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Predicting Cell Populations in Single Cell Mass

Cytometry Data

Tamim Abdelaal,1,2 Vincent van Unen,3 Thomas Höllt,2,4 Frits Koning,3 Marcel J.T. Reinders,1,2

Ahmed Mahfouz1,2*

� Abstract
Mass cytometry by time-of-flight (CyTOF) is a valuable technology for high-dimensional
analysis at the single cell level. Identification of different cell populations is an important
task during the data analysis. Many clustering tools can perform this task, which is essential
to identify “new” cell populations in explorative experiments. However, relying on cluster-
ing is laborious since it often involves manual annotation, which significantly limits the
reproducibility of identifying cell-populations across different samples. The latter is particu-
larly important in studies comparing different conditions, for example in cohort studies.
Learning cell populations from an annotated set of cells solves these problems. However,
currently available methods for automatic cell population identification are either complex,
dependent on prior biological knowledge about the populations during the learning pro-
cess, or can only identify canonical cell populations. We propose to use a linear discrimi-
nant analysis (LDA) classifier to automatically identify cell populations in CyTOF data.
LDA outperforms two state-of-the-art algorithms on four benchmark datasets. Compared
to more complex classifiers, LDA has substantial advantages with respect to the interpret-
able performance, reproducibility, and scalability to larger datasets with deeper annotations.
We apply LDA to a dataset of ~3.5 million cells representing 57 cell populations in the
Human Mucosal Immune System. LDA has high performance on abundant cell popula-
tions as well as the majority of rare cell populations, and provides accurate estimates of cell
population frequencies. Further incorporating a rejection option, based on the estimated
posterior probabilities, allows LDA to identify previously unknown (new) cell populations
that were not encountered during training. Altogether, reproducible prediction of cell pop-
ulation compositions using LDA opens up possibilities to analyze large cohort studies based
on CyTOF data. © 2019 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of

International Society for Advancement of Cytometry.

� Key terms
single cell; mass cytometry; cell population prediction; machine learning

MASS cytometry by time-of-flight (CyTOF) is a valuable tool for the field of immunol-

ogy, as it allows high-resolution dissection of the immune system composition at the cel-

lular level (1). Advances in CyTOF technology provide the simultaneous measurement

of multiple cellular protein markers (>40), producing complex datasets which consist of

millions of cells (2). Many recent studies have shown the utility of CyTOF to identify

either canonical or new cell populations while profiling the immune system. These

include the characterization of cell population heterogeneity for a specific cancer (3–5),

assigning signature cell populations when profiling a specific disease (6), and monitoring

the immune system response to various infections (7,8).

A key step in mass cytometry analysis is the accurate identification of cell popula-

tions in a given sample. The high number of dimensions in CyTOF data has forced

researchers to depart from manual gating strategies based on two-dimensional plots

because it is very labor intensive and subjective (9). These limitations greatly impede the

translational aspects of these technologies. Major efforts have been made to facilitate the
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analysis of CyTOF data by means of clustering (unsupervised

learning) methods. These include SPADE (10), FlowSOM (11),

Phenograph (4), and X-shift (12), and they are often combined

with dimensionality reduction methods like PCA (13), t-SNE

(14,15), andHSNE (16,17).

Clustering approaches are very instrumental in analyzing

high-dimensional data and identifying different cell populations in

cytometry data. These populations are defined in a data-driven

manner, avoiding biases arising frommanual gating (18). Thus, in

explorative experiments, clustering approaches allow the identifica-

tion of both canonical cell populations and (new) cell populations,

which is particularly useful when looking for rare populations in

case–control experiments. After clustering, manual input is required

to annotate the discovered cell populationswith biologically relevant

labels. This can be done by visually exploring the data, either by gat-

ing the biaxial marker expression scatter plots in the case of Flow

Cytometry (FC), by overlaying the marker expression profiles on a

low-dimension representation (e.g., tSNE), or by inspecting a heat-

map of themarkers’ expression across clusters.

Generally, this annotation process works well, especially in

small explorative experiments, in which all the samples are ana-

lyzed at once. However, in cohort studies with hundreds of bio-

logical samples, the clustering analysis is usually performed per

sample, or small groups of samples, as samples are collected over

long time periods, or due to computational limitation in the

number of cells that can be analyzed at once. Consequently, the

annotation process becomes time consuming, and, more impor-

tantly, limits the reproducibility of identifying cell populations

across different (batches of) samples (19). The latter is especially

pronounced when looking for deeper subtyping of cell popula-

tions rather thanmajor populations.

These limitations are inherent to both FC and CyTOF,

albeit more pronounced in the latter given the higher number of

dimensions and the larger number of cells being measured. In

the field of FC, several supervised approaches have been pro-

posed to automatically identify cell populations. They have been

shown to match the performance of centralized manual gating

based on benchmark datasets from challenges organized by the

FlowCAP (“Flow Cytometry: Critical Assessment of Population

Identification Methods”) Consortium (20,21). These approaches

rely on learning themanual gating from a set of training samples,

and transferring the learned thresholds for the gates to new test

samples.

As gating is done based on two dimensional views of the

data, this is not a feasible approach for CyTOF data, since the

number of markers is generally around 40, resulting in ~240 of

gates that need to be defined (one for every pair of markers).

Moreover, manual gating generally assumes that cells of interest

can be selected for by dichotomizing eachmarker, that is, splitting

cells on the basis of a marker being positively or negatively

expressed (identified by a threshold value, i.e., the gate). However,

analyses of CyTOF data have repeatedly shown that cell popula-

tion composition is much more complex, showing many clusters

that are described by a combination of all marker expressions

(17), requiring the need for a multitude of gates that increases the

complexity of gating even further.

Consequently, for CyTOF data, alternative gating approaches

need to be considered. Recently, two methods have been devel-

oped: Automated Cell-type Discovery and Classification (ACDC)

(22) and DeepCyTOF (23). ACDC integrates prior biological

knowledge on markers of specific cell populations, using a cell-

type marker table in which each marker takes one of three states

(1: positively expressed, −1: negatively expressed, 0: do not con-

sider) for each cell population. This table is then used to guide a

semi-supervised random walk classifier of canonical cell popula-

tions (i.e., cell populations with defined marker expression pat-

terns). DeepCyTOF applies deep neural networks to learn the

clustering of one sample, and uses the trained network to classify

cells from different samples. Bothmethods achieve accurate results

on a variety of datasets. However, both methods rely on sophisti-

cated classifiers. Interestingly, neither of these methods compared

their performance to simpler classifiers. Further, both methods

focused mainly on classifying canonical cell populations, which is

not the main focus of CyTOF studies which usually relies on the

large number of markers measured for deep interrogation of cell

populations.

In this work, we show that a linear discriminant analysis

(LDA) classifier can accurately classify cell populations in mass

cytometry datasets. Compared to previous methods, LDA pre-

sents a simpler, faster and reliable method to assign labels to cells.

Moreover, using LDA instead of more complex classifiers enables

the analysis of large datasets comprised of millions of cells. To

illustrate this, we tested the applicability of LDA in classifying

not only canonical cell populations but also deeper subtyping of

the human mucosal immune system across multiple individuals,

where the classification task becomes harder as the differences

between cell populations are much smaller.

METHODS

We define a cell as the single measurement event in

CyTOF data, c2Rp, where p is the number of markers on

the CyTOF panel. Cells are being measured collectively from

one sample, which is the biological specimen collected from

an individual. A sample usually consists of thousands of cells,

that is, s2Rnc × p, where nc is the number of cells in sample s.

A CyTOF dataset consists of multiple samples, d2Rns × nc × p,

where ns is the number of samples in the dataset that can

comprise different groups of patients. Ultimately, we are

interested in identifying cells that have a similar protein

marker expression, that is, cells that belong to the same popu-

lation of cells. Note that with this definition of cell population,

similar cells can either represent cells with the same cell type

and/or state, depending on which markers are considered

(24). Usually the different cell populations are derived from

clustering a large collection of cells collected from different

samples using an unsupervised clustering approach.

Datasets Description

We used four public benchmark datasets to evaluate our

classifier, for which manually gated populations were available

and used as ground truth reference (Supplementary Table S1).

2 Cell Populations in Mass Cytometry Data
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First, the AML dataset is a healthy human bone marrow mass

cytometry dataset (4), consisting of 104,184 cells analyzed using

32 markers resulting in 14 cell populations defined by manual

gating. Second, the BMMC dataset is also a healthy human bone

marrow dataset (4,25), consisting of 81,747 cells analyzed with

13 markers, and 24 manually gated cell populations. Third, the

PANORAMA dataset entails 10 replicates of mice bone marrow

cells (12), analyzed using a mass cytometry panel of 39 markers

and manually gated into 24 cell populations, with a total number

of cells around 0.5 million. Finally, theMulti-Center study data-

set is a collection of 16 samples drawn from a single subject (23),

where the first eight samples are collected at the same time and

analyzed with the same instrument, and the last eight samples

are collected 2 months later and analyzed with a different instru-

ment. It contains ~930,000 cells, analyzed with 26 markers,

where only eight markers were used for the manual gating pro-

cess (23), resulting in four canonical cell populations in addition

to a fifth class representing the unlabeled cells. In addition to the

benchmark datasets, we used data that we collected from patients

with gastrointestinal diseases as well as controls. This Human

Mucosal Immune System mass cytometry (HMIS) dataset (6)

consists of 102 samples: 47 peripheral blood mononuclear cells

(PBMC) and 55 gut tissue samples. We focused on the PBMC

samples only, which are further divided into 14 control samples,

14 samples with Crohn’s disease (CD), 13 samples with celiac

disease (CeD) and six samples with refractory celiac disease type

II (RCDII). There are ~3.5 million cells in the 47 PBMC samples,

which are measured with a panel of 28 markers. Prior to any fur-

ther processing, dead cells, debris and non-gated cells were

removed. Measured expressions were transformed using hyper-

bolic arcsin with a cofactor of 5 for all datasets.

To annotate the HMIS dataset with cell population informa-

tion, we clustered all cells across all PBMC samples simulta-

neously using Cytosplore+HSNE (26). The motivation to choose

Cytosplore+HSNE is to reproduce similar cell populations to the

ones defined in the original study of the HMIS dataset (6,17).

However, any other clustering method, such as FlowSOM or

X-shift, could be used for this task (18). We constructed three

layers HSNE. For the top (overview) layer, we annotated the clus-

ters into six major immune lineages on the basis of the expression

of known lineage marker: (i) CD4+ T cells, (ii) CD8+ T cells,

including TCRgd cells, (iii) B cells, (iv) CD3-CD7+ innate lym-

phocytes (ILCs), (v) Myeloid cells, and (vi) Others, representing

unknown cell types (Supplementary Fig. S1). This we denoted

the HMIS-1 dataset. Next, in order to find subtypes at a more

detailed level, we explored one layer down for each of the six cell

populations separately, producing six separate t-SNE maps

(Supplementary Fig. S1). For each map, we applied Gaussian

mean shift (GMS) clustering (27), with a kernel size of 30 (default

value). For each cluster, we calculated a cluster representation by

taking the median expression of each marker for all individual

cells annotated with that cluster. We automatically merged clus-

ters when the correlation (Pearson’s R) between cluster represen-

tatives is above 0.95. We discarded clusters containing less than

0.1% of the total number of cells (<3,500 cells). In total we ended

up with 57 (clusters) cell populations (11 CD4+ T cells, 9 CD8+

T cells, 4 TCRgd cells, 11 B cells, 11 CD3-CD7+ ILCs, 6 Myeloid

cells, and 5 others) for the ~3.5 million PBMC cells, which we

denoted theHMIS-2 dataset. Cell counts per cell population and

per sample are summarized in Supplementary Figure S2.

Cell Population Predictors

To determine cell populations in a newly measured sam-

ple, one would need to re-cluster the new sample with all pre-

vious samples. Besides being a tedious task, cells from the

new sample will influence the clustering and by that change

the previously identified cell populations, affecting reproduc-

ibility. Therefore, we learn the different cell populations from

a training set with annotated cells. The cell populations in

the new sample can then simply be predicted by this learned

cell-populations predictor.

LDA. We propose to use a (simple) LDA classifier to

predict cell populations in CyTOF data. To produce a cell

population prediction for new cell x, LDA assign x to cell

population class ci for which the posterior probability of x

being part of ci is maximum, across all cell populations.

Assign x to argmax8ci p xjcið ÞP cið Þ:

where p xjcið Þ= 1

2πð Þk=2 Σij j
1=2 e

−

1
2 x−μið ÞT Σi

−1 x−μið Þ, Σi = Σ 8 ci

P(ci) is the prior probability of cell population class ci,

which is equal to the number of cells in cell population i

divided by the total number of cells in the dataset, k is the

number of features (protein markers in case of CyTOF), μi is

the k-dimensional mean vector of cell population class ci, Σi

is the k × k covariance matrix of cell population class ci.

k-NN. Further, to check whether the performance of a non-

linear classifier would outperform the linear LDA classifier, we

tested the performance of a k-NN classifier (with Euclidean dis-

tance and k = 50 neighbors). We adopted an editing approach

when training the k-NN classifier to reduce the training set size,

and consequently keep testing times reasonable. The editing is

done according to the following pseudo code. We start by creat-

ing a training set (Tr), by sampling 50,000 cells uniformly and

without replacement from all samples in the original training

data (OrgTr). Next, we create a test set (Te), by sampling another

50,000 cells uniformly and without replacement from OrgTr.

The k-NN classifier is then trained using Tr and used tomake cell

population predictions for Te. All correctly predicted cells from

Te are ignored while the misclassified cells are added to Tr. We

iterate these steps until there are no cells left withinOrgTr, i.e. we

have processed all cells. The final version of Tr contains much

less cells than the original OrgTr, but will encompass the neces-

sary representative cells from each cell population class to achieve

a similar k-NN performance.

Input: Training_Data used to train the k-NN

classifier

Output: reduced version of the Training_Data

representative for the input data

BEGIN

Temp_Training random 50,000 cells from

Training_Data

Cytometry Part A � 2019 3

ORIGINAL ARTICLE



while (not all Training_Data is covered)

Temp_Testing another random 50,000

cells from Training_Data

Apply prediction on Temp_Testing and add

misclassified cells to Temp_Training

Temp_Training Temp_Training +

Misclassified from Temp_Testing

end while

Final_Training Temp_Training

END

NMC. We also tested whether an even simpler classifier

than LDA would be sufficient to accurately identify cell popu-

lations. We tested the nearest median classifier (NMC) which

assigns each cell to the nearest median (median expression

across all cells for a cell population) using (1 − R) as distance,

with R being the Pearson correlation between the two expres-

sion vectors (28).

Performance Metrics

To evaluate the quality of the classification, we used four

metrics:

(i) The classification accuracy (fraction of correctly iden-

tified cell).

(ii) The F1-score (harmonic mean of the precision and

recall) for which we report the median value across all cell

populations. When comparing to DeepCyTOF (23), we use

the weighted average of F1-scores per cell population size, to

produce a fair comparison.

Weighted F1 score =
X

i

ni

N
Fi

where ni is the number of cells in population i, N is the

total number of cells in the dataset, and Fi is the F1-score for

cell population i.

(iii) The maximum difference in population frequencies,

defined as Δf =maxi fi− f̂ i

�

�

�

�

�

�, where fi and f̂ i represents the

true and the predicted percentage cell frequencies for the ith

cell population, respectively.

(iv) The Root of Sum Squared Error (RSSE) per sample

and per cell population, defined as RSSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

n

i= 1

fi− f̂ i

� �2
s

. In

case of measuring the error per sample, fi and f̂ i represents

the true and the predicted percentage cell frequencies, respec-

tively, for the ith cell population per sample, and n = nt (total

number of cell populations). In case of measuring the error

per cell population, fi and f̂ i represents the true and the pre-

dicted percentage cell frequencies, respectively, for a certain

cell population in the ith sample, and n = ns (total number of

samples).

Performance Estimation

The performance of a classifier is evaluated using three

different cross-validation setups:

(i) CV-Cells: Five-fold cross validation applied over all

the cells.

(ii) CV-Samples: A leave-sample-out cross validation

over all the samples, regardless of the number of cells within

each sample. The classifier is trained using the cells of the

samples in the training set, then the cell population prediction

is done per left-out sample.

(iii) Conservative CV-Samples: Similar to CV-Samples,

but with the main difference that the ground-truth reference

labels, acquired by clustering, are not used for training.

Instead, for each set of training samples the data is re-clus-

tered, resulting in new cell populations. These new cell popu-

lations are then used to train the classifier, which is

subsequently used to predict the labels of the cells of the left-

out sample. Since the labels of the training set and the

ground-truth are now different, we matched the cluster labels

by calculating their pairwise correlation (Pearson’s R) using

the median marker expression of each cluster. Each training

cluster is matched to the ground-truth cluster with which the

correlation is maximum.

For the AML and the BMMCdatasets, we evaluated the per-

formance using the CV-Cells setup only, since no sample infor-

mation is provided. For the PANORAMA and Multi-Center

datasets, we used both theCV-Cells and CV-Samples setups, since

we have the sample information. Considering the number of

samples in each dataset, we used a five-fold CV-Samples for the

PANORAMA dataset and a four-fold CV-Samples for the Multi-

Center dataset. For the HMIS-1 and HMIS-2 datasets, we used

all three cross validation setups, using a three-fold CV-Samples

and Conservative CV-Samples.

Rejection Option

To be able to detect new cell populations, we decided to

include a rejection option for LDA by defining a minimum

threshold for the posterior probability of the assigned cell popu-

lations. Thus, a cell is labeled as “unknown” whenever the poste-

rior probability is less than a predefined threshold set.

Assign x to
argmax

8ci
p xjcið ÞP cið Þ, max

8ci

p xjcið ÞP cið Þ

p xð Þ
> threshold

unknown, otherwise

8

>

<

>

:

Feature Selection

To avoid overfitting, we explored the need to reduce the

number of markers (i.e., features) by applying feature selec-

tion on the training data. First, we applied a five-fold CV-Cells

and used the classification performance for every individual

marker on the training data to rank all markers in a descend-

ing order. Next, we applied another five-fold CV-Cells on the

training data and trained as many classifiers as there are

markers. The first classifier is based on the top marker only,

the second one on the two top ranked markers, etc. Then we

select the classifier which generates the best cross validation

performance over the training set. This classifier is subse-

quently tested on the test set and the performance is reported.

4 Cell Populations in Mass Cytometry Data
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RESULTS

LDA Outperforms Complex Classification Approaches

To evaluate the performance of the LDA classifier, we

compared LDA with two recent state-of-the-art methods for

classifying CyTOF data, ACDC (22) and DeepCyTOF (23).

We used the AML, BMMC and PANORAMA datasets (used

by ACDC) and the Multi-Center dataset (the only available

dataset used by DeepCyTOF). We compared the performance

of LDA with our reproduced values, and the reported values

in these two studies (Table 1). ACDC was applied only for

the AML and BMMC datasets, for which the cell-type marker

table was provided.

Since there was no sample information available for the

AML and BMMC datasets, we evaluated the performance of the

LDA classifier on both datasets using the CV-Cells setup only,

and we are unable to run DeepCyTOF on those datasets. For the

AML dataset, LDA achieved comparable performance in terms

of accuracy andmedian F1-score to ACDC. For the BMMCdata-

set, we applied the LDA classifier to classify all 24 cell popula-

tions, resulting in ~96% accuracy and 0.85 median F1-score. To

have a fair comparison with ACDC, we also considered four

populations as unknown (22) then classified only 20 cell popula-

tions. In both cases, LDA outperformed ACDC, specially based

on the median F1-score. Similar conclusions can be observed

when looking at the detailed performance per cell population,

showing comparable performance for the AML dataset (Fig. 1A),

and performance improvement for small populations in BMMC

dataset (smallest 10 populations in Fig. 1B).

On the PANORAMA dataset, we tested the LDA classi-

fier to classify all 24 populations using both the CV-Cells and

CV-Samples setups. In addition, we tested the performance of

LDA on 22 populations only to have a fair comparison with

ACDC (22). In both cases LDA produces relatively high accu-

racy and median F1-score, and outperformed ACDC and

DeepCyTOF in terms of the median F1-score (no accuracy

reported by ACDC). Across all cell populations, LDA has a

large F1-score improvement compared to DeepCyTOF

(Fig. 1C).

For the Multi-Center dataset, we applied CV-Cells and CV-

Samples yielding an accuracy of ~98% and weighted F1-score of

0.99 for both setups. To have a fair comparison with DeepCy-

TOF, we only used sample no. 2 for training and tested the per-

formance of LDA on the other 15 samples. Following

DeepCyTOF, the “unlabeled” class was excluded from the train-

ing data and during testing any prediction with probability less

than 0.4 was considered “unlabeled”. Next, the “unlabeled” class

was excluded while calculating the cell population precisions.

Overall, LDA achieved comparable performance to DeepCyTOF

on the Multi-Center dataset (Table 1, Fig. 1D), using a denoising

Table 1. Performance summary of LDA versus ACDC, DeepCyTOF, and NMC

LDA

CV-CELLS

LDA

CV-SAMPLES ACDC1 DEEPCYTOF2 NMC

Accuracy

AML 98.13 � 0.09 n.a. 98.33 � 0.02 n.a. 97.34 � 0.08

98.30 � 0.043

BMMC 95.82 � 0.10 n.a. 93.20 � 0.70 n.a. 85.83 � 0.21

95.61 � 0.164 92.90 � 0.503

PANORAMA 97.16 � 0.07 97.22 � 0.31 n.r. n.a. 94.72 � 0.54

97.70 � 0.034 97.67 � 0.294

Multi-Center 98.51 � 0.04 98.44 � 1.66 n.a. n.r. 98.24 � 1.86

98.82 � 1.735

Median F1-score

AML 0.95 n.a. 0.94 n.a. 0.93

0.933

BMMC 0.85 n.a. 0.69 n.a. 0.62

0.854 0.603

PANORAMA 0.93 0.93 0.883 0.59 � 0.016 0.89

0.954 0.954

Multi-Center2 0.99 0.99 n.a. 0.97 � 0.016

0.933
0.98

0.985

n.a.: not available; n.r.: not reported.
1 The ACDC performance values represent the training performance.
2 Weighted F1-score.
3 Reported values in the original study.
4 Classes considered unknown, similar to ACDC.
5 Only one sample is training (Sample 2), similar to DeepCyTOF.
6 Mean � SD of 10 different runs.
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ORIGINAL ARTICLE



encoder and excluding the additional calibration step (23). Deep-

CyTOF suffers from lack of reproducibility, producing different

results in each run, which is not the case for LDA (Fig. 1C,D).

Further, similar to DeepCyTOF, LDA has better performance on

samples from the same batch as the training sample compared to

samples from a different batch (Supplementary Fig. S3).
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Figure 1. Classifiers performance comparison. Scatter plots of the F1-score vs. the population size for (A) AML, and (B) BMMC, between
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LDA Accurately Classifies Immune Cells in a Larger

Dataset with Deeper Annotation of Cell Subtypes

To test our hypothesis that LDA can achieve acceptable per-

formance on large datasets and withmore detailed cell subtyping,

we applied LDA to the HMIS dataset comprised of ~3.5 million

cells. The HMIS data was clustered at two levels of detail (see

Methods) resulting in two different annotations for the HMIS

data set: HMIS-1, representing six major lineages, and HMIS-2

containing 57 cell populations. For both annotations, we applied

all three cross validation setups, CV-Cells, CV-Samples and

Conservative CV-Samples (Table 2).

We first tested the LDA performance on HMIS-1, hence

only classifying the canonical cell populations. LDA achieved

an accuracy >99% and a median F1-score > 0.98 for both

CV-Cells and CV-Samples. Next, we applied LDA to HMIS-2,

which implied classifying cells into 57 different cell popula-

tions including abundant and rare cell populations. As

expected, LDA had a lower performance on HMIS-2 com-

pared to HMIS-1 using both CV-Cells and CV-Samples, with

an accuracy ~86% and a median F1-score ~0.80 (Table 2).

The confusion matrix shows that the performance drop

between HMIS-1 and HMIS-2 is mainly caused by misclassifi-

cations within the same major lineages (Supplementary

Fig. S4A). We further investigated the LDA performance

across different sample types (Control, CeD, RCDII, and CD)

in the HMIS dataset. Figure 2A shows that LDA has the high-

est accuracy for the control samples, while the lowest accu-

racy is for the RCDII samples.

To better mimic a realistic scenario and avoid any leak-

age of information from the testing samples by considering

all samples when pre-clustering cells to determine the ground

truth labels, we used a Conservative CV-Samples setup to eval-

uate the LDA classifier (see Methods). For the HMIS-1 data-

set representing the major lineages, the performance of LDA

in the Conservative CV-Samples was comparable to the other

setups (CV-Cells and CV-Samples), Table 2. The performance

of the LDA classifier dropped when considering the Conserva-

tive CV-Samples setup on HMIS-2 that contains a multitude

of cell populations. However, the lower performance can be

explained by miss-matching clusters between the training set

and the ground-truth, which introduces classification errors.

For example, cluster “CD4 T 11” is never predicted by the

classifier, which means all cells falling within this cluster will

be misclassified (Supplementary Fig. S4B). This is because in

all three folds, no training cluster matches to this ground-

truth cluster “CD4 T 11” (Supplementary Fig. S5). Whereas

in case of HMIS-1, with only six dissimilar clusters, the clus-

ters map works perfectly, resulting in high performance

(Supplementary Fig. S6).

We compared the performance of LDA on the HMIS

dataset with DeepCyTOF (Table 2, Fig. 1E,F). For both

HMIS-1 and HMIS-2 datasets, LDA outperforms DeepCy-

TOF, which particularly shows a poor performance for the

deeply annotated HMIS-2 dataset. These results show that

LDA is robust and scalable to large datasets with deep subtyp-

ing of cell populations.

LDA Outperforms Simpler Classifiers

In order to explore to what extent a simple classifier can

achieve high performance on identifying cell populations, we

tested the NMC on all datasets. Our results show that the

NMC has a comparable performance with the LDA on the

Multi-Center and HMIS-1 datasets (Tables 1 and 2, Fig. 1D,E).

However, LDA outperforms NMC on the AML, BMMC, and

PANORAMA datasets (Table 1, Fig. 1A–C). Similar to ACDC,

NMC suffers from large performance drop for the 10 smallest

populations in the BMMC dataset (Fig. 1B). Also, LDA outper-

forms NMC on the deeply annotated HMIS-2 dataset, showing

performance improvement for the majority of the 57 cell popu-

lations (Table 2, Fig. 1F). These results show that a simpler

classifier such as NMC can predict major lineages but are not

sufficient to classify deeper annotated CyTOF datasets contain-

ing smaller (rare) cell populations.

LDA Accurately Estimates Cell Population Frequencies

One of the main aims of CyTOF studies is to estimate the

frequencies of different cell populations in a given sample. We

evaluated the LDA prediction performance in terms of predicted

population frequencies, by calculating the maximum difference

in population frequencies, Δf, for each dataset (see Methods).

LDA produced comparable population frequencies to the manu-

ally gated populations, with Pearson R correlation >0.97, between

Table 2. Performance summary of LDA, DeepCyTOF, NMC, and k-NN on the HMIS dataset

HMIS-1 HMIS-2

ACCURACY MEDIAN F1-SCORE ACCURACY MEDIAN F1-SCORE

LDA CV-Cells 99.38 � 0.01 0.99 87.19 � 0.05 0.81

LDA CV-Samples 99.02 � 2.26 0.99 (0.981) 86.11 � 3.86 0.79 (0.871)

LDA Conservative CV-Samples 98.91 � 1.87 0.99 78.69 � 8.65 0.62

DeepCyTOF1 n.a. 0.72 � 0.062 n.a. 0.36 � 0.022

NMC 96.42 � 3.19 0.96 83.34 � 4.11 0.77

k-NN CV-Samples n.a n.a. 87.73 � 4.09 0.81

k-NN CV-Samples with feature selection n.a. n.a. 86.33 � 3.17 0.79

n.a.: not available.
1 Weighted F1-score.
2 Mean � SD of 10 different runs.
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the true and predicted population frequencies for all datasets

(Fig. 3). We observed that some cell populations are harder to

predict, including: (1) small populations, such as MPP in the

BMMC dataset, and HSC and CLP in the PANORAMA dataset;

and (2) populations that have similar cell populations in the data-

set, such as “B-cell Frac A–C (pro-B cells)” in the PANORAMA

dataset, where ~41% of the cells were misclassified into the simi-

lar B cell subtypes (IgD–IgMpos B cells, IgDpos IgMpos B cells,

and IgM–IgD-B cells), having a correlation of 0.86, 0.70 and 0.90

with “B-cell Frac A–C (pro-B cells)”, respectively. Overall, The

maximum difference in population frequency (Δf) was 0.40%,

0.65%, 0.64%, and 0.83% for the AML, BMMC, PANORAMA,

and theMulti-Center datasets, respectively.

For the HMIS-1 dataset, LDA has Δf of 0.59% across the

six major cell populations. Interestingly, despite the drop in

the accuracy of predicting cell labels on HMIS-2 compared to

HMIS-1, the population frequencies are not significantly

affected. The maximum difference of population frequencies

in HMIS-2 was 0.46% among all 57 cell populations (Fig. 3F).

This small Δf shows that LDA produces accurate perfor-

mance with respect to the ground-truth reference, even at a

detailed annotation level.

We investigated the population differences per sample

and per cell population using the CV-Samples setup in the

HMIS-2 dataset, by calculating the average squared differ-

ences between the estimated and true frequencies (RSSE, see

Methods). We obtained small RSSE values with a maximum

of 0.074 (sample no. 10) and 0.082 (“Myeloid 10” population)

across different samples and different cell populations, respec-

tively (Supplementary Fig. S7). For sample no. 10, the maxi-

mum absolute population difference was 5.17% for “Myeloid

3” cell population. For “Myeloid 10” cluster, the maximum

absolute difference was 5.12% across all cells.

LDA Performs on Highly Abundant as Well as Rare

Cell Populations

To evaluate the performance of LDA for abundant and rare

cell populations, we investigated the F1-score per cell population

versus the population size. Figure 1F and Supplementary

Figure S8A, show the F1-score for all 57 cell populations in the

HMIS-2 dataset obtained using the CV-Samples. Remarkably,

LDA performs well for large cell populations, as well as themajor-

ity of the small cell populations, with a median F1-score of 0.7915

for populations that contain less than 0.5% of the total cells.

For the Conservative CV-Samples setup, the LDA perfor-

mance is still high for large cell populations, but the F1-score

drops for small populations reinforcing that the drop in per-

formance of the Conservative CV-Samples is driven by the

limitations with the cluster matching rather than the perfor-

mance of the LDA (Supplementary Fig. S8B). For populations

that contain less than 0.5% of the total cells, the median

F1-score is 0.4753. Similar patterns were observed for the

other four datasets (Fig. 1A–D).

LDA as a Probabilistic Classifier Directly Allows the

Detection of Unseen Cell Populations

A major advantage of clustering and visual analytics over

classification approaches is the ability to identify novel

unknown cell populations. Here, we show that LDA as a

probabilistic classifier can be used to flag unknown cells that

do not match any of the training cell populations. We incor-

porated a rejection option to allow the classification of a cell
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as “unknown” when the posterior probability of the classifica-

tion of any cell is low. Figure 2A shows the classification

accuracy across samples from the HMIS-2 dataset, after

excluding unknown cells for which the posterior probability

is lower than a certain threshold. As expected, setting a

threshold on the posterior probability resulted in more
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accurate predictions. For example, setting a threshold at 0.7

resulted in an accuracy of 89.54 � 3.25% (compared to

86.11 � 3.86% without any thresholds), while assigning ~8%

of cells per sample as unknown. The performance improve-

ment per population shows very little variation among all the

57 cell populations (Supplementary Fig. S9A). The difference

in F1-scores, between having no rejection and applying a

threshold of 0.7, is 0.04 � 0.02. This result shows that the

rejection is not related to the overall population size, which

can also be observed when calculating the rejected percentage

of cells per cell population (Supplementary Fig. S9B).

Further, we observed a reverse pattern between the accu-

racy of cell classification and the percentage of cells classified

as unknown per sample (Fig. 2A,B). For instance, LDA has

the highest accuracy on classifying cells from the control sam-

ples and hence control samples are less likely to entail

rejected (unknown) cells. On the other hand, the accuracy is

the lowest on RCDII samples which also have the highest

rejection percentages. Figure 2 further shows that both the

accuracy and the rejection size increase with increasing the

minimum threshold of the posterior probability.

Rejection Option Targets Rare Sample-Specific Cell

Populations

Next, we investigated the effect of the rejection option

on rare and abundant cell populations. In the HMIS-2 data-

set, the population frequencies of the 57 cell populations var-

ied from 25.2% to 0.1% of the total number of cells (Fig. 4A).

Further, we observed a variable distribution of cell popula-

tions across different sample types (control, CeD, RCDII, and

CD), Figure 4B. Although the majority of cell populations

were evenly distributed over all samples, some were disease-

specific, especially the rare cell populations. Using a rejection

threshold of 0.7, we calculated the rejection ratio per cell pop-

ulation per sample (Fig. 4D) as the number of cells assigned

as “unknown” of one cell population in one sample, divided

by the total number of cells of that cell population in all sam-

ples. We compared these rejection ratios with the cell popula-

tion frequencies over the samples (Fig. 4C) where a value

close to 100% means that the cell population is specific to

only one sample. We observed a strong correlation between

the cell population rejection ratios and the frequencies over

the samples (Fig. 4E). For example, the majority of “Others 2”

(83.87%) comes from one CeD sample, within which “Others

2” is prominently present (7.44% of the cells in this sample

belong to “Others 2” Supplementary Fig. S2). The classifier

rejects ~15% of these cells, representing a ~12% rejection

ratio of the total number of “Others 2” cells. This is a rela-

tively high rejection percentage compared to other cell popu-

lations (Fig. 4E). The main reason why there is a large

rejection ratio for these cells, is because these cells are mainly

present in one sample. When this sample is left out in the

CV-Samples procedure, during testing these cells are rejected

because they are missing in the training data. These results

support the validity of using the rejection option to label

unknown cells, which are likely to be rare sample-specific

populations.

Linear Classification Is Sufficient for Accurate

Classification of CyTOF Data

We have shown that a simple linear classifier such as

LDA has a better performance compared to complex non-

linear classifiers such as ACDC and DeepCyTOF. To further

illustrate that non-linear classification does not perform better

than linear classification, we compared the performance of

LDA to a k-NN classifier on the HMIS-2 dataset. We found

that LDA has a comparable performance to a k-NN classifier

with k = 50 (Table 2), suggesting that adding non-linearity to

the classification process does not improve performance.

Further, we checked the effect of having similar populations

on the classification performance. For each cell population in the

HMIS-2 dataset, we compared the F1-score with the correlation

to the most similar population (Supplementary Fig. S10). For

both, LDA and k-NN classifiers, we observe a week negative rela-

tion, showing that the classifier performance is affected by the

presence of similar cell populations in the dataset.

To reduce the computation time for the k-NN classifier,

we employed an editing scheme to reduce the size of the train-

ing data (see Methods). Using the proposed editing scheme, we

reduced the training data size to an average of 300,000 per

training fold (~12% of the original training set), resulting in a

significant speedup of the training and testing times. However,

the k-NN classifier still takes on average 180x the time needed

by LDA to make predictions for one sample.

Next, we investigated whether feature selection (using

less markers during classification) would affect the perfor-

mance of the classifiers. The k-NN classifier selected only

20 (out of the 28) markers and retained a comparable perfor-

mance to that obtained using all 28 markers. On the other

hand, feature selection did not reduce the number of markers

selected by LDA, indicating that LDA requires all the mea-

sured markers in order to achieve maximum performance.

DISCUSSION

In this work, we showed that a linear classifier can be

used to automatically assign labels to single cells in mass cyto-

metry data. Using four different CyTOF datasets, we com-

pared the performance of a LDA classifier to two recent

methods: ACDC (22) and DeepCyTOF (23). Interestingly,

LDA has better performance compared to ACDC and Deep-

CyTOF in all four datasets. Compared to ACDC, LDA does

not require any additional biological knowledge or assump-

tions regarding the distribution patterns of markers. Addi-

tionally, ACDC requires a cell-type marker table which has

several limitations: (i) designing the table can be very chal-

lenging in the presence of many cell populations, (ii) it is not

possible to specify the marker patterns for some cell popula-

tions (e.g., ACDC ignored 4 subtypes in the BMMC dataset

because the table could not be constructed), and (iii) the table

requires imposing assumptions on the marker distribution

(currently binary) which can be challenging to model. Fur-

thermore, results on the BMMC dataset show that LDA can

detect rare cell populations having frequencies <0.5% of the

total number of cells, like MPP, HSC, MEP and GMP, which
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Figure 4. Rejection option effect on variable sized cell populations. (A) Cell population frequency across the HMIS-2 dataset, in a descend

order. (B) Cell population composition in terms of the different sample types (CeD, Ctrl, RCDII, and CD). (C) Cell population frequencies

across samples, normalized by the cell population size across all samples, every column summation is 100%. (D) Percentage of rejected

cells per cell population per sample, normalized by the cell population size across all samples, using a posterior probability threshold of

0.7. Cell populations follow the same order for (A–D). (E) Scatter plot between values in (C) and (D) showing a strong correlation of 0.70

between the rejection ratio and the cell population size, per sample. Each point represents a cell population in a particular sample, and

points are colored according to the disease status of the sample annotation.
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were the main cause of the lower performance of ACDC (22).

Compared to DeepCyTOF, in addition to having a better per-

formance, LDA is a much simpler classifier which means it

has substantial advantages with respect to the interpretability

of the classifier prediction, reproducibility, and scalability to

larger datasets with deep subtyping annotation.

We further evaluated LDA on a large CyTOF dataset with

deep annotation of cell populations. We showed that LDA can

accurately identify cell populations in a challenging dataset of

3.5 million cells comprised of 57 cell populations. Further, we

showed that the errors made by LDA in assigning cell popula-

tion labels to each cell has negligible influence on the estimates

of cell population frequencies across different individuals.

DeepCyTOF failed to scale, in terms of performance, to this

large dataset with deep level of annotation. Its low performance

is mainly due to the selection of one sample for training. More-

over, this approach is particularly not suitable when analyzing

multiple samples from different cohorts (e.g., disease and

controls). For instance, in the HMIS-2 dataset, DeepCyTOF

selected sample (number 27) as the training sample, which

is a control sample containing only 55 of the 57 cell

populations.

We also compared LDA to a simpler classifier such as

the NMC, to test to which extend the classification task could

be further simplified. We observed comparable performance

in datasets containing large and major cell populations only,

such as Multi-Center and HMIS-1, where the classification

task is relatively easy. However, LDA produces better results

for other datasets, having more detailed population subtyping,

in which the classification task becomes more challenging,

and NMC performance drops, especially for small popula-

tions as observed in the BMMC dataset.

To show that a linear classifier is sufficient to classify

cells in mass cytometry data, we compared LDA to a non-

linear classifier (k-NN). Indeed, the k-NN classifier does not

outperform LDA on the HMIS dataset, indicating that there

is no added value in using non-linear relationships between

the markers. However, when we ran both classifiers with fea-

ture selection, LDA required the full set of markers to achieve

the best performance. On the other hand, the k-NN classifier

was able to achieve the same performance as LDA but using

less markers (20 instead of 28). This result suggests that a

non-linear classifier might be beneficial to reduce the number

of required markers and free valuable slots on the CyTOF

panel for additional markers. Alternatively, using the reduced

marker set lowers costs when analyzing new samples, using a

smaller CyTOF panel or even flow cytometry while retaining

the ability to identify all cell populations of interest.

Further, the comparable performance of LDA and k-NN

indicate that in the full marker space, the cell population classes

in the CyTOF datasets that we explored are well separable. Con-

sequently, different clustering algorithms will perform similarly

well on these datasets. We would like to note that more complex

data might need more complex classifiers or clustering algo-

rithms, for example when cell populations are less separable like

continuous or smeary populations. We have shown that for the

current datasets this is not necessary. In general, it will be

difficult to predict beforehand which complexity is necessary,

so that in practice multiple classifiers need to be evaluated.

Our results also show that the performance of LDA is not

largely affected by either technical or biological variability. Tech-

nical variability is part of the Multi-Center dataset which con-

tains batch effects. The performances on the different batch

samples remain relatively high (weighted F1-score > 0.95, Sup-

plementary Fig. S3), although, applying batch correction

methods might still improve the overall LDA prediction perfor-

mance (29–31). Biological variability is presented in the HMIS

dataset, which includes samples from patients with different dis-

eases, collected over time. The high performance on the deeply

annotated HMIS-2 dataset, shows LDA’s robustness against

these biological variations.

For the HMIS dataset, we relied on an initial clustering

step to assign ground-truth labels. To avoid any possible leak-

age of information from the test set of cells by including them

into the clustering, we designed a conservative learning

scheme. In the conservative scheme, we do not use the labels

obtained by clustering the entire dataset (i.e., ground-truth)

for training, but rather re-cluster the training data inside each

fold. In addition, this scheme better resembles a realistic sce-

nario in which the new unseen data is never included in the

initial assignment of class labels for training. The perfor-

mance of LDA in this conservative experiment is lower than

the initial performance obtained by classical cross validation.

However, the lower performance does not stem from the lack

of generalization, as the results show high performance on

the overview-level, but rather from the difficulty in matching

cluster labels between the ground truth and the training set.

Clustering approaches in general have an advantage over

classification methods in that they can be employed to dis-

cover new cell populations. However, an additional advantage

of using a probabilistic classifier such as LDA is that we can

directly gain information regarding the accuracy of each deci-

sion made by inspecting the posterior probability. We showed

that we can allow for a rejection option when the posterior

probability of the classification of a particular cell is low. This

rejection option can be used to identify “unknown” cells

which might require additional investigation to determine

their biological relevance. Additionally, we showed that these

“unknown” cells are likely to be rare and sample-specific.

There is however a trade-off between how confident we are

on the correctness of the predictions and the size of the

“unknown” class. A stringent threshold (i.e., high posterior

probability) means that many cells will be classified as

“unknown” which will further require manual investigation.

Taken together, we demonstrated the feasibility of using

a simple linear classifier to automatically label cells in mass

cytometry data which is a promising step forward to use mass

cytometry data in cohort studies.

Availability

Data is available from Flow Repository (FR-FCM-ZYTT)

and implementation is available on GitHub (https://github.com/

tabdelaal/CyTOF-Linear-Classifier)
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