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Efficient Online Globalized Dual Heuristic
Programming With an Associated Dual Network

Ye Zhou

Abstract— Globalized dual heuristic programming (GDHP) is
the most comprehensive adaptive critic design, which employs its
critic to minimize the error with respect to both the cost-to-go
and its derivatives simultaneously. Its implementation, however,
confronts a dilemma of either introducing more computational
load by explicitly calculating the second partial derivative term
or sacrificing the accuracy by loosening the association between
the cost-to-go and its derivatives. This article aims at increasing
the online learning efficiency of GDHP while retaining its
analytical accuracy by introducing a novel GDHP design based
on a critic network and an associated dual network. This
associated dual network is derived from the critic network
explicitly and precisely, and its structure is in the same level
of complexity as dual heuristic programming critics. Three
simulation experiments are conducted to validate the learning
ability, efficiency, and feasibility of the proposed GDHP critic
design.

Index Terms— Adaptive critic designs (ACDs), globalized dual
heuristic programming, incremental model, neural networks,
radial basis functions, reinforcement learning (RL).

I. INTRODUCTION

REINFORCEMENT learning (RL) has obtained arising
attention in recent years. It is a framework of intelligent,

self-learning methods, in which actions are trained in order to
minimize the cost-to-go from interacting with the environment.
These self-learning methods link bio-inspired artificial intelli-
gence techniques to the field of optimal and adaptive control to
overcome some of the limitations and challenges of traditional
model-based control methods [1], [2]. Approximate dynamic
programming (ADP) is an RL method aiming to solve optimal
control problems with large or continuous state spaces [3]–[6].
They apply an approximation of the cost-to-go of states and/or
an approximation toward the optimal control policy so as to
tackle the “curse of dimensionality” [7].

As a class of ADP methods, adaptive critic designs (ACDs)
have shown great success in optimal adaptive control of
nonlinear problems and practical applications [7]–[16]. They
are also known as actor-ctirics (ACs) because they separate

Manuscript received 3 May 2021; revised 20 December 2021; accepted
1 April 2022. Date of publication 18 April 2022; date of current ver-
sion 1 December 2023. This work was supported by the Malaysian Min-
istry of Higher Education for providing the Fundamental Research Grant
Scheme (FRGS) under Grant FRGS/1/2020/TK0/USM/03/11.

The author is with the School of Aerospace Engineering, Engineering
Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Malaysia, and also
with the Faculty of Aerospace Engineering, Delft University of Technology,
2629 Delft, The Netherlands (e-mail: zhouye@usm.my).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2022.3164727.

Digital Object Identifier 10.1109/TNNLS.2022.3164727

evaluation (critic) and improvement (actor) using parametric
structures. The critic adopts temporal difference (TD) methods
to approximate the cost-to-go function, while the actor adapts
its parameters toward the optimal policy by applying the
principle of optimality [1], [7], [17]. Although they are called
ACs, they often need an extra structure to approximate the
global system model so as to close the update path of the
actor, the critic, or both.

ACDs can generally be categorized into three groups:
1) heuristic dynamic programming (HDP), which is the most
basic form and uses the critic to approximate the cost-to-
go; 2) dual heuristic programming (DHP), in which the critic
approximates the derivatives of the cost-to-go with respect to
the critic inputs; and 3) globalized dual heuristic programming
(GDHP), which approximates both the cost-to-go and its
derivatives. Several studies comparing the before-mentioned
ACDs have shown that both DHP and GDHP outperform HDP
in success rate and precision [10], [18]. The main reason is
that the critic of the DHP and the GDHP directly outputs
the derivatives of the cost-to-go, which reduces the error
introduced by the derivation backward through the critic of
the HDP [19].

Online and efficient learning control with ACDs has been
studied for years and is still one of the most active areas in RL
today. One of the challenges is that the identification of the
global system model is not a trivial task, which needs a certain
time and usually an off-line learning phase beforehand [3],
[8], [20]–[23]. However, this off-line identification stage needs
representative simulation models, which are also difficult to
obtain in practice. Several studies [19], [24] have suggested
removing the global system model and exploiting previous
critic outputs and/or inputs instead. Although this technique
has been successfully applied to many ACD methods, it can
only relieve the off-line learning phase of the action-dependent
forms. Recent attempts [25]–[27] exploited incremental mod-
els to replace the global system model in ACDs to relieve
the off-line learning stage and to increase the adaptability
to uncertainties. Incremental model based ACD methods
offered a systematic approach for developing online ACDs,
especially HDP and DHP, with simplified structures and
algorithms.

However, the major challenge to implement online GDHP
is to efficiently while accurately calculate the second-order
mixed partial derivatives [10], [28]. GDHP combines the
advantages of HDP and DHP by minimizing the error
with respect to both the cost-to-go and its derivatives
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simultaneously. From a theoretical point of view, the resulted
behavior of GDHP is expected to be superior to HDP and
DHP [10]. There are, in general, two designs of GDHP that
have been successfully implemented in several applications
and are still commonly used today. The first one is to use
explicit formulas to calculate the second-order derivatives [10],
[28], [29]. This design uses a single critic network to approx-
imate the cost-to-go and relies on analytical calculations to
find the derivatives and the mixed second-order derivatives.
This method is mathematically accurate but computationally
complex and is very hard to extend to networks with multiple-
layered features. To lighten the computational load, the mixed-
style critic was proposed [10], which outputs the cost-to-go
and its derivatives simultaneously. This method is efficient
and commonly used in various applications [22], [30]–[34].
However, these two kinds of outputs of the mixed-style
critic have independent top-layer weights, due to which their
updates are not well associated, and the estimation may not
be analytically accurate. These two GDHP designs confront
a dilemma of either introducing more computational load by
explicitly calculating the second partial derivative term or
sacrificing the accuracy by loosening the association between
the cost-to-go and its derivatives. This article, therefore, aims
at increasing the online learning efficiency and feasibility of
GDHP while retaining its analytical accuracy.

The main contribution of this article is that a novel GDHP
design was proposed based on an HDP-style critic network
and an associated dual network. The HDP-style critic net-
work is designed to be nonlinear in inputs and linear in
parameters, and the DHP-style dual network can be derived
from the critic network explicitly and precisely. In specific,
this article demonstrates this concept with two basic and
specific designs, which falls into multilayer perceptron and
radial basis function categories. The structure of the proposed
GDHP critic design is straightforward, illustrative, and at the
same level of complexity as the mixed-style critic network.
In addition, because of the nonlinear-in-parameter property,
the proposed GDHP critic network is extendable to complex
networks, such as multiple-layered features, and other types of
approximators.

The remainder of this article is structured as follows.
Section II lays the foundation of this research with critic
designs and adaptation rules of HDP, DHP, and GDHP.
Section III formulates the GDHP design with an associated
dual network and presents the framework of the proposed
GDHP method. Section IV carries out three simulation
experiments to examine the learning ability and efficiency
of the proposed critic design and to validate the proposed
GDHP algorithm for online learning tasks. Finally, Section V
concludes the properties of the proposed GDHP design and
addresses the possibilities of future research.

II. FOUNDATIONS ON GDHP

ACDs separate evaluation and improvement using para-
metric structures: the critic and actor. The critic adopts TD
methods to approximate the cost-to-go and/or its derivatives,
while the actor adapts its parameters toward the optimal policy

Fig. 1. Critics adaptation in HDP and DHP, where solid lines represent the
feedforward flow of signals through their critics, and dashed lines represent
the BP pathways for critics, denoted with BPc1 for the HDP-style critic and
BPc2 for the DHP-style critic.

by applying the principle of optimality. The optimization of the
actor directly depends on the derivatives of the cost-to-go. This
section will illustrate the main difference among HDP, DHP,
and GDHP, which lies in their critic designs and adaptation
rules.

A. HDP-Style Critic

HDP is the most basic and direct way for policy evaluation.
It uses the critic to approximate the true cost-to-go function J ,
which is the cumulative summation of future cost c from any
initial state xk under current policy μ

J μ(xk) =
∞�

l=k

γ l−kcl (1)

where γ ∈ (0, 1) is a scalar called discount factor or forgetting
factor and cl is the one-step cost at a future time tl under the
current policy.

The error function for the critic Ec1(tk) is defined according
to the TD error ec1(tk) at time tk as follows:

Ec1(tk) = 1

2
ec1(tk)

T ec1(tk) (2)

where

ec1(tk) = �J (xk−1)− ck−1 − γ �J (xk). (3)

In this equation, �J (xk−1) and �J (xk) are the approximated
cost calculated through the critic with weights at the current
time wc1(tk).

The critic weights of HDP can be updated to minimize the
error Ec1(tk) with a learning rate ηc1 along the BPc1 error
backpropagation (BP) direction as in Fig. 1 as follows [27]:

wc1(tk+1) = wc1(tk)+�wc1(tk) (4)

where

�wc1(tk) = −ηc1 · ec1(tk) · ∂
�J (xk−1)

∂wc1(tk)
. (5)
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B. DHP-Style Critic

DHP, on the other hand, uses its critic network to directly
approximate the derivative of the cost-to-go function with
respect to the state vector

λ(xk) = ∂J (xk)

∂xk
(6)

which reduces the error introduced by the derivation backward
through the critic of the HDP [19], [26]. This is because the
adaptation law of the actor relies on the derivatives λ instead
of the value of J .

Similarly, the TD error to approximate the derivatives can
be obtained as [26]

ec2(tk) =�λ(xk−1)− ∂ck−1

∂xk−1
− γ�λ(xk)

∂xk

∂xk−1
. (7)

Also, the critic weights can be updated incrementally along
the BPc2 error backpropagation direction as in Fig. 1 with

�wc2(tk) = −ηc2 · ec2(tk)
T · ∂�λ(xk−1)

∂wc2(tk)
. (8)

C. Critic of GDHP

GDHP was proposed to consistently evaluate the absolute
level of the cost-to-go as in HDP while also learning about
the adaptation slope in fine details as in DHP [35]. GDHP,
therefore, minimizes the error with respect to both J and its
derivatives λ simultaneously. There are several implementa-
tions of GDHP critic network(s), such as dual networks or
a single network. We will use wc to indicate all the neural
network weights in GDHP designs. The critic error function
can be defined as

Ec3(tk) = κ1

2
ec1(tk)

T ec1(tk)+ κ2

2
ec2(tk)

T ec2(tk) (9)

where κ indicates the importance of minimizing the error in
the cost function J or in the derivatives λ.

The critic weights of GDHP can be updated to minimize
the error Ec3(tk) with a learning rate ηc3 along all the error
backpropagation directions incrementally as

�wc(tk)

= −ηc1ec1(tk)
∂ �J (xk−1)

∂wc(tk)
− ηc2ec2(tk)

T ∂�λ(xk−1)

∂wc(tk)
(10)

= −ηc1ec1(tk)
∂ �J (xk−1)

∂wc(tk)
− ηc2ec2(tk)

T ∂2 �J (xk−1)

∂xk−1∂wc(tk)
(11)

where the designated parameters ηc1 = ηc3κ1 and ηc2 = ηc3κ2

can be used in this equation for simplification and consistence
with the training of HDP and DHP. The major source of
the complexity of GDHP is the calculation of the term
((∂�λ(xk−1))/(∂wc(tk))) or ((∂2 �J (xk−1))/(∂xk−1∂wc(tk))),
which are second-order mixed partial derivatives.

There are, in general, three ways to design GDHP [10].
In the first design, which is also the one originally proposed by
Werbos [35], an additional network dual to the critic network
was created. It inputs the output and the states of all hidden
neurons of the critic network and outputs λ. The mixed second-
order derivatives can be calculated by finding derivatives of

Fig. 2. Critic adaptation in GDHP, which uses explicit formulas to calculate
the second-order derivatives. Solid lines represent the feedforward flow of
signals through the HDP-style critic and the calculation with explicit formulas,
and dashed lines represent the BP pathways for the critic, denoted with BPc1
for the cost-to-go error backpropagation pathway and BPc2 for the derivatives
error backpropagation pathway.

the dual network outputs λ with respect to the weights of the
critic network carefully back through the dual network and the
critic network. This method, which may increase the length of
the backpropagation chain, is straightforward, illustrative, but
need very careful design and calculation [10], [35], [36]. The
detailed design or implementation was scarcely reported.

The other two designs, which were proposed by Prokhorov
and Wunsch [10], have been successfully implemented in
many applications and are still commonly used today.

1) Explicit Formulas to Calculate the Second-Order Deriv-
atives: Instead of creating an illustrative and complex dual
network, the derivation of explicit formulas to calculate the
second-order derivatives would be an alternative. As shown in
Fig. 2, this design of GDHP uses a single HDP-style critic to
approximate the cost-to-go �J (x), and it relies on mathematical
techniques to calculate the derivatives �λ = (∂ �J /∂x) and
the mixed second-order derivatives (∂2 �J /(∂x∂wc)) element-
wisely [10]. The critic, therefore, can be updated by minimiz-
ing the error to both J and its derivatives λ incrementally
as in (11). These two errors ec1 and ec2 are used jointly to
update the only set of weights in the HDP-style critic, which
is mathematically accurate but complex.

Several studies have simplified the formulas by using a
forward accumulation of the derivatives or using vectors
and matrices to derive the differential operation [28], [29].
However, the computational load is still high and will grow
exponentially with the increased width or depth of the network.
Also, it is not easy to be applied to high-dimensional prob-
lems. Besides, the explicit formulas that calculate the mixed
derivatives need to be carefully derived for different activation
functions or even a different number of layers.

2) Mixed-Style Critic Network Outputs Cost and Its Deriv-
atives: To lighten the computational load and minimize the
structure complexity, the mixed-style critic was proposed [10],
which outputs the cost-to-go �J and the derivatives �λ simulta-
neously. The critic, therefore, can be updated by minimizing
the error to both of these outputs as in (10). This design is
most commonly used [30], [33], [34], especially in complex
applications. The main reason is that the adaptation of this
mixed-style critic, as shown in Fig. 3, is as simple as the
DHP method. It is, thus, easy to increase the width or even
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Fig. 3. Mixed-style critic adaptation in GDHP, which outputs the cost-to-
go function and its derivatives. Solid lines represent the feedforward flow of
signals through the critic, and dashed lines represent the BP pathways for the
critic, denoted with BPc1 for the cost-to-go error backpropagation pathway
and BPc2 for the derivatives error backpropagation pathway.

depth of the network to deal with high-dimensional and highly
nonlinear problems.

These two outputs share the weights in the input layer and
hidden layers, making them coupled to some extent. However,
they have different weights in the top layer, which weaken the
connection between them. Analytically, the derivative of the
cost function with respect to the input, ∂ �J (x)/∂x, does not
equal to the output �λ approximated by this critic.

III. GDHP WITH AN ASSOCIATED DUAL NETWORK

This section will propose the GDHP design with an asso-
ciated dual network.

A. Critic of GDHP With an Associated Dual Network

The concept of this proposed GDHP is based on a spe-
cialized design of the HDP-style critic network �J (x,w),
with which we can create a DHP-style dual network �λ(x,w)
associated with the critic. This associated dual network needs
to be derived from the critic network explicitly and precisely
as �λ(x,w) = ∂ �J (x,w)/∂x, and its structure should be in the
same level of complexity as the DHP-style critic network.

The critic model can be generally written as

�J (x,w, c) =
�

j

w jϕ j (x, c) = wT ϕ(x, c) (12)

where x ∈ Rn and w ∈ RJ denote the top-layer parameters, j
denotes the j th parameter, and c denotes the rest parameters,
whose size depends on the width and depth of the network.
This equation can be written in the vector form with ϕ,
which is a nonlinear function of the network input x and the
parameters c. The derivatives �λ can, thus, be represented as

�λ(x,w, c) = ∂ �J (x,w), c
∂x

= wT ∂ϕ(x, c)
∂x

. (13)

When the activation function ϕ(x, c) is chosen carefully, the
associated network may have the same level of complexity as
a DHP-style critic network.

If nonlinear parameters c are fixed, the critic model is linear
in the parameters w, and the calculation of the second-order
mixed derivatives can be further simplified as

∂2 �J (x,w, c)
∂x∂w

= ∂�λ(x,w, c)
∂w

=
�

∂ϕ(x, c)
∂x

�T

. (14)

Fig. 4. Adaptation of the critic network and its associated dual network
in GDHP. Solid lines represent the feedforward flow of signals through the
HDP-style critic and the associated dual network, and dashed lines represent
the BP pathways for the HDP-style critic, denoted as BPc1, and the associated
dual network, denoted as BPc2.

In other words, when the critic model is linear in the parame-
ters, its derivatives with respect to inputs will also be linear
in the parameters. Also, the complexity of the second-order
mixed derivatives will be reduced to the same as first-order
derivatives, which can be obtained through the feedforward
calculation with the associated dual network. In addition, using
linear-in-parameter critics can help to avoid falling into the
local minima trap, which is an intractable problem associated
with BP. Note that the critic network and the dual network are
still nonlinear in the network input x.

As shown in Fig. 4, the critic network and the dual
network share the same set of parameters w as association
explicitly and accurately. This GDHP design is a special
variation of using explicit formulas as in Section II-C1, but
the computational load can be reduced to the same level as
the mixed-output design in Section II-C2 or even simpler. The
choices of the function ϕ(x) can be many, but this article
will only demonstrate two basic and specific designs, which
fall into the multilayer perceptron (MLP) and radial basis
function (RBF) categories.

1) Critic With Softplus Activation Functions: The first critic
design is based on an MLP NN with a single hidden layer (also
known as a two-layer NN), which is the same as most of the
current GDHP applications. The difference is that the weights
from the input layer to the hidden layer are random constants
C ∈ Rn×J , where J is the number of neurons or the width
of the hidden layer. This is inspired by the studies of random
features, which proved that, compared to the optimal tuning
of the nonlinearities, randomly choosing the nonlinearities in
the first layer can produce similar accuracy and faster by one
to three orders of magnitude [37].

The activation function can be any commonly used func-
tions in MLP networks, such as sigmoid and hyperbolic func-
tions. To make the associated dual network simple, effective,
and easy to demonstrate the association concept, softplus is a
good choice because its derivative is a sigmoid function. The
output of each softplus function in the hidden layer can be
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Fig. 5. Critic network with softplus activation functions and its associated
dual network with sigmoid activation functions, which shares the to-be-
determined parameters w. The hidden layer inputs in both networks are the
same.

written as

ϕ j
�
CT

j x
� = ln

�
1+ eCT

j x� (15)

where C j is the j th column vector of the constant weight
matrix C and CT

j x is the input of the j th hidden neuron.
Therefore, the associated dual network, as in Fig. 5, has J

activation functions, each of which is the partial derivative of
the j th softplus function output with respect to the critic input

ς j (x) = ∂ϕ j
�
CT

j x
�

∂x
= 1

1+ eCT
j x
· eCT

j x · C j

= 1

1+ e−CT
j x
· C j = σ j

�
CT

j x
� · C j (16)

where ς j : Rn → Rn is the j th column vector of the
derivatives ς(x) = ∂ϕ(x)/∂x and σ j is a sigmoid function
of CT

j x, which is the input of the hidden layer in the HDP-
style critic. Note that if using the sigmoid or hyperbolic
tangent activation functions in the HDP-style critic ϕ j(CT

j x),
the hidden layer of the associated dual network can be a
function of the output of the hidden layer in the HDP-style
critic ς j = ϕ j (1− ϕ j) ·C j and ς j = 1− ϕ2

j ·C j , respectively.
In this case, to reduce the repeated computations, the input of
the associated dual network can be the output of each hidden
neuron in the HDP-style critic network, where the associated
dual network is dependent on the HDP-style critic network.

It may be noticed that this dual network is consistent with
the description of the originally proposed GDHP design by
Werbos [35], which feeds the output and the states of all
hidden neurons of the critic network to the dual network.
However, the proposed method in this article, as described,
is analytically accurate and more efficient with the association.
In addition, because of the linear-in-parameter property, the
complex calculation of the backpropagation through the dual
network is circumvented. The derivatives can be explicitly
represented by a simple equation

�λ(x,w) = wT · diag(σ (CT x)) · CT (17)

Fig. 6. Critic network with RBF activation functions and its associated
dual network, which shares the to-be-determined parameters w. The output
of each square unit is a vector. These two networks have the same set of
centers c j .

where σ (CT x) = [σ1(CT
1 x), . . . , σJ (CT

J x)]T and diag(·)
reshapes the vector to a diagonal matrix. Also, the second-
order derivatives can be calculated as

∂2 �J (x,w)

∂x∂w
= C · diag(σ (CT x)) (18)

which is an explicit and straightforward solution.
2) Critic With the Radial Basis Function Network: The

radial basis function (RBF) network is often an alterna-
tive to MLPs, where the former can be used for both the
large-scale global approximation or local fine-tuning [16],
[38]. Also, RBFs are often used in (sparse) kernel methods,
which may also be used in critic designs [39]. In RBF
networks, each hidden neuron is a radial function, whose
value depends on the distance between the input to a center
point �x − c j� instead of a summation of the weighted
input CT

j x.
The second critic implementation is an RBF network with

J Gaussian radial functions

ϕ j(x) = e−(�x−c j�/r j )
2

(19)

where c j is the j th center point and r j denotes its radius.
When c j and r j are fixed, the critic is linear to the parameters
w, which are weights connecting the output of each radial
functions to the output of the critic network.

The associated network, as in Fig. 6, has J activation
functions, each of which is the partial derivative of the j th
Gaussian radial function output with respect to the critic input

ς j(x) = ∂ϕ j(x)

∂x
= e−(�x−c j�/r j )

2−2

r2
j

(x − c j)

= ϕ j (x)
−2

r2
j

(x − c j ) (20)
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where ς j is the j th row vector of the derivatives ς(x) =
∂ϕ(x)/∂x. The derivatives can be explicitly calculated as

�λ(x,w) = wT ς(x) = wT

⎡
⎢⎢⎢⎢⎢⎣

ϕ1(x)
−2

r2
1

(x − c1)

...

ϕJ (x)
−2

r2
J

(x − cJ )

⎤
⎥⎥⎥⎥⎥⎦. (21)

Also, the second-order derivatives can be represented as

∂2 �J (x,w)

∂x∂w
= ς(x)T =

⎡
⎢⎢⎢⎢⎢⎣

ϕ1(x)
−2

r2
1

(x − c1)

...

ϕJ (x)
−2

r2
J

(x − cJ )

⎤
⎥⎥⎥⎥⎥⎦

T

(22)

which is the output of the hidden layer in the associated dual
network.

3) Expanded to Complex Networks: Although increasing
the network width can reach a high enough degree of accuracy
in most applications, adding the depth of the network would be
more efficient in many other cases. The depth of the proposed
GDHP critic network can be increased to L ≥ 2 with different
activation functions in each layer, which has never been used in
conventional GDHP implementations using explicit formulas
because it is too complex to calculate the second-order mixed
partial derivatives. However, the linear-in-parameter property
of the proposed design ensures that the derivatives �λ will
also be linear in the parameters w, as in (13), regardless of
the complexity in nonlinear features. Therefore, this design
can be easily expanded to more deep and general network
designs.

A fully connected MLP network, which has L hidden layers
and is linear in parameters w, can be represented as

�J (x,w) = wTϕL

�
CT

L ϕL−1

�
CT

L−1 . . .ϕ1

�
CT

1 x
���

(23)

where ϕl : RJl → RJl denotes the activation function in the
lth hidden layer with Jl neurons and Cl ∈ RJl−1×Jl are constant
parameters from the (l−1)th layer to the lth hidden layer. The
input of the lth layer neurons is denoted as al . The derivatives�λ can, thus, be calculated as

�λ(x,w) = wT · diag
�
ϕ�L(aL)

� · CT
L . . . diag

�
ϕ�1(a1)

� · CT
1

(24)

where ϕ�l(al) : RJl → RJl denotes the first-order derivatives
of function ϕl with respect to al . Also, the second-order mixed
derivatives can be presented explicitly as

∂2 �J (x,w)

∂x∂w
= C1 · diag

�
ϕ�1(a1)

�
. . . CL · diag

�
ϕ�L(aL)

�
. (25)

The first-order derivatives of activation functions ϕ�m can
be calculated as functions of the neuron input of the critic
network, such as softplus, or as functions of neuron output,
such as sigmoid. It is again consistent with the description
of the originally proposed GDHP design by Werbos [35]
with a straightforward and illustrative structure. However,
the associated dual network is an explicit expression, and

the second-order mixed derivatives can be obtained with the
feedforward calculation of the derivatives �λ.

The applications in this article will use gradient descent
to adapt the neural network weights, which follows the
conventional routine in ACDs. It is noticeable that the linear-
in-parameter property allows the network to be updated
using linear optimization methods, such as recursive least
square (RLS) with a forgetting factor to reduce the influence of
old data. In this sense, polynomials can also be used to approx-
imate the cost-to-go in this design, which will have a simple
function of derivatives. Also, this design can be expanded to
more powerful but linear-in-parameter approximators, such as
multivariate simplex splines [40], which we leave for future
work.

B. GDHP Implementation With an Incremental Model

Conventional ACDs use a system model network to approx-
imate the dynamics of the global system, so as to close
the adaptation loop for the actor and/or the critic. To make
the learning control online, it is suggested [19], [24] to
remove the global system model and exploit previous critic
outputs and/or inputs instead. In this article, we will use
an incremental model, in line with our earlier research [26],
[27], to approximate the local linear model varying with time,
assuming a sufficiently high sample rate for discretization.

As GDHP uses discrete measurements of system states,
a nonlinear system can be written in a general discrete form

xk+1 = f (xk, uk) (26)

where f : Rn+m → Rn provides the system dynamics. When
the sample time is sufficiently small, the system dynamics
around xk can be linearized by taking the first-order Taylor
expansion as follows:

xk+1 ≈ xk + Fk−1 · (xk − xk−1)+ Gk−1 · (uk − uk−1) (27)

where Fk−1 = ∂ f (x, u)/∂x|xk−1,uk−1 ∈ Rn×n is the system
transition matrix and Gk−1 = ∂ f (x, u)/∂u|xk−1 ,uk−1 ∈ Rn×m

is the input distribution matrix of the linearized system at time
step k − 1. The incremental form of this discrete nonlinear
system can be written as

�xk+1 ≈ Fk−1�xk + Gk−1�uk . (28)

Instead of using a global model, this time-varying linear
model can be used to approximate the local system dynamics
at times. The model parameters �Fk and �Gk can be identified
online using the RLS method, which has been elaborated in
our previous research [26], [27]. These identified matrices,
which approximate the system model derivative terms, can be
directly used to close the adaptation loop of the actor and critic

�Fk−1 ≈ ∂xk

∂xk−1

����
m

(29)

�Gk−1 ≈ ∂xk

∂uk−1

����
m

(30)

where subscript m denotes the derivatives directly back through
the system model.
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Fig. 7. Schematic of the proposed GDHP with an associated dual network
and a time-varying incremental model. Solid lines represent the feedforward
flow of signals, and dashed lines represent the adaptation pathways.

Note that the proposed GDHP method also works with
global model approximators, especially when the system
model is deterministic. If using a nonlinear global model, such
as neural networks, it is necessary to calculate these partial
derivatives of the nonlinear model output with respect to the
inputs as in (29) and (30) back through the global model.

C. GDHP Framework and Adaptation Rules

The design of the critic network and its associated dual net-
work has been described. Also, the online identified incremen-
tal model will provide necessary information to approximate
the system model derivative terms to close adaptation loops.
This section will present the framework of the proposed GDHP
method and the adaptation rules for the critic and actor.

The schematic of the proposed GDHP with an associated
dual network is shown in Fig. 7. The critic, as described
in Section III-A, consists of an HDP-style critic network to
approximate the cost-to-go and an associated dual network
to approximate the derivatives, which share the same set of
weights wc. The actor network with parameters wa inputs the
system state x and outputs the action to take u.

1) Critic Adaption Rules: The critic parameters wc can be
updated after each measurement xk using (10) through two
pathways: BPc1 to update the HDP-style critic network and
BPc2 to update the associated dual network, which can be
rewritten as follows:

�wc = −ηc1ec1
∂ �J (xk−1)

∂wc� �� �
BPc1 pathway

−ηc2eT
c2

∂�λ(xk−1)

∂wc� �� �
BPc2 pathway

(31)

where ec1 and ec2 are TD errors to approximate the cost-to-
go as in (3) and its derivatives as in (7). The terms �J (x)
and �λ(x) can be calculated forward through the critic network
and the associated network with the current weight wc(tk),
respectively.

The one-step cost ck−1, for control problems, is often a
function of the system state xk−1. Thus, the term ∂ck−1/∂xk−1

in (7) is an explicit expression, which is often a function
of xk−1. The system state xk can be approximated as a
function of the previous state xk−1 and the control input
uk−1. Therefore, the last term in (7), ∂xk/∂xk−1, needs to be
calculated through two pathways: xk−1

system←−− xk and xk−1
actor←−

uk−1
system←−− xk [26]

∂xk

∂xk−1
= ∂xk

∂xk−1

����
m

+ ∂xk

∂uk−1

����
m

· ∂uk−1

∂xk−1

����
a

. (32)

By using the incremental model, the identified matrices,
as in (29) and (30), can be applied to approximate these two
system model derivative terms as follows:

∂xk

∂xk−1
≈ �Fk−1 + �Gk−1 · ∂uk−1

∂xk−1

����
a

. (33)

Also, the TD error to approximate the derivatives in (7) can
be calculated as follows:

ec2(tk) =�λ(xk−1)− ∂ck−1

∂xk−1

− γ�λ(xk)

��Fk−1 + �Gk−1 · ∂uk−1

∂xk−1

����
a

�
. (34)

2) Actor Adaption Rules: The actor weights adaptation in
the proposed GDHP is similar to other ACDs; the control
policy is improved by updating the actor to minimize the
nonnegative cost-to-go, J (xk)

u∗k = arg min
uk

J (xk)

= arg min
uk

[ck + γJ (xk+1)]. (35)

By applying the gradient descent method, the actor weights
can be incrementally updated as follows:

�wa(tk) = −ηa · ∂J (xk)

∂uk

∂uk

∂wa(tk)

= −ηa ·
�

∂ct

∂uk
+ γ λ(xk+1)

∂xk+1

∂uk

�
∂uk

∂wa(tk)
(36)

where ηa is the learning rate to update the actor weights.
In the backpropagation calculation, the derivative of the next

state with respect to the control input ∂xk+1/∂uk , as in (30),
can be approximated by the online identified input distribution
matrix �Gk−1

�wa(t) ≈ −ηa ·
�

∂ct

∂uk
+ γ�λ(�xk+1)�Gk−1

�
∂uk

∂wa(tk)
. (37)

Also, the next state �xk+1 can be predicted using the identified
incremental model as follows:

�xk+1 = xt + �Fk−1�xt + �Gk−1�ut . (38)

As shown in Fig. 7, the weight update of the actor involves
the critic and the system model through BPa backpropagation
direction.
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IV. NUMERICAL EXPERIMENTS

In this section, three simulation experiments are carried out
to examine the learning ability and efficiency of the proposed
GDHP design with an associated dual network in comparison
to the explicit analytical method and the mixed-style critic
design. The first experiment investigates the approximation
ability of the networks with optimally tuned and random
features, which verifies the feasibility of tuning only the top-
most weights. Second, the mixed-style critic and the proposed
critic designs are applied to approximate a cost function
and its derivatives. This experiment examines the associated
relation between the cost function and its derivatives of the
two critic designs and the robustness in the presence of
measurement noise. Finally, the proposed GDHP design is
validated in controlling a simplified missile model online to
track a reference signal. All these simulations are conducted
in the MATLAB environment on a computer with 1.8-GHz
CPU and 40 GB of RAM.

A. Feasibility of Critic Approximation With Random
Features

The conventional GDHP, especially those that use explicit
formulas to calculate the second-order derivatives, adapt all
the weights in a fully connected critic network to get the
optimal features. To simplify the implementation, the proposed
GDHP design, which also explicitly derives the associated dual
network, uses random fixed weights in the bottom layers and
only updates the top-layer weights. Compared to the optimal
tuning of all the weights, the random features, represented by
the random fixed weights C , with the same width will produce
a less accurate model. In other words, to improve the learning
efficiency, the approximation ability in the proposed design
will be sacrificed. However, earlier studies [37], [41] showed
that random features can reach an equal level of accuracy by
increasing the width of a network but still in much less time.

Therefore, this experiment will compare the approximation
ability and computational efficiency of neural networks with
optimizing features, which are used in conventional GDHP
with explicit analytical formulas, and those with random
features, which are used in the proposed GDHP design with
association. In this numerical experiment, two-layer neural
networks with softplus activation functions will be applied to
approximate a convex function

ϑ(x) = − cos(x), x ∈ [−3, 3]. (39)

The first neural network has 10 hidden neurons and random
initial weights C and w, both of which will be trained using
the gradient descent method adaptively. The other three neural
networks have random fixed initial weights C , and only their
top-layer weights w will be trained using the same gradient
descent method. However, the number of hidden neurons will
increase from 10 to 30. All the initial weights are randomly
chosen from a normal distribution N (0, 1). The learning rate
is small enough for convergence.

Fig. 8 and Table I present the training results of different
neural networks in terms of the root mean square (RMS)
of the training errors and CPU time. As illustrated, the first

Fig. 8. RMS of training errors using the gradient descent method to train
all weights (both C and w) and to only train the top-most weights (w).

TABLE I

TRAINING RESULTS WITH RANDOM FEATURES

neural network with 10 hidden neurons and optimal tuning of
all weights will have higher training accuracy than the same
network with random fixed weights C . However, the CPU time
to train all weights, which is 2.5239 s, is much higher than
the training of only the top-most weights. When the number of
neurons with random fixed weights increases to 20, the number
of weights to be tuned is 20, which is the same as the first
network. Also, the one with random features is slightly less
accurate than the first network with optimally tuned weights.
However, when the number of neurons further increases to 30,
the network with fixed random weights is capable of a higher
degree of accuracy, and the CPU time is 0.01762 s, which is
still in much less time. The simulation result indicates that,
compared to the conventional GDHP with optimal features
and explicit analytical formulas, the proposed GDHP critic
design with random fixed features can achieve the same level
of accuracy with much less time.

B. Association Between the Cost Function and Its
Derivatives

The mixed-style critic that outputs the cost and its deriv-
atives is the most simple-structured and widely used GDHP
design. Also, for most cost functions with perfect measure-
ments, such as the near-convex function as in the previous
section, it works well. However, the mixed-style critic design
does not produce an analytical connection between the approx-
imations of the cost and its derivatives. On the other hand,
the proposed critic design has an explicit structure of the
dual network, which is straightforward and illustrative while
retaining the analytical association.

This experiment will examine the association between a cost
function and its derivatives in the mixed-style critic and the
proposed critic design and the robustness in the presence of
measurement noise. This cost function has a higher degree of
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TABLE II

RMS ERROR OF GDHP CRITICS

nonlinearity

J (x) = −0.5 e0.5x2
cos(8x)+ ex + 0.5 sin(20x) (40)

where x ∈ [−2, 2], and its derivative can be obtained explicitly
as

λ(x) = ∂J (x)/∂x

= −0.5e0.5x2 [x cos(8x)− 8 sin(8x)] + ex+ 10 cos(20x).

(41)

In this experiment, both the mixed-style critic and the proposed
critic design use RBF networks with the width of 100. The
center points are evenly distributed within [−2, 2], and the
radius is 0.08. The centers and the radius are fixed, and
the parameters w are updated using the gradient descent
method with the same learning rate ηc1 = ηc2 as in (10).

1) Approximation Result With Perfect Measurements: Fig. 9
presents the training result of the proposed GDHP critic
design with an associated dual network. To minimize the
error with respect to both J (x) and its derivative λ(x), the
weights adaptation needs to seek a compromise. The RMS
of their training errors is 0.382 and 1.16, as highlighted in
Table II. Fig. 10 shows the result from the mixed-style critic
network, which approximate both the cost function �J (x) and
its derivative �λ(x) with different sets of weights, as described
in Section II-C2. The RMS of their training errors is 0.212 and
0.282, both of which are more accurate than the proposed
method. However, the RMS error of the derivatives from the
approximated cost ∂ �J (x)/∂x is 10.1 as shown in Table II,
which is much larger than the critic with association. It also
indicates that the analytical calculation of the derivatives
from the approximated cost does not match the approxi-
mation of the derivative from the mixed-style critic output,
i.e., �λ(x) �≡ ∂ �J (x)/∂x .

The results reveal that the mixed-style critic in this exper-
iment can approximate the cost function and its derivative
very accurately but independently, which means that their
updates are not well associated. Thus, the learning ability
of GDHP with the mixed-style critic will degenerate into a
DHP method because the actor adaptation will only rely on�λ(x). On the other hand, the proposed method guarantees that�λ(x) ≡ ∂ �J (x)/∂x , because of the association between the
HDP-style critic network and its dual network, in compliance
with the concept of GDHP.

2) Approximation Result With Noisy Measurements: To
further validate the robustness of the critic approximation,
high-frequency measurement noise is superimposed to the
perfect data samples. The simulated noise is zero-mean normal
distributed white noise N (0, σ ). Table III provides the RMS of
training errors using the two critic designs in the presence of
noise with different standard deviations σ = 1 and σ = 2. The
data from this table can be compared with the data in Table II,

Fig. 9. Outputs from the proposed GDHP critic network �J (x) and its
associated dual network �λ(x) ≡ ∂ �J (x)/∂x .

Fig. 10. Outputs from the mixed-style critic network �J (x) and �λ(x) and
the analytical calculation of the derivative ∂ �J (x)/∂x .

which indicates that the approximation errors of the mixed-
style critic increase considerably in the presence of noise.
On the contrary, the approximation errors of the proposed
associated critic remain in the same level with the superim-
posed noise, especially in �λ(x) or ∂ �J (x)/∂x . It is noticeable
that, when the standard deviation of the noise increased to
σ = 2, as shown in Fig. 11, the approximation accuracy of the
associated critic is higher than the mixed-style critic even in�J (x) and �λ(x). The results in Table III and Fig. 11 verify that,
owning to the strong and analytical association, the proposed
critic design is more robust compared to the mixed-style critic
in the presence of measurement noise.

The experiment results in this section also reveal that with
accurate training data and the same critic structure, DHP
will outperform the HDP method. This is because HDP will
only approximate J (x) and calculate the derivative using
∂ �J (x)/∂x as in Figs. 10 and 11(c). Also, the DHP method will
directly output the approximated derivative�λ(x), which fits the
true value much more accurately. For the GDHP method, the
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TABLE III

RMS ERROR OF GDHP CRITICS WITH RESPECT TO NOISY DATA

proposed critic design has the ability to minimize the error
with respect to both J and its derivative λ and to seek a
compromise.

C. GDHP With an Associated Dual Network

In this numerical experiment, the proposed GDHP algorithm
will be applied to control a simplified missile model [42], [43]
to track a reference signal. The nonlinear model of a short
period flight control problem consists of two states: angle of
attack α and pitch rate q , and the pitch is controlled using
elevator deflection δe. The nonlinear model in the pitch axis
is simulated around a steady wing-level flight condition

α̇ = q + q̄ S

ma VT
Cz(α, q, Ma, δe) (42)

q̇ = q̄ Sdl

Iyy
Cm(α, q, Ma , δe) (43)

where q̄ is the dynamic pressure, S is the reference area, ma

is the mass, VT is the speed, dl is the reference length, Iyy

is the pitching moment of inertia, Cz is the force coefficient
in body Z -direction, and Cm is the pitch moment coefficient.
Cz and Cm are nonlinear functions of angle of attack α,
pitch rate q , Mach number Ma , and elevator deflection δe.
The aerodynamic parameters of this model are valid for
−10◦ < α < 10◦ [42], [43]

Cz(α, q, Ma, δe) = Cz1(α, Ma)+ Bzδe

Cm(α, q, Ma, δe) = Cm1(α, Ma)+ Bmδe

Bz = b1Ma + b2

Bm = b3Ma + b4

Cz1(α, Ma) = φz1(α)+ φz2 Ma

Cm1(α, Ma) = φm1(α)+ φm2 Ma

φz1(α) = h1α
3 + h2α|α| + h3α

φm1(α) = h4α
3 + h5α|α| + h6α

φz2 = h7α|α| + h8α

φm2 = h9α|α| + h10α (44)

where b1, . . . , b4, h1, . . . , h10 are identified constant coeffi-
cients in the flight envelop, and the Mach number Ma is set
to be 2.2.

This model has been used to validate incremental model
based heuristic dynamic programming (IHDP) and incremental
model based dual heuristic programming (IDHP) algorithms in
our early studies [26], [27]. In the proposed GDHP algorithm,
the incremental model, as described in III-B, will also be used
to approximate the local linear model. For a fair comparison
to the IDHP algorithm, this GDHP algorithm only changes the
DHP-style critic network with the width of 6 to the HDP-style

Fig. 11. Approximation with the proposed critic and the mixed-style critic
designs in the presence of measurement noise N (0, 2). (a) Data sample of
J (x) and λ(x) with measurement noise. (b) Outputs from the proposed
GDHP critic network with association. (c) Outputs from the mixed-style critic
network.

one with an associated dual network with softplus activation
functions as in Section III-A1 and the same width. The initial
weights of the bottom layer are randomly chosen from a
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Fig. 12. Online tracking control using the IGDHPa algorithm in the presence
of sudden changes in the model at three different angle-of-attack values.
(a) Presence of sudden changes at α = 5◦. (b) Presence of sudden changes
at α = 0◦ . (c) Presence of sudden changes at α = −5◦.

normal distribution N (0, 1), and those of the top layer are
randomly chosen from the range (−0.01, 0.01). In this section,
we used IGDHPa to denote this algorithm, where “I” indicates
the incremental model and “a” indicates the proposed critic
design by association.

In this experiment, the IGDHPa algorithm is applied to
an online reference tracking task. To be more specific, the
controller is required to control the angle of attack α to track
the reference signal αref , which is a sinusoidal function of time
within 2 periods of the reference signal (4π seconds). This
online learning controller does not have any knowledge of the
system model but only the measurements of the system state
and input. Another task is fault-tolerant control with sudden
changes in the system model: the changes in signs of the Cz1,
Cm1, b2, and b4 terms in (44). These sudden changes may lead
to an unstable open-loop plant, and the policy trained with the
original system may even increase the instability of the closed
loop plant. Therefore, the actor weights will be reset to small,
random numbers when the fault is detected [26].

Fig. 12 presents the online training control result using
the IGDHPa algorithm in the presence of the aforementioned
sudden changes in the system dynamical model. These changes
are introduced after the convergence of the policy for the orig-
inal system. This figure showed a successful GDHP simulation
result in online control and fault-tolerant control tasks.

In comparison to the IDHP algorithm we proposed [26], the
averaged settling time of using the IGDHPa algorithm does
not have significant improvement. This is because the settling
time is also constrained by the learning efficiency of the actor.
However, it is found that the success rate is increased from

91.1% to 94.6%, and the run time of each training episode
with IGDHPa is reduced by 10%–20% compared to the IDHP
algorithm. The main reason is the random features used in the
critic of the proposed GDHP method, which not only increased
the learning efficiency but also, to some extent, prevented
some intractable problems associated with MLP BP, such as
falling into the local minima trap and sudden growth to infinity
weights.

V. CONCLUSION

This article proposed a new GDHP design based on an
HDP-style critic and its associated dual network. The critic
and dual networks have random fixed features and share the
same set of parameters as association explicitly and precisely.
This GDHP design can be seen as a special variation of the
originally proposed GDHP design, but the dual network is an
explicit expression, and the second-order mixed derivatives can
be obtained with the feedforward calculation of the dual net-
work. The accuracy of this proposed method is consistent with
using the explicit formulas, while the structure and complexity
are of the same level as the mixed-style critic. Therefore, this
proposed design is able to increase the learning efficiency and
feasibility of GDHP while retaining its analytical accuracy.

To examine the learning ability and efficiency of the
proposed GDHP design, this article conducted three simulation
experiments. The first experiment results illustrated that the
neural network with random fixed features, by increasing
its width, can have an equal level of accuracy as optimal
features. The result of the second experiment revealed that
our proposed method guarantees that the analytical calculation
of the derivatives from the approximated cost matches the
direct approximation of the derivatives, which outperforms
the mixed-style critic design, especially in the presence of
measurement noise. Also, the last experiment validated the
feasibility of our proposed GDHP algorithm with an online
reference tracking control task on a simplified missile model.

This article offered an option to efficient online GDHP
with method development, theoretical analysis, and some
simulation experiments. Further research is recommended to
be undertaken in the following areas: 1) this method will
be validated on more complex and realistic control problems
with wider networks; 2) the complex structure of conventional
GDHP designs causes overfitting and heavy computational
loads, which prevent its extension in deep reinforcement
learning. As the proposed GDHP critic can be expanded to
multiple layers with random fixed features, further develop-
ment of deep GDHP and its applications is recommended;
and 3) neural networks with gradient descent often suffer from
some intractable problems, such as falling into local minima
trap and overfitting. Therefore, further research might explore
linear optimization methods to train the critic and investigate
more powerful approximators, such as multivariate simplex
splines.
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