far.
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Renewing the line of reasoning behind large decisions would strongly benefit society in the long run,
which is aimed to illustrate by performing this research.

While NS currently transports less passengers than before the pandemic, it is known that it will
catch up on (and even exceed) previously realised numbers of train passengers. It is also known that
society is globally developing towards being more sustainable. Travelling by train, them being non-
pollutant, would perfectly fit within the aim of providing sustainable means of transportation. Given
these developments, it would be highly relevant to revise decision-makingwithinNS, steering it towards
decisions to be made from a robustness perspective rather than focusing on making decisions conform
one key performance indicator. The robustness perspective allows NS to not only perform well under
current circumstances, but remain to perform well for whatever lies ahead.

Finally, the presence of highly uncertain factors in the maintenance field of NS combined with the
complexity of train maintenance is what makes the problem a suitable one to address from an EPA
perspective. Approaches that were taught in the EPA program, such as agent-based simulation, robust
decision-making (RDM) and tackling deep uncertainty, will be held in this research.

1.6. Report Structure
In this research, first a literature review on policy-making under (deep) uncertainty with relation to
train maintenance and RDM is performed. Next, the research approach is discussed based on the re-
search question that followed from the knowledge gap identified in the literature review. Several sub-
questions will be formulated to help answering the main research question. In the subsequent section,
the appropriate research method that fits with the research approach is discussed. The following chap-
ters will elaborate on the needs of a DM, followed by the conceptualization of the NS trainmaintenance
system, and formalization of the simulation model. Once these parts have been discussed, analyses
will present the quantification and impact of uncertainties regarding train maintenance. Finally, the
interpretation of the analyses, conclusions, recommendations & discussion, is presented.



2
Literature Review

This chapterwill present a literature review, resulting in the formulation of a research question based on
the knowledge gap that is found. This will be done by discussing state-of-the-art literature regarding as-
set management, maintenance strategies, and (deep) uncertainty regarding railway asset management.

2.1. Search Process
The citation database Scopus and Google Scholar were used to find state of the art, authoritative, and
peer-reviewed literature on this topic. Search terms such as ‘maintenance AND rolling stock AND train
AND asset management’ as well as ‘”robust decision-making” AND maintenance AND transport’ pro-
vided relevant results that will be presented below. To select relevant literature, abstracts and conclu-
sions have been assessed. The selection was done based on methodology, such as a Robust Decision-
Making approach, or on the field of study.

2.2. Uncertainty
Currently, the main complexity arises from many uncertainties that are present in the train mainte-
nance system, such as (future) train failure frequency, the effect of different maintenance strategies,
the future size of the train fleet, the introduction of new safety systems such as ERTMS, and mainte-
nance of new trains that are yet to be acquired. Throughout the literature, different methods are used
to find optimal maintenance strategies, but little has been studied on an approach to dealing with deep
uncertainties in the context of train maintenance. Future train failure frequency is highly uncertain, as
the reliability of future trains is unknown. The introduction of new safety systems is one that comes
with many uncertainties as well, because it is unknown to whether new software will cause for frequent
errors that require immediate updates or repairs. Naturally, failures are inherent with the frequent
use and exploitation of trains. Besides train failure, many more uncertainties are present in the train
maintenance system overall, making it difficult to make strategic plans for the mid-long term. Studies
on uncertainty in complex systems did show that relevant results can be obtained while having infor-
mation inaccuracy (Litescu et al., 2016; Pan, Demiryurek, & Shahabi, 2012). Within their study, Pan et
al. (2012) have tried to obtain better prediction models (traffic related). While information inaccuracy
within train maintenance needs to be dealt with, the goal of this thesis is not to develop an accurate pre-
diction model for train maintenance, which is the approach held in the study of Pan et al. (2012). The
study of Litescu et al. (2016) provides interesting insights into the contribution of an agent-based sim-
ulation model to observe the effect of uncertainty (in the form of information inaccuracy) on a complex
system. However, the system they are focusing on is not related to asset maintenance.

5
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To cope with uncertainties within assetmaintenance, Shafiee and Sørensen (2019) present different
models, methods and strategies regarding asset maintenance. While presenting an insightful analysis
on dealing with uncertainty in an asset maintenance field, their study focuses on optimization of future
maintenance rather than having a robust maintenance system. Cost effectiveness and time efficiency
are the main aspects that form the framework of the study of Shafiee and Sørensen (2019), which are
aspects that this thesis avoids. In short, there is ample literature on dealing with uncertainty in such a
way that a maintenance system performs adequately for a long period of time.

2.3. Robust Decision Making
Robust Decision Making (RDM) refers to an approach where policies are implemented when they per-
form well (i.e., robust policies) under a large variety of scenarios. The book by Marchau, Walker, Bloe-
men, and Popper (2019) presents an extensive overview on how to apply decision-making under deep
uncertainty. Instead of having an RDM approach, Van Duin, Bauwens, Enserink, Tavasszy, and Wong
(2016) choose to have a strategic roadmapping approach to deal with risk. Beside strategic roadmap-
ping, RDM is suggested by Haasnoot, Kwakkel, Walker, and Ter Maat (2013) as an approach that em-
powers robust decisions that perform well under uncertain future scenarios. While the study of Haas-
noot et al. (2013) provides valuable insights on how RDM can be facilitated, it focuses on a water man-
agement case rather than the assetmaintenance context. The study ofWurth et al. (2019) demonstrates
how an adaptive approach is suitable for infrastructures, that of renewable energy in this case, that are
coping with deep uncertainty, allowing for robust ‘no regret’ decisions. Again, the approach of this
study is highly promising, but focuses on a different field than train maintenance. This demonstrates
the current need for this thesis, since no study has been performed on incorporating RDM within the
context of train maintenance.

Lai, Fan, and Huang (2015) as well as Burkhalter and Adey (2020) have used mixed integer linear
programming to find optimal maintenance schedules, by which they have been able to achieve utiliza-
tion improvements as well as cost reductions. While mixed integer linear programming proves to be
a suitable method for optimization in train maintenance scheduling, it does not have sufficient means
to take (deep) uncertainty into account. Tréfond, Billionnet, Elloumi, Djellab, and Guyon (2017) have
studied the combination of maintenance and its uncertainty by taking a robustness perspective. Their
approach improves robustness and prevents sub-optimality for some criteria of asset maintenance.
Mira, Andrade, and Gomes (2020) have continued on the study by Tréfond et al. (2017), and found
that uncertainty regarding maintenance tasks did not affect the maintenance schedules. Yet, in worst-
case scenarios (having maintenance tasks taking much longer than planned for), no optimal solution is
found, meaning that there are overall delays occurring in the maintenance of trains. Their study how-
ever focuses on a small fleet size of one type, which is an oversimplification of reality, making it hard
to generalize their results.

2.4. Dynamic Approach
As described in the introduction of this thesis, the current models of NS for the long-term planning
are static, while dynamic approaches that consider uncertainty are desired. Marchau, Walker, and Van
Wee (2010) have looked into a dynamic approach of handling uncertainties instead, by using dynamic
policymaking. Their study showed that a dynamic approach seems ”highly promising in terms of han-
dling the range of uncertainties related to the implementation of long-term transport policies”. While
they recommend looking further into the dynamic policymaking approach by using simulations, their
study doesn’t focus on train maintenance in specific. To evaluate in what ways simulations, with for ex-
ample agent-based models (ABMs), have been used to analyze rolling stock maintenance performance
of railway infrastructure, a further literature search was done. Pinciroli et al. (2020) have made use of
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ABMs to optimize Operations & Maintenance in the energy sector, which is comparable with railway
asset management. Again, the intention of this study was to optimize the asset maintenance system in-
stead of setting it up in a robust manner. While they have used ABMs, their study lacks the robustness
perspective that this thesis aims to have. Alexandrov, Bannikov, and Sirina (2019) have used ABMs to
model rolling stock maintenance but also lack the use of dynamic variation of input variables.

2.5. Knowledge Gap & Research Question
The literature study that has beenperformed shows thenovelty of the field that this thesis places itself in;
little has been studied on coping with deep uncertainty through the use of simulation modeling within
train maintenance. Studies that have had RDM approaches focused on different fields, while studies
that did focus on trainmaintenance lacked the use of input variation or presented results not suitable to
be generalized. A knowledge gap can thus be identified on the effect of having a robust decision-making
approach to tackle uncertainty that is present in the NS train maintenance system. This results in the
following research question:

How can the robustness of decisions made by decision makers of the NS train maintenance system
be enhanced, considering the uncertainty and risks that NS faces in maintaining their rolling stock

during the next 10-15 years?



3
Approach & Methodology

This section presents the approach that will be held in this research, together with the formulation
of sub-questions. The formulated sub-questions will each contribute to answering the main research
question. Next, methods and tools will be selected based on research questions. The selection process
will be based on the knowledge onwhat data is needed to perform adequate research, build a simulation
model, and perform relevant scenario analyses to write policy recommendations to a DM of NS.

3.1. Research approach
There are many dependencies and uncertainties to consider when finding a suitable way to approach
this problem, given the complex adaptive system of NS. NS wishes to evaluate the impact of interven-
tions on themaintenance approach, while taking into accountmany of the uncertainties that are present
in the strategic planning of maintenance. Managing those uncertainties requires adequate, robust de-
cisions. The further the projection, the more divergence will be observed in plausible future scenarios.
Keeping track of changes to the outside world, as well as changes within the train maintenance system,
is essential for NS to achieve high efficacy.

This research will have amodel-based approach, that is driven by NS data. Once the inner workings
of the NS maintenance system have been modeled, different future scenarios will be explored. The
performance of policies under these different scenarios allows for the evaluation of their robustness,
improving the information quality for NS to decide how to set up their future maintenance system.

3.1.1. Modelling Approach
To support RDM under uncertainty, a modelling approach would be beneficial (Kelly et al., 2013). A
modelling approach will enable this research to explore and visualize the impact of interventions on
the complex train maintenance system. More specifically, the complexity and adaptivity of the system
and its interactions will require a bottom-up approach, an agent-based model, in the contribution to
gaining deeper understanding of the functioning of the NS trainmaintenance system (Van der Lei et al.,
2010). In this way, the robustness of decisions regarding future maintenance can be examined.

One could argue that discrete event simulation would, instead of agent-based modelling, be an ap-
propriate method for simulating the NS train maintenance system. Yet, in discrete event simulation,
“entities are very passive representations and cannot capture some of the necessary decision-making”
(Van Dam, Nikolic, & Lukszo, 2012).

Agent-based modelling thus allows us to create a better understanding of how the maintenance sys-
tem (that consists of trains, maintenance locations, outillage & mechanics) interacts. It also enables

8
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the exploration of consequences of system interventions, the evaluation of system behavior under un-
certain future scenarios, and the communication of policy recommendations to NS.

It should be kept in mind that there are limitations to the use of agent-based models. They highly
depend on initial conditions, have limited transparency and “results are moderately comparable and
reproducible” (Manzo, 2014). To deal with these limitations, interviews will be held with those that are
closer to the train maintenance field, together with observance of the maintenance on-site, creating a
clearer picture of the train maintenance system and improving the level of detail and accuracy of the
model.

3.1.2. Sub Questions
Performing adequate research on the train maintenance system requires several intermediary objec-
tives, which will be translated into sub research questions. These intermediary objectives are: identify-
ing the needs of a DM of the NS train maintenance system; creating a sufficient image of the NS train
maintenance system; translating the DM’s needs into a model; exploring the effect of system interven-
tions and system behavior under uncertainty to gain useful insights; writing policy recommendations
that benefit the robustness of decisions.

Sub questions:

1. What are the needs of a decision maker of the NS train maintenance system to make robust deci-
sions?

2. What does the NS train maintenance system entail?

3. What model(s) can be built to support the decision makers of the NS train maintenance system?

4. How can the model provide valuable insights to enhance the robustness of decisions made by NS
decision makers?

3.1.3. Research objective
The main objective of this research is to show that simulation models, together with the exploration of
future scenarios, contribute to valuable decisions under the presence of deep uncertainties. This will
be done by changing perspectives on decision-making, from basing decisions on a single number to
scenario-based decision-making. Instead of prolonging a decision because of the unknown, embrace
the known unknowns and use it to construct mid/long term policies. In this way, undesired directions
can be avoided in an early stage, which is a major improvement considering the current way of dealing
with uncertainty within NS. Rather than accepting that there are many future unknowns, this research
will contribute to dealing with uncertainties regarding the future development of the NS train fleet, the
evolution of personnel availability, and the uncertainty regarding maintenance task duration.

The aim is to perform exemplary research where data is used to conduct a scenario analysis of a
complex adaptive system. This is especially useful for large organizations that are providing a vital
service. It is highly relevant for society to preserve the well-organized train system in the future, given
that it is a vital service, which is a challenge that this research would aim to contribute to. While this
research focuses on the train maintenance system of NS specifically, the approach held in this research
could be used in a broader picture. In essence, any system that is dealing with deep uncertainty could
use the scenario-based approach to have a picture of what lies ahead. In those cases, exploring many
possible future scenarios, supported by data, will be extremely valuable. It not only creates a clearer
image of what an organization might expect to happen, it changes the conservative line of reasoning
that is behind large decisions. Decision making quality could be improved by adopting the approach
that will be held in this research, allowing for well-performing, robust policies.
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3.2. Methods
Methods used to perform adequate research will be both qualitative and quantitative. Interviews will
be held, combined with desk research and on-site observance, to gain a better understanding of the NS
train maintenance system and the uncertainty that NS faces in the next 10-15 years. Next, this knowl-
edge will be translated into a model. This requires quantitative methods, where NS data needs to be
acquired to set up the model. By following a research flow the research will be performed in a struc-
tured way, where qualitative work precedes the quantitative modelling part. To determine the current
decision-making process regarding train maintenance, experts will be interviewed (part of confidential
appendices). From their contribution, requirements for the simulation model can be identified, which
will form the input of the conceptualization of the NS train maintenance system.

In the next phase of this research, a conceptual model of the NS train maintenance system will be
created. Research methods to gather data on the NS train maintenance system are interviews, desk
research & on-site observations. Interviews will enable creating a better picture of the relations and
inner workings of the NS trainmaintenance system. Desk research allows gathering relevant data from
NS. On-site observations contribute to the understanding of the real world, which will eventually be
translated into a simplified version: the simulation model.

3.2.1. Agent-based modelling in AnyLogic
The execution phase of this research consists of building an agent-basedmodel. The agent-basedmodel
will be built in AnyLogic, which will be based on knowledge from the conceptualization phase and data
thatNSpossesses. The translation to an agent-basedmodelwill be done in the simulation tool AnyLogic,
which allows for a friendly way of creating, simulating, and communicating an agent-basedmodel. One
of the main benefits of using AnyLogic is the possibility of visualizing the simulation model, increasing
the persuasiveness of the model towards a DM. AnyLogic was used in the research of Alexandrov et al.
(2019) on maintenance of rolling stock (trains), as well as in the research of Osman (2012) on simu-
lating infrastructure asset management, showing the appropriateness of using AnyLogic as a tool in
this context. Based on the agent-based model, there will be a more in-depth view on how, when and
wheremaintenance could be (re-)organized, and what bottlenecks can be identified in themaintenance
process. Moreover, the advantage of using AnyLogic is its compatibility with other models that are cur-
rently in possession of NS or with simulation models that will be created in the future.

Once themaintenancemodel is formalized, an iterative process will start where themodel is verified
and validated. The translation from conceptual model to the agent-based model will be verified by
experts. Necessary improvements will be made, after which test runs will be done, generating the first
raw output. The agent-based model output will be validated together with historical data and expert
knowledge.

3.2.2. Scenario Discovery
During the final phase of this research, the model will be used to perform scenario analysis. Possible
future scenarios of the next decade (until 2035) need to be constructed to perform experiments. The
output from the scenario analysis will enable us to gain insight into the effect of deep uncertainty. To
do so, the model output will be analyzed with the help of the Exploratory Modelling Analysis (EMA)
Workbench (Bankes, 1993). TheEMAworkbench allows for the exploration of uncertainties throughout
the range of future scenarios, by evaluating the range of plausible future dynamic developments of the
NS train maintenance system (Kwakkel & Pruyt, 2013). The insights gained by EMA will thus allow for
the formulation of policy recommendations towards a DM. In this way, the objective of this research,
improving the decision-making information quality to support a DM, will be reached.
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3.2.3. Data
Once a simulation model has been built, data will be required to configure the model, construct the
scenario space, and perform experiments. The XLRM framework poses the external factors that will
influence the NS maintenance system in any type of way. Therefore, it is necessary to collect data on
each of the external factors. In addition, datawill be needed to estimate correct probability distributions
for processes have stochastic frequency or duration. The focus of the data collection part should lie on
both the external factors (E) and relationships within the system (R) to construct a valid model.

The scenario spacewill then be constructed once themodel formalized, verified, and validated. Data
regarding future expectations will be necessary to construct the base-case scenario, which is the sce-
nario that NS is currently expecting to occur during the next 10-15 years. By varying the external fac-
tors, the scenario spacewill be constructed. Tweaking the policy leverswill then allow for an exploration
of different policies under a large variety of future scenarios. This output is then analysed, by which
policies can be compared.

3.2.4. Plausible scenarios
While conducting scenario analysis, this research will have a clear distinction between possible and
plausible scenarios. All possible future scenario’s could be explored, but this might take extensive com-
putational power. Instead, plausible directions of where the future might head for reduces the number
of experiments that will be necessary for EMA. This does not mean that only likely scenarios will be
tested, because then it would be impossible to evaluate policy robustness. A DM of the NS mainte-
nance system should be prepared for less likely scenarios as well. In addition, ”plausibility does not
require the explicit assignment of probabilities” (Wiek, Keeler, Schweizer, & Lang, 2013). Rather than
testing only likely scenarios (while at the same time avoiding having to test all scenarios), plausible
futures will be constructed by means of the EMA Workbench. Chapter 7 will elaborate more on how
scenario’s that fit the scope of this research are constructed.



4
Decision-Making Needs

This chapter will be dedicated to answering the first sub question: What are the needs of a decision
maker of theNS trainmaintenance system tomake robust decisions?. Tomake robust decisions on any
system, a decision maker will need information on system performance, future developments within
the system, how to deal with uncertainties, and what strategies can be applied. The XLRM framework
presents an overview on these topics in the context of train maintenance.

4.1. XLRM framework for train maintenance
To communicate the understanding of the NS train maintenance system to experts, and to receive their
input, the XLRM framework is used (Wong, Srikrishnan, Hadka, & Keller, 2017). The framework cre-
ates an uncluttered picture of what needs to be included within the scope of this research. This enables
the correct translation to a conceptual model, and eventually a simulation model. The XLRM frame-
work poses a quick overview of what this research will include, and allows for a quick understanding of
those that are rather unfamiliar with simulation modelling. The following elements are present in the
XLRM framework:

• EXternal factors: the factors that are not influenced by a DM of the NS train maintenance system
(considering the research scope), but do affect the system in a certain way

• Policy Levers: the fictitious buttons that a DM can press, they form the strategies that a DM can
apply

• Relationships: the inner workings of the NS train maintenance system, formed by both eXternal
factors and policy Levers

• Performance Metrics: important metrics that a DM uses to base its decisions on, to assess the
desirability of future scenarios, or to evaluate the success of an implemented policy

Filling in the XLRM framework for the NS train maintenance system yields the following result, see
figure 4.1.
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Figure 4.1: Filled out XLRM framework in the context of the NS train maintenance system

Table 4.1 elaborates on the description of each element and how it is related to train maintenance for
NS. The XLRM framework poses a clear overview of the scope of this research. For example, fleet size
is not an external factor for NS, but it is an external factor when considering the research scope. The
fact that there is a whole process happening before the future fleet size is determined, and that people
within the organization are deciding about it, is out of scope.

The XLRM framework also poses an overview of the policy levers that are available for NS, together
with the metrics that are important for a decision maker on train maintenance. The performance met-
rics will eventually tell the decisionmaker how a policy is performing, which creates a concise overview.
This improves current methods that are being used to perform policy analysis. Currently, these metrics
are separately used in the evaluation of the success different policies. It would be beneficial to compare
shifts in the performancemetrics while adjusting the policy levers. This would be amajor improvement
in the context of policy analysis within NS, and is said to be more valuable then optimizing them sep-
arately. For instance, when minimizing the withdrawal percentage of the train fleet, the precise effect
on other performance metrics is unknown. Let alone the effect of a single policy throughout the range
of plausible scenarios that NS may face.
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Element Application to NS train maintenance

X Fleet size: current as well as future fleet size of NS.
Personnel availability: the availability of mechanics. This number is shifting heavily
due to sickness, retirement and overall shortage on the current labor market (Verbeek,
n.d.).
Train condition: the condition of the train determines the amount of work to be put in
during maintenance. Their overall condition can vary heavily and is seen as an external
factor within the scope of this research.
Train failure: the reliability of new trains that are yet to be acquired is an unknown
external factor. In addition, new safety systems such as ERTMS will be implemented,
while their reliability is yet unknown. It could affect themaintenance systemsubstantially
in case of unexpected failures. In addition, trains at the end of their lifetime might show
higher frequency of train failures.

L Maintenance strategies: various train maintenance strategies can be applied by NS,
such as condition-based maintenance, preventive maintenance, predictive maintenance,
or corrective maintenance.
Vary equipment availability: equipment used to perform maintenance on a train is
currently only available at a ‘homeML’, while it can be decided to provide several mainte-
nance locations with different types of equipment and tools. This would enable perform-
ing maintenance on multiple train types within 1 ML.
Building an extra outillage: in case the current capacity is too limited to keep main-
taining the train fleet without congestion, an additional outillage could be built.

R Agent based simulation model of the NS train maintenance system, consisting of Trains,
Mechanics, Maintenance Locations & Outillage. Their interaction forms the system rela-
tions.

M Maintenance throughput time: the time it takes for a train to complete scheduled
maintenance.
Train Withdrawal: to measure the performance of train maintenance, NS uses with-
drawal percentages. These numbers indicate the share of trains that are withdrawn from
operation due to maintenance.
Outillage Occupancy Rate: A rate that keeps track of the share of aML’s capacity that
is occupied.
Delivery Reliability: The share of trains that are delivered on time back to operation
after having performed maintenance.

Table 4.1: XLRM elements and their descriptions in the NS train maintenance context

4.1.1. Performance Metrics
To keep track of the system performance is what can be identified as highly important for a decision
maker on the train maintenance system of NS. It helps the decision maker to make correct judgments
about whether or not to perform a certain policy, such as building a new location facility, building
additional equipment in a ML, or performing a different maintenance strategy. There are multiple
performance metrics that are key, and their importance will each be discussed separately.

Maintenance Throughput Time
Duringmaintenance, trains start and end their scheduledmaintenance at some point in time. This time
is collected for each train separately. From the time it takes for a train to complete scheduled mainte-
nance it can be identified whether congestion has occurred. Congestion indicates under-performance
of the maintenance system, which is why this has been identified to be an important KPI to monitor.
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TrainWithdrawal
Asmentioned in table 4.1, the train withdrawal indicates the number of trains that are withdrawn from
operation due tomaintenance. While a train is inmaintenance, it cannot be used in the primary service
of NS: transporting customers. Ideally, NSwish to operate their trains asmuch as possible. The current
demand for train trips does not permit them to do so, but when they are operating at full capacity,
there are still some trains remaining that will have to go into maintenance. This is why NS has to
purchase a few extra trains (the precise number is based on the train type), so that when a train is
due for maintenance, it can be replaced in operation. If the withdrawal of trains becomes higher, it
means that more trains will be in maintenance, which are in that case not available in the process of
transporting their customers.

The dependency between the operational capacity and train withdrawal is what makes the latter an
importantmetric to keep track of for a decisionmaker of NS. If themaintenance process slows down, or
if failure rates of trains go up, the fraction of time that trains are undergoing some type of maintenance
increases. This strongly affects the operation of NS, and should thus always be monitored. Hence, the
needs of a decision maker are partially fulfilled if this number is included in the research outcomes.

Occupancy Rate
Throughout a simulation run, the MLs are occupied to a certain degree, which is represented by the
occupancy rate. This information tells a decision maker to what extend the ML capacity is used, which
is relevant when exploring the system boundaries. It also shows whether a certain ML has overcapac-
ity: it maintains less trains then it could or should. To evaluate whether additional capacity would be
necessary in the near future, the occupancy rate can be an important metric. In case the train fleet size
increases (being an external factor), occupancy rates will show whether the maintenance system is able
to handle an increased workload.

The occupancy rate is thus an importantmetric that allowsmaking an informed decision onwhether
or not to adjust the maintenance capacity. Adjusting the maintenance capacity requires looking years
ahead, as increasing capacity has a significant delay. It takes about 2-3 years to train a mechanic for
performing maintenance, and it takes about 8-12 years to build a new maintenance facility.

Delivery Reliability
Themetric that shows the punctuality of themaintenance system is the delivery reliability. It represents
the share of trains that are delivered on time back to operation, after having performed maintenance.
This metric is deemed important since it directly affects the train tables. Every time a train is delivered
late, the train tables have to be adjusted. It requires additional planning and intense collaboration with
schedule developers and operational teams. Therefore, a high delivery reliability is desired. In turn,
this pressures the maintenance location to perform their tasks within a given time-frame.

While maintenance locations strive to deliver the train back to operation on time, setbacks might
occur. External factors such as personnel unavailability, sickness, or unexpected complex errors might
take maintenance longer than anticipated for. In that case, a train is not delivered on time. For a
decision maker of NS, it is relevant to know whether a policy intervention affects the delivery reliability
or not.

4.2. Model-based insights
Creating useful insights on the effect of differentmaintenance strategies (or other policy levers) bymod-
els is deemed to be valuable according to NS decision makers. Being able to apply different strategies
beforehand, and evaluating systembehavior accordingly, will benefit the needs of anNSdecisionmaker.
The information provided by a simulation model can be used by a decision-maker to set up a plan to
potentially change current approaches to trainmaintenance. Analysing the key performance indicators
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of different train maintenance policies under a large variety of future scenarios allows decision makers
to deal with complexity resulting from deep uncertainty.

Instead of calculating the average number of trains that go into maintenance on a weekly basis, a
scenario-thinking will be introduced. Keeping track of the performancemetrics under a large variety of
plausible future scenarios results in the identification robust policies. It is the task of a decision maker
to make correct judgments, yet, EMA will make the life of a decision maker easier by providing tools in
making correct judgments that lead to robust policies.

Currently it is unknown what responses of the maintenance system of NS to different strategies
could be. Moreover, there is a lack of knowledge what the future will hold precisely: deep uncertainty
is accompanied by ill understood system behavior. Therefore, NS is unable to deal with uncertainties,
even though they are aware that dealingwith themwill benefit theirmaintenance system in the long run.
Being more robust towards future scenarios is precisely what was pointed out to be of high value for
decision makers. Awareness for possible divergence of future scenarios is what will be highly valuable
when making large decisions regarding train maintenance. For example, temporary overcapacity in
mechanics might ask for scaling down to avoid costs, while a few years later the capacity might be
needed again. IfDMsdecide to scale downexcessivemaintenance capacity as soon as possible (reducing
maintenance costs), they might create a problem of lacking the maintenance capacity in the future,
in case the train fleet increases (while assuming that an increased train fleet requires more overall
maintenance). Even though it might be temporarily more costly to keep maintenance capacity on the
same level, on the long run it could prevent capacity issues that might turn out to be even more costly.
A more robust decision would thus require making judgments that look further ahead, possibly even
decades ahead. A simulation model precisely enables those needs.

Naturally, looking years or decades ahead comes with deep uncertainty, which is where EMA comes
into play. As has been discussed in chapter 3, EMA allows the decision maker to evaluate, explore and
analysemany different scenarios. When robust policies for trainmaintenance are desired, it is required
to perform extensive exploration of many plausible future scenarios. Making robust decisions can then
be done by comparing each policy based on their performance regarding withdrawal percentages, oc-
cupancy rates of maintenance locations, together with delivery reliability of trains.

4.2.1. Many objective vs single objective decision making
Current strategies on train maintenance concern optimizing one of the performance indicators of NS,
without knowing the precise effect on other performance metrics on the long term. While maintenance
DMs currently decide to perform a certain policy that fits with the optimization of a single performance
metric, theywould rather be able tomake decisions based on amore comprehensive overview that takes
into account multiple objectives. This should then lead to the implementation of robust policies that
have been identified by EMA.



5
Conceptualization of the NS Train

Maintenance System

To answer the second sub questionWhat does the NS train maintenance system entail? this chapter
will present a conceptual overview of the scope of this research and system ontologies. To benefit the
understanding of relations withinNS’ trainmaintenance, narratives are constructed for each agent type
in section 5.1. Thereafter, flowchart(s) are presented in section 5.2.

5.1. Narratives
Creating a better understanding of the components that will be the agents in this research, agent nar-
ratives are constructed. Within the scope of this research, the agents that will be discussed in terms
of narratives are Trains, Mechanics, Maintenance Locations (MLs) & Outillage. Each train requires
maintenance at one specific ML, where they have Mechanics and Outillage to their disposal. In why
and how agents interact can be learned from this section.

5.1.1. Train
Each 24 hours, a train has a rather similar routine. During the night, trains are stalled, cleaned. In case
some minor issues arise, they can be fixed during this time period as well. Depending on the schedule,
a train is operating between 5 A.M. till midnight with a single task: transporting passengers fromA to B.
The main operation process goes on for a predetermined amount of days or kilometers (depending on
the train type & whichever comes first). When the maximum allowed days in operation is exceeded, or
when the kilometers has been reached, a train has to go to aworkshop for scheduledmaintenance. Each
train type ismaintained at one specificML: their homeML.When they arrive at their homeML, they go
through several maintenance phases: emptying the bio-toilet reservoir (BIO), performingmaintenance
(MTCE), cleaning of in- and outside (CLEAN), grinding of wheels (KWB), replacement of chassis (AW),
final tests and checks (CHECK). These phases are currently divided by shifts of 8 hours, making them
task blocks of fixed lengths. In reality, the scheduled time is more than the actual time it takes to
perform the tasks, just to have some slack in case of setbacks. If the condition of a train allows it, KWB
and AW are performed in one shift. While some steps are mandatory, other steps are dependent on the
condition of the train as it enters scheduled maintenance (elaborated in section 5.2).

NS possesses many different train types, which require different maintenance. This becomes clear
when looking further into the type of maintenance that comes along with performing scheduled main-
tenance. Important equipment such as air conditioners, electricity transformers, and air filters are

17
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revised each time. For new train types, these parts are placed on the roof of the train instead of the
bottom of the train. This is a major shift, that requires different type of approaching a train for mainte-
nance, and requires different equipment.

On top of scheduledmaintenance, it could occur that a train ’breaks down’. It is then required to im-
mediately repair the train, because most of the time the train schedules expect the train to be operating.
The occurrence of failure disrupts the operation, since the train is unable to transport passengers. The
train will be shunted to its home ML, where it is being repaired within 24 hours to ensure a minimum
time of withdrawal.

5.1.2. Mechanic
A mechanic is part of a team. Team numbers and team size depend on the capacity of the workshop.
Teams of mechanics are working around the clock, every day of the week, to make sure that the trains
theymaintain are safely sent back into operation conform safety standards. The teams operate in shifts
of 8 hours in either a night shift, early shift, or late shift. A mechanic works at 1 workshop, on 1 type of
maintenance (either pitstop or scheduled maintenance), and works on 1 specific task at a time, such as
emptying the toilet reservoir or replacing a chassis. Through qualifications, distinctions aremade in as-
signingmechanics to different types of tasks. However, to prevent over-complication, the qualifications
of mechanics is assumed to be out of scope of this research.

During their shift, mechanics are assigned to 1 specific maintenance task. When they take 5 hours
to finish a task that was scheduled for 8 hours, they are essentially free for 3 hours. If possible they
are assigned to another task, but if there are no minor tasks available they are essentially free of work
during the remaining time.

In some cases, a train fails while not being close to its home workshop. When a train fails in another
part of The Netherlands and cannot be safely transported to its home workshop, mechanics will travel
to the train instead. They have the expertise and tools required to perform a preliminary fix, enabling
safe movement to the train’s home workshop. This aspect however is not included in the scope of this
research. This research solely focuses on the repairing of trains within theMLs. It is therefore assumed
that when a train failure occurs, it can always be shunted to its home ML. Hence, mechanics will not
leave their ML according to the research scope.

5.1.3. Maintenance Location
NS owns and uses four Maintenance Locations (MLs) in The Netherlands, them being Onnen, Water-
graafsmeer, Leidschendam and Maastricht. Each ML has a limited amount of maintenance rail tracks
where maintenance can be done, and a limited amount of mechanics that can perform maintenance.
TheMaintenance Location provides the ability to performmaintenance 24/7. It houses train parts that
can be accessed in case parts are broken and are required to be replaced.

Each time a train enters the ML, it fulfills maintenance tasks. The number of tasks to be completed
depends on train’s condition. Is the job of the ML to enable all tasks to be completed within a certain
period of time. Planners within the ML assign train maintenance requests to available outillage and
mechanics. This requires a high level of flexibility, since trains might be delayed while being moved
to their ML. Delayed trains require adequate adaptation from the planners, since their original sched-
ules need to be revised. It is therefore assumed that train maintenance requests are handled instantly
within the availability as the maintenance request is issued. In case the maintenance request cannot be
handled instantly, the train will be placed in a waiting cue.

Different MLs have deviating capacities, which can elaborately be observed in table 6.4.
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5.1.4. Outillage
Outillage concerns train tracks that are part of a Maintenance Location. Outillage capacity is what par-
tially (together withmechanics) makes up the capacity ofMLs. The outillage rail tracks allow for a train
to be stalled while it is undergoing maintenance, allows mechanics to perform specific types of mainte-
nance, and in some cases allowsmechanics tomove freely below the train. Considering the track length
varies from 110-200meters, in some cases two trains can fit at one maintenance rail track, allowing for
maintenance to be performed simultaneously on two trains. Some of those tracks are equipped with
elevated working platforms. An elevated working platform enables safe and relatively easier mainte-
nance of components that have been placed on the train roof, as it allows mechanics to walk around
the train roof and stepping on and off the train roof. This makes the roof of a train more accessible
for a mechanic, in contrast to working with portable aerial working platforms. Not all rail tracks of NS
workshops have elevated working platforms. In those cases, portable aerial working platformsmust be
used to perform maintenance on altitude due to the lack of elevated working platform capacity.

5.2. Flowchart
Now that narratives of the NS train maintenance system are understood, they can be displayed visually
in a flowchart. A flowchart benefits the understanding of the system’s inner workings, what stochastics
are present, and where decisions are made within the maintenance process. Flowcharts for a train and
the flow within a maintenance process are presented, together with the flowchart of mechanics.

5.2.1. Train flowchart
In this section, the general flowchart of a train entering maintenance is portrayed. Figure 5.1 shows the
current process of any train of NS that is shunted to their home workshop.

Figure 5.1: General flowchart of current train maintenance at an NS workshop

Figure 5.1 presents the possible maintenance flows that a train can go through. When a train is trans-
porting passengers, it is operational. As soon as it is time for maintenance (based on either the maxi-
mum allowed kilometers or the days that have passed since maintenance was done), a train is shunted
to its home ML. A train can also be shunted to its home ML in case a spontaneous failure occurs. The
yellow boxes represent moving trains towards or from its home workshop. When a train arrives at the
ML, it could be for maintenance cyclic maintenance, or to fix the failure which is called a pitstop. The
moment the train arrives and the moment mechanics start working on the train are separated, since
mechanicsmight not be available or themaintenance shop has no available outillage yet. The red boxes
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indicate a waiting, idle train. Once there aremechanics available and there is an empty spot in the work-
shop’s outillage, maintenance/repair is performed. After the maintenance/repair, the train is ready to
be shunted back into operation, but has to wait on available train drivers. As soon as the train drivers
are ready to move the train, it is shunted back into operation.

The purple ’on short cyclic maintenance’ block will now be further specified into separate tasks.

Workflow within maintenance
As soon as a train has entered the maintenance process it sends out a maintenance request, requiring
mechanics and outillage to be available. In the theoretical maintenance schedule these tasks have a spe-
cific sequence, devised bymaintenance planners. In reality, there is room for flexibility in the variation
of the order in which tasks are performed. Figure 5.2 depicts the necessary sequence together with the
possible variations.

Figure 5.2: Scheduled maintenance flowchart

To gather information on the current state of the train, a pre-check is performed where the train’s
condition is determined. It then enters the ’Idle, not fixed’ state where the train waits to be assigned.
Next, regularmaintenance (MTCE), emptying the bio-toilet reservoir (BIO), replacing the chassis (AW),
cleaning the train exterior and interior (CLEAN), and grinding the wheels (KWB) can be performed
independently of each other. Whichever comes first will be decided based on the availability of the
workshop and the on-site mechanics. AW & KWB are done conditionally, BIO/MTCE/CLEAN are al-
ways performed. After these tasks have been completed, the train reaches the ’Idle, almost fixed’ state.
It then has to be checked before being returned to operation. The checking (CHECK state) requires
outillage and mechanics to be available too.

In reality, cleaning is done at the final part of the maintenance process it to prevent a situation in
which mechanics have to work inside a cleaned train. This research assumes that the only sequentially
bound task is CHECK. Once final checks are performed the train reaches the ’idle, fixed’ state, and
becomes ready to be shunted back into operation.
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5.2.2. Crew flowchart
The tasks within the sequential maintenance flowchart of figure 5.2 are performed by mechanics that
are part of the maintenance crew. Each task takes either 1 or 2 shifts for a maintenance crew. In some
occasions, a taskmight take less time than calculated, e.g. the crewmight be finished after 5 hours with
performing KWB, while 8 hours were scheduled. As displayed in figure 5.3 crew can thus be working
on maintenance, working on pitstop repair, or be on stand-by (in which they are idle). This research
assumes that only mechanics qualified to perform pitstop repairs are able to do so. There is a split
between mechanics that performmaintenance tasks (regular mechanics), and mechanics that perform
both scheduled maintenance tasks and pitstop repairs (pitstop).

Figure 5.3: Flowchart for the maintenance crew

Purple states indicate a working crew, and the green state is idle. When in idle state, the crew can either
receive a message from the ML that there is a train to be maintained, or they can receive a message
that pitstop repair is required. While working on a maintenance task, the crew can either go back
to an idle state when their task is completed or when their shift ends, or they might be required to
perform pitstop repair that has priority. When a pitstop repair is finished (driven by a time drawn from
a probability distribution), the crew decides what to do: go back to the maintenance task they were
performing initially (in case theML requires them to do so), or move back to an idle state (in case there
are no maintenance tasks left to perform during their shift).
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5.2.3. Outillage
Outillage can be either available or in use. Both states are dependent on the arrival of trains and their
demand for maintenance. Some types of outillage are used more frequently than others, given that a
maintenance cycle has a few optional and a few obligatory components. Trains will always pay a visit
to the train track where regular maintenance is done (MTCE), the BIO track where the toilet reservoir
is emptied, and to the train washing installation (CLEAN) where the train is washed on the outside.
Some MTCE tracks are train-specific, which indicates that only trains of that specific train type can
be maintained there. This could be the case when there are elevated platforms needed to access the
train roof for example. Optional outillage are the wheel grinding installation called ”kuilwielenbank”
(KWB) and the chassis removal section called ”aardwind” (AW). Current policy is that trains of the type
DDZ, VIRM and ICM always go to KWB during scheduledmaintenance. After all previouslymentioned
steps have been completed, the train will has to be checked before it can be returned to operation. This
happens at regular maintenance tracks (again of which some are train-specific). Besides being in use
or being available, the outillage doesn’t have any additional function within the scope of this research.

Figure 5.4: Flowchart for Outillage



6
Train Maintenance Model Formalization

This chapter will present the formalization of the simulation model that is based on the conceptual
model, aiming to answer the third subquestion ”What model(s) can be built to support the decision
makers of the NS train maintenance system?”. First, the model setup will be discussed. Next, the
different agents will be presented, together with the way they interact. After explaining how agents
are distinguished, their behavior is presented in the model inner workings. Algorithms that form the
basis of the simulation model are portrayed in pseudo-code. The controls that allow a user to adjust
the model settings before and during a run are lastly elaborated on.

6.1. Agents
This section will elaborate on the different types of agents that are included in the simulation model
that has been set up in AnyLogic (Appendix A). Figure 6.1 portrays the composition of agent levels
in AnyLogic. AnyLogic requires to have one top-level agent, which is essentially a ’moderator’ that
oversees/manages the environment and interaction of other agents. This agent is referred to as ’Main’.
Agents make use of the environment within main to interact. For NS, main could be seen as a control
center where maintenance schedules are created, monitored and executed.

Figure 6.1: Overview of the different agent levels within AnyLogic

Main consists of MaintenanceLocations and Trains. Trains not only require maintenance at a specific
MaintenanceLocation, they also require available Outillage & available Mechanics. These belong to the
MaintenanceLocation, and are modelled as different agent types.

23
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6.1.1. Main
Within main, two agents are present: Trains and MaintenanceLocations. These are the trains of NS
that are operational, together with the maintenance locations where they are maintained periodically.
When a simulation is running, the main agent screen offers an overview of statistics that are displayed
in histograms, bar charts and time plots. Time plots are essentially line plots that display a certain
value during a certain timestep. In the model developed for NS, histograms portray the distribution of
waiting times and total throughput times. A time plot is used to display the number of trains that are
operational at each timestep. There is always a fraction of trains undergoing maintenance at its home
maintenance location at any given time, which can be tracked during a simulation run by checking
the timeplot. For those that are less familiar with model specifics, these time plots are convenient to
have an instant overview of the system behavior. In case model settings are tweaked, the plots allow
for checking the corresponding behavior of the train maintenance system. Plots also allow for an easy
and smooth communication of model outcomes towards those that are not familiar with simulation.
Therefore, it is main important that the interface of the main agent is well-organized.

Communication betweenTrains andMaintenanceLocations goes through theMain agent. TheMain
agent assigns the Train to the correspondingMaintenanceLocation in case a train asks formaintenance
or a pitstop repair. The main agent should thus be considered to be a control centre, like the control
centers that NS has in reality that are constantly playing into daily changes.

6.1.2. Trains
In the Train agent section, model specifics are determined for the trains of NS. The behavior of 1 train is
modelled, and different properties are loaded from a small database in the AnyLogic simulation model.
The database enables assigning characteristics of different train series, that each have different home
Maintenance Locations, referred to as HomeOB in the model.

When they are due (based on distance travelled between maintenance jobs or on time since last
maintenance), trains will have to undergo cyclic maintenance. When a train arrives at a maintenance
location, their condition is determined. The duration of maintenance is dependent on the condition
of the train. For example, some trains might need to go to the KWB (Kuilwielenbank), while others
don’t. Each block of maintenance is split into different requests. All trains that undergo maintenance
will have to finish steps: ’BIO’ ’MTCE’ ’CLEAN’. In case their condition is bad, they have to pay a visit
to the KWB to polish its wheels. If their condition is even worse, they have to go to the AW (Aardwind),
which is the station where the wheels of carriages are replaced. Thus, the condition of the train affects
the throughput time of a maintenance visit. The total throughput time of the train is measured, and
reported to the Main agent.

When it is time for maintenance, trains will send out maintenance requests. Trains communicate
these requests to the top level agent (Main), who forwards thismessage to the specificmaintenance loca-
tion that corresponds with the HomeML of the train requestingmaintenance. Based on the availability
of both Mechanics and Outillage within that maintenance location, a train is placed at an available sta-
tion. This will be further elaborated on in the next subsection. It happens regularly that a train arrives
at a maintenance location while the maintenance location is fully occupied. The train will then have to
wait for available outillage, before it can start a maintenance task. This waiting time is also measured
and reported to theMain agent. These statistics are helpful when analyzing the effect of policies such as
upscaling outillage capacity or staff. Suppose one decides to upscale outillage, but there is not enough
staff to control the outillage, there will be no chance of using the upscaled availability. Trains would
still be waiting, since the MaintenanceLocation needs to assign both outillage as well as available staff
to a train before it can start its maintenance task. Tracking the waiting time statistic may thus provide
valuable information on the effect of applying policy levers.
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6.1.3. Maintenance Locations
There are four maintenance locations of NS: Leidschendam, Maastricht, Onnen and Watergraafsmeer.
Each maintenance location handles fixed types of trains. The precise capacity of each ML will be dis-
cussed later on in this chapter.

For each outillage type, a time color chart sequentially checks whether they are available or not.
Green indicates that the outillage is available, and red indicates unavailable outillage. This allows a
user of the simulation model to observe the occupancy of the different outillage types. A lot of red
would indicate an overly used outillage type, whereas a lot of green indicates that the specific outillage
isn’t required much.

6.1.4. Outillage
Different types of outillage are distinguished within the NS maintenance process. Each train has to
visit the BIO, CLEAN and MTCE. Based on the condition it also visits KWB and/or AW. These types of
outillage can be either available (Idle) or occupied (InUse).

When the ”START OUT” message is received, the outillage is set to InUse, becoming occupied. A
train is assigned to the specific outillage, and when it is finished the outillage receives the message
that it becomes available again. The agent type outillage does not have any other functions other than
being available or unavailable. Besides receiving messages from other agents and switching from Idle
to InUse it doesn’t have any function in the model. This is in line with reality, where outillage simply is
a piece of equipment, a train track or tools, that are being used to perform maintenance.

Whenever a train arrives at a type of outillage, a random number is drawn from a outillage-specific
triangular distribution. The outcome fromdrawing the randomnumber then determines the amount of
time it takes for mechanics to perform the maintenance task, which can directly be seen as the amount
of time that the outillage is unavailable for new maintenance requests. As soon as the train leaves the
outillage, the outillage becomes available for new maintenance requests.

BIO
Emptying the bio reservoir requires specific outillage, and is done on BIO-specific tracks. The process
is standardized and takes about 3-4 hours to be completed (in case no setbacks occur). It requires a
mechanic that has the knowledge and formal certification to perform the tasks that this maintenance
step demand. Leidschendam is the only ML that has a capacity of two BIO tracks, the other MLs have
only 1 BIO track.

CLEAN
The cleaning of the train is essentially split into two separate jobs: inside and outside. The outside
cleaning process is similar to that of a car-wash. The train is shunted to the train washing installation
(CLEAN), which takes about 30minutes to complete. Within this research, it is assumed that during the
CLEAN maintenance step, inside cleaning is also done. The inside cleaning is not performed by main-
tenance mechanics, but it is outsourced. However, this step does require a track at the maintenance
location to be available.

MTCE tracks
At all MLs, there are multiple MTCE tracks. These are tracks where solely regular maintenance is per-
formed (not EBKs). This can be either the MTCE step in the simulation, or the Nawerk step in the
simulation. TheMTCE step is a fixedwork-package that takes about two shifts (16hrs). Scheduledmain-
tenance is being performed, together with fixing/replacing based on visual inspections. Some MTCE
tracks have elevated platforms, because they are designed to maintain a specific train type where a lot
of the equipment is placed on the roof. MTCE tracks also allow mechanics to go under the train to
performmaintenance below the train. In reality, the exact duration of this step is highly uncertain and
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depends on a lot of factors, such as train size, train condition, number of mechanics working on it, and
whether track has the presence of elevated platforms. Tracks that don’t have elevated platforms, re-
quire mechanics to use machines that lifts them in a bucket towards the train roof. Mechanics will then
have to perform maintenance from this bucket, essentially hanging above the train. This is more time
consuming than working with elevated platforms where mechanics can walk around freely throughout
the length of the train roof.

Nawerk is also performed at the MTCE tracks. During this step, mechanics perform final fixes and
check-ups to ensure that the train can be sent back to operation safely, until it is due for maintenance
again. This requiresMTCE tracks becausemechanics might need to access the bottom/roof of the train.

KWB
When wheels are not perfectly round, they start bouncing on the train track while the train moving.
This can become uncomfortable for customers and might also damage other parts of the train. Sensors
placed inside the train tracks measure vibrations of a train as it is passing by, providing the control
centre of NS valuable information regarding the condition of the passing train. This data is processed
and shared throughout various data platforms. This is why trains are categorised in several conditions
by the control centre, as they are constantly being monitored in the software systems of NS. In this
research four train conditions are used as they enter maintenance: worse, bad, average & good. Once
in a while a train slips on the track, for example due to leaves that lie on the train track, or due to
heavy breaking during icy weather conditions. The slipping results in a flat part on the wheel. Thus,
occasionally thewheels need to be polished. A small part of thewheel then needs to be peeled off, so that
the wheel is perfectly round again. This is done on the kuilwielenbank (KWB). Execution of polishing
with the help of the KWB requires (at least) twomechanics that have specific knowledge about handling
this outillage; an experienced qualified mechanic and a qualified assistant.

AW
At the AW, a chassis can be detached from the train, for example to replace wheels that have reached
the end of their lifetime, or perhaps to replace malfunctioning electricity transformers. In case no
replacement is needed of a specific part, but something needs to be repaired, this outillage could also
be used. It does not happen often that trains will have to visit this specific outillage, but when they
do it is usually a time-consuming task. The chassis a complex, heavy and expensive part of the train,
and should thus be handled with great care. Performing maintenance of this part also requires specific
knowledge. As goes for the KWB outillage, the condition of the train determines whether it has to pay
the AW a visit. Likewise, two mechanics are required to perform maintenance tasks at the AW; an
experienced qualified mechanic and a qualified assistant.
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6.1.5. Mechanics
Two different types ofmechanics are distinguished in themodel: regular or pitstop. Regularmechanics
are those that are not allowed to perform pitstop repairs, while pitstop mechanics are. In reality, in
case there is no pitstop request, all MTCEmechanics are busy, and a new maintenance request arrives,
pitstop mechanics will help MTCEmechanics. Because it became to complex and harsh to have pitstop
mechanics taking complete responsibility of a maintenance task, the helping of pitstop mechanics is
not included in this research.

As goes for Outillage, mechanics too can be in two states: idle or working on amaintenance task. In
case amechanic is of the type ’pitstop’, it can only be drawn into the working on pitstop state. Each time
a pitstopmechanic agent is finished with a pitstop repair, it returns back to the idle state, where it waits
to be assigned to a new train that requires either pitstop repair. ’Regular’ mechanics aremechanics that
can be drawn into the different trainmaintenance requests that have been sent out to the control centre.
There is a finite set of mechanics available at each maintenance location, which is determined by the
amount of work to be done on a weekly basis. For this research, the exact calculation of the required
capacity is out of scope, but it results in the following capacities for the MLs displayed in table 6.1.

Maintenance Location Number of mechanics

Leidschendam 125
Maastricht 100
Onnen 153
Watergraafsmeer 95

Table 6.1: Total number of mechanics available at each Maintenance Location

Because most tasks require multiple mechanics, it is assumed that each task in the simulation is per-
formed by twomechanics at a time. Therefore, the simulationworks withmechanic duo’s thatmaintain
1 specific train at a time. Due to its complexity, qualifications of mechanics is not taken into account
when assigning mechanics to train maintenance requests. Mechanics will never be assigned to the
CLEAN task, because the inside cleaning is being outsourced.

While in reality pitstop mechanics might decide to give priority to a train that undergoes regular
maintenance so that it can be sent back to operation as soon as possible (instead of handling an EBK),
this does not happen in the simulation. In AnyLogic, there is a clear distinction betweenmechanics that
perform regular maintenance tasks, like BIO/KWB/AW/MTCE/Nawerk, and those that perform EBKs.
This is an assumption, because in real life ’pitstop’ mechanics might make the decision to first finish a
regular maintenance task before starting with the pitstop repair. Several factors could be of influence:
remaining maintenance time, but also the requirement of different types of trains in operation. In
case the pitstop request comes from a train that is highly required in operation, it would make more
sense to immediately start with the pitstop repair, whereas in other cases the pitstop might not require
immediate action. It should be kept in mind though that pitstops are aimed to be finished within 24
hours of the request.

Initially the model was set up in a way that pitstop mechanics would pause train maintenance in
case an EBK was required. Model runs with this setting have been tested, where pitstop mechanics
too help in performing regular maintenance, and would set regular trains on hold as soon as a pitstop
request is issued (due to pitstop priority). When the pitstop repair is finished, the pitstop crew would
resume the work they were doing on the train that had been set on hold. However, trains that had been
set on hold would not always be ’found’ by other available mechanics in the simulation model, leading
to erroneous output. Trains would get stuck being on hold, or pitstop crew would search for a train
that had already been finished by another crew. This implementation raisedmany errors, and was thus
removed from the simulation model. Therefore, the decision has been made to keep the two processes
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apart from each other; ’regular’ mechanics are only assigned to the scheduled maintenance tasked and
’pitstop’ mechanics are solely handling EBKs where pitstop repairs are required.

Mechanic employability
The teams of mechanics are scheduled to work around the clock. It is assumed that each ML operates
24/7. Mechanics operate in shifts of 8 hours. For all MLs, there are a total of 5 teams that alternate
each other. Suppose a ML has a total of 105 mechanics assigned to them, each team would consist of
21 mechanics. In reality however, there is an employability factor that scales down the team size that
is employable compared to a theoretical team size. Experts of the train maintenance system have set
this number to 0.667 (2/3 of the team is employable, 1/3 is either on sick leave or is on holiday). This
number comes from their the experience with mechanics not being available to work. The type of tasks
they perform on a daily basis is highly demanding on their physique, which results in a relatively large
share of employees that are not able to work. The following formula is used to determine the number
of mechanic agents in the simulation.

Amechanics =
Tmechanics

Nteams
· femployability

Where:
Amechanics: Number of available mechanics in the simulation model
Tmechanics: Total number of available mechanics
Nteams: Total number of teams
femployability: Employability factor (0.667)

So in case of the example of a total of 100 assigned mechanics, there is a discrepancy in the theoretical
team size (20), and the actual team size (14).

Magents =
Amechanics

2

It should be kept in mind that 1 mechanic agent in the simulation is a duo of mechanics in reality. The
number of mechanic agents in the simulation model is calculated by dividing the actual team size by 2,
as observed in the formula above.
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6.2. Building the model
For each agent type, a small database is used to build the model. For trains, the database contains data
on different series, the fleet size (population size) of each series, the homeOB of each series, the amount
of KM between two maintenance jobs (varies per series), and how much time there should be between
two maintenance jobs. AnyLogic loads the data starting up the model, and then automatically assigns
the data to the different train series as specified in the database.

Setting up Maintenance Location agents
For Maintenance Locations, the database only contains the name of each location and two booleans:
sprinter? & intercity?. Each maintenance location has a ’name’, which is based on the string that is
in the database, which allows the modeler to make distinctions in the four MLs. In addition, a ML is
labeled as a sprinter ML, as a intercity ML, or both (Maastricht). In case the boolean is true, it means
that this ML is able to repair those train types.

Type Sprinter? Intercity?

Leidschendam true false
Maastricht true true
Onnen false true
Watergraafsmeer false true

Table 6.2: Setting up the four Maintenance Location agents

Setting up mechanic agents
For mechanics, the database contains the size of the population and the mechanic type (maintenance
crew or pitstop crew), as displayed in table 6.3. As can be observed, team size varies per maintenance
location based on the calculation presented in the previous section. The following team sizes are loaded
into AnyLogic for each mechanic agent. The database loads the ML that the agent is assigned to, the
team size (in duo’s), and also makes the distinction in mechanic type: regular or pitstop.

Maintenance Location Team Size Type

Leidschendam 8 Regular
Leidschendam 2 Pitstop
Maastricht 6 Regular
Maastricht 1 Pitstop
Onnen 10 Regular
Onnen 2 Pitstop
Watergraafsmeer 5 Regular
Watergraafsmeer 1 Pitstop

Table 6.3: Total number of mechanic agents (duo’s) loaded into AnyLogic for each Maintenance Location
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Setting up outillage agents
The outillage agents form themaintenance capacity in terms of train tracks. For setting up outillage, the
database contains the outillage type, capacity and the maintenance location it is placed in. Some main-
tenance locations have multiple BIO tracks, others don’t. The data specified in the outillage database
forms the capacity of the simulationmodel: the amount of tracks where trains can be placed to perform
any kind of maintenance. Some trains require specific outillage during their MTCE/Nawerk mainte-
nance steps, others don’t. This is determined by the track column.

Note that Leidschendam does not have 6 tracks for SNG, but it has 3 tracks that can fit 2 trains at
the same time. Therefore, the capacity of regular maintenance tracks in Leidschendam is set to 6 for
SNG type tracks in table 6.4.

Type Maintenance Location Capacity Track type

BIO Leidschendam 2
KWB Leidschendam 1
AW Leidschendam 2
CLEAN Leidschendam 2
MTCE Leidschendam 2 LDD-SLT
MTCE Leidschendam 6 LDD-SNG
MTCE Leidschendam 3 LDD-Alg
BIO Maastricht 1
KWB Maastricht 1
AW Maastricht 1
CLEAN Maastricht 2
MTCE Maastricht 2 MT-Flirt
MTCE Maastricht 3 MT-Alg
BIO Onnen 1
KWB Onnen 1
AW Onnen 1
CLEAN Onnen 2
MTCE Onnen 3 ON-Alg
BIO Watergraafsmeer 1
KWB Watergraafsmeer 1
AW Watergraafsmeer 1
CLEAN Watergraafsmeer 2
MTCE Watergraafsmeer 2 WGM-Alg
MTCE Watergraafsmeer 2 WGM-ICNG

Table 6.4: Outillage database to set up outillage agents
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6.3. Running the model
During amodel run, the four maintenance locations of NS are simultaneously maintaining trains. Data
is collected on the occupancy rates of train tracks within the maintenance locations, the throughput
time of a train during scheduled maintenance, the delivery reliability of each ML, train withdrawal,
and intermediate waiting times between maintenance tasks. Each year the simulation run progresses
new trains are added to the train fleet and old trains are removed from the simulation. The mainte-
nance capacity remains the same throughout the run. At the end of a single run, the data that has been
collected is processed and saved, so that it becomes available for data analysis.

6.4. Model inner workings
Being able to fully comprehend themodel demands that themodel innerworkings are understood. This
section presents the key algorithms that the model uses during a simulation run: the determination of
the condition of a train and the processing of a maintenance request.

6.4.1. Determination of train condition
The first algorithm that is implemented in the model is the one where the train condition is determined
as it enters a workshop. Generally, the maintenance location ’knows’ in what state the train will be
before it arrives, butwhen it has arrived theywill performan inspection to determine the train condition
themselves. This is to confirm the state of the train compared to what has been entered in software
databases, and to create an image of thework to bedone on this specific train. Combining the knowledge
on the train’s status beforehand, together with the visual inspections, the amount of work that has to
be done is inventoried. Algorithm 1 displays the pseudo code of the algorithm as implemented in the
AnyLogic simulation model.

Algorithm 1 Train Condition

Let RandomUniform← Uniform(0,1) ▷ Draw a random number between 0-1

if RandomUniform ≤ ProbConditionWorse then
condition← ”Worse”

else if RandomUniform ≤ ProbConditionBad then
condition← ”Bad”

else if RandomUniform ≤ ProbConditionAvg then
condition← ”Average”

else
condition← ”Good”

end if

Add steps toMTCE_Steps based on train condition

When entering a maintenance location, a train can have four conditions: good, average, bad, worst.
Based on this condition, steps left to visit are added to the MTCE_Steps_Left list. The condition is
determined by drawing a random number between 0-1. If the random number is lower than the prob-
ability that a trains are in the worst condition, the train will get the condition ”Worse”. If the random
number is lower than the probability that a trains are in the bad condition, the train will get the condi-
tion ”Bad”. If the random number is lower than the probability that trains are in the average condition,
the train will get the condition ”Average”. Else, the train gets the condition ”Good”. These probabilities
are assigned by the user that runs the simulation.
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6.4.2. Adding MTCE steps
Based on the condition of the train, the steps that a train will have to visit during its maintenance cycle
are determined. The pseudo-code shown in algorithm 2 displays the working of the maintenance steps
algorithm. A train always has to pay a visit to BIO, MTCE & CLEAN. The optional steps are KWB and
AW, and even the duration of KWB is depending on the train’s condition. In the simulation model,
a train will have to visit both AW and KWB if it arrives at the maintenance location in the ”Worse”
condition. In case the condition is ”Bad”, the train only pays a visit to the aardwind (AW), where the
chassis is repaired or even replaced. In case the condition of the train is ”Average”, it will visit the
kuilwielenbank (KWB) instead of AW. In case the train is in a good condition, both AW and KWB will
not be assigned as an obligatory step for the train to visit.

Algorithm 2 Adding Maintenance Steps

Add ”BIO” to maintenance steps left
Add ”MTCE” to maintenance steps left
Add ”CLEAN” to maintenance steps left

if condition = ”Worse” then
Add ”AW” and ”KWB” to maintenance steps left

else if condition = ”Bad” then
Add ”AW” to maintenance steps left

else if condition = ”Average” then
Add ”KWB” to maintenance steps left

end if

6.4.3. Maintenance request algorithm
As soon as a train enters amaintenance location for regularmaintenance, it will send out amaintenance
request. The maintenance request concerns all steps that the train has to pass, which is based on the
condition of the train (except for BIO, CLEAN and MTCE which are mandatory steps that will have
to be passed by all trains). The request will be sent to the top-level agent Main, who then forwards
the request to the home ML that is coupled with the train. Algorithm 3 aims to clarify the working of
the algorithm that handles the train maintenance requests. All maintenance requests are collected in
a list called maintenanceRequests. The algorithm below is called to pick the last request and links the
request to available outillage & mechanics (if found).

In this model, theMain agent assigns the correct trains to their Home OB’s, and checks whether the
outillage and staff of this Home OB are available to fulfill maintenance requests. The algorithm goes
as follows: A specific maintenance location checks the oldest maintenance request. It checks for the
different types of available outillage if the train (Train T) has yet to visit that specific type of Outillage
(O). If there is a match found (that is, a train has to visit O, and O is available), the train T is assigned to
outillage O. Next, an available mechanic (M) is searched for. In case there is amechanic available, train
T is sent to the outillage O that is has been assigned to. At the same time (naturally computers don’t
do things simultaneously but within the same timestep), a message is sent to mechanic M to perform
maintenance on Train A at Outillage O. The train will get to know which mechanic is working on it,
and the outillage will learn which train will arrive. The latter is done by sending the ”START OUT”
message to the corresponding outillage. Finally, the maintenance request is removed from the list of
maintenanceRequests.

Maintenance Request List
When a match has been found, there might still be other requests in the maintenance request waiting
list. The while loop will then continue attempting to match outillage with trains, and send an available
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Algorithm 3 Handling Maintenance Requests

1: procedureMaintenance Request(t) ▷ Start handling the request for train t

2: whilemaintenanceRequests ̸= empty do

3: Get the first maintenance request: t
4: Let outillage = null

5: for o in Available Outillage do
6: if o ∈MaintenanceStepsLeft and track category matches train type then
7: outillage← o ▷Match outillage desired with available outillage
8: Remove o from available outillage
9: break ▷Match found, exit for Available Outillage for loop

10: else if Size ofmaintenanceRequests > 1 then
11: for length ofmaintenanceRequests do
12: Repeat lines 6-9 ▷ Try to match other requests in queue
13: end for
14: end if

15: if outillage ̸= null then
16: break ▷ Train and outillage match found, exit for loop (line 5)
17: end if
18: end for

19: if outillage = null then
20: break ▷ No current available outillage, exit while loop
21: end if

22: if outillage ̸= CLEAN then ▷ Skip in case of CLEAN (outsourced)
23: Letmechanic = null

24: if mechanicsAvailable ̸= empty then
25: m← FirstAvailableMechanic ▷ Available mechanic found
26: Send message to mechanicm to start maintenance
27: Inform train t that mechanicm will be working on it
28: Inform mechanicm it will be working on train t
29: end if

30: if mechanic = null then
31: break ▷Mechanic not found, exit while loop
32: end if

33: Send ”START OUT” to chosen outillage ▷ Outillage o will now become occupied
34: Inform train t about outillage o
35: Inform outillage o about train t
36: Remove train t from maintenance requests
37: end if
38: end while
39: end procedure
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mechanic to it. This will go on until the request list becomes empty. Occasionally there is no match
between MaintenanceStepsLeft and available outillage, or there is no mechanic available. In those
cases, the while loop is stopped, but the maintenance request remains at the top of the request list.
Because the request is not removed, the next time the function that handles maintenance requests is
called, the first attempt will be handling the request that couldn’t be finished.

So as mentioned, the allocation of a maintenance request to available outillage is based on a first in
first out method; the oldest request will be the one that the algorithm will tackle. In case no match can
be found for the oldest request, the algorithm will continue looking for a match.

Pitstop Requests
The allocation of mechanics to pitstop requests is done similarly to that of a regular maintenance re-
quest.

Order of maintenance tasks
Each time a train enters the Idle state, a newmaintenance request is sent toMain. When amaintenance
task is finished, it is removed from the list of ’MTCE_Steps_Left’. When there are nomoremaintenance
steps left to perform, the train is ready to be shunted back into operation. When there are multiple
maintenance steps left to perform, each one of them can be chosen. There is no specific order, as
long as all steps will be performed. This is important because it affects the way trains are assigned to
outillage. In general, planners of maintenance have preference for a fixed sequence of maintenance
tasks, because it is easier to plan ahead if all trains follow the same sequence. In reality, this is not
what happens. Trains are simply shunted to the type of outillage that is available at that time, because
otherwise they might do unnecessary waiting for a long period of time. If a train has to start with BIO,
while MTCE and CLEAN are available, it would not make sense to make the train wait until BIO comes
available. In such a case, a train would be shunted to MTCE or CLEAN, so that it doesn’t have to wait
before undergoing a maintenance step. If all are occupied, of course a train will have to wait until one
of them becomes available.

6.4.4. Pitstop crew
The pitstop crew has one responsibility: making sure that pitstop requests are handled as soon as pos-
sible, ensuring a minimal time of train withdrawal. It occasionally occurs that the pitstop crew has no
pitstop requests to handle. If the maintenance crew is fully occupied, the pitstop crew has nothing to
tasks to perform, and a new train wants to receive some kind of regular maintenance, they should help
the regularmaintenance crew. However, in the simulationmodel it is assumed that these two processes
are kept apart from each other. In reality, when regular mechanics are busy and a new request arrives
which could be performed by a pitstop crew (considering their qualifications), they would help the reg-
ular mechanics. In the simulation model this is not the case, because this is not how it was initially
designed, and because it would add too much complexity to the simulation model within the scope of
this research.

6.5. Model controls
To adjust a simulation during a run, AnyLogic provides the ability of using model controls. Model
controls can be sliders, buttons, checkboxes, edit boxes for number input, radio buttons and a drop-
downmenu (referred to as a Combo box in AnyLogic). This section will elaborate on themodel controls
that are included in the model that has been built for this research.

In fact, model controls are not only used while running a simulation. A modeller might also choose
to ask the user to adjust model settings before a run starts. This will be done in the pop-up screen that
comes up when running the simulation, but before the simulation is actually started.
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6.5.1. Add additional trains
For the new train types, the model user is able to add additional trains before starting a simulation run.
This will once trigger the simulation model to add trains based on the user’s input. The user specifies
the number of trains for a train type it would like to add, and selects the year of introduction for those
additional trains. As soon as the simulation is started and arrives at the year of introduction specified
by the user, it adds the number of trains as it was told. The simulation will split the number into two
types of the train series: the shorter and the longer version. The ICNG has a short version (ICNG
V, consisting of 5 carriages), and a longer version (ICNG VIII, consisting of 8 carriages). This model
control enables the DM to observe the effect of increased train fleet sizes for the train types that are
yet to be introduced, given that the contracts that NS has with the manufacturers allow them to order
additional trains if deemed necessary by the long-term planners of the train fleet. The determination
of the train fleet size is out of scope, which is why this variable is included as an uncertainty in the
simulation model.

6.5.2. Button: shut down OB
In the main agent, model controls are added that allow a user to create a fictitious ’disaster’ generated
by the button ’Shut Down ”OB”’. This button will create the ’disaster’. When the button is pressed, the
chosen MaintenanceLocation (OB) will be shut down temporarily. The duration of the disaster can be
set by the user when adjusting the slider. During this event, trains that require maintenance at the
unavailable disaster OB will be redirected to another OB. The redirection OB can be set in advance,
but the user could also select random. In that case, the computer will randomly allocate trains to an
alternative OB (e.g. an OB that differs from to the disaster OB. This step is repeated for for each train
separately. Until the disaster is finished, trains that were undergoing maintenance at the disaster OB
at the start of the disaster will be stuck; their maintenance will not be resumed until the disaster is over.

6.6. Randomness
Within themodel, there are several occurrences of stochasticity. Step by step thesewill be elaborated on.
The amount of daily driven kilometers by a train is determined by the Daily KM property, multiplied by
a season-dependent factor, andmultiplied by a randomnumber uniformly drawn between 0.8-1.2. The
determination of the train condition is based on a random number drawn from a uniform distribution
between 0-1, as explained in algorithm 1. The duration of maintenance task is drawn from a triangular
distribution. Which triangular distribution parameters are being used depends on the maintenance
step that the train is in, together with the condition of the train when it entered maintenance.

6.7. Model Verification
The model verification process will be explained in this section. More details can be found in Appendix
B. Verifying whether the translation from the conceptual model to a simulation model has been done
correctly is crucial, as it forms the foundation for the experiments’ results. Verification has been done
simultaneously with building themodel. After makingminor adjustments, themodel behavior is exam-
ined again and again. Whether the condition of trains results in optional steps is verified and checked.
The duration of a complete maintenance job is compared to the allowed maintenance time, which
eventually forms the delivery reliability. In case a train exceeds the maximum allowed maintenance
time, the delivery reliability of the maintenance location decreases. It was also checked and verified
whether different train types use their own characteristics when going into maintenance, for example
DDZ/ICM/VIRM train types always have to go to the wheel polishing outillage, regardless of their con-
dition when entering maintenance.

Intensive repetitive checking of whether a mechanic is assigned to the correct train and whether
outillage is assigned to the correct train resulted in finding errors in the handling the maintenance
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requests. For example, in case the first train could not be matched, the whole queue had to wait (while
perhaps maintenance request 2 and 4 could be fulfilled). Eventually, these insights were necessary to
fine-tune the maintenance request algorithm to its current composition.

6.7.1. Single agent testing
To test the behavior of an agent-based model, a key verification strategy is to start with is to perform
single-agent testing. It concerns performing a single run and following the behavior of one single agent,
a train undergoing maintenance, without changing any of the input parameters. The train should be-
have according to the conceptual model, where it requires to fulfill certain steps (some obligatory and
some condition-based), communicate with other agents (maintenance locations especially), and collect
statistics. By leaving text messages, the pieces of code that are executed can be traced, which allows a
smooth verification process.

6.8. Model Validation
To validate the model’s behavior, expert judgements have been called upon. By executing the model
under the presence of experts on the train maintenance system of NS, the model’s behavior has been
validated. Various statistics onmaintenanceweremonitored, such as the averagemaintenance through-
put time of a train, the number of trains that are withdrawn at each maintenance location (throughput
time), and the delivery reliability of eachmaintenance location. AnyLogic enables the modeler to trans-
late these statistics to communicable graphs, which can then be analyzed by any trainmaintenance DM.
For example, the number of trains withdrawn by a maintenance location during a run is observed, and
compared with realistic numbers.

In addition, to validate whether themodel behaves correctly according to the real world, the amount
of trains that aremaintained weekly by eachmaintenance location wasmonitored and compared to em-
pirical data. Under regular circumstances, that is with the base case parameters, the trainmaintenance
system behavior corresponds to reality. Other output generated by the model, such as occupancy have
been examined and compared to empirical data or NS standards as well.



7
Analysis of Simulation Model Output

The sub-question that guides the topics discussed in this chapter goes as follows: How can the model
provide valuable insights to enhance the robustness of decisions made by NS decision makers? To fa-
cilitate robust decisionmaking, the model as explained in chapter 6 was utilized. The aim is to enhance
decision-making information bymeans of generating, analyzing and interpreting data that results from
the model utilization.

During this chapter, first it is discussed what is considered to be added value for an NS decision
maker of the train maintenance capacity. Next, the uncertainties are presented, which will form the
input for the experiments. The experimental setup is then discussed, followed by a sensitivity analy-
sis. Subsequently, scenario discovery is performed for the no-policy case and for cases that have been
influenced by policy interventions. Lastly, conclusions based on the policy analysis are presented.

7.1. Added value for a Decision Maker
The major obstacle for a DM on the train maintenance system is the presence of deep uncertainty re-
garding train fleet size, available mechanics, differing duration of maintenance tasks, differing train
conditions, and lastly there is uncertainty regarding future daily travelling distances of trains. So far,
NS have not been able to quantify the effects of uncertainty on trainmaintenance. To enhance decisions
made on the necessary futuremaintenance capacity, quantifying the role of uncertainties is highly valu-
able. It creates insights for DMs that have not been gained before, which is precisely what is aimed to
achieve when facilitating decision making under deep uncertainty. The next section will present the
main uncertainties present in the system, together with their lower and upper bound (i.e. the uncer-
tainty space). The uncertainty space forms the basis for the experiments that will eventually generate
results to be analyzed. Setting up uncertainty space has been done by comparing empirical data, con-
sulting with experts, and bymaking assumptions regarding lower/upper bounds. For example, experts
have shared their knowledge on the maximum number of trains that can be manufactured additionally
(according to the contract between NS and the manufacturer), to get an idea of the theoretical upper
bound of the future train fleet size. While it is highly unlikely that these bounds will be reached, it
provides validated knowledge on how to construct future scenario’s. The simulation model allows the
DM to evaluate the performance of the currentmaintenance capacity under a large variety of future sce-
nario’s. This adds massive value to the decision-making information quality compared to the previous
approach used by NS, where only 1 scenario at a time can be measured in a deterministic way.

37
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7.2. Uncertainties
Table 7.1 presents an overview of all uncertainties that have been included by the simulation model in
AnyLogic. Their numbers are used when setting up each input parameter in an AnyLogic experiment.
The ’train fleet size’ uncertainty and the ’available mechanics’ uncertainty are integers, meaning that
they can only obtain a rounded number value within the specified boundaries. All other uncertainties
are ’real’ numbers, meaning that they can obtain any value between the lower and upper bound.

Uncertainty Data Type Lower Bound Upper Bound

Train fleet size Integer 0 11
Available mechanics Integer -3 5
KM’s driven per day (Sprinters) Real 0.75 1.75
KM’s driven per day (Intercity’s) Real 0.75 1.75
Worse condition probability Real 0.01 0.19
Bad condition probability Real 0.2 0.349
Average condition probability Real 0.35 0.6
Duration MTCE Real 10.0 18.0
Duration KWB Real 3.0 9.0
Duration BIO Real 3.0 6.0
Duration CLEAN Real 4.0 9.0
Duration Nawerk Real 2.0 6.0
Pitstop duration Real 0.5 1.5

Table 7.1: Model uncertainties and their specifics

7.2.1. Formation of uncertainty space
In this subsection, each uncertainty will be highlighted individually in order to fully comprehend its
effect on the simulation model. They define the input parameters of the AnyLogic simulation model,
so each composition of input parameters will cause different model behavior. The idea here is to run
the AnyLogic model for all years given the composition of input parameters, immediately enabling the
comparison between various model settings, of which it is interesting to explore what combination of
model settings will yield desired outcomes. The latter forms the basis for the scenario discovery section,
presented in 7.7.

Train Fleet Size
The ’train fleet size’ uncertainty can take a value between 0-11. Each number represents a scenario
pathway, which has been carefully constructed. The amount of trains that leave/enter the train fleet
in the near future is known, but when looking ahead for more than 2-3 years, these values could end
up different from what is currently expected (base case scenario). Therefore, two factors influence the
scenario pathway, the first factor is the year that a certain decrease/increase occurs, and the second
factor is the size of the decrease/increase. Combining these two factors results in different scenario
pathways, where (e.g.) a trainmight be introduced later than expecteddue to unexpected complications,
but eventually exceeds the base case scenario due to higher train demand. A visualization of future train
fleet scenario’s can be found in Appendix C.

Available Mechanics
The available mechanics uncertainty can take a number between -3 and 5. This indicates the number
of mechanic agents during a simulation run compared to the current number of available mechanics.
For example, if the uncertainty takes a value of -2, all MLs will have 2 regular mechanic agents less to
their disposal. Comparing this with table 6.3, it will mean respectively 6, 4, 8, 3 available mechanics
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for each ML of NS instead of the current number of 8, 4, 10, 5. Keep in mind that each mechanic agent
in the simulation represents a duo of mechanics in reality.

KM’s driven per day Sprinters/Intercity’s
This uncertainty multiplies the daily driven kilometers of a certain train by its value. For example, if
this number takes a value of 1.5, all trains of that specific type (either sprinter or intercity’s) will drive
50% more on a daily basis.

Worse Condition Probability
Determines quantity of trains that are in worse condition as they enter maintenance, as explained in
algorithm 1. This uncertainty represents the value for ProbConditionWorse in the algorithm.

Bad Condition Probability
Determines quantity of trains that are in bad condition as they enter maintenance, as explained in
algorithm 1. This uncertainty represents the value for ProbConditionBad in the algorithm.

Average Condition Probability
Determines quantity of trains that are in average condition as they enter maintenance, as explained in
algorithm 1. This uncertainty represents the value for ProbConditionAvg in the algorithm.

Duration MTCE
This uncertainty affects the duration of theMTCE stepwithin the scheduledmaintenance. The duration
of this step is determined by drawing a number fromauniformdistribution, with lower bound of 10, and
an upper bound of ’Duration MTCE’: Uniform(10, Duration MTCE). This uncertainty thus determines
the width of the uniform distribution.

Duration KWB/BIO/CLEAN/Nawerk
These uncertainties affect the duration of each a specific step within the scheduled maintenance. The
duration of the step is determined by drawing a random number form a triangular distribution, with
constant lower/upper bounds. Themiddle number of the triangular distribution however is determined
by the value of this specific uncertainty. So the triangular distribution could be skewed to the left or
right, depending on the value of the uncertainty. In this way, there is still stochasticity in the model
regarding durations of scheduled maintenance steps, while they are slightly varied throughout the dif-
ferent experiments.

Pitstop Duration
The ’pitstop duration’ uncertainty multiplies the number drawn from an empirical distribution, affect-
ing the time it takes for the mechanic to perform and complete the pitstop repair. This specific un-
certainty has been included in the model because it is unknown what future train failure will look like.
It might become more complicated to detect the cause of train failure, since more and more compo-
nents will be controlled electronically. Many more underlying causes might be of the issue, parts to be
replaced could be more complex, and so on. On the other hand, it could also be the case that minor
updates will already fix a failure raised by a train, which would mean a reduced duration of pitstop
repair time. Taking into account these divergent possibilities is why this uncertainty is included in the
AnyLogic simulation model.

7.2.2. Consensus for uncertainty bounds
While deep uncertainty is present as to what values the uncertainty takes in reality, there needs to be
consensus on what the uncertainty space (i.e. lower/upper bound limits) will be.
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Uncertainties related to task duration
While precise task duration is unknown, within NS there is consensus on what time a task should the-
oretically take. The lower bound is what is theoretically possible. E.g., it is known that tasks have at
least a duration of x hours. However, delays might occur frequently leading to deeply unknown upper
bounds for task duration: how much is x exceeded each time the task is performed?. Usually, more
time is scheduled for a task than the time it actually takes to perform it. In this thesis, the upper bound
is formed by the shift duration for some of the tasks, including slight delays.

Train fleet size uncertainty bounds
Correspondence with key players within the train acquisition and future fleet planning led to insights
in contractual bounds of purchasing additional trains. The lower bound is the number of trains that
are currently ordered and being manufactured. While purchasing additional trains does require con-
tracts with manufacturers to be active, there will be no chance of completely utilizing the contract’s
additional option. Extremes were introduced as upper bounds, for example to create scenario’s where
50% additional trains are bought.

Mechanic team size uncertainty bounds
Consultation of experts on future development ofmechanic availability led to insights onminimum fte’s
(full time equivalents) expected to be required at eachmaintenance location. Again, this formed the ba-
sis of the ’delta_mechanics’ uncertainty, but extremes were introduced, to illustrate the consequences
on maintenance performance of having very little available staff. The upper bound of this uncertainty
was set to 5, simply to observe scenario’s where mechanic team size would be more than sufficient to
compare scenario’s where there are still maintenance capacity issues that are not caused by occasional
mechanic shortages.

7.3. Generating Experiments
To efficiently generate a large quantity of unique scenario’s, the Exploratory Modeling and Analysis
(EMA)Workbench has been called upon (Kwakkel, 2022). The EMAWorkbench is an open-source data
analysis tool, in the form of a Python library. The EMAWorkbench is perfectly alignedwith the scope of
this research, given that it ”aims at offering computational decision support for decision making under
deep uncertainty and Robust Decision Making” (Kwakkel, 2022). The Workbench comes with tools to
setup experiments, run simulationmodels, and perform extensive data analysis onmodel outcomes. In
this research, the EMA Workbench has been used to perform exploratory research. This is important
to notice, because the Workbench also offers tools to perform (multi-objective) robust optimizations.
However, given the scope of the research, optimizations are not performed. Rather than searching
for an optimal solution, the experiments are generated to evaluate model behavior while varying all
uncertain input parameters.

Designing the experiments could be done by hand, but this is highly time consuming, and would
thus not be efficient. In this research, designing the experiments is done computationally by gener-
ating samples that cover the whole uncertainty space for all uncertainties presented in table 7.1. By
default, the EMA Workbench generates samples based on random sampling. However, Latin Hyper-
cube Sampling (LHS) is a more accurate and suitable way of sampling, given that samples are taken
from the complete distribution of the uncertainty space. In that way, all interesting combinations are
made, including the ones that might be less likely to occur.

Due to the high number of uncertainties that are present, the decision has been made to generate
2000 samples. With 2000 samples, the ranges of the uncertainty spaces are nicely filled with sample
points. Each sample represents a combination of the uncertainties from table 7.1, forming the scenario
that will be run by AnyLogic. In other words, AnyLogic will perform 2000 runs, where each run is done
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with different input parameters. Hence, the value of the input parameters for the AnyLogic simulation
model has been determined by the EMAWorkbench.

Year of Simulation
One of the input parameters that has not been mentioned yet is the year of simulation. For each sce-
nario, the EMA Workbench was asked to provide a year of simulation. This was done because the
length of a single run is set to 1 year. So the samples are labeled to a year of simulation, which varies
between 2023-2034. The year of simulation determines the composition of the train fleet, given that
this composition changes over time (some trains are introduced and others are flowing out, as depicted
in Appendix C). An example of 5 samples that each form a scenario can be observed in Appendix D.

7.4. Key Performance Indicators
Within this research, several Key Performance Indicators (KPI’s) are used to monitor the performance
of the maintenance capacity as it is modeled in AnyLogic. The KPI’s allow for communication between
themodel user and theDMon trainmaintenance capacity. Themodel user can tweak the settings, while
monitoring model output. Interesting output is defined as output that behaves according to agreed
standards. Table 7.2 presents theKPI’s, including their thresholds. Thresholds are introduced to enable
scenario discovery in a later stage (section 7.7), since outcomes will need to be classified to perform
scenario discovery machine learning algorithms (Kwakkel & Jaxa-Rozen, 2016).

Key Performance Indicator Threshold Unit

Average throughput time of scheduled maintenance 56 hours
Maximum occupation of outillage 85 %
Maximum average train withdrawal 30 # trains

Table 7.2: Overview of the Key Performance Indicators and their thresholds

Note that the delivery reliability KPI introduced in chapter 4 is not included here, because it is repre-
sented by the throughput time KPI. Delivery reliability KPI is determined by calculating the number of
trains that have exceeded the 56 hour limit of maintenance throughput time. Therefore, the delivery
reliability is directly linked to the first KPI of table 7.2.

1. Average Throughput Time of Scheduled Maintenance
During scheduledmaintenance, each trainwill go throughmultiplemaintenance tasks. Whether a train
is able to start each task immediately or not depends on the availability of bothmechanics and outillage.
In case either of them is occupied, the train will have to wait for them to become available, increasing
the eventual throughput time of a train during regular scheduledmaintenance. The average throughput
time of scheduledmaintenance indicates the amount of time (in hours) took for a train to fully complete
their scheduledmaintenance cycle (including waiting time). SinceNS plansmaintenance tasks in shifts
of 8 hours, and a train is scheduled to complete 6 tasks (of which the MTCE tasks takes two shifts so in
total 7 shifts are required to complete scheduledmaintenance), 7*8 = 56 hours permitted. The 56 hours
that a train is permitted to complete maintenance is considered to be the maximum allowed time that
a train should be on maintenance. In case this number is exceeded, it might be caused by two things.
Either the train condition was very bad, forcing the train to go through all maintenance steps, including
AW and KWB. If then the time it takes to complete those tasks coincidentally takes a long time, the 56
hours limit is exceeded. Another reason might be that a train has to wait a lot between maintenance
tasks, due to undercapacity at theML. Eventually, reporting this KPI permits the model user to analyze
the performance of the maintenance capacity under different scenario’s. For example, longer average
throughput times indicate congestion within the scheduled maintenance processes of one of the MLs.
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In case of congestion, the maintenance capacity is insufficient according to the AnyLogic simulation
model. To perform robust decision-making on train maintenance, this KPI, among others, should thus
be monitored.

2. Maximum Occupation of Outillage
The maximum occupation of outillage is a number composed by two things. First, the monthly occupa-
tion of outillage is monitored. Then, the maximum of that number is saved for that year (which equals
to a single run). The reason that the maximum number is chosen to be saved, is because at all times the
occupation should not exceed a certain limit. If outillage is constantly occupied, it would be an indica-
tion of limited capacity compared to maintenance demand. From an efficiency perspective, one would
argue that outillage should almost always be fully occupied, otherwise one would waste maintenance
capacity. However, setting up maintenance capacity to be fully occupied, leads to almost no flexibility.
Yet, being flexible is crucial within the dynamic world of train maintenance, as last minute changes
are constantly lurking. Adapting to sudden changes is necessary, meaning that there should always
be some room for unexpected changes in the maintenance planning. Therefore, this KPI is monitored,
and the maximum number should not exceed 85%. It is assumed that a higher maximum occupation
of outillage would be problematic, indicating shortage in maintenance capacity.

3. Maximum TrainWithdrawal
Withdrawal can be understood as the number of trains withdrawn by anyML at any point in time. With-
drawal is directly linked to the operation, forming a highly important KPI to track for NS. In case with-
drawal numbers exceed a threshold, the operation will feel the effect instantly. More trains withdrawn
by MLs means less trains to be used during peak hour demands. Therefore the number of withdrawn
trains should be limited, keeping a certain amount of trains available for operation.

Another reason why withdrawal is such an important KPI, is because it determines the amount of
new trains to be purchased. The following example illustrates the importance of thewithdrawal number
for trains to be purchased by NS. If it is deemed necessary to operate 10 similar trains at the same time,
but there is always one of them undergoing maintenance, NS will have to purchase a total of 11 trains;
10 trains for operation and 1 train that stands at the ML being at scheduled maintenance. On top of
that, trains can be withdrawn by unscheduled maintenance: EBKs. This also adds to the number of
trains that have been withdrawn from operation.

7.5. Sensitivity Analysis
This section aims to clarify to what extend variation in the AnyLogic output can be attributed to the
variation of the input parameters. This is done by performing regional sensitivity analysis (regional SA).
Regional SA applications ”typically consider model parameters as varying inputs, and aim at assessing
how their uncertainty impactsmodel performance” (Pianosi et al., 2016). For aDM it is considered to be
useful knowing what model uncertainties impact the simulation model performance, providing insight
into possible key risk indicators, or even might raise awareness on the presence of model attractors.
Attractors are model settings that drastically change model behavior. For example, if trains will drive
more kilometers during operation, there might be a tipping point where the maintenance capacity is
no longer able to fulfill all maintenance requests coming in. Regional SA does not point out attractors
itself, but it helps identifying parameters that might cause such model behavior.

Figure 7.1 presents an overview of the sensitivity of model performance when tweaking the input
parameters. The green line indicates the outcomes of interest that fulfill the KPI conditions, while the
orange line indicates the outcomes that are not of interest. Cases of interest are those that have less
than 56 hours of average throughput time, less than 85% of maximum outillage occupancy, and finally
have less than 30 maximum withdrawal.
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Figure 7.1: Sensitivity of the AnyLogic simulation model towards all model uncertainties

It can be observed that the model output (based on the KPI performance as defined in the previous
section) responds sensitively to three uncertainties: the delta number of mechanics available for all
MLs, the number of kilometers driven by intercity’s, the number of kilometers driven by sprinters. This
can be concluded by observing the deviation of the green line, compared to that of the unconditioned
(grey) and orange line. Outcomes of interest converge towards unconditioned outcomes for higher
values of the delta_mechanics uncertainty; if more mechanics are available at MLs it becomes less
likely that the model output is affected.

For the kilometer multiplier uncertainties (both intercity & sprinter), the effect is the other way
around. A higher value of the kilometer multiplier, i.e. themore trains drive on a daily basis, causes the
maintenance capacity performance to reduce. This makes sense given that when trains have increased
daily travel distances, they will have to get back to maintenance sooner. One would expect this effect to
be more present for intercity’s, since they cover longer distances during operation, meaning that they
are already drivingmore daily kilometers compared to sprinters. Adding the effect of drivingmore kilo-
meters, intercity’s will reach the safety threshold (their maximum allowed of driven kilometers since
last maintenance) sooner, making the agents in the model ’ask’ for new scheduled maintenance sooner.
This effect can be confirmed when comparing the green line of the ’intercity_km_multiplier’ uncer-
tainty to that of the the ’sprinter_km_multiplier’ uncertainty, where the green ’intercity_km_multiplier’
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line shows a slightly larger deviation more from the unconditioned grey line.

Conclusions From Regional Sensitivity Analysis
From the Regional SA, it can be concluded that there are three uncertainties to which the AnyLogic
simulation model responds sensitively to:

• delta_mechanics

• intercity_km_multiplier

• sprinter_km_multiplier

Above are the model uncertainties that have the largest effect on model output when running the var-
ious scenario’s. While the ’duration_mtce’ uncertainty shows a slight deviation from unconditioned
outcomes, the model is not labeled as being sensitive towards this uncertainty.

7.5.1. Factor Prioritization
Factor prioritization (Appendix E) shows what influential uncertainties are of major impact towards
model output. While the sensitivity analysis shows to what extend themodel responses to tweaking the
input, factor prioritization goes a step further by providing insight into KPI-specific effects of tweaking
model input. This insight allows the DM to understand which uncertainties of the train maintenance
system should be monitored more carefully. At the same time, it shows whether certain model uncer-
tainties are not impacting model outcomes significantly. The relation between input and output is thus
shown within one visualization in Appendix E. The color of each tile within the visualization represents
the severeness of the relation according to the simulation model, e.g. howmuch is a certain output KPI
influenced by tweaking model input.

From the factor prioritization it can be derived that influential uncertainties differ perMaintenance-
Location. The intercity KM multiplier mostly affects Onnen, while the sprinter KM multiplier mostly
affects Leidschendam. For Leidschendam and Maastricht maintenance performance the number of
available mechanics is highly influential.

To further explore how the KPI’s behave according to the simulation model output, the following
section will visually present each KPI.

7.6. Visualization of the Model Output
To get a grasp of the model output, this section will discuss the model output in more detail. The
aim is to help understanding the model performance according to the different KPI’s that have been
measured. All KPI’s mentioned in table 7.2 will be analyzed individually to indicate the performance of
the current maintenance capacity of NS. The outcomes that will be discussed are generated by running
the 2000 experiments (that have been generated by theEMAWorkbench) in theAnyLogic environment.
Subsequently, the AnyLogic output has been exported to Python, enabling data analysis by making use
of libraries such as Pandas, Matplotlib & Seaborn.
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1. Average Throughput Time of Scheduled Maintenance
Figure 7.2 presents the average duration of scheduledmaintenance during that scenario for all trains be-
ingmaintained at that specific ML. The blue dots represent Leidschendam, which is the largest contrib-
utor to outlying outcomes. Next, Onnen &Watergraafsmeer deliver some high values for maintenance
throughput time. Data output from Maastricht shows no outlying values for maintenance throughput
time, indicating that there is little to no congestion taking place at that ML regarding the current main-
tenance capacity. Appendix F discusses cases of congestion in more detail.

Figure 7.2: Scatterplot that clarifies the data for the maintenance throughput time KPI

2. Occupation of Outillage
Four subplots are presented in figure 7.3, distinguishing occupation rates in the form of histograms
presented for each ML.

(a) Histogram plot of Leidschendam track occupation (b) Histogram plot of Maastricht track occupation

(c) Histogram plot of Onnen track occupation (d) Histogram plot of Watergraafsmeer track occupation

Figure 7.3: Visualization of track occupancy output for all Maintenance Locations of NS under 2000 scenario’s

Themain takeaway from this figure is thatmostmaintenance locations have occupancy rates well below
0.85, indicating that the threshold of 85% is not reached often. However, for Onnen and to some extend
also for Leidschendam, the threshold is exceeded. There is even a slight peak at 1.0 for Onnen, telling
us that outillage was fully occupied during a whole month for several occasions.
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To further analyse what outillages form a bottleneck for the executed runs, a search has been con-
ducted to find the outillage types that frequently (>100months within all 2000 scenario’s) have had an
occupancy rate of 1.0. These were found to be:

• Onnen KWB

• All Onnen regular MTCE tracks

3. Maximum Average TrainWithdrawal
The highest average withdrawal for one run is collected. Averages are based on the average train with-
drawal for 1monthwithin the simulation, of which the highest value (i.e. maximumaverage) is selected.
High values for withdrawal can be caused by either congestion in scheduledmaintenance, or congestion
in unscheduled maintenance (pitstops). Figure 7.4 presents the distribution of the data for each ML. It
can immediately be noticed that there is a large discrepancy when comparing the four MLs, where Lei-
dschendam and Onnen have high cases of train withdrawal. Appendix F discusses cases of congestion
in more detail.

Figure 7.4: Boxplot presenting the spread of the output data regarding train withdrawal

7.6.1. Conclusions From Output Visualization
To create an image of the effect of deep uncertainty on the maintenance capacity, the model output has
been visualized for each model KPI. The Average Throughput Time of Scheduled Maintenance showed
outlying values for allMLs exceptMaastricht. From that it can be concluded that the other threemainte-
nance locations, Leidschendam/Onnen/Watergraafsmeer, show behavior of some form of congestion
under any of the 2000 scenario’s that have been tested. The effect of the ’delta_mechanics’ uncer-
tainty can be labeled as the main contributor to congestion at Leidschendam, while having no effect on
maintenance throughput time for Onnen. Analyzing the second KPI (Occupation of Outillage) showed
that track occupation occasionally reached high levels for Onnen ML, from which it can be concluded
that outillage is the main contributor for congestion at Onnen. Maximum Average Train Withdrawal
showed outlying values for both Leidschendam & Onnen. The effect of the amount of daily driven kilo-
meters by trains plays an important role in causing such outliers, in combinationwith low values for the
’delta_mechanics’ uncertainty for Leidschendam, from which it can be concluded that the uncertainty
regarding daily driven kilometers is an important one to assess by DMs on future train maintenance
capacity.

While this section posed a visualization of the KPI’s to get a better grasp of what the output data
looks like, it would be highly interesting to see what output of interest is caused by which combination
uncertainty input. The following section will permit these insights.
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7.7. Scenario Discovery
In this section, scenario discoverywill be performed to support robust decisionmaking (RDM)on future
train maintenance capacity. The EMA Workbench permits a modeler to perform scenario discovery
using various techniques. The ones used in this research are the Patient Rule InductionMethod (PRIM)
as well as dimensional stacking. Both data analysis tools provide visual outcomes that can be conveyed
to a DM, which can benefit from the insights gained. The benefit of presenting data analyses in the
form of visual outcomes is that it can be explained to those that do not fully comprehend the what way
results have been created, but still are able to draw conclusions from it. These conclusions can then be
used during the decision-making process when deciding how to set up maintenance capacity, or when
to revise current maintenance capacity performance.

Like the approach in the sensitivity analysis, scenario discovery allows themodeler to examine what
input is responsible for interesting output, i.e. cases of interest. Interesting output can be be defined
as output that fulfills the KPI needs, meaning no congestion for scheduled train maintenance. It has
been explained that trainmaintenance is free of congestion when: average throughput time of all trains
during scheduled maintenance does not exceed 56 hours, maximum occupancy rates of outillage stay
under 85% for any month during a simulation run, and average withdrawal remains under 30 for all
months during a simulation run. Cases of interest are cases that fulfill all of these conditions.

7.7.1. Patient Rule Induction Method
Now that the cases of interest have been defined, it is time to evaluate what uncertainties can be labeled
as responsible for generating that specific output. The Patient Rule Induction Method (Kwakkel, 2015)
is used to perform exploratory analysis on the AnyLogic output data. The PRIM algorithm performs
an iterative process of peeling off data from the model output. It creates smaller boxes of output data,
excluding the peeled of data each iteration. The quantity of data that is peeled off each iteration of the
algorithm is defined as the peel-alpha. By default, the peel-alpha has been set to 0.1. The lower the
peel-alpha value, the less data is removed each iteration.

The algorithm’s goal is to find a box that contains as much as possible cases of interest, while mini-
mizing the number of cases within the box that are not of interest. This will always result in a trade-off
between coverage of the box and density of the box. Coverage can be understood as: of all cases of in-
terest, howmuch of them are in the box? Then there is the density of the box, which can be understood
as: of all cases in the box, how many are of interest? The minimum coverage threshold of a box is set
to 0.8.

PRIM Results
Performing the PRIM algorithm on the AnyLogic output yields the following output, which can be ob-
served in the distribution matrix presented in figure 7.5. The orange dots indicate the cases of interest.
These come from a binary classification (True/False), which is the only way PRIM can read the output.
’True’ cases are scenarios that haven’t exceeded one of the boundary thresholds from table 7.2 (desired),
whereas ’False’ cases have (undesired). The PRIM algorithm attempts to find a box that covers asmuch
as orange dots as possible, with minimal presence of blue dots inside the box.

The distributionmatrix in figure 7.5 shows that three uncertaintieswere found to be significant in ex-
plaining the cases of interest: ’delta_mechanics’, ’intercity_km_multiplier’ & ’sprinter_km_multiplier’.
This is in linewithwhatwas expected from the regional SA from the previous section, given that theAny-
Logic model output responded sensitively to those uncertainties. What is interesting to observe is that
the effect of the model uncertainties can now be quantified due to the large number of scenario’s (2000
experiments) that have been tested by AnyLogic. The histogram plot for ’delta_mechanics’ shows that
most cases of interest lie within the positive range of the uncertainty (orange line).
To select a box, the following rule of thumb has been applied: density should be higher than 0.8. This
means that 80% of points in the box are of interest, to convey an interesting part of information without
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Figure 7.5: Results of performing the PRIM algorithm on the AnyLogic output

losing toomuch coverage. Plot 7.6 presents the box chosen. Each row is an uncertainty parameter. The
blue line indicates the bandwith of the rule on that uncertain factor. The blue lines belong together,
as these are restrictions on all factors. Number behind the uncertainty parameter names are P-values,
which have to be below 0.05 (shows statistic significance). Non significance could suggest to ignore
that specific factor. In this case, all uncertainties have been found to be of significant contribution to
the chosen box.

The box found by PRIM will be presented in more detail, so that the allowed lower/upper bound
of the three significant uncertainties can be explored. More than 80% of the cases of interest can be
explained by the boundaries of the chosen box. From the PRIM algorithm it can be understood that
delta_mechanics should not take any value below zero (see figure 7.6), which means that NS should
monitor the number of available mechanics for every ML. The number of available mechanics should
not decline to ensure robustness towards future scenario’s. If the number of available mechanics de-
clines, it might cause operational issues within the scheduled train maintenance. In the same way, the
acceptable added number of daily driven kilometers by sprinters and intercity’s is 34% and 17% respec-
tively table 7.3, any further and there might arise operational issues.
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Figure 7.6: Uncertainties within the box found by the PRIM algorithm

Uncertainty Lower Bound Upper Bound

Delta Mechanics 0 5
Sprinter KMMultiplier 0.75 1.34
Intercity KMMultiplier 0.75 1.17

Table 7.3: Overview of the accepted boundaries of uncertainties found by the PRIM algorithm

PRIM conclusions
Performing PRIM on the AnyLogic model outcomes permits us to retrieve valuable insights on the
effect of uncertainties on the performance of maintenance capacity. It can be concluded that there are
three uncertainties which are of significant influence onmodel outcomes, which are ’delta_mechanics’,
’intercity_km_multiplier’ & ’sprinter_km_multiplier’ (this is consistent with what was found from the
sensitivity analysis and factor prioritization). For the ’delta_mechanics’ uncertainty, its value should
not reach any value below 0. For ’intercity_km_multiplier’ & ’sprinter_km_multiplier’ their values
should not exceed 1.17 and 1.34 respectively.

NSdecision-makers can use these insight tomonitor themost important uncertainties, which allows
them to act well in advance if necessary.
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7.7.2. Dimensional Stacking
A more visual approach to scenario discovery is to perform dimensional stacking. Like the PRIM algo-
rithm, dimensional stacking requires the output to be in the form of binary classification. Performing
the algorithm in the Python environments for the AnyLogic simulation output returns a pivot table with
the most influential uncertainties (figure 7.7). All influential uncertainties are split up into ranges. The
performance of the output, in this case the performance of the maintenance capacity, can be observed
within each uncertainty range. The color of each block indicates the output performance. The desired
direction of the spectrum is towards the yellow end, so the lighter the color of the box, the more the
output meets desired performance. For the NS train maintenance system, desired performance is little
congestion, low withdrawal and not having overly used outillage.

Figure 7.7: Dimensional Stacking Pivot Table presenting the most influential uncertainties

Compared to PRIM in the previous subsection, figure 7.7 conveys that another uncertainty is of impor-
tant influence: ’duration_mtce’. It can be noticed that a higher value for this uncertainty causes model
behavior to become less desired. The same goes for both kilometermultiplier uncertainties, where high
values for the uncertainty result in undesired model outcomes. Again, a higher ’delta_mechanics’ un-
certainty results in more desired model outcomes, meaning that the maintenance capacity performs
well under those scenario’s.
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Dimensional Stacking Conclusions
From the pivot table generated by the dimensional stacking algorithm, it can be concluded that there are
four important, influential uncertainties: ’delta_mechanics’ ’sprinter_km_multiplier’ ’sprinter_km_multiplier’
& ’duration_mtce’. Model output that corresponds to desired outcomes, that is outcomes that are clas-
sified as True, are caused by low values for ’sprinter_km_multiplier’ ’sprinter_km_multiplier’ & ’dura-
tion_mtce’, and non-negative values for the ’delta_mechanics’ uncertainty.

7.8. Policy Analysis
So far, all data analyses have been done without taking the implementation of any policy into account.
To support RDM, it would be interesting to analyze several policies, and evaluate their robustness to-
wards the 2000 different scenario’s. The 2000 same scenario’s have been run in the AnyLogic with the
implementation of a policy. During the conceptualization phase of this research, few policy levers have
been identified to be within scope of the strategic management department of train maintenance. This
department has the ability to transform outillage so that it can facilitate maintenance on another train
type. In addition, capacity could be increased or decreased (in terms of the number of outillage tracks
that a maintenance location possesses). Finally strategic management could decide to adapt the capac-
ity of pitstop handling mechanics, for example by increasing the number of trains that can be repaired
at the same time.

The policy levers that have been tested within the AnyLogic environment are summed up below.
Their effect is analyzed by comparing the effect of each policy lever model KPI’s. Subsequently, each
policy lever is explained.

1. None

2. Increased SLT & ICNG Capacity

3. Increased SNG & ICNG Capacity

4. Increased Pitstop Capacity

1. None
Outcomes related to this policy are generated by running the 2000 scenario’s in AnyLogic without any
implementation of policy levers.

2. Increased SLT & ICNG Capacity
This policy intervention is formed by a combination of two adaptations. Building additional mainte-
nance capacity for SLT train types, which are sprinter trains that are beingmaintained at Leidschendam.
Because the output showed some congestion occurring on SLT-specific outillage, it could be of value to
analyse the effect of having such increased capacity. Within this policy intervention, the capacity ofWa-
tergraafsmeer too has been transformed. The current Watergraafsmeer capacity is 2 ICNG outillages
and 2 regular outillages (where other trains at Watergraafsmeer are being maintained, together with
international trains which are out of scope of this research). Since there are currently 2 ICNG (Inter
City New Generation) outillage tracks to perform regular maintenance (’MTCE’) and ’Nawerk’ during
scheduled maintenance, future undercapacity might occur. This could be caused by the possibility that
additional trains of ICNG might still be bought in the near future. In case operation demands more
trains of ICNG, it would mean that the workload for Watergraafsmeer increases as this is the only ML
that is able to maintain ICNG train types. As such a scenario might lead to undercapacity in terms
of ICNG outillage, a logical step would be to investigate the effect of transforming Watergraafsmeer
towards having more ICNG outillage. The 2-2 balance would thus be disregarded and transformed
towards a 3-1 balance (3 ICNG tracks, 1 general track).
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3. Increased SNG & ICNG Capacity
Like the previous policy, this policy intervention is also formed by a combination of two adaptations.
Building additional maintenance capacity for SNG train types, which are new sprinter trains that are
being maintained at Leidschendam. Because the output showed some congestion on SNG-specific out-
illage, it could be of value to analyse the effect of having such increased capacity. At the same time, this
policy intervention analyses the effect of transformed capacity within Watergraafsmeer (as explained
for the previous policy). It should thus be noted that there has been ’built’ both additional capacity for
Leidschendam, while having transformed capacity for Watergraafsmeer.

4. Increased Pitstop Capacity
This policy intervention enables analyzing the effect of having increased pitstop capacity. The pitstop
capacity is defined as the number of trains that could be repaired simultaneously within the simulation
model. This policy lever only affects withdrawal numbers, because that has been set up to be the only
KPI that measures both scheduled and unscheduled maintenance in AnyLogic. Withdrawal numbers
are formed by the number of trains withdrawn from operation, both scheduled and unscheduled, which
is where the effect of this policy lever could be noticed.

7.8.1. Effect of Increased Pitstop Capacity
Policy number 4, Increased Pitstop Capacity, has been analyzed by comparing the maximum average
withdrawal output under 2000 scenario’s. This is shown in figure 7.8. The reason that this combination
of policy lever and KPI is presented is because the only KPI included in the model that can be affected
by pitstop capacity is the withdrawal KPI. All other KPI’s concern the scheduled maintenance cycle of
the simulation model.

It can be observed that the policy has no effect onmaximumaveragewithdrawalwithin theAnyLogic
simulationmodel (figure 7.8), given that both boxplots have an identical shape. What stands out is that
both policy outcomes show a large fraction of outlying cases. These can be attributed to cases where
there has been some kind of congestion within maintenance. It can be concluded that this congestion
is not caused by a lack of pitstop capacity, because having increased pitstop capacity has no effect what
so ever on the Maximum Average Withdrawal of trains.

Figure 7.8: Boxplot showing the effect of increased pitstop capacity on train withdrawal
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7.8.2. Analyzing All Policies
To compare all policies against each other, this subsection provides a visual representation of their over-
all effect on model KPI’s. The aim of presenting these analyses is to perform exploratory analysis that
enhances decision-making information quality. Average values for model KPI’s have been calculated
for each policy lever. This is a very high level of aggregation which should be kept in mind when in-
terpreting outcomes presented below. Figure 7.9 presents a parallel coordinates plot, generated by the
EMAWorkbench, which effectively portrays the trade-off within KPI performance of all policies.

Figure 7.9: Parallel coordinates plot showing the effect of policy interventions on model KPI’s

A parallel coordinates plot is formed by laying out the upper and lower boundaries of model outcomes,
in this case KPI averages on 2000 scenarios for each policy lever. The lower and upper bound of a
KPI forms the spread of one specific axis. Next, the corresponding values of that KPI for a specific
policy form the location of the intersection of the coloured line with the KPI axis. The axis of Delivery
Reliability and Occupation have been inverted, so that all KPI’s have similar desired directions. In
this figure the desired direction is towards the bottom of the vertical KPI axes. Each coloured line is
represents the model outcomes for a policy. Which colour belongs to which policy can be seen in the
legend on the right side of figure 7.9. The axis boundaries are rather close (e.g. only 0.02 difference
in overall Delivery Reliability), indicating that the aggregated overall effects of policy interventions are
minimal. Nevertheless, it provides one of the many analyses that facilitate robust decision making,
which is why it could be of high added value for NS decision-makers. Observing the effects of policies
on multiple axes has not been part of the current abilities of NS so far. This indicates the value such
analyses could add for DMs on NS train maintenance capacity.

A trade-off can be observed when intersecting colored lines appear. For example, the ’Increased
SLT & ICNG Capacity’ (red line) policy generates the highest average delivery reliability, but it then
intersects with all other policy levers, when observing its value for occupation. The trade-off be made
by a DMwould thus be: should we invest in high Delivery Reliability with the possibility of having over-
capacity or should we not? A more balanced option could be to ensure mediocre Delivery Reliability &
Occupation, while under-performing relatively on Average Maintenance Time and Maximum Average
Withdrawal (yellow line: Increased SNG & ICNG policy).

Naturally, financial resources could play a large role when making such decisions, but those have
not been included within the scope of this research.
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7.8.3. Policy Analysis Conclusions
Within this section, four policies have been analyzed, of which one policy was the ’do nothing’ policy
(1). Two other policies (2 & 3) were related to adapted outillage capacity. The final policy (4) that has
been analyzed concerns an increased capacity of simultaneous repairing of pitstops. From the policy
analysis it can be concluded that the latter had no effect on the withdrawal KPI, which is the only KPI
it could have affected. To decide which adapted outillage policy should be chosen, a trade-off has to be
made between the performance of all KPI’s. Whichever KPI is deemed more important by a DM leads
to the relatively best performing policy from that perspective, as presented in figure 7.9.

7.9. Embeddedness in organization of NS
Now that all analyses have been presented, it would be appropriate to take a few steps back and interpret
them within the bigger picture. To what extend can these analyses contribute to enhance decision-
making? How can the outcomes of this research be embedded within NS, so that it will be incorporated
into their decision-making process? Understanding the main takeaways from the output analysis is
one thing, but acting on those outcomes accordingly requires effort as well. This section will provide a
more holistic view towards the model outcomes, illustrating the full potential of this research for NS.

First of all, a major step forward is the inclusion of deep uncertainty into decision-making when
comparing previously used methods within NS to the methods applied in this thesis. Deterministic
models can be replaced by dynamic ones, and deriving results from one scenario is replaced by deriv-
ing results from evaluating thousands of scenario’s. This could be seen as a major improvement, but it
should not go unmentioned that non-experts too should be able to deal with the outcomes presented in
this research. In essence, the model that has been developed forms a decision support tool. It supports
decisions through evaluating the impact of the presence of deep uncertainty rather than prescribing
optimal policies. In case a DMwonders what areas would need to be revised within train maintenance,
and where investments should be made, it can design a policy and first run it in the simulation model
environment before applying the policy in reality. The model will then show the performance of that
policy, given the KPI’s that have been set up beforehand. At the same time, the model supports identi-
fication of key risk indicators. From the PRIM analysis, it has become clear that few uncertainties need
to be monitored in order to preserve desired system performance. Monitoring the amount of avail-
able mechanics within the near future, together with monitoring the amount of KMs trains drive when
in operation, potential capacity issues can be addressed and prevented accordingly in an early stage.
Acting before the situation occurs is what can be realized when monitoring the most important model
uncertainties. In this way, decisions can be made to set up a robust train maintenance system.

Decision making under deep uncertainty (DMDU) not only requires a computer model that pre-
scribes what to do and what to avoid, but it goes beyond that. It requires modelers, experts and man-
agers to interact, share information to eventually enhance qualities of decisions to be made. This social
part of DMDU should not go unnoticed. DMDU requires a shift in thinking and line of reasoning,
and social interactions from that perspective will benefit the organization’s view on DMDU. Instead
of thinking in terms of efficiency and optimizations, DMDU requires a DM to base decisions on low
regret or overall robustness. Accepting that there may never be an optimal solution to highly complex
problems reduces the burden on DMs. Nonetheless, their decisions and judgements are still of great
value, especially when supported by interpretations of outcomes that have been presented throughout
this chapter. The analyses presented in this chapter improve the quality of decision-making informa-
tion, permitting a DM of NS to incorporate robustness into its decision-making process. Considering
that such approaches have not been held before within NS benefits the organization as a whole, which
should eventually translate to a smoothly operating, robust, train system. Passengers of NS trains will
be able to continue travelling on well-maintained trains for decades, which would be enabled by having
a robust future train maintenance system.



8
Conclusion, Discussion &

Recommendations

This chapter finalizes what has been presented so far by drawing conclusions, discussing the research,
and suggesting recommendations for further research. Section 8.1 presents the conclusion by first an-
swering all sub questions before drawing the final conclusion from this research. Thereafter, section
8.2 discusses the research findings. Finally, section 8.3 provides recommendations for further research
possibilities, based on the research that has been conducted so far.

8.1. Conclusion
Main question that guided this research goes as follows:

How can the robustness of decisions made by decision makers of the NS train maintenance system
be enhanced, considering the uncertainty and risks that NS faces in maintaining their rolling stock

during the next 10-15 years?

From the main research question, several sub questions were set up that were based on intermediary
objectives that this research aimed to achieve. Each sub question will be addressed individually before
answering the main research question.

Sub question 1: What are the needs of a decision maker of the NS train maintenance
system to make robust decisions?
This sub question has been addressed in chapter 4. In order to facilitate the needs of a DM, themost im-
portant performancemetrics of the train maintenance systemwere identified. These are: maintenance
throughput time, outillage occupation, train withdrawal & delivery reliability. Together, these form the
model KPI’s that indicate whether policies perform well, which benefits the decision-making informa-
tion that is needed by a DM to make robust decisions. Robustness of decisions can be increased by
leaving behind current deterministic decision-making tools, while introducing decision making under
deep uncertainty where a large variety of scenario’s are tested. Regarding the strategic management
of future train maintenance, it can be concluded that being able to quantitatively compare the perfor-
mance of the trainmaintenance systemalongmultiple axes (instead of optimizingmaintenance towards
a single KPI) would be of great value for a DM.
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Sub question 2: What does the NS train maintenance system entail?
To fully comprehend the overall working of the NS train maintenance system, the 2nd sub question has
been answered in chapter 5. From this chapter it can be concluded that there are four key players within
the NS train maintenance system: Trains, Mechanics, Maintenance Locations & Outillage. Trains un-
dergo maintenance at one of the four specific MLs within this research scope, which is labeled as their
homeML. Maintenance tasks are performed by Mechanics that are part of a specific ML. The availabil-
ity of MLs depends on their capacity, which is formed by the number of train tracks that allow specific
types of trains to be maintained: Outillage. Given that Outillage can be train specific, their availability
determines the smoothness of scheduled train maintenance. Occasionally, train failure occurs, adding
another component to train maintenance on-site. All in all, it can be concluded that the maintenance
system can be seen as a complex system, due to the large amount of trains to be maintained and the
presence of constant interactions between the key players (the system agents).

Sub question 3: What model(s) can be built to support the decision makers of the NS
train maintenance system?
Facilitating the NS decision makers requires the presence of a simulation model that provides insight
into the performance of KPI’s as identified by sub question 1, within the train maintenance system as
identified by sub question 2. The trainmaintenancemodel has been built as an agent-based simulation
model within the AnyLogic environment. All agents receive their own characteristics, that form the
basis of the interaction. During a single run, model KPI’s are measured, which are saved and exported
after the run has finished to allow for data analyses. From validating the model with experts on train
maintenance, it is concluded that the developedmodel supportsDMs evenmore than currentmodels do.
This ismainly due to the opportunity of evaluating andquantifying the effects of deepuncertaintywithin
NS train maintenance, which is something that has not been done so far. It can be further concluded
that the developed simulation model supports Robust DecisionMaking, due to the allowance of testing
the current (and even anticipated) maintenance capacity against a large variety of scenario’s.

Sub question 4: How can themodel provide valuable insights to enhance the robustness
of decisions made by NS decision makers?
Asmentioned while answering the previous sub question, the usefulness of the developedmodel shows
especially when the effects of deep uncertainty are quantified. Through the analysis of 2000 scenario’s
this research was able to identify significant uncertainties that influence model KPI’s. Desired model
outcomes have been defined, which are primarily affected by 3 model uncertainties. These are: the
number of available mechanics during simulation for each ML, the number of daily driven kilometers
by intercity trains, and the number of daily driven kilometers by sprinter trains. Furthermore, sce-
nario discovery by means of the EMA Workbench allowed for setting up boundaries that these model
uncertainties should not exceed considering overall system performance:

• Delta Mechanics uncertainty should not reach a value below 0.

• Sprinter KMMultiplier uncertainty should not exceed a value of 1.34.

• Intercity KMMultiplier uncertainty should not exceed a value of 1.17.

While the duration of the regular maintenance task (MTCE) also played an important role in system
performance, it was not identified to be of significant contribution to desired model outcomes. Policy
analysis provided an example of how the performance of policy interventions can be measured. Based
on the policies that have been set up in chapter 7, it can be concluded that increasing SLT and ICNG
maintenance capacity relatively yields the best overall results for model KPI’s. The two main contrib-
utors to possible congestion can be concluded to be the availability of staff, as well as the number of
kilometers that trains will drive on a daily basis. Since Intercity’s are already closer to their allowed
KMs between maintenance, they have less slack regarding increased daily driving distances.
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Final Conclusion
It can be concluded that the developed AnyLogic model adequately simulates trainmaintenance behav-
ior on an aggregated level. It creates insights into the mid-longterm effect of deep uncertainty present
throughout the maintenance system. To enhance the robustness of decisions towards train mainte-
nance of NS, extensivemodeling and exploratory analysis have been done. This allowed for the identifi-
cation of key risk indicators: the boundaries that the uncertainties should stay within to achieve desired
trainmaintenance systemperformance. Given that there has been no ability of quantifying the effects of
the system’s uncertainties before this research was conducted, it is concluded that this research eventu-
ally enhances future robustness of NS towards the (re-)organization of their train maintenance system.
Enhancing future robustness can be realized through monitoring uncertainties in real life by collecting
data on the most significant uncertainties that have been presented in this research, and acting upon
that data in time if necessary.

To answer the main research question: simulation modelling including Exploratory Modeling and
Analysis improves decision-making information quality compared to previous methods. It enhances
the robustness of decisions by quantifying the effects of deep uncertainty, providing the ability to pre-
pare for what is anticipated, but more importantly prepare for what is less anticipated as well.

8.2. Discussion
While the approach held in this research severely improves previous methods that NS has applied, it
also comes with several limitations. One of those limitations is the perception that the modeler has on
the system, the model bias, and the assumptions that have been made accordingly. The model bias can
be seen as the consequence of the mental model that has been created after getting a first impression
of a system. The first impression is leading in the formation of the mental model, what eventually
leads to the conceptualization. Any misinterpretations or wrong understandings could lead to a less
accurate simulation model. This effect has been minimized by means of verification and validation of
the simulation model with strategic maintenance experts of NS.

Then there are limitations that are not raised by misinterpretation, but caused by decisions of delib-
erately leaving out relations and interaction: model assumptions. For example, to reduce complexity
the decision has been made to separate pitstops and scheduled maintenance within the simulation
model. In reality there might be occasions where pitstop mechanics help regular mechanics. For exam-
ple when regular mechanics become short in staff and train requests start piling up. The help of pitstop
mechanics might reduce task duration, allowing the mechanics to finish a train earlier then they might
have been able to themselves. This does require pitstop mechanics to have the right qualifications,
something that also has not been incorporated in the simulation model that has been built.

One could imagine that when maintenance is performed regularly, trains would raise less failures.
Within the simulation model, no link between maintenance performance and train failure has been
established. Train condition has been considered to be an external factor within this research, while
in reality performing a higher quality of maintenance affects the condition of the trains as they return
back into operation. There could always be accidents or random failures, butmany of the failures raised
by trains could be prevented when performing maintenance well, or when applying different mainte-
nance strategies such as preventative maintenance instead of condition-based maintenance. The cur-
rent model setup does not permit DMs of train maintenance to evaluate the link between maintenance
strategies and maintenance failure.

8.3. Recommendations
Due to the scope of the research, extensive evaluation of different policy levers has not been included.
To facilitate RDM,more research could be done to identify policies that performwell under all plausible
future scenario’s. This would require high capacities of computing power, as many scenario’s will have
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to be run across a various policy levers. Yet, this approach could yield highly valuable results that could
form the basis of (re-)organizing NS train maintenance into a highly robust maintenance system. One
of themain reasons that such an approach would be highly valuable is because currently it is not known
where the newest train types are to be maintained. Outcomes based on extensive policy analysis might
severely improve the decision-making information regarding such complex decisions.

In addition, EMA allows the modeler to compare structural uncertainty. The scope of this thesis
did not allow comparing the effect of structural uncertainty, but this could be done in further research.
It requires two models to be compared, of which one is the complete model and another is a model
where some relations that are presumed to be irrelevant are removed. Comparing the output of the two
different simulationmodels allows for evaluating the importance of the relation that has been removed.
If the model without the relation yields similar performance results with respect to the original model,
it can be concluded that certain relations are not relevant. This could narrow down the scope of a train
maintenance DM, as the focus could then lie on the relations that matter the most.

Another recommendation for further research is to include mechanic qualifications within the sim-
ulation model. Currently, the model works with mechanic duo’s, given that maintenance tasks are
never performed by a single mechanic in reality. In reality however, there are fully qualified mechan-
ics which are occasionally assisted by less qualified mechanics. The inclusion of qualifications within
the simulation model could contribute to a more accurate way of assigning mechanics to train main-
tenance requests. Perhaps it might even be achievable to link the current train maintenance model
to other models on mechanics, their qualifications and employability. Further research could in that
case contribute to more realistic maintenance behavior, as well as providing knowledge on the effect of
mechanic qualifications on maintenance performance overall.

Furthermore, a recommendation can be given to enhance the model’s intelligence. Creating more
autonomous behavior from trains and perhaps even mechanics could raise the possibility of compar-
ison between current maintenance strategies versus those of ’intelligent’ trains. Intelligence could be
implemented in a form anticipation towards occupation of a train’s home ML. Suppose a train itself
notices that it will reach the maintenance threshold soon while its home ML is relatively quiet and will
remain quiet for the next 56 hours 1, it could indicate that the best time for maintenance is now. Even
though the train would not be at the end of the allowed time in operation, such intelligence could re-
duce congestion when comparing to current train maintenance behavior, which would be interesting
and valuable to investigate.

A final recommendation for NS would be to include the geographic locations of trains to evaluate
the effect of the geographic location ofMLs. Especially Onnen&Maastricht are difficult to reach. Maas-
tricht even has excessive capacity in terms of outillage, so from that perspective it would make sense to
maintain a larger fraction of the trainfleet of NS there. However, if trains operate far from Maastricht
it is a costly project to maintain them at Maastricht. In those cases it would be time consuming, while
requiring financial resources and available train operators that would be able to shunt the train all the
way to the ML.

156 hours is the maximum throughput time of scheduled maintenance without the occurrence of congestion
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A
Simulation Tool: AnyLogic

As mentioned in chapter 3, the simulation model has been set up in the software AnyLogic, a Java
based simulation software that allows for agent-based modelling, system dynamics & discrete event
simulation (or a combination of them). As mentioned, the agent-based approach is held within the
AnyLogic environment. While AnyLogic mainly offers a visual interface where pieces of code can be
implemented, the back-end is an extensive java code file. The interface of AnyLogic allows those that
are less familiar in programming to easily understand, interact and analyse the simulation model. The
communication of the model formalization towards DMs can be done very smoothly through the pre-
sentation of state-charts. Even though DMs might have no knowledge about coding, it is not necessary
for them to understand java code since the state-charts does most of the explaining itself, enabling
smooth verification and validation of the model. The software allows a modeler to create a visual dash-
board where statistics are displayed in plots. It enables the modeler to include model controls (input
boxes, (radio) buttons, dropdown menu’s, sliders etc.) which can all be adjusted by the final user of
the model (both before and during the simulation). In that way, a final user is able to pull the strings
on different model settings based on the user’s preferences, experience, or simply to observe the effect
different model settings.

Figure A.1 displays the states that a train goes through in the simulation model. The back-end that
forms the inner workings of the transitions to other states is supported by java code which is less read-
able for a DM, but the states itself are very communicable towards DMs.

Figure A.1: Train statechart within the AnyLogic simulation environment.
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B
Visualisation of the Verification &

Validation Process

This appendix provides a more in-depth presentation of the verification an validation process that has
been done to ensure that the simulation model has been built correctly and that it produces useful
output. First of all, by checking if the model loads the correct number of agents it has been verified
whether the model’s maintenance capacity equals that of NS, whether the different train types are all
included so that the number of trains equals to that of the NS train fleet. Then, together with experts
on the management of the train maintenance capacity is has been verified whether the steps that a
train undergoes during maintenance correspond to reality. Then by running the simulation, the model
intermediary output is observed and validated with what intermediary output would be expected.

B.0.1. Allocation of agents in the simulation model
By checking if themodel assigns the correct agents to the train that undergoesmaintenance, it has been
verified whether themodel behaves correctly. For example for train number 51 in the simulation, which
happened to be a FLIRT that is being maintained in Maastricht, it can be seen that the mechanic from
MaintenanceLocation 1 is assigned to it (B.1), and that it is currently at the outillage of type AW.

Figure B.1: Agents assigned to the maintenance step AW of train 51, which is a FLIRT-III being maintained at
Maastricht.
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When subsequently checking whether the AW outillage of Maastricht is indeed occupied by train 51
in the AnyLogic simulation, the outillage’s statechart is visited. Figure B.2 shows that the outillage is
indeed occupied by train number 51.

Figure B.2: The outillage AW of Maastricht being occupied by train number 51.

B.1. Train withdrawal validation throughout the simulation
Observing the number of trains being withdrawn without congestion occurring provides an image of
what number of trains are undergoing maintenance at any time during the simulation. This will help
validatingwhether the simulationprovides useful output. FigureB.3 shows that between approximately
10-30 trains are withdrawn from operation (y-axis), which translates to about 3,5% of trains being
withdrawn. This number corresponds to withdrawal numbers that would be expected within NS.

Figure B.3: Real-time withdrawal of trains during the simulation (without congestion).
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B.2. Validation of maintenance throughput time
Without major congestion, the maximum allowed throughput time is 56 hours (consisting of 7 shifts
of 8 hours). It would be expected that the 56 hour limit is not reached that often, given that many
trains have optional steps in maintenance based on their condition. If their condition allows it, the
trains skip AW/KWB (except for the DDZ/VIRM/ICM who will always visit KWB). This means that
their maintenance takes less shifts, which would result in lower maintenance throughput times. Only
when trains have to wait between their maintenance steps, due to occupied outillage or fully occupied
mechanics, their maintenance throughput time increases and might exceed the 56 hours of accepted
maintenance time. Figure B.4 shows that indeed the 56 hour bound is exceeded with only limited
frequency.

Figure B.4: Distribution of maintenance throughput time (in hours) for all trains within the simulation
during one month of maintaining trains.



C
Scenario Pathways Trainfleet

This Appendix presents an example of the scenario pathways for the in- and outflowing trains. Each
page shows the basecase scenario on top, which is equal to what’s currently expected according to train
fleet managers. The bottom figure on each page within this Appendix presents the possible scenario
pathways that have been added to the experiments. Each color represents a train type, that has been
anonimized due to confidentiality. For inflowing trains, variation in pathways can be observed in terms
of final amount of trains of a specific type, while variation can also be observed in terms of timing of
the inflow. The same holds for outflowing trains, where variation in terms of outflow timing can be
observed. In this way, train fleet uncertainty is included in the scenario analyses.
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Figure C.1: Basecase scenario pathway inflow

Figure C.2: Scenario pathways inflow
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Figure C.3: Basecase outflow

Figure C.4: Scenario pathways outflow



D
Example of LHS Samples

This Appendix shows an example of 5 samples generated by the EMA Workbench, using Latin Hyper-
cube Sampling (LHS). Table D.1 shows the combination of values that are chosen as input parameters
for the AnyLogic simulation model. To fit the table in one page, it has been split up into 3 segments,
the number on top indicates the scenario number that corresponds to the observed values.
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Table D.1: Example of five scenario’s constructed by LHS sampling, designed by the EMAWorkbench



E
Factor Prioritization based on the Train
Maintenance Simulation Model Output

This Appendix presents the dimensional stacking output from the EMA workbench in figures E.1, E.2
& E.3. For each KPI it has been evaluated to what extend its output is influenced by the model uncer-
tainties. If a cell color is towards the yellow end of the spectrum, it indicates that the relation between
the uncertainty and the KPI output is highly important; the uncertainty greatly influences the model
output for that KPI.
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Figure E.1: Effect of model uncertainties on delivery reliability KPI, for each maintenance location separately.
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Figure E.2: Effect of model uncertainties on throughput time KPI, for each maintenance location separately.
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Figure E.3: Effect of model uncertainties on occupation KPI.



F
Additional output figures for model

KPI’s

This Appendix presents additional visualizations of model KPI’s. The effect of model uncertainties on
maintenance throughput time and withdrawal hare discussed in more detail.

F.1. Maintenance Throughput Time
It should be kept in mind that the maximum allowed maintenance time for scheduled maintenance is
56 hours. However, this number is exceeded frequently. To understand where these extremely high
values for maintenance throughput time come from, caused by some form of congestion, some further
exploring of the effect of mechanic team sizes is done. Python enables comparison of the performance
of scheduled maintenance under different mechanic team sizes. The effect of the number of available
mechanics on maintenance throughput time for each ML is shown in figure F.1.

(a) Effect of team size on scheduled maintenance at Leidschendam (b) Effect of team size on scheduled maintenance at Maastricht

(c) Effect of team size on scheduled maintenance at Onnen (d) Effect of team size on scheduled maintenance at Watergraafsmeer

Figure F.1: Boxplots visualising the effect of the delta_mechanics uncertainty input parameter

The maintenance location of which it has already been known (within NS) to be short in staff capacity
is Leidschendam. This can be confirmed when looking at the data presented in figure F.1a. It can
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be noticed that as soon as the team size of available regular mechanics takes a value below zero, the
average throughput time for train maintenance increases drastically for Leidschendam. Maastricht
and Watergraafsmeer only show this behavior when the delta_mechanics input parameter reaches its
lowest value of -3. Even though such a scenario is highly unlikely to occur, it gives an idea of the slack
that MLs have towards mechanic team size. Average maintenance throughput time of ML Onnen is
barely affected by the delta_mechanics uncertainty. From that it can be concluded that for Onnen it is
merely the outillage capacity which causes congestion.

F.2. Withdrawal
Higher values for train withdrawal indicate some kind of congestion. Zooming in on the two mainte-
nance locations that show signs of congestion during the execution of 2000 scenario’s allows a DM to
gain more information on the causes of such model behavior. This is presented in figure F.2.

(a) Scatterplot of Leidschendam train withdrawal (b) Scatterplot of Onnen train withdrawal

Figure F.2: Scatterplots visualising the effect of input parameters on train withdrawal

The x-axis is based on the train types that are being maintained at the two MLs. Leidschendam is
labeled as a ’sprinter’ ML, and Onnen is labeled as an ’intercity’ ML. Therefore, on the x-axis of figure
F.2a the ’Sprinter KM Multiplier’ input parameter is shown, together with the corresponding results
for train withdrawal. For Onnen, the ’Intercity KMMultiplier’ input parameter is shown, together with
it’s impact on train withdrawal. To show the effect of available mechanics on model output, the output
cases are distinguished by their corresponding input for the ’delta_mechanics’ input parameter. Dark
colored dots correspond to less available mechanics. It can be observed that this is of great influence
for train withdrawal levels at Leidschendam, while not being of any influence for train withdrawal at
Onnen. Higher levels of train withdrawal at Onnen are in fact triggered when intercity’s drive more
daily kilometers.
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