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Summary

With the development of Autonomous Vehicles (AVs), a promising future for their implementa-

tion becomes increasingly apparent. However, it is essential to acknowledge that the effects of

AV deployment are not straightforward, particularly when considering scenarios involving AVs

from different manufacturers and various levels of automation. The current research predomi-

nantly concentrates on human-driven vehicles(HDVs) and AVs. However, the assumption that

AVs exhibit homogeneous behavior is a simplification that does not reflect the actual diversity

within this category. The potential variations within AVs are not adequately addressed in the

current study.

This research is undertaken to evaluate the impact of autonomous vehicle heterogeneity

on traffic flow. To assess AV heterogeneity, the initial step involves an examination of the man-

ifestations of AV heterogeneity through data analysis. This analysis will serve as compelling

evidence of the existence of heterogeneity among AVs. The data source of the data analysis

includes two parts, the Adaptive Cruise Control (ACC) data, and the high-level AV data. For

the ACC data, the open ACC dataset is used. As for the high level, the processed Waymo

and Lyft 5 datasets are used. These datasets encompass essential information, including

the position, acceleration, and speed of the vehicles within the platoon, which is instrumen-

tal in identifying and characterizing heterogeneous driving behaviors. The analysis focuses

on analyzing parameters such as Time-to-Collision (TTC), time gap, and acceleration/decel-

eration patterns. As for the time gap, the investigations include the distribution of time gaps

under different speed ranges and different acceleration conditions. The results of the anal-

ysis contribute to the conclusion that heterogeneity among AVs is evident, not only across

various automation levels but also within the same level of AVs. Recognizing the presence

of intra-level heterogeneity among AVs enables us to draw further conclusions regarding their

behavior and characteristics.

Given the presence of heterogeneity, characterized by the same or different automation

levels with differing behavioral patterns among AVs, the car-following models are employed

to capture this heterogeneity. Therefore, these parameters are calibrated using a genetic

algorithm and maximum likelihood estimation is applied to determine the best-fit distributions

of desired time gaps and maximum accelerations. Calibrated car-following models are then

employed to represent the longitudinal behaviors of AVs. The parameters are drawn from

ii



iii

distributions, it is expected that AVs will exhibit slightly varying behaviors.

To assess the impact of heterogeneous traffic on traffic flow, various scenarios are con-

structed and evaluated. The scenarios encompass ACC vehicles, HDVs, and combinations

of ACC, highly automated vehicles(HAVs), and HDVs. The first scenario aims to assess the

impact of heterogeneity among AVs of the same automation level, so the different shares of

ACC vehicles are involved. In contrast, the second scenario involves HAVs and ACC vehicles

to evaluate the influence of heterogeneity arising from various AV automation levels. The ulti-

mate conclusion drawn from this study suggests that heterogeneity negatively impacts traffic

efficiency. Specifically, the efficiency gains afforded by vehicles equipped with ACC are offset

by the presence of heterogeneous traffic at low penetration rates. Furthermore, the results

obtained from simulation scenario 2 indicate that the introduction of multi-level AVs may have

a detrimental effect on traffic efficiency and stability. These findings underscore the need

to validate and improve AV performance comprehensively before embarking on large-scale

implementation efforts.
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1
Introduction

In this chapter, the background of this research is discussed in section 1.1, and the research

outline is introduced in section 1.2.

1.1. Background
Traffic heterogeneity typically refers to variations caused by non-identical vehicle/driver pairs.

Those differences could be different car-following behaviors or maneuvering behaviors. Ac-

cording to Makridis et al.[22], the studies of heterogeneity could be divided into three cate-

gories: intra-driver heterogeneity(the variability in the behavior of the same driver), inter-driver

heterogeneity(the variability in the behavior of different drivers), and combination of both.

Considering its profound impacts, studies on traffic heterogeneity are of great significance.

According to Yuan et al.[40], the stochastic desired accelerations to a large extent caused the

capacity drop. Traffic heterogeneity also has potential effects on traffic and brings instability

and uncertainty to traffic. Another reason to study traffic heterogeneity is that heterogene-

ity brings difficulties to the microscopic traffic simulation. According to Ossen and Hoogen-

doorn[26], the level of heterogeneity modeled strongly impacts the traffic flow predictionsmade

by microsimulation tools. This difficulty leads to the failure of traffic management measures

when addressing highly heterogeneous traffic.

The study of heterogeneity could help us to learn the traffic better and get more precise

simulation results. The CCF(classified car-following) models considered the heterogeneity pro-

posed by Sun et al.[35] can provide a more accurate description of the car-following behaviors

compared with the unified car-following model. Therefore, it is essential to gain comprehen-

1



1.2. Thesis organization 2

sive knowledge about traffic heterogeneity, which could arise from various disturbances or

from unique vehicle/driver combinations.

In the realm of autonomous vehicles, heterogeneity also exists. Current studies predomi-

nantly focus on themixture of AVs and human-driving vehicles, largely overlooking the inherent

heterogeneity within AVs themselves. However, this oversight is significant, as variations in

behavior may manifest even within AVs of the same level. The heterogeneous AV behavior

(such as distinct desired headways at identical speeds) can be attributed to both hardware

and software discrepancies. On the hardware front, factors such as vehicle mechanical limits

and sensor characteristics contribute to the heterogeneity. Similarly, on the software front,

variations in training inputs and the implementation of different algorithms also compound the

heterogeneous behavior. The heterogeneity within autonomous vehicles is a problem that

needs to be addressed prior to their widespread implementation since there is no unified stan-

dard for AVs’ behavior in real life. The heterogeneous nature of AVs may diminish or even

negate the efforts of traffic measures intended to improve traffic efficiency and traffic safety

since the current management measures do not consider the appearance of different levels

of AVs. With the development of AVs, the impact of heterogeneous AVs is becoming more

and more severe. According to the estimation done by Calvert et al.[6], the total share of

AVs will be around 18 percent in 2030. And this number will rise to 26 percent in 2035. De-

spite the pressing need for addressing this issue, the implications of AV heterogeneity remain

largely uncharted territory. Therefore, further research is needed to elucidate the impact of

such diversity on the broader framework of autonomous transportation systems.

1.2. Thesis organization
The structure of this research is shown in Figure 1.1. The first step is to analyze the ACC data.

According to SAE[13], ACC vehicles are defined as level 1 autonomous vehicles. And

there are several real-life experiments that could provide available data sets. Thus, the ACC

vehicle could be an ideal starting point for studying autonomous heterogeneity. The ACC data

subject to analysis is sourced from the openACC database. The objective of the openACC

database is to furnish comprehensive data on ACC behavior to the broader scientific commu-

nity. This initiative aims to enhance the understanding of the characteristics of ACC-equipped

vehicles and their potential impact on traffic dynamics. It also facilitates the anticipation of

potential challenges associated with the widespread adoption of ACC systems. With the avail-

able data, the first step is to identify the heterogeneity from the data sets. The exploratory data

analysis could help identify the heterogeneous driving style in the level 1 AV data sets. Then

the next step is to describe the driving behaviors. A comprehensive examination of previous
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Figure 1.1: Research structure

research in the literature review part indicates that the method employed to characterize the

heterogeneity of AVs could be the calibration of car-following models. Due to the fact that the

data sets of ACC and CACC vehicles are mostly about longitudinal behaviors, then the traffic

flow impact is mostly about the longitudinal traffic impact. The driving behavior model will only

be the car-following model. After the calibration of the car-following model, the next step is

to define the driving heterogeneity using the calibration result. The calibrated parameters will

be fitted to different distributions to find the best fit distribution. Then the traffic flow impact of

the ACC heterogeneity could be derived by simulating scenarios with the defined parameter

distribution. Then further conclusions on the AV heterogeneity can be drawn based on the

simulation results. Another aspect of this research is the traffic flow impact of vehicles with

heterogeneous automation levels. The level 4 data processed from Waymo and Lyft 5 are

used to define the parameters of level 4 autonomous vehicle longitudinal behavior. The time

gap distributions and other performance indicators could help to identify the performance dif-

ferences of vehicles of different levels. Then the simulation with mixed levels of AVs will be

conducted to identify the traffic flow effect of the AV heterogeneity. The simulation of AVs with
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different automation levels will include both the level 4 vehicles and level 1 vehicles. With the

simulation result of the two parts, one can draw a conclusion on the traffic flow effect of the

AV heterogeneity.



2
Literature review

In this chapter, a comprehensive examination is conducted on the existing research pertaining

to traffic heterogeneity and simulations involving autonomous vehicles. The primary objec-

tives of this review are to meticulously scrutinize the intricacies of traffic heterogeneity and

to establish a precise definition of the primary research focus, which is the heterogeneity

of autonomous vehicles. This review is further directed towards delving into the underlying

mechanisms of AVs and conducting a comparative analysis of car-following models suitable

for representing autonomous vehicles. Additionally, the existing research gaps is elucidated

while refining our research objectives.

2.1. Driving heterogeneity
Ossen and Hoogendoorn[26] gave a definition of heterogeneity, in their research heterogeneity

is defined as the car-following behaviors differences of driver/vehicle combinations under the

same conditions. They also distinguish the two kinds of driver heterogeneity: the inter-driver

and the intra-driver. The inter-driver heterogeneity denotes the variation in driving behaviors

exhibited by different drivers under similar conditions. A multitude of research endeavors have

attempted to characterize this inter-driver heterogeneity, often categorizing behaviors into dis-

tinct driving styles, such as aggressive or normal. On the other hand, intra-driver heterogeneity

pertains to the inconsistencies in a driver’s behavior when subjected to various driving envi-

ronments. A substantial body of research exists addressing the fluctuations in driver behavior

consequent to changes in the driving environment such as freeway or non-freeway.
The methods of characterizing the heterogeneity are shown in Table 2.1.

5



2.1. Driving heterogeneity 6

Table 2.1: Methods of characterizing the heterogeneity

Year Author heterogeneity type method

2013 Sundbom et al.
inter-driver heterogeneity

(normal driving
and aggressive driving)

ARX models

2018 Berthaume et al.
intra-driver heterogeneity

(different road type,
different congestion level)

Psychophysical
Car-Following Framework

2022 Makridis et al.

inter-driver heterogeneity
(mild, normal and dynamic)
and intra-driver heterogeneity

(use IQR to quantitatively describe)

vehicle- and speed-independent
acceleration-based metric:

Independent Driving Style (IDS)

2018 Wang et al. Inter-driver heterogeneity
a Bayesian nonparametric

approach based on a
hidden semi-Markov model

2015 Taylor et al. Inter-driver heterogeneity

Dynamic Time Warping (DTW)
algorithm and its

application for calibrating
this microscopic
simulation model

2021
Yarlagadda
and Pawar

Intra-driver heterogeneity
and inter-driver heterogeneity

PCA and K-means clustering

FromTable 2.1, it can be observed that when related to the inter-heterogeneity, a commonly

used method is to character the driving behavior into different styles by clustering or other sta-

tistical methods, Sundbom et al.[36] developed a driver behavior classification method based

on online estimation of a PrARX model to identify the two different driving styles: aggressive

and normal. And when it comes to intra-heterogeneity, the researchers mainly focus on the

factor that mainly influences driving behavior, especially car-following behavior. Berthaume

et al.[4] verified the heterogeneity in car-following acceleration behaviors by applying the Psy-

chophysical Car-Following Framework. Yarlagadda and Pawar [38] employed Principal Com-

ponent Analysis (PCA) and K-means clustering to discern that the level of driver aggression

varies across different driving regimes. They further established that characterizing drivers

based on abstract driving features does not adequately capture the diversified nature of driv-

ing behavior. Ossen et al.[27] have found the existence of the two kinds of heterogeneity

based on the trajectory data. The result shows that two kinds of heterogeneity are present

in traffic at the same time and the intra-driver heterogeneity is less strong compared to the

inter-driver heterogeneity.
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2.2. AV heterogeneity
The inter-driver and intra-driver heterogeneity does not fully suit the autonomous vehicle since

(part of) driving behaviors are not implemented by humans. The AVs also have the extra char-

acter that HDVs do not have, the different automation levels. Within the same automation

level, the AVs still have different driving behaviors due to the different algorithms or different

training data sets. In the analogy between the HDV and AV, AV heterogeneity could also be

categorized into two levels: intra-automation level heterogeneity and inter-automation level

heterogeneity. Thus, the definition of AV heterogeneity in this research could be given: dif-

ferences between the car-following behaviors of different levels of AVs and different driving

behaviors of the same level AVs.

The studies that related to the AV heterogeneity mainly focus on the mixture of the different

automation levels of vehicles (usually level 0 and level 1 AV) since there are clear behavior

differences among the AV and HDV. However, there are still some studies that explore the

heterogeneity within the same level of AVs though the concept of heterogeneity is not clearly

proposed. The difference in the AV could mainly be defined as the following aspects: desired

time gap, acceleration/deceleration, and reaction time.

The first aspect under consideration pertains to the desired time gap, a fundamental ele-

ment in car-following behavior. The significance of the desired time gap in modeling vehicle

behavior has been widely acknowledged in the literature. Numerous ACC algorithms have

been specifically engineered to uphold a consistent desired time gap during vehicular opera-

tions. ACC-equipped vehicles have gained recognition for their ability to effectively maintain

smaller time gaps while in motion, thus contributing to enhanced operational efficiency. In

simulations involving ACC vehicles, the desired time gap is often configured to adopt either a

fixed value or a selection from among a limited set of predefined values. Historical research

has frequently relied upon subjective preferences to establish these fixed values. For instance,

Nowakowski et al. [25] conducted a study wherein subjective opinions regarding ACC/CACC

systems were collected and subsequently utilized to inform time gap settings. However, in this

research, they constrained the options for ACC vehicle time gap settings to just three values:

1.1 seconds, 1.6 seconds, and 2.2 seconds. These values correspond to the three primary

levels of gap settings as provided by vehicle manufacturers, namely, short, intermediate, and

long. Subtle differentiations within each level of the gap setting have been disregarded for

simplicity. It is noteworthy that the desired time gaps can vary significantly among different

vehicles. In the case of HDVs, these gaps are typically categorized into clusters denoting

aggressive or normal driving behaviors. Even within these clusters, some degree of variation

may persist. It is conceivable that such variations also exist within ACC-equipped vehicles
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and HAVs.

In conclusion, the ACC vehicles in the past simulation are modeled very homogeneously

and these methods neglect the difference between the shortest desired time gap setting dif-

ference of vehicles from different manufacturers.

The desired time gap may, to some extent, be influenced by user preferences. while the

determination of maximum acceleration and deceleration for ACC vehicles and HAVs during

car-following behavior is not under the control of the drivers. Consequently, the strategies for

acceleration and deceleration in AVs might exhibit a greater degree of diversity compared to

the desired time gap. Previous research has shown that ACC systems tend to deliver smoother

acceleration profiles. In fact, many ACC-equipped vehicles incorporate mechanisms that limit

jerk, thereby enhancing the overall driving experience. Conversely, high-level AVs designed

to operate across a wide range of scenarios may have more relaxed acceleration constraints

to accommodate challenging conditions. It’s important to emphasize that due to variations

in algorithms and the distinct objectives of different AV systems, the acceleration patterns

exhibited by HAVs can differ markedly.

Additional factors, such as the accuracy of sensors, may indeed influence vehicle behavior.

Nevertheless, these factors have not been taken into account in our analysis, as they do not

exert a direct impact on traffic flow. Rather, their influence is more indirect, affecting key fea-

tures like desired time gap and acceleration, which in turn can influence traffic flow. Therefore,

only the main behavior difference of the AV will be included in this research. The behavioral

differences among the desired time gap and acceleration will be detailed examined.

2.3. AV simulation review
The study of AV traffic flow heterogeneity is motivated by the significant impact that AVs have
on traffic flow dynamics. The structure of autonomous vehicles is inherently complex, char-
acterized by a sequential process involving the sensing, recognition, decision, and action
loop[39]. While the output of AVs can be translated into acceleration or braking actions, the
inputs to the AV system typically consist of raw data collected from various sensors. Conse-
quently, modeling autonomous vehicles poses a challenging task. Accurate modeling of AVs
is crucial for addressing design issues or evaluating their performance. However, when exam-
ining the traffic flow impact of AVs, such a method may be unnecessary. Table 2.2 shows the
AV modeling of recent years.
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Table 2.2: Review of the recent AV model methods

Author Year Modelling method Simulation scenario

Calvert et al.[6] 2017 LMRS-IDM+ model
motorway corridor
with three lanes

So et al.[31] 2020 Enhanced Intelligent Driver Model Frankfurter Ring road section

Fang et al.[9] 2022
automatic lane change algorithm,

ACC model based on IDM
The upstream part of
a motorway in Hungary

Berrazouane et al.[3] 2019
LC2013,

ACC car-following model
motorway segment

Lu et al.[20] 2019 Krauss Model
Grid network and

urban traffic network

Kavas-Torris et al.[14] 2023
Wiedemann 99

(CoExist parameters)
Four different scenarios contains

freeway and urban road

Guo et al.[10] 2023 cellular automata model
single-lane scenario with

different communication range

Zheng et al.[41] 2020 A stochastic Lagrangian model
single-lane straight
highway section

The prevalent approach formicroscopically modeling AVs is the integration of Car-Following

and Lane-Changing models, as evident from existing research. This method could provide

accuracy that exploring the traffic flow impact of AVs could be used and reduce the complex-

ity at the same time. The used car-following models include the IDM, EIDM, Krauss Model,

Wiedenmann 99 model, and ACC/CACC model. The parameters of those models came from

the literature or from the calibration of experiment data.

There are studies that provide the recommended parameters of the car-following model to

represent the behavior of AVs. The first project is the CoExist project. CoExist project using

the Wiedemann 99 car-following model to represent the longitudinal behavior of AVs[33]. The

recommended parameters are shown in Table 2.3. The AVs are specified into four different

categories: Rail safe, Cautious AV, Normal AV, and Aggressive AV. The results are validated

by comparing the car-following model result to the autonomous vehicle driving logic in different

simulation scenarios.

Table 2.3: CoExist W99 model parameters

Parameters rail safe cautious normal all knowing

CC0 1.5 1.5 1.5 1

CC1 1.5 1.5 0.9 0.6

CC2 0 0 0 0
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CC3 -10 -10 -8 -6

CC4 -0.1 -0.1 -0.1 -0.1

CC5 -0.1 0.1 0.1 0.1

CC6 0 0 0 0

CC7 0.1 0.1 0.1 0.1

CC8 2 3 3.5 4

CC9 1.2 1.2 1.5 2

The CoExist project does not specify the level of AVs. In the report given by Atkins[2], the
different parameters of the W99 model are applied to represent the different levels of AVs. The
suggested parameters are shown in Table2.4.

Table 2.4: W99 model parameters suggested by Atkins[2]

Capability Levels CC0 (m) CC1 (s) CC7 (m/s2) CC8 (m/s2) CC9 (m/s2)

Level 2 1.5 0.9 0.25 3.5 1.5

Level 3

Cautious 2.5 1.8 0.1 3.2 1.2
Normal cautious 2 1.2 0.2 3.4 1.4
Normal assertive 1 0.8 0.3 3.6 1.6

Assertive 0.5 0.6 0.4 3.8 1.8

Level 4 0.5 0.6 0.4 3.8 1.8

The predominant approach for assessing the impact of AVs is through simulation. Within

the realm of simulation scenarios, the most used method is to consider different penetration

rates of the AVs and evaluate the simulation result to determine the impact of the AVs under

different penetration rates. One common view on the traffic flow impact of the AV is that when

the penetration rate is low, the AV will have a negative impact or limited positive impact on the

traffic flow, when the penetration rate is high (50% or larger), the AV will have positive impact

on the traffic flow.

Calvert et al. [6] conducted simulations of a motorway segment and used the LMRS-IDM

model to represent ACC vehicles, revealing that low-level automated vehicles in mixed traffic

scenarios tend to yield a marginal adverse effect on traffic flow and road capacities. Improve-

ments are observed only when the penetration rate exceeds 70%. Similarly, Fang et al. [9]

arrived at comparable results, where the introduction of HAVs and CAVs negatively impacted

network performance. However, high CAV penetration rates led to a notable reduction in traf-

fic delays. Guo et al.’s research[10] suggested that a large AV penetration rate ensures a low

level of traffic congestion in mixed traffic flows.
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It is important to note that divergent viewpoints exist within the research community. For

instance, Berrazouane et al. [3] conducted simulations of a motorway segment, revealing a de-

crease in the maximum traffic flow rate with an increasing penetration rate of AVs. Meanwhile,

Lu et al.[20] contend that AV penetration has a positive impact on enhancing road network

capacity in a quasi-linear fashion.

Though the opinions on the traffic flow impact of the introduction of AVs are quite different

due to the fact researchers are applying different methods and making different assumptions,

the introduction of the AV heterogeneity will surely help to improve the AV simulation method

and make the simulation result more reliable.

2.4. Research gap
The future of Autonomous Vehicles is becoming increasingly evident, with the consequence

of their implementation becoming increasingly apparent. Among the various impacts, the in-

fluence of AVs on traffic flow in mixed traffic environments emerges as a critical consideration,

given its intrinsic connection to both efficiency and safety.

The second research gap is the current research has not sufficiently addressed the diverse

driving behavior of autonomous vehicles at the same level of automation, as well as the vari-

ations across different levels of automation for AVs. The current research on the traffic flow

impact of autonomous vehicles is limited, as studies often consider only a single level of au-

tomation as it is shown in Table 2.2. The AVs in the simulation only contain different shares

of ACC (level 1 AVs) and human-driving vehicles. In the investigation of AV traffic flow impact,

it is often assumed that the AVs are highly homogeneous, or even exhibit identical behavior

(Same car-following model parameter). Thus, the concept of AV heterogeneity is introduced

to explore the traffic flow impact of AVs. In this research, autonomous vehicle heterogeneity

comprises the different driving behavior of the same level of AVs and the different automation

levels of AVs.

2.5. Research objective and research questions
The primary objective of this research is to evaluate the traffic flow impact of autonomous

vehicle heterogeneity. This study leverages empirical data to systematically observe and an-

alyze the heterogeneity within a given context. Subsequently, the simulation techniques will

be employed to comprehensively assess the implications and consequences of this hetero-

geneity. This research can yield valuable insights into autonomous vehicle heterogeneity and

its external manifestations, thereby informing the development of future autonomous vehicle

technologies. To achieve the research objective, the following research questions are pro-
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posed.

• Does empirical data exhibit evidence of autonomous vehicle heterogeneity?

• Whatmethodology ismost suitable for modeling the inherent heterogeneity in autonomous

vehicles?

• What are the traffic flow impacts of autonomous vehicle heterogeneity?

To model the AV heterogeneity, the first step is to identify the heterogeneity in the empirical

data. In the literature review section, the definition of autonomous vehicle heterogeneity is

given: differences between the car-following behaviors of different levels of AVs and different

driving behaviors of the same level AVs. After giving the definition of AV heterogeneity, one

can identify the AV heterogeneity in the dataset. Thus, the first research question includes

two sub-questions:

• Does the same level of AVs show different driving behaviors?

• Do different levels of AVs show different behaviors?

It seems there is a plain fact for the answer. The variations in sensors, decision-making al-

gorithms, and overall vehicle design will result in performance differences. Nonetheless, an

empirical dataset will be subjected to analysis to substantiate the presence of heterogeneity.

The same-level heterogeneity will be analyzed based on the ACC data set. Starting with the

low-level autonomous vehicle could be a great option due to the data sets availability. The

analysis will focus on the time gap, and the time-to-collision and acceleration will also be in-

cluded. Regarding the second sub-question, the level 4 data set obtained from Waymo and

Lyft5 will be used. The objective is to compare the performance of a level 4 AV with that of a

level 1 AV.

The second research question is how to model heterogeneous autonomous vehicles. This

question not only includes how to model the AV in the further simulation but also is about how

to obtain the heterogeneity in the simulation. The answer to this question will based on the

existing literature and the comparison between different models.

With the measured AV heterogeneity, it comes to the third question, What could be the

traffic flow impact of ACC vehicles? The impact of the heterogeneous low-level autonomous

vehicle will be derived using microscopic simulation. The simulation scenario will include ACC

vehicles with different driving behaviors. The impact of different level AVs will include different

shares of ACC vehicles and level 4 AVs. Then the conclusion on heterogeneity could be drawn

by analyzing the simulation result and the explanation of the AV heterogeneity could be given.

Then the main result question could be answered.
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2.6. Research methodology
As illustrated in Figure 1.1, this research can be divided into two distinct components: data

analysis and simulation. The data analysis segment primarily centers around the characteriza-

tion of AV heterogeneity. This characterization encompasses an evaluation of heterogeneity

concerning the factors discussed in the literature review, specifically, desired time gap and ac-

celeration/deceleration patterns. Furthermore, an essential surrogate safety metric, the time-

to-collision of ACC vehicles and Highly Automated Vehicles, is scrutinized.

Following the elucidation of heterogeneity, it becomes imperative to examine the ensuing

traffic flow impact within the context of heterogeneous traffic conditions. To fulfill the objectives

of this research, two simulation tools are considered: PTV Vissim and Eclipse SUMO which

are widely recognized as two of the most commonly employed traffic simulation software. PTV

Vissim stands as a commercially available microscopic traffic simulation software developed

by PTV Group, ideally suited for practical traffic engineering and analysis. Conversely, Eclipse

SUMO is an open-source microscopic traffic simulation software, developed collaboratively by

the Eclipse Foundation and the German Aerospace Center, predominantly utilized for research

and development endeavors in the realm of transportation and mobility. The choice between

these tools hinges on specific project requirements and the extent of customization and ex-

tensibility needed. Simulation work involving heterogeneous vehicles necessitates software

that offers a convenient means of customizing the behavior of each vehicle. In PTV Vissim,

such customization is achieved by defining behavior through GUI or PTV’s scripting language.

In contrast, Eclipse SUMO allows for straightforward behavior modification through the edit-

ing of XML configuration files. It’s worth noting that PTV Vissim exclusively supports the W99

andW74 car-following models while integrating other models requires additional effort. On the

other hand, SUMO supports a broader range of car-following models, simplifying the modeling

process. In consideration of the user-friendly nature and enhanced customization capabilities,

Eclipse SUMO is selected as the preferred simulation tool.

As depicted in Table 2.2, a plethora of methods are available for representing AVs within

the simulation scenario. In this research, the approach entails employing a car-followingmodel

coupled with a lane-changing model. Specifically, the car-following models utilized are IDM

and EIDM, complemented by the lc2013 lane-change model. The reason behind selecting

these models is discussed in Section 4.3.

To capture the heterogeneity among AVs, a distribution-based method is employed. Within

this approach, distributions for each parameter of the car-following model are constructed.

Subsequently, this distribution is utilized for the resampling of vehicles within the simulation

environment. It is essential to underscore that this process necessitates both car-following
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model calibration and the identification of the best-fitting distribution.

For the calibration of the car-followingmodel, the genetic algorithm is chosen as themethod

of choice. In the context of car-following model calibration, a typical GA workflow involves en-

coding potential parameter sets as chromosomes, assessing their fitness by comparing model

output to observed data, selecting the fittest chromosomes for the production of offspring via

crossover and mutation operations, and iteratively repeating this process across multiple gen-

erations until a satisfactory solution is achieved. The selection of the genetic algorithm for

car-following model calibration is well-founded, supported by prior research and optimization

algorithm assessments, as demonstrated by Punzo et al. [29]. Their results indicate that ge-

netic algorithms are capable of rediscovering the true values of model parameters. Even when

a genetic algorithm becomes trapped in local minima, it consistently converges towards the

known values of the most sensitive parameters. This underscores the effectiveness of cali-

brating the model based on the spacing between the lead vehicle and the follower, yielding

acceptable results in terms of vehicle speed. Furthermore, a substantial body of existing car-

following model calibration work[15][28] has effectively employed GA as a robust optimization

approach. Additionally, there are also works that calibrated the car-following models of AV

using the GA[19]. For the identification of the best-fit distribution, the Python package Fitter is

applied. The fitting process applied the MLE and the selection of the best-fit distribution will

based on the multi-criterion which includes: SSE, AIC, and BIC.



3
Analysis on AV heterogeneity

In this chapter, the heterogeneity of autonomous vehicles is analyzed by comparing the empir-

ical data from different data sets and the conclusions on the presence of AV heterogeneity will

be drawn. The result helps us to know the heterogeneity better and serves as the foundation

for subsequent simulations.

3.1. Data pre-processing
3.1.1. ACC data sets
The analysis of the ACC system heterogeneity is based on the ACC platoon empirical data.

The descriptions of the data sets are shown in table 3.1. The data set includes six data sets and

the data source is the Open ACC database[7]. The openACC database is uploaded to provide

comprehensive data on ACC behavior to the scientific community. The database contains

all essential longitudinal information on the ACC vehicles in platoons of different sizes. The

dataset includes vehicles from various manufacturers and experiments conducted in multiple

locations. Part from the ring road data set and the low-speed data set, other subsets in the

open data set are utilized in this research. The data set contains the position, speed, and

inter-platoon spacing of the ACC vehicle platoon. The platoon sizes vary from two to eleven.

The lengths of the data segment are different, most of the segments are longer than 1000s.

15
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Table 3.1: ACC data sets description

Pliot location Vehicle Driving type Description

Sweden
Audi (A6), Tesla (Model 3),

Mercedes (A Class)

ACC/

Manual driving

Speed,

Inter Vehicle Spacing,

GPS Position

Italy
Hyundai Nexo,

SsangYong REXTON

ACC/

Manual driving

Speed,

Inter Vehicle Spacing,

GPS Position

Italy
Fiat (500X), Volvo (XC40),

VW (Polo),

Hyundai (Ioniq hybrid)

ACC/

Manual driving

Speed,

Inter Vehicle Spacing,

GPS Position

Italy Hyundai Nexo, Ford S-Max
ACC/

Manual driving

Speed,

Inter Vehicle Spacing,

GPS Position

Italy

Ford S-Max, KIA (Niro),

Mitsubishi (SpaceStar),

Mitsubishi (Outlander PHEV),

Peugeot (5008 GT Line),

VW (Golf E), Mini (Cooper)

ACC/

Manual driving

Speed,

Inter Vehicle Spacing,

GPS Position

Hungary

Tesla (model X), Tesla (model 3),

Tesla (model S),

Mercedes-Benz (GLE 450 4Matic),

Jaguar (I-Pace), BMW (I3 s),

Audi (E-tron), Toyota (Rav 4),

Mazda (3), Audi (A4 Avant)

ACC/

Manual driving

Speed,

Inter Vehicle Spacing,

GPS Position

The first step of pre-processing is data smoothing. The simple moving average over 3 data

points is used to reduce the noise of data. After the smoothing, two filters are applied to the

data. For the ACC data sets, only the driving data under the ACC driving mode are taken

into account. The second filter is the ACC setting. As shown in Figure 3.1, the two peaks

of the time headway distribution correspond to the two different settings of the ACC system.

Apart from the effect of the heterogeneous time-gap setting, other heterogeneity effects are

explored under the minimum gap setting due to data availability. Additionally, for all the ACC

data utilized in this research, the ego vehicles are under the car-following condition.
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Figure 3.1: BMW (X5) time gap distribution

3.1.2. Level 4 autonomous vehicle data set
The datasets processed by Hu et al.[12] and Li et al.[18] are utilized in this study. The data

descriptions are presented in Table 3.2.

Hu’s dataset is derived from the Waymo dataset, which is one of the most well-known AV

datasets. It contains information about the movement of the AV and the data extracted from

its surrounding environment. In their work, Hu et al. process the data by extracting all car-

following pairs, removing outliers, and filtering noise. Subsequently, they reformat the data

to align with the typical datasets collected by the traffic flow research community. The car-

following pairs in this dataset consist of Level 4 vehicles and human-driven vehicles, specif-

ically focusing on AV-HDV(AV following HDVs) pairs. Out of 1000 pairs, 195 are selected

for analysis. This dataset contains comprehensive information related to the behavior of au-

tonomous vehicles and the behavior of the leading vehicle. Quality assessments of the data

indicate that the overall quality surpasses that of the NGSIM dataset[12]. In terms of size and

scope, this dataset aligns with the Waymo open dataset[34], as it is derived from it. It consists

of 1000 segments, each lasting 20 seconds, which is considerably shorter than the ACC data.

The dataset processed by Li et al.[18] is derived from the Lyft 5 dataset[11]. The Lyft 5

dataset was collected by 20 autonomous cars following a predetermined route in Palo Alto,

California for four months. Li et al. first selected car-following pairs based on specific criteria.

They further evaluated the raw data for anomalies to assess its quality. To enhance the data,

they applied motion planning, Kalman filtering, and wavelet denoising techniques to correct

and improve the raw car-following data. In this research, only the AV-HDV pairs are selected

as well. The size of the processed Lyft dataset is larger than the processed Waymo dataset.

The processed Lyft 5 dataset contains 8262 AV-HDV pairs and the length of each segment is

around 25s. Lyft include urban and non-urban environment while theWaymo data set contains



3.2. Exploratory data analysis 18

mostly the urban environment.

Table 3.2: High-Level autonomous vehicle dataset

Author Number of HV-AV pairs Segment length

Hu et al. 195 20s

Li et al. 8262 around 25s

3.2. Exploratory data analysis
3.2.1. Time to collision
Various surrogate safety measures have been introduced, with TTC standing out as the most

well-known and frequently utilized indicator. This concept is instrumental in the domains of

traffic safety and collision avoidance systems, as it quantifies the time required for a vehicle

to reach a specific point or object if it maintains its current trajectory. TTC serves as a valu-

able parameter for the assessment and prediction of potential collisions and is widely used

in a range of automotive safety systems, including ADAS and high-level AVs. The Time-to-

Collision (TTC) calculation is defined as follows:

TTCi =
Xi

∆Vi

Where the Xi is the distance between the two vehicles at time i and the ∆Vi is the speed

difference of two vehicles at time i.

The time-to-collision cumulative distribution functions are shown in Figure 3.2, where the

Figure 3.2: Time-to-collision cumulative distribution function
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TTCs in this figure are the TTCs of the ego vehicle to the leading vehicle in the platoon. Only

the TTCs less than 8s are considered. From the figure, it can be observed that the cumulative

distribution function of different vehicles has different trends. Among the ACC vehicle groups,

the Audi(A6) and the Mercedes(AClass) have a clearly higher percentage of small TTCs(TTCs

< 3s). This fact indicates that the current ACC systems are taking different driving strategies

and some vehicles behave more dangerously compared to others.

As for the level 4 Waymo data, the TTC cdf is shown in Figure 3.3. The start point of the

CDF line is 2.5 seconds which indicates that there might be risky behaviour during the car-

following process. The increase rate of Waymo CDF between 3.3s and 5s is large and the

overall time-to-collision of Waymo vehicles is pretty large compared to ACC vehicles.

Figure 3.3: Waymo time-to-collision CDF

3.2.2. Time gap
For all the time gaps considered in this research, the vehicles are under the car-following

condition and the time gap settings of the ACC vehicles are the minimum gap setting. The

distributions of the time gap are shown in Figure 3.4. For these four ACC vehicles, the median

of the time gap distribution is different and the standard deviations of the time gaps are different.

The Tesla Model 3 has the largest median of the time gap, indicating that Tesla might have the

largest desired headway.
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(a) Time gap distribution Audi(A6) (b) Time gap distribution BMW(X5)

(c) Time gap distribution Mercedes(AClass) (d) Time gap distribution Tesla(Model3)

Figure 3.4: Time gap distribution of different vehicles

The distribution of time gaps for the Waymo vehicle is illustrated in Figure 3.5. The Level 4

AV exhibits a large desired headway and a large standard deviation in the time gap since the

median of the time gap is 3.514s and the standard deviation of the time gap distribution is 2.926.

This could be attributed to the algorithm implemented in the Level 4 vehicle, which is designed

to handle more complex environments. An increased desired time gap may contribute to

improved emergency response capabilities.
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Figure 3.5: Time gap distribution Waymo

To further explore the heterogeneity of the autonomous vehicle, the time-gap distributions

of ACC vehicles under different acceleration conditions are shown in Figure 3.6, 3.7, and

3.8. There are three distinct conditions in this context: acceleration, deceleration, and stability.

Each condition is determined based on specific criteria, as outlined in the reference [32]. More

specifically, a vehicle is classified as being in acceleration condition if its acceleration exceeds

0.5m/s2. Conversely, if the acceleration falls below−0.5m/s2, the vehicle is categorized under

deceleration condition. Otherwise, if the acceleration is between these two thresholds, the

vehicle is considered to be in stable condition. It can be observed that when the vehicles are

under acceleration condition, the distribution have the largest difference.

Figure 3.6: Headway distribution

(acceleration)

Figure 3.7: Headway distribution

(stable)

Figure 3.8: Headway distribution

(deceleration)

The K-S test is applied to identify whether the two samples are from the same distribution.

The K-S test checks whether the two distributions are similar or not by generating the cumula-

tive figures and finding the largest distance along the y-axis. The statistical value of K-S test
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is:

Dm,n = max
x

|Fm(x)− Fn(x)|

Where Fm(x) is the first sample and the size of the sample is m. Fn(x) is the second sample,

the size is n. The c(α) is the inverse of the Kolmogorov distribution at α. The null hypothesis

is that both samples are from the same distribution. The Dm,n,α is calculated by the following

equation:

Dm,n,α = c(α)

√
m+ n

mn

And if the statistical value Dm,n is bigger than Dm,n,α, we can reject the null hypothesis at

a significant level α. If not, we can not reject the null hypothesis which means that the two

distributions are probably the same. According to the result of the K-S test, the time gaps are

likely from two different distributions. The result of the K-S test are shown in Table 3.3. If the

p-value is smaller than 0.05, the null hypothesis (datasets are from the same distribution) is

rejected.

Table 3.3: K-S test result

Sample 1 Sample 2 Statistic value P-value

Audi(A6) Audi(A6) 0 1.0000

Audi(A6) BMW(X5) 0.153164741 0.0000

Audi(A6) Mercedes(Aclass) 0.209611841 0.0000

Audi(A6) Tesla(Model3) 0.255334544 0.0000

BMW(X5) Audi(A6) 0.153164741 0.0000

BMW(X5) BMW(X5) 0 1.0000

BMW(X5) Mercedes(Aclass) 0.066837009 0.0000

BMW(X5) Tesla(Model3) 0.108462778 0.0000

Mercedes(Aclass) Audi(A6) 0.209611841 0.0000

Mercedes(Aclass) BMW(X5) 0.066837009 0.0000

Mercedes(Aclass) Mercedes(Aclass) 0 1.0000

Mercedes(Aclass) Tesla(Model3) 0.076607449 0.0000

Tesla(Model3) Audi(A6) 0.255334544 0.0000

Tesla(Model3) BMW(X5) 0.108462778 0.0000

Tesla(Model3) Mercedes(Aclass) 0.076607449 0.0000

Tesla(Model3) Tesla(Model3) 0 1.0000

The time gap distributions of the Waymo vehicle under different conditions are shown in

Figure 3.9, Figure 3.10 and Figure 3.11. Since the overall time gap distribution of Waymo is
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within a wider boundary, the time gap distributions under different acceleration conditions are

different.

Figure 3.9: Waymo headway

distribution (acceleration)

Figure 3.10: Waymo headway

distribution (stable)

Figure 3.11: Waymo headway

distribution (deceleration)

The speed filter could also be applied to the time gap distribution. The speed-specified

time gap distributions are shown in Figure 3.12. Four speed ranges have been specified. For

(a) Speed range 0.5-5.5 (b) Speed range 5.5-10.5

(c) Speed range 10.5-15.5 (d) Speed range 15.5-20.5

Figure 3.12: Speed specific time gap distribution

the range of 0.5m/s to 5.5m/s, the time gap distributions of ACC vehicles are similar. However,
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the peak of the BMW is less than 2 seconds, while for the other vehicles in the first data set,

the peak is larger than 2 seconds. This indicates that BMWs exhibit riskier behavior under

low-speed conditions. Additionally, the time gap distribution for other speed ranges shows

ubiquity in heterogeneity.

As for the Waymo dataset, the speed-specific time gap distributions are shown in Figure

3.13. The overall trends of the distributions are similar to the ACC distribution, low-speed

condition has a larger time gap.

Figure 3.13: Speed-specific time gap distribution of Waymo

3.2.3. Acceleration and deceleration
The cumulative distribution functions of autonomous vehicles’ acceleration are shown in 3.14

and 3.15. The increase rate of the CDF curve at a given point reflects how rapidly the proba-

bility is accumulating in that particular region. If the increase rate of the CDF curve is high at a

certain point, it indicates that a large portion of the data is concentrated around that value. Con-

versely, a low increase rate suggests that the data is more dispersed or less frequent around

that value. Commercial ACC systems are designed to keep the maximum acceleration within

certain limits to ensure a pleasant driving experience. However, the cumulative distribution

ratio of acceleration and deceleration indicates that there are differences in these limits. The

percentage of stable acceleration conditions is high which indicates that the car-following con-

dition of Waymo vehicles is quite stable. And the maximum acceleration is around 2.8m/s2

and the largest deceleration is around 2.9m/s2. The CDF of level 4 AV is lower than the curve

of ACC vehicle when the acceleration (deceleration) is small which indicates that high-level

AVs are more likely to take extreme acceleration or break.
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Figure 3.14: Acceleration cumulative distribution

function

Figure 3.15: Deceleration cumulative distribution

function

Another thing that need to be mentioned is the string stability of ACC vehicles. Within the

openACC database, the string stability of ACC vehicles exhibits variability, with both string-

stable and string-unstable platoons present. Research conducted by Makridis et al.[21], has

identified the coexistence of stable and unstable platoons in the dataset. According to their

research, platoon stability is primarily dependent on the time gap setting. There exists a thresh-

old time headway setting, above which a platoon can exhibit string stability, and below which

the platoonmay become string-unstable. This observation highlights the heterogeneity of ACC

vehicles with respect to string stability.

3.2.4. Summary
From the above analysis, conclusions on the manifestations of AV heterogeneity could be

drawn. The heterogeneity of same-level AVs are shown in different aspects. Some ACC

systems are applying more risky driving strategies than other ACC systems. And the ACC

vehicles have different time headway distributions under comparable conditions. The desired

time intervals for various ACC systems exhibit variation, even when all settings are configured

to their minimum values. Throughout the entire frame considered in this research, the vehicles

are consistently under car-following conditions, with the time gap setting for the ACC vehicles

consistently configured to the minimum gap setting. The comparison of the data reveals that

the time gap distributions of ACC vehicles exhibit variations even when the acceleration con-

ditions are identical. Furthermore, this conclusion remains consistent across the four speed

ranges examined. The analysis in this chapter proves that heterogeneity within the same au-

tomation level exists. The level 4 Waymo vehicle also has different longitudinal characteristics

from the ACC vehicle. According to the time gap distribution, the Waymo vehicle takes more

cautious behavior and could be considered a cautious driving style.
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Model Calibration

In this chapter, the candidate car-following models are introduced and subsequently calibrated.

Following the calibration process, the calibration results are briefly explained. Additionally, the

model to be used in simulations is selected mainly based on the calibration results.

4.1. Car-following models
The Eclipse SUMO encompasses various car-following models, including the ACC/CACC

model, W99 model, IDM, and EIDM. For the first simulation scenario, the three models are

considered candidate car-following models of the ACC vehicles: the ACC model developed

by Milanés and Shladover[23], the EIDM, and the W99 model. For the HAVs, the W99 and

EIDM are taken into consideration. The candidate models are selected based on two aspects:

accessibility and capability. For Highly Automated Vehicles (HAVs), we take into consideration

the W99 and EIDM models.

The selection of candidate models hinges on two primary criteria: accessibility and the

model’s capacity for accurately representing the longitudinal behavior of vehicles. Since the

SUMO is selected as the simulation tool, the selected model must be accessible in the SUMO.

Another standard is its capability to model the longitudinal behavior of AVs and HDVs. This

selection of the candidate car-following model is predicated on the extensive utilization of the

IDM within numerous prior investigations as the designated car-following model for AVs/CAVs.

It is also noteworthy that employing the same car-following model for vehicles with different

automation levels is advantageous, as it simplifies the comparison of model parameters and

fosters a more consistent and scientifically robust evaluation.

26
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As for the lane-changingmodel, the default model lc2013[8] is selected as the lane-changing

model of the vehicle in the simulation. ACC-equipped vehicles and human-driven vehicles

adhere to the default parameters, whereas high-level autonomous vehicles have modified pa-

rameters to align with their distinctive characteristics. To make the calibration result more

comparable, the same car-following model EIDM is utilized.

4.1.1. W99
The Wiedeman 99 model is one of the most widely recognized psycho-physical models in

traffic studies and serves as the default car-following model in PTV Vissim software. The

W99[1] model encompasses four distinct conditions: free-flowing, approaching, following, and

emergency. These conditions are determined by the ”perceptual threshold” boundary. The

Wiedemann 99 car-following model is visually represented in Figure 4.1. The figure displays

various boundaries that play an essential role in defining the model’s behavior, including:

• AX: The desired distance between a vehicle and the one it is following.

• ABX: The desired minimum following distance, setting the lower limit for the following

regime.

• SDX: The maximum following distance, establishing the upper limit for the following

regime.

• SDV: The approaching point where the following driver perceives that they are closing

in on a slower leading vehicle.

• CLDV: The decreasing speed difference between the following and leading vehicles.

• OPDV: The increasing speed difference between the following and leading vehicles.

Figure 4.1: Schematic representation of Wiedemann model [1]
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The parameters that will be calibrated are shown in Figure 4.1.

Table 4.1: Wiedemann 99 parameters

Parameters Description

CC0 The desired gap between two vehicles in a stopped condition

CC1 Time gap following the driver keeps in for a safety in moving state

CC2 Range of gap between vehicles in the following regime

CC3
The time between the beginning of deceleration after perceiving of

slow-moving leader to start the unconscious-following behavior

CC4
Speed difference during the following process. CC4 controls speed

differences during the opening process (Negative relative speed),

CC5
Speed difference during the following process. CC5 controls speed

differences in the closing process (Positive relative speed).

CC6
Influence of distance on speed oscillation during the following

condition

CC7
Actual acceleration during oscillation in the unconscious-following

regime

CC8
Desired acceleration when the vehicle starting from the standing

condition

CC9
Desired acceleration at 80km/hr. However, it is limited by maximum

acceleration for the vehicle type.

4.1.2. ACC/CACC model
Another model is the ACC (CACC) model developed by Milanés et al.[23]. Since the vehicles

in the platoon are always under the following condition defined by the model (the clearance dis-

tance is smaller than the minimum threshold), then only the car following part will be calibrated.

The car following part of the model is shown in Equation 4.1.

a = k2(d− Tv − L) + k3(vl − v) (4.1)

where k2 is the gain in positioning difference between the preceding vehicle and the subject

vehicle, and k3 is the gain in speed difference between the preceding vehicle and the subject

vehicle.
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4.1.3. Enhanced IDM model
The EIDM is an advanced version of the Intelligent Driver Model developed by Treiber and

Kesting. The EIDM builds upon the IDM’s foundational principles and incorporates several

model extensions to enhance its accuracy and applicability. These extensions primarily focus

on reducing the jerk, especially during maneuvers like lane changes and accelerating from a

standstill. The EIDM takes inspiration from various existing model extensions of the IDM and

integrates them into a comprehensive framework. One of the notable features of the EIDM

provided by SUMO is its flexibility, allowing individual extensions to be selectively activated or

deactivated by adjusting their corresponding parameters. This adaptability ensures that the

model can be tailored to specific driving scenarios and conditions. The IDM has been widely

used as a reference for ACC car-following models [23]. The model is shown in Eqution 4.2

and Eqution 4.3.

aIDM = a[1− (
v

v0

δ
− (

s∗(v,∆v)

s
)2] (4.2)

s∗(v,∆v) = s0 + vT +
v∆v

2
√
ab

(4.3)

The enhanced version of IDM is developed by Kesting et al.[16]. The model is shown in

Function 4.4.

aACC =

aIDM if aIDM ≥ aCAH ,

(1− c)aIDM + c[aCAH + btanh(aIDM−aCAH
b )] otherwise.

(4.4)

where aIDM is the acceleration calculated by the IDM, and aCAH is the constant-acceleration

heuristic (CAH) of the safe acceleration.

4.2. Calibration method
Before the calibration, the calibration method needs to be specified. The genetic algorithm is

used in this project since the genetic algorithm is well used in the car-following model calibra-

tion and according to the optimization algorithms assessment performed by Punzo et al.[29],

the genetic algothrim can get a more satisfactory result compared to other methods when

dealing with a car following model calibration problem. The Python package Scikit-opt is used

to realize the genetic algorithm.
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4.2.1. Objective function
Before comes to the details of the calibration settings, it is necessary to determine the measure

of performance (MoP) and the goodness of fit (GoF) need to be decided. As calibration is only

a part of simulation preparation and not the core focus of this research, the choice of objective

function is based on prior research. In the car-following model calibration, the spacing, speed,

and acceleration are commonly selected as the MoP(measure of performance). Punzo et

al.[30] compared various combinations of measures of performance and goodness of fit. Their

findings indicated that using RMSE and acceleration as a measure of performance is the best

option when using a single MoP. This calibration approach is more Pareto efficient than other

combinations of singleMoP. Thus, the acceleration is used as theMoP, and theGoF is selected

as RMSE. The objective function is shown in Equation 4.5.

RMSEspacing =

√
ΣN
i=1(s

sim
i − sreali )2

N
(4.5)

Where ssim and sreal represent simulated and ground truth spacing, respectively, and N is

the number of data points.

4.2.2. Calibrator settings
The configuration parameters employed for the Genetic Algorithm calibrator are provided in

Table 4.2. These settings are the default values of the calibrator, and it’s important to note

that the maximum number of iterations has been set to a sufficiently high value to achieve

satisfactory results.

Table 4.2: Calibrator settings

Parameter Value

Maximum number of iterations 500

Population size 50

Dimension of objective function 3

Mutation rate 0.001

Precision 1.00E-04

The default values of EIDM parameters are determined based on the simulation parame-

ters utilized in the research conducted by Kesting[16] et al. The boundaries of these parame-

ters are established according to the previous work on IDM model calibration.
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Table 4.3: EIDM parameters bounds

Parameters Description Bounds Default value

v0 desired speed [1, 70] 33.4

T desired time gap [0.1, 5] 1.1

s0 jam distance [0.1, 8] 2

a maximum acceleration [0.1, 6] 1.4

b desired deceleration [0.1, 6] 2

c coolness factor [0, 1] 0.99

As for the ACCmodel, the bounds and default values of the parameters are shown in Table

4.4. The default value of k2 and k3 are the simulation result from Milanés et al.[23].

Table 4.4: Bounds and default values of ACC/CACC model

Parameter Desicription Bounds Default value

k2
gain in positioning difference between the

preceding vehicle and the subject vehicle
[0, 1] 0.23

k3
gain in speed difference between the

preceding vehicle and the subject vehicle
[0, 1] 0.07

t Desired time gap [0, 3] 1.1

The parameter settings of W99model are shown in Table 4.5. The initial values are set with

reference to Zhu et al.[42]. And the default value is the recommanded value for Intermediate

ACC vehicle accodring to Bierstedt et al.[5].

Table 4.5: W99 car following model parameters

Parameters Desicription Bounds Default value

CC0 tandstill Distance [0, 20] 1.25

CC1 Spacing time [0, 5] 0.8

CC2 Following Variation [0, 10] 3

CC3 Threshold for Entering ”Following” [-20, 0] -12

CC4 Negative ”Following” Threshold [-5, 0] -0.35

CC5 Positive ”Following” Threshold [0.1, 5] 0.35

CC6 Speed dependency of oscillation [0.1, 20] 0

CC7 Oscillation acceleration [-1, 1] 0.25

CC8 Standstill acceleration [0, 8] 3.5
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CC9 Acceleration at 80 km/h [0, 8] 1.5

VDES Desired speed of following vehicle [72, 108] 90

4.3. Model selection
In this section, the car-following model for the simulation is chosen following a thorough calibra-

tion process. The average RMSE values obtained from the calibration results are presented

in Table 4.6. Assessing the overall calibration results, it is evident that the ACC model and the

EIDM model exhibit a notably superior fit when compared to the W99 model, as indicated by

the significantly larger RMSE values for the W99 model. Consequently, the selection of the

car-following model will be made from the EIDM and ACC models.

Table 4.6: Average RMSE of different models

EIDM W99 ACC model

ACC dataset 0.545 5.209 0.239

High level AV dataset 0.057 0.043

The comparisons between the acceleration generated by the calibrated car-following mod-

els and the ground truth data are illustrated in Figure 4.2 and Figure 4.3. Notably, the trajectory

produced by the ACC model exhibits a closer alignment with the ground truth data. However,

it is essential to acknowledge that the ACC model falls short in capturing the extrema of ac-

celeration and deceleration during the driving process. This discrepancy may be attributed

to the fact that the calibrated values of parameters k2 and k3 significantly deviate from the

recommended values. Specifically, the recommended values are 0.23 for k2 and 0.07 for k3,”

whereas the calibration results yield a higher value for k3 and a substantially lower value for k2.

Consequently, the calibrated results exhibit a superior conformity to the observed acceleration

when compared to the EIDM model. However, it is important to note that the ACC model does

not effectively capture extreme acceleration and deceleration events.

To further make the decision between the ACC model and EIDM, a pilot simulation is con-

ducted to evaluate the capability of the ACC model and EIDM to represent the ACC-equipped

vehicles. The simulation scenario is a simplified version of the same one introduced in Sec-

tion 5.2. The number of errors is shown in Table 4.7. The number of collisions and emerging

brake incidents associated with the EIDM are deemed acceptable, with no collisions and only

1 emerging brake event recorded during the two-hour simulation. In contrast, the ACC model

generated a significantly higher number of undesirable outcomes, which is deemed unaccept-

able. This model recorded 322 collisions and 203 emerging brake events, highlighting a sub-
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Figure 4.2: Comparison of ground truth acceleration

vs. ACC Model generated acceleration

Figure 4.3: Comparison of ground truth acceleration

vs. EIDM generated acceleration

stantial performance gap in dealing with merging problems when compared to the EIDMmodel.

Analysis of the simulation logs reveals that scenarios employing the ACC model consistently

generate emerging brake actions and collisions at specific locations, specifically at edges E2

and E4. These edges correspond to positions following the onramp, where vehicles are in

the process of merging into the main traffic stream. This recurrent issue can be attributed to

the underlying data used for calibrating the ACC model, which were collected under stable

car-following conditions. Consequently, the ACC model is calibrated with conservative val-

ues for speed gain and space gain, making it ill-suited for simulations involving vehicle merg-

ing scenarios. While one potential solution could involve the introduction of human takeover,

implementing this in the SUMO environment is not straightforward. SUMO only offers Gap-

closing control mode and Collision avoidance control mode for the ACCmodel. Even with both

modes activated, only collision incidents are mitigated, leaving an unacceptably high number

of emerging brake events due to the absence of appropriate values for speed gain and space

gain. As a result, the EIDM emerges as the most suitable car-following model for accurately

simulating heterogeneous ACC-equipped vehicles in scenarios involving vehicle merging.

Table 4.7: Collisions and brake applications of different models

Number of collisions Number of emergency brake applications

EIDM 0 1

ACC model 322 203

Regarding high-level automated vehicles, the EIDM model is the chosen car-following

model for representing longitudinal behaviors. This selection is predicated on the extensive uti-

lization of the IDM within numerous prior investigations as the designated car-following model
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for Connected and Automated Vehicles and using the same car-following model for vehicles

with different automation levels will make it easier to compare the parameters. Given that the

EIDM effectively represents AVs within themodel, it becomes the logical choice for maintaining

uniformity. In a pilot simulation, it is worth noting that both the EIDM car-following models can

be utilized without leading to unacceptable levels of collisions or emerging brake incidents.

4.4. Calibration result analysis
4.4.1. ACC vehicle calibration result
The mean, median, and coefficient of variation of the calibrated parameters are shown in Table

4.8.

Table 4.8: ACC vehicle EIDM calibration results

v_0 T s_0 a b c RMSE
Mean 38.46 1.01 2.30 0.72 2.47 0.87 0.55

Coefficient of variation 0.46 0.37 0.81 0.87 0.84 0.33 1.53

Median 34.98 1.10 2.00 0.61 1.96 1.00 0.28

The box plots of the calibrated results are shown in Figure 4.5 and Figure 4.4. Obser-

vations reveal that while there are a few outliers, the majority of the recorded time gaps fall

within the range of 1 to 2 seconds. The calculated mean and median time gaps are 1.01 sec-

onds and 1.1 seconds, respectively. These figures closely align with the anticipated values for

the desired time gap in ACC-equipped vehicles. In terms of minimum distance, the prevalent

range lies between 1 meter and 3 meters. This range aligns well with our expectations. In the

context of acceleration, the ACC-equipped vehicles demonstrate relatively modest accelera-

tion profiles. The majority of recorded accelerations fall below 1.2 m/s². This behavior can be

attributed to two factors. Firstly, commercial ACC systems intentionally restrict the maximum

acceleration to enhance passenger comfort. Secondly, it’s important to note that the dataset

primarily comprises platoon driving scenarios, where instances of rapid acceleration, such as

going from a standstill, constitute a small percentage or may even be absent. Regarding com-

fortable deceleration, the distribution exhibits significant variability. The level of comfortable

deceleration is notably influenced by the frequency of sharp deceleration events within the

trajectory. In terms of the desired speed, the calculated median speed is 34.98 m/s, a value

consistent with typical highway speed limits.
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Figure 4.4: Boxplot of ACC vehicles EIDM desired speed

Figure 4.5: Boxplot of ACC vehicles EIDM parameters

To further validate the quality of the calibration, the trajectories of the vehicles are plotted

to make a comparison between the ground truth and the car-following model simulated trajec-

tories. The acceleration, velocity, and position of the simulated result and ground truth data

are shown in Figure 4.6. Due to the objective function of the calibration being selected as the

RMSE of the spacing, both the position, velocity, and acceleration have a relatively good fit.

Both the short and long trajectories are displayed. For shorter trajectories, the alignment of po-

sition, velocity, and acceleration is notably high, though the peaks of the acceleration are not

perfectly captured. However, for longer trajectories, while acceleration exhibits a strong cor-

respondence, some disparities emerge in both velocity and position. It can be observed that

there is a significant duration during which the simulated velocity consistently remains lower

than the corresponding ground truth velocity. Overall, the trajectory analysis suggests that the

EIDM effectively represents the car-following behavior of the ACC-equipped vehicles. It aptly
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captures the trend and variations in acceleration, despite some discrepancies in simulated

velocity and position.

(a) Simulated and real position (short
trajectory)

(b) Simulated and real velocity (short
trajectory)

(c) Simulated and real acceleration (short
trajectory)

(d) Simulated and real position (long
trajectory)

(e) Simulated and real velocity (long
trajectory)

(f) Simulated and real acceleration (long
trajectory)

Figure 4.6: Simulation of ACC vehicles trajectories by GA-calibrated EIDM acceleration, velocity, and position

4.4.2. ACC string stability
Treiber and Kesting[37] introduced a simple explicit stability criterion for evaluating the string

stability of car-following models. The simplified criterion for the IDM is expressed as follows:

a ≥ s0
T 2

(4.6)

Where a denotes the maximum acceleration, s0 represents the standstill distance, and T

signifies the desired time gap. Treiber and Kesting also confirm that the EIDM, when subjected

to the constant-acceleration heuristic constraint, generally exhibits behavior closely aligned

with that of the IDM, thus preserving its well-established and desirable properties. Conse-

quently, this criterion is applied to the calibration results of the EIDM to conduct a preliminary

assessment of the string stability of the modeled vehicles. The results are shown in Figure

4.7.
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Figure 4.7: ACC vehicle string stability

The outcomes of this analysis reveal that while amajority of vehicles exhibit instability, there

are still some sets of parameters that result in stable behavior. Importantly, these findings are

consistent with the results obtained from the data analysis.

4.4.3. HAV calibration result
The overall review of the high-level autonomous vehicles calibration result are shown in Table

4.9.

Table 4.9: HAV EIDM calibration result

v_0 T s_0 a b c RMSE

Mean 26.91 2.47 4.99 0.94 1.34 0.60 0.04

Coefficient of variation 0.81 0.58 0.51 0.77 1.29 0.66 0.62

Median 16.03 2.23 5.90 0.79 0.58 0.75 0.04

The box plots of the calibrated results are shown in Figure 4.9 and Figure 4.8. The mean

desired speed for the autonomous vehicle is 26.86 m/s, considerably lower than the average

desired speed exhibited by the ACC vehicles. This contrast is attributed to the inclusion of

urban driving scenarios within the dataset of level 4 autonomous vehicles, where lower de-

sired speeds are typical due to the urban environment’s characteristics. The desired time gap

of the HAV is mainly distributed between 1.5s and 3.8s, as evidenced by the boxplot repre-

sentation. Notably, the coefficient of variation for this parameter is higher when compared to

ACC-equipped vehicles which indicates the HAV vehicle is more heterogeneous than ACC-

equipped vehicles. Regarding the minimum distance, both the mean and median values are

calculated at 5 meters and 5.9 meters, respectively. These findings regarding the desired time
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gap and minimum distance collectively suggest that HAVs adopt a more cautious driving style

compared to their ACC-equipped counterparts. Furthermore, when examining acceleration

behavior, it is observed that HAVs exhibit smaller maximum acceleration values when com-

pared to human-driven vehicles. This conservative acceleration pattern is likely attributed to

the overall cautious driving behavior adopted by the HAVs.

Figure 4.8: Boxplot of HAV calibration results

Figure 4.9: Boxplot of HAV calibration results

The simulated trajectories and ground truth data pertaining to Highly Automated Vehicles

are presented in Figure 4.10. In the context of representing HAV behavior, there are some

unfavorable calibration results, primarily attributable to the inherently more intricate nature of

HAV dynamics. For instance, in trajectory two, it becomes evident that although the EIDM

captures the general trends satisfactorily in acceleration, disparities emerge in the estimation

of position and velocity. Notably, as demonstrated in Figure 4.10e, the velocity profile of the

simulated data exhibits shortcomings, primarily attributed to the model’s inability to accurately
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replicate the peak acceleration values. In a broader assessment, it becomes apparent that the

overall efficacy of employing the EIDM to replicate car-following behavior in HAVs falls short

when compared to its performance in the context of ACC-equipped vehicles. However, using

the EIDM to reproduce the HAVs could still be a reasonable idea because of EIDM’s capability

of capturing the trends of acceleration.

(a) Simulated and real position (data
segment 1)

(b) Simulated and real velocity (data
segment 1)

(c) Simulated and real acceleration (data
segment 1)

(d) Simulated and real position (data
segment 2)

(e) Simulated and real velocity (data
segment 2)

(f) Simulated and real acceleration (data
segment 1)

Figure 4.10: Simulation of HAV trajectories by GA-calibrated EIDM acceleration, velocity, and position

4.5. Summary
The objective function is selected as the RMSE of spacing, guided by existing literature and

research objectives. Based on the calibration results, the car-following model for use in simu-

lations is determined. The EIDM was selected for its accurate simulation of position, velocity,

and acceleration, which aligns with the research goals. To maintain consistency, the EIDM

is also selected as the car-following model for HAVs and HDVs. The calibration results indi-

cate that the EIDM can effectively represent ACC vehicles in both short and long trajectories.

Although most desired time gaps hover around 1.1 seconds, with a small coefficient of varia-

tion, there are some outliers. Nonetheless, this is consistent with expectations. It has been

observed that many calibrated parameter sets for ACC vehicles exhibit poor string stability,

which is consistent with the data analysis findings. However, calibration results for HAV data

are different. Some trajectories align well with the model, while others exhibit less fitting due
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to the limited duration of each HAV data segment (20 seconds at a 10Hz frequency). The

short segment duration leads to significant parameter variations. The calibrated desired time

gaps for ACC vehicles are reliable, but the reliability of desired time gaps is contingent on the

quality of the data. Nevertheless, the larger volume of HAV data contributes to the increased

reliability of the calibration results.



5
Simulation setup

In this chapter, two simulation scenarios are established to explore the impact of heterogene-

ity within AVs. These scenarios involve variations in AV levels, with one focusing on the het-

erogeneity among AVs at the same automation level, and the other examining heterogeneity

across different levels of AVs. The setup process encompasses the determination of vehicle

behaviors within the simulation. Furthermore, the chapter provides a detailed introduction to

each scenario, which includes the geometric design of the motorway section, specifications re-

garding input flows into the main section and the onramp, and the placement of loop detectors.

Additionally, the composition of traffic flows within both scenarios is presented.

5.1. Parameter settings
Within the simulation framework, two parameters extracted from the calibrated values are

embedded within the enhanced Intelligent Driver Model (IDM): the desired time gap and the

maximum acceleration.

In the case of several other parameters, the desired speed is significantly influenced by

the prevailing speed limit in the given location. Conversely, for the standstill distance, no dis-

cernible specific trends are identified. In the context of the coolness factor, the distribution

exhibits a relatively tight concentration, with the majority of values clustering around 1. The

rationale behind selecting these two parameters is also to emphasize the primary factors that

exert the most significant influence on the study. The omission of these parameters is in-

tended to underscore the impact of the desired time gap and acceleration, which aligns with

the primary focus of the data analysis. In the data analysis segment, the emphasis is predomi-

41
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nantly on assessing the influence of time gap and acceleration, rather than speed or headway

distance. The selection of the parameters also acts as the simplification of the research. Fur-

thermore, it is important to note that the method for modeling heterogeneous traffic relies on

random parameter selection. Increasing the number of randomly chosen parameters raises

the likelihood of vehicles displaying unusual or erratic behavior.

The desired time gap and the parameters related to acceleration constitute the primary

manifestations of heterogeneity in external factors. The decision to omit deceleration from this

context arises from the intricate nature of calibrating comfortable deceleration. This calibra-

tion process significantly hinges upon the dataset segment. In situations where the segment

predominantly comprises stable data, occurrences of abrupt deceleration are scarce. Conse-

quently, the calibrated deceleration values derived from such segments might not accurately

represent the magnitude necessary for faithful simulation outcomes.

Then the best-fit distribution of the desired time gap and acceleration are selected from all

distributions supported by the Scipy library. The fit method of the Scipy will return themaximum

likelihood estimates of the parameters of each distribution, then the best-fit distribution of the

calibrated parameters will be determined based mainly on the sum of the squared estimate of

errors (SSE). Additionally, the AIC and BIC of each fitted distribution are also calculated to help

determine the selection of the distribution. The AIC is computed using aic = 2∗k−2∗ log(Lik),

and the BIC is computed as k∗log(n)−2∗log(Lik). Both AIC and BIC provide ways to evaluate

and compare models based on a combination of how well they fit the data and how complex

they are. AIC strikes a balance between fit and complexity, while BIC leans towards simpler

models by imposing a stronger penalty for complexity.

5.1.1. HDV parameters
The parameters of the IDM for human-driven vehicles are sourced from existing literature. The

research also takes into account the heterogeneity within human-driven vehicles. However,

it’s important to note that the primary focus of this research does not revolve around the hetero-

geneity of human-driven vehicles. Therefore, the distribution of parameters for human-driven

vehicles is drawn from established literature.

The shape of the parameter distribution is derived from the work of Kim and Mahmas-

sani[17]. In their study, they calibrated trajectories using data from the Generation Simulation

trajectory data and subsequently obtained the shape of the lognormal distribution that best

fits the car-following model parameters. The specific parameters of the distribution for the

car-following model of human-driven vehicles are presented in Table 5.1.



5.1. Parameter settings 43

Table 5.1: EIDM parameter best Fit distribution (HDV)

Distribution Distribution parameters

T lognormal {’µ’: 1.27, ’σ’: 0.50}

a lognormal {’µ’: 1.41, ’σ’: 1.01}

As the final parameters will be sampled from a distribution, specific limits are imposed on

the desired time gap and acceleration to prevent the emergence of impractical values. These

limits are defined in accordance with the boundaries established by Treiber and Kesting[37]. In

practice, realistic values for the desired time gap typically range from 2 seconds to 0.8 seconds

or even lower. Similarly, the practical range for maximum acceleration usually falls within the

interval of 0.8m/s2 to 2.5m/s2.

5.1.2. ACC vehicle parameters
For the desired time gap, the five distributions with the smallest SSE are shown in Table 5.2.

The AIC value for the gamma distribution is 136.03, surpassing those of both the Weibull

and Laplace distributions. However, it remains smaller than the values observed for other

distributions. Concurrently, the BIC value for the gamma distribution is 145.77. Both the AIC

and BIC values exhibit relatively modest magnitudes, whereas the SSE is significantly lower in

comparison to alternative distributions. Consequently, the gamma distribution is identified as

the optimal choice for modeling the heterogeneous desired time gap among ACC-equipped

vehicles.

Table 5.2: Desired time gap distributions fitting result (ACC)

sumsquare_error aic bic

dgamma 83.12 136.03 145.77

gennorm 92.58 137.15 146.89

dweibull 98.25 118.85 128.59

laplace_asymmetric 104.21 141.62 151.36

laplace 108.81 121.25 127.75

As for the acceleration, the five distributions with the smallest SSE are shown in Table 5.3.

The selection of the Burr distribution is substantiated by the significantly lower values of the

AIC and BIC compared to alternative distribution choices while the differences in SSE are very

small.
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Table 5.3: Acceleration distributions fitting result (ACC)

sumsquare_error aic bic

burr 12.82 770.23 780.14

hypsecant 12.78 1126.90 1131.85

genlogistic 12.84 987.33 994.77

gumbel_r 12.84 984.45 989.41

logistic 12.86 1247.97 1252.92

Within this context, the optimal distribution model for the desired time gap is the dgamma

distribution, whereas the burr distribution characterizes the best-fit distribution for acceleration

patterns. The most probably distribution parameters associated with EIDM are presented in

Table 5.4. Parameters ”a”, ”c” and ”d” govern the shape of the distribution, while ”loc” and

”scale” serve as parameters utilized to adjust the distribution’s location and scale.

Table 5.4: EIDM parameter best fit distribution (ACC Vehicle)

Distribution Distribution parameters

T dgamma a’:0.78, ’loc’: 1.10, ’scale’: 0.20

a burr c’: 3.50, ’d’: 0.49, ’loc’: 0.76, ’scale’: 0.63

Illustrations of the desired headway distributions are shown in Figure 5.1 and Figure 5.2.

The empirical data are the desired time gap distribution that calibrated from the database, the

theoretical density is from the best-fit distribution.

Figure 5.1: Empirical and theoretical density of desired

time gap distribution

Figure 5.2: Empirical and theoretical CDF of desired

time gap distribution

It can be observed that the distribution of desired time gaps exhibits a pronounced concen-

tration of around 1.1 seconds. Furthermore, there is a difference between the desired time gap
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exceeding 1.1 seconds and those not meeting this threshold. The empirical and theoretical

distributions exhibit overall trends; however, a notable divergence exists: the theoretical cdf

commences at 0 seconds, whereas the smallest observed desired time gap within the empir-

ical dataset approximates 0.5 seconds. Furthermore, the maximum desired time gap among

ACC-equipped vehicles registers at approximately 1.6 seconds. These findings suggest that

the fitted distribution may effectively represent the distribution of time gaps within a specific

range, specifically from 0.5 seconds to 1.5 seconds.

In order to enhance the validation of the best-fit distribution, a probability plot of the em-

pirical data and the selected distribution is provided. The probability plot effectively commu-

nicates the degree of fit along the x-axis. As shown in Figure 5.3, the observed distribution

closely aligns with the theoretical distribution within the range of 0.5 seconds to 1.5 seconds.

However, notable discrepancies become apparent when the desired time gap falls below 0.5

seconds or exceeds 1.5 seconds. This outcome corroborates earlier analysis.

Figure 5.3: Probability plot of ACC vehicle desired time gap

In terms of acceleration characteristics, the empirical and theroratic distribution are shown

in Figure 5.4 and Figure 5.5. The majority of maximum accelerations are below 2m/s2. And

a sharp decline is observed after crossing the 1.2m/s2 threshold, and almost disappearing

after reaching 3m/s2. The trend of the empirical data closely resembles that of the theoretical

data before the 1.5m/s2, although there is a notably steeper decline in the empirical dataset.

Specifically, a substantial divergence becomes evident at an acceleration rate of 1.75m/s2.

The disparity might be because of the limited size of the calibrated parameters.



5.1. Parameter settings 46

Figure 5.4: Empirical and theoretical density of

acceleration distribution

Figure 5.5: Empirical and theoretical cdf of

acceleration distribution

The probability plot of ACC acceleration and best-fit distribution is shown in Figure 5.6.

The degree of fit shown in the probability plot is less satisfactory; nevertheless, it remains

adequate for conveying the overarching pattern of acceleration, which is characterized by

uniformity between 0.8m/s2 and a sharp decrease after reaching 1.5m/s2.

Figure 5.6: Probability plot of ACC vehicle acceleration

Drawing from the empirical and theoretical cumulative distribution functions, along with the

empirical and theoretical probability density functions, and considering the information gleaned

from the probability plot, we can identify the most suitable distribution for the acceleration and

desired time gap variables. This best-fitted distribution can then be employed for resampling

purposes.
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5.1.3. HAV parameter setting
Differing from the desired time gap distribution of the ACC vehicles and HDV, from Figure5.7

it can be clearly seen that there are two clear clusters in the desired time gap distribution.

The median of the first cluster is around 1.5s and the median of the second cluster is about

4 seconds. The assumption is made that the desired time gap of HAV is the mixture of two

different distributions. This assumption is reasonable since the traffic context of the lyft5 data

includes both the expressway and urban road. The cluster with a smaller desired time gap

could represent a reasonable simulation time gap. The Bayesian Gaussian mixture model

will be applied to filter the data that are not suitable for the simulation. Bayesian Gaussian

mixture models constitute a form of unsupervised learning and can be useful in fitting multi-

modal data for tasks such as clustering, data compression, outlier detection, or generative

classifiers. Therefore, the GMM could be used to cluster the one-dimensional data. Another

thing that could be seen is that the too many values around 0s and 5s, this is because of

the boundary. This phenomenon also appears in many other car-following model calibration

works[28][12]. So before the clustering, the time gaps that are smaller than 0.1s or larger than

5s are filtered out. These values are considered as noise of GA. The scikit-learn library of

Python is used to divide the calibrated parameters into two clusters, the clustering result is in

Figure 5.7. The boundary of the two clusters is 3 seconds, for the desired time gaps are larger

than the 3 seconds are assumed as the data that is not suitable for the simulation since the

context is different.

Figure 5.7: Clustering result of desired time gap

Then apply the same process as the ACC vehicle parameter distribution fitting. Then the

best fitting result of the HAV vehicle is shown in Table 5.5 and Table 5.6. The Maxwell distribu-

tion emerges as the most suitable fit for the desired time gap distribution. This conclusion is

supported by the observation that the SSE for the Maxwell, Chi, and Nakagami distributions
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are comparable, while the AIC and BIC values for the Maxwell distribution are lower. These

AIC and BIC values suggest a superior model fit when accounting for model complexity. The

Maxwell distribution exhibits lower complexity while maintaining an equivalent level of fitting

quality.

Table 5.5: Desired time gap distributions fitting result (HAV)

sumsquare_error aic bic

maxwell 0.85 229.74 242.50

chi 0.85 232.14 251.28

nakagami 0.85 232.14 251.28

burr12 0.87 231.88 257.40

chi2 0.90 235.88 255.02

The Maxwell distribution is also identified as the optimal fit for the acceleration data, pri-

marily due to its significantly lower SSE. However, the AIC and BIC values for the Maxwell

distribution are relatively higher. This outcome implies that the Maxwell distribution offers a

superior fit while being associated with a higher level of complexity.

Table 5.6: Acceleration distributions fitting result (HAV)

sumsquare_error aic bic

maxwell 0.35 1945.03 1957.29

rayleigh 0.39 1778.29 1790.55

norm 0.40 2635.32 2647.58

logistic 0.48 1359.28 1371.54

dweibull 0.54 1465.51 1483.91

The parameters of the best fitting distribution are shown in Table 5.7.

Table 5.7: EIDM parameter best fit distribution (HAV)

Distribution Distribution parameters

T maxwell {’loc’: 0.27, ’scale’: 0.90}

a maxwell {’loc’: 0.52, ’scale’: 0.65}

The optimal-fit distribution for the desired time gap is depicted in Figure 5.8 and Figure 5.9.

In comparison to the desired time gap distribution observed in ACC-equipped vehicles, the dis-

tribution of desired time gaps for highly autonomous vehicles exhibits greater variability. Addi-

tionally, the HAVs display an overall larger desired time gap in comparison to ACC-equipped
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vehicles. This finding concurs with the conclusions drawn during the data analysis phase.

From the CDF plot, it can be seen that the overall fitted situation of the maxwell distribution is

pretty well.

Figure 5.8: Empirical and theoretical density of desired

time gap distribution

Figure 5.9: Empirical and theoretical CDF of desired

time gap distribution

The probability plot of the best-fitted distribution is shown in Figure 5.10. It is evident that

the Maxwell distribution provides a satisfactory fit for the data within the time interval ranging

from 0.5 seconds to 3 seconds. The result of the probability plot suggested that the Maxwell

distribution could be used to re-sample the desired time gap of the HAVs.

Figure 5.10: Probability plot of ACC vehicle acceleration

In terms of themaximum acceleration, the illustration of the distribution and CDF are shown

in Figure 5.11 and Figure 5.12. The accelerations are main between the 0.8m/s2 and the

2.5m/s2, then there is a sharp decline before 3m/s2. The probability reduces to almost 0
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after 3m/s2. The cdf plots show that the empirical distribution and the theoretical distribution

overall fit pretty well. HAVs exhibit a higher overall maximum acceleration when contrasted

with ACC-equipped vehicles.

Figure 5.11: Empirical and theoretical density of

desired time gap distribution

Figure 5.12: Empirical and theoretical CDF of desired

time gap distribution

The probability plot is shown in Figure 5.13. The data almost fit the line within a certain

scope. The probability plot of the HAV maximum acceleration suggested a similar result with

the HAV desired time gap: the Maxwell provides a satisfactory fitted result and could be used

as the maximum acceleration of the highly autonomous vehicles.

Figure 5.13: Probability plot of ACC vehicle acceleration



5.2. Simulation scenario 51

5.2. Simulation scenario
The simulation scenario in this research is a motorway section. The sketch of the motorway is

shown in Figure 5.14. The road section contains a main section and an on-ramp. The function

of the main section is to let the vehicles accelerate to a suitable speed before the on-ramp.

The main section also keeps the congestion not spilling back to the start position. The on-ramp

is used to invoke the merging disturbance.

Figure 5.14: Road section of the simulation

The loop detectors are employed to produce simulation outputs. The positions of these

detectors are strategically chosen: before the on-ramp, after the on-ramp, and at the end of

the bottleneck. The first set of loop detectors is dedicated to monitoring traffic flow before the

on-ramp and plotting the fundamental diagrams. Subsequently, the second set of detectors

is positioned 150 meters after the on-ramp to capture the merging capacity. The third set of

detectors is situated after the bottleneck to collect data on the queue discharging rate.

5.3. Heterogeneity towards HDVs and AVs
For the same level of AV heterogeneity, the traffic will include human-driving vehicles and

heterogeneous level 1 autonomous vehicles (ACC vehicles). The ACC vehicles and human-

driving vehicles in the simulation are represented by EIDM. The onramp input flow and the

main section input flow are shown in Figure 5.15. The flow of the main section increased from

2700veh/h to 5400veh/h, then maintained the 5400veh/h for ten minutes. The 5400veh/h is 80

percent of the capacity, this input flow is sensitive enough to the onramp flow. The input flow

of 5400veh/h and 10 minutes lasting time could invoke the congestion that could be solved

before the end of the simulation. After reaching 80 percent of the capacity, the main section

flow starts to drop to zero. The increasing and decreasing are used to gently generate and

solve the congestion. The trend of the onramp flow is similar, however, the max flow of the

onramp is 800 to invoke the disturbance. The start point of the input flow is half of themaximum

input flow, to make the congestion start at a preferable time. The two-hour simulation time is
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adopted by AV simulations of existing research.

For both the onramp flow and the main section flow, the traffic flow will include different

shares of the ACC vehicle and human-driving vehicle.

Figure 5.15: Input flow of the motorway section

Both the autonomous vehicles and the human-driving vehicle in the experiments are rep-

resented by a car-following model and a lane-changing model. The detailed settings of the

simulation are shown in Table 5.8.

Table 5.8: Vehicles settings for simulation 1

Human-driving vehicle ACC vehicle

Car-following model EIDM EIDM

Lane-changing model LC2013 LC2013

Share 0%, 20%, 40%, 60%, 80%, 100% 0%, 20%, 40%, 60%, 80%, 100%

The parameters of the EIDM are shown in Table 5.9. The only two differences are the

desired time gap distributions and the maximum comfortable acceleration distributions. The

desired time gap of human-driving vehicles sampled from a lognormal distribution with a mean

of 1.5s and the maximum acceleration sampled from a lognormal distribution with a mean of

1.4m/s2. The selection of the distribution is based on the work of Kim and Mahmassani [17].

As for the ACC vehicles, the desired time gap and themaximum acceleration are sampled from

the best-fit distribution of the calibrated parameters. The parameters for dgamma distribution

and burr distribution are shown in Table 5.4.
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Table 5.9: EIDM parameters for HDVs and ACC vehicles

Human driving vehicles ACC vehicles

desired speed 120 km/h 120 km/h

free acceleration exponent 4 4

desired time gap lognormal distribution(mean 1.2s) dgamma distribution

jam distance 2 m 2 m

maximum acceleration lognormal distribution(mean: 1.4 m/s^2) burr distribution

desired deceleration 4.5 m/s^2 4.5 m/s^2

coolness factor 0.99 0.99

As for the lane-changing model, the parameters are the default parameters for the LC2013

model for both the ACC vehicle and HV since the lane-changing behaviors of ACC vehicles

are also performed by human drivers.

5.4. Heterogeneity towards different levels of AVs
The second simulation is used to identify the traffic flow impact of different levels of autonomous

vehicles. In this scenario, the traffic will include human-driving vehicles, ACC vehicles, and

level 4 autonomous vehicles. The share of each type of vehicle is fixed, and the input flow is the

same with simulation 1. The level 4 autonomous vehicles are represented by a car-following

model(EIDM) and a lane-changing model. The simulation settings are shown in Table 5.10.

Table 5.10: Vehicles settings for simulation 2

Human-driving vehicle ACC vehicle High level AV

car-following model EIDM EIDM EIDM

lane-changing model LC2013 LC2013 LC2013

Share 82%(2030),74%(2035) 15%(2030),20%(2035) 3%(2030),6%(2035)

Simulation 2 includes two distinct scenarios: one for the year 2030 and another for 2035.

The primary distinction between these scenarios lies in the proportion of AVs. The determina-

tion of these years and proportions draws from precedent research as documented in the work

of Calvert et al. [6]. 2030 is the assumed year that the high-level AV appeared on the public

road. The next year chosen for simulation is 2035. For subsequent years beyond 2035, the

behavior of HAVs might exhibit alterations or enhancements due to the increasing penetration

rate of HAVs. Consequently, these additional years have not been included in the current

selection for study.
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As for the car-followingmodel parameters, the ACC vehicle and human-driving vehicles are

similar to simulation 1. As for the high-level autonomous vehicle, the car-following parameters

are shown in Table 5.11. The shape of the maxwell distribution is shown in Table 5.7. And the

car-following model parameters of the ACC vehicles and HDVs in this simulation scenario are

shown in Table 5.9.

Table 5.11: HAV parameters

Highly autonomous vehicle

desired speed 120 km/h

free acceleration exponent 4

desired time gap Maxwell distribution

jam distance 2 m

maximum acceleration Maxwell distribution

desired deceleration 4.5 m/s^2

coolness factor 0.99

The lateral dynamics of high-level autonomous vehicles are modeled using the lc2013 lane-

changing model. However, it is essential to acknowledge that the behavioral characteristics

of HAVs substantially differ from those of human-driven vehicles. Consequently, a critical

parameter within the lc2013 model, namely ”lcAssertive” (indicating the degree of willingness

to tolerate reduced front and rear gaps within the target lane), is established at 0.9. This

specific value is recommended by the Transaid project as outlined in the work of Mintsis et

al. [24], and it accurately describes the lateral conduct of high-level automated vehicles. The

chosen value of 0.9 for lcAssertive indicates the conservative lateral behavior of HAV and

accord with the cautious longitudinal behavior that has been observed. This value ensures an

accurate representation of HAVs’ lateral dynamics while accounting for differences between

automated and human-driven vehicles.

5.5. Assessment of heterogeneity
The outcomes of the simulations are used to ascertain the influence of AVs on traffic flow

when introducing AV heterogeneity. Additionally, the results of Simulation 1 provide insights

into the continued validity of the assertion that ACC vehicles contribute to enhanced road

capacity when introducing AV heterogeneity. The outcome of the second simulation could

draw a conclusion about how autonomous vehicles will influence the highway traffic flow in a

more realistic future situation. To achieve the experiment objective, the following evaluation

indicators are applied: the fundamental diagram, queue discharging rate, merging capacity,
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and average time loss. The average time loss could indicate the overall traffic efficiency of

the different scenarios. The merging capacity and the queue discharging rate show how the

capacity changed when the share of AV changed. The fundamental diagrams will be plotted

based on loop detectors before the on-ramp. This set of loop detectors could capture the

spillback effect of the congestion. The fundamental diagram could offer a clue about how the

macroscopic will be effect when introducing AV heterogeneity. These findings also contribute

to establishing a quantitative relationship between the proportion of heterogeneous AVs and

the resulting traffic capacity. Such results can serve as inputs for macroscopic demandmodels,

predicting network performance changes due to varying AV penetration rates.



6
Simulation result

In this chapter, the results of the two simulation scenarios are analyzed. In both scenarios,

statistical results are presented initially. Subsequently, the analysis centers on the speed con-

tour and fundamental diagram. Additionally, the merging rate, as well as queue discharge are

analyzed. These results are presented to address the traffic flow impact of AV heterogeneity.

6.1. Heterogeneity of same level AVs
The average time loss and average speed for different ACC penetration rates are shown in

Table 6.1. The average time loss and average speed of each vehicle indicate the overall traffic

flow efficiency. It can be observed that with the increase in the ACC vehicle penetration rate,

the average speed first decreases and then increases. The trend of the average time loss

is similar to the average speed. The trend of the indicators indicates that traffic efficiency

initially decreases when the ACC penetration rate is low. However, when the proportion of

ACC vehicles increases to 60%, traffic efficiency improves.

The speed contour is shown in Figure 6.1. The analysis will mainly focus on the synchro-

nized flow and wide moving jam that can be observed clearly in the congestion pattern. When

the penetration rate of ACC is low(0% and 20%), the wide-moving jam appears more fre-

quently compared to other penetration rate. However, the distance that the low-speed wave

propagates upstream is shorter than the distance in a high ACC penetration rate scenario.

In 40%, 60%, 80% scenarios, the low-speed area becomes larger. However, the severity of

the congestion decreases since the black area(speed smaller than 15m/s) is much smaller.

When the ACC penetration rate is 100 percent, the wide-moving jam is less presented. But

56



6.1. Heterogeneity of same level AVs 57

Table 6.1: Statistics of ACC vehicle heterogeneity simulation

Vehicle Share Simulation Result

HDV ACC Average Time Loss (s) Average Speed (m/s)

100% 0% 191.19 23.82

80% 20% 200.97 23.35

60% 40% 196.28 23.51

40% 60% 175.78 24.27

20% 80% 170.93 24.49

0% 100% 110.41 26.93

the low-speed area propagates longer upstream. The low-speed area is smaller. Thus, the

outcomes of congestion patterns align with the indicator results, the overall congestion severity

first increases and then decreases with the increase of the ACC penetration rate.

(a) 0% ACC vehicle (b) 20% ACC vehicle

(c) 40% ACC vehicle (d) 60% of ACC vehicle
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(e) 80% ACC vehicle (f) 100% ACC vehicle

Figure 6.1: Speed contour of different ACC vehicle penetration rate

Figure 6.2 shows the fundamental diagram of the different penetration rates of ACC vehi-

cles. The two red lines represent the estimated fundamental diagram, wherein the left seg-

ment corresponds to the free-flow regime, while the right segment pertains to the saturated

flow regime. The apex of the flow-density fundamental diagram represents the maximum ca-

pacity. The corresponding maximum capacity and capacity drop are shown in Table 6.2. This

capacity peak increases with higher ACC penetration rates, due to the smaller desired time

gap among ACC-equipped vehicles. Maximum capacity rises from around 2160 vehicles/hour

(0% ACC) to 2640 vehicles/hour (100% ACC). Another observation is the more pronounced

capacity drop at higher ACC penetration rates. This indicates that ACC traffic outflow is high

during non-congested times but reduces substantially during congestion.

(a) 0% of ACC vehicle (b) 20% of ACC vehicle



6.1. Heterogeneity of same level AVs 59

(c) 40% of ACC vehicle (d) 60% of ACC vehicle

(e) 80% of ACC vehicle (f) 100% of ACC vehicle

Figure 6.2: Fundamental diagram of ACC vehicle heterogeneity simulation

Table 6.2: Maximum capacity and capacity drop of ACC vehicle heterogeneity simulation

ACC penetration rate Maximum capacity Capacity Drop

0% 2160 224.71

20% 2220 285.47

40% 2280 364.06

60% 2220 274.20

80% 2460 537.72

100% 2640 851.99

The merging rate of the onramp is shown in Figure 6.3. The analysis of the merging rate

and queue discharging rate primarily focuses on the merging lane. This focus is rooted in

the recognition that the merging lane is highly sensitive to changes in the AV penetration rate.

The loop detector records data at 5-minute intervals, and as such, the x-axis unit represents
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increments of 5 minutes. Notably, in the initial 50 minutes, there is a significant disparity in

merging rates between pure ACC traffic and traffic with other ACC penetration rates, with ACC

traffic demonstrating notably higher merging rates. However, as time progresses, these dif-

ferences gradually diminish. Subsequently, after 100 minutes, pure ACC vehicles scenario

exhibit the highest merging rates. In conjunction with the speed contour illustrated in Figure

6.1, the congestion starts to spill back at approximately 3000s coinciding with the onset of

the merging rate decline. The subsequent rise in the merging rate aligns with the resolution

of congestion. The merging rate result shows that heightened ACC penetration yields a sub-

stantially greater merging rate during non-congested periods, converging to similar capacities

during congestion.

Meanwhile, with regard to the queue discharging rate, the 100 percent penetration rate

scenario consistently surpasses others. This finding indicates that ACC traffic maintains a

higher queue discharging rate during both congested and uncongested conditions. Although

the trend of merging capacity is not clear, the queue discharging rate increases with the rise

of ACC vehicle penetration rates.

Figure 6.3: Dynamic merging rate in heterogeneous

same-level AVs scenario

Figure 6.4: Queue discharge rate in heterogeneous

same-level AVs scenario

The outcomes of congestion patterns align with the anticipated results of the corresponding

parameters. The main difference between ACC vehicles and human-driving vehicles is the

desired time gap and maximum acceleration. The average acceleration of ACC vehicles is

smaller than that of human-driving vehicles, then the low-speed area will spill further upstream.

The smaller desired time gap offers the ACC vehicles a higher queue discharging rate.
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6.2. Heterogeneity towards different levels of AVs
The statistics of Simulation 2 are presented in Table 6.3. In comparison to the all-human

driving vehicle scenarios, the 2030 and 2035 scenarios exhibit higher average time losses.

The augmentation of the AV penetration rate leads to a reduction in traffic efficiency. The

average time loss has risen to 275.79 seconds and the average speed reduced to 21.18m/s

from 22.06m/s.

Regarding the 2040 scenario, noteworthy observations emerge when comparing it to the

2030 and 2035 scenarios. Specifically, in the 2040 scenario, there is a discernible reduction

in the average time loss, accompanied by an increase in average speed. These trends signify

traffic improvements attributed to the increased presence of ACC vehicles, even in the face of

heightened traffic heterogeneity. Nonetheless, it is crucial to acknowledge that the negative

effects of heterogeneity persist. In this context, traffic efficiency in the 2040 scenario, although

improved compared to the preceding scenarios, still falls short of the efficiency achieved in the

absence of AVs.

Table 6.3: Statistics of different level AVs heterogeneity simulation

Vehicle share Simulation Result

HDV ACC HAV Average Time Loss (s) Average Speed (m/s)

100% 0% 0% 191.19 23.82

82% 15% 3% 249.76 22.06

74% 20% 6% 275.79 21.18

50% 38% 12% 243.13 21.93

The velocity profile is depicted in Figure 6.5. In contrast to the 2035 scenario, the adoption

rate of ACC has risen from 15% to 20%, while the HAV penetration rate has increased from

3% to 6%. This upsurge in the heterogeneous rate has led to the emergence of prolonged

wide-moving jams.

Furthermore, in the 2035 scenario, congestion has manifested in locations other than the

bottleneck. This occurrence can be attributed to human errors. Within the SUMO, the model

integrates parameters such as sigmaleader, sigmagap, and sigmaerror, representing the mag-

nitude of estimation error for the leading vehicle’s speed, the magnitude of estimation error for

the gap between the vehicle and the leading vehicle, and the magnitude of driving error, re-

spectively. In our research, AVs, encompassing both ACC-equipped vehicles and HAVs, are

assumed to possess error parameters set to zero, implying that AVs operate without errors,

aligning with common expectations. Conversely, human drivers are assigned default values

for error parameters, representing the imperfect driving behavior inherent to humans. Notably,
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(a) No AV scenario (b) 2030 Year scenario

(c) 2035 Year scenario (d) 2040 Year scenario

Figure 6.5: Speed contour of 2030 and 2035 scenario

when the error parameters for Human-Driven Vehicles are set to zero, the congestion dissi-

pates. As illustrated in Figure 6.6 and Figure 6.7, the absence of human error eradicates

congestion at the beginning of the road and downstream of the bottleneck.

Figure 6.6: 2035 year scenario without human error Figure 6.7: 2040 year scenario without human error

The presence of congestion due to human error underscores the instability of traffic condi-
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tions in the 2035 and 2040 scenarios. This phenomenon is not observed in the 2030 scenario,

this indicates that the traffic condition could be the critical point, and a higher penetration of

different levels of AV will result in an unstable traffic condition. This hints at a broader issue

with traffic stability in high HAV penetration rate scenarios. In the context of the 2040 sce-

nario, it is evident that congestion propagates further upstream. Furthermore, congestion is

observed to emanate from non-bottleneck positions. These observations indicate that while

traffic efficiency shows improvement with the increasing presence of heterogeneous AV traffic,

traffic stability continues to decline compared to the 2035 scenario.

Figure 6.8 illustrates the fundamental diagram depicting various penetration rates of mixed

levels of AVs.

(a) No AV scenario (b) 2030 scenario

(c) 2035 scenario (d) 2040 scenario

Figure 6.8: Fundamental diagram of 2030 and 2035 scenario

The capacity and capacity drops are shown in Table 6.4. The maximum capacity initially

increases, followed by a decline observed between the 2035 and 2040 scenarios. A similar

trend is also evident for the capacity drop, with an initial increase succeeded by a subsequent

decrease. This phenomenon can be attributed to the negative impact of heterogeneity on ca-
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pacity, while the increase in the share of vehicles equipped with ACC significantly contributes

to the rise in the maximum capacity.

Table 6.4: Maximum capacity and capacity drop of heterogeneity towards different levels of AVs

Scenario Maximum capacity Capacity Drop

No AV 2160 224.71

2030 2220 240.99

2035 2220 307.02

2040 2160 196.88

The merging rate and queue discharge rate are displayed in Figure 6.9 and Figure 6.10,

respectively. In terms of the merging capacity, the trends of 2030, 2035 and 2040 are similar.

However, there are still some differences. The merging rate at 5 minutes and 20 minutes is

lower. Due to the fact that the merging rate is from the second loop detector. This could be

because the vehicles move to the left side lane before the loop detector. That could also be

the reason that The queue discharging rate of 2035 is much smaller before the congestion.

Compared to the full human-driving vehicle scenario, the 2030 and 2035 scenarios have a

relatively smaller merging capacity and queue discharging rate. In the context of the 2040

scenario, the situation exhibits improvement. The results align with the fundamental diagram.

Figure 6.9: Dynamic merging rate in

heterogeneous different-level AVs scenario

Figure 6.10: Queue discharging rate in

heterogeneous different-level AVs scenario



7
Conclusion and disscussion

In this chapter, the primary findings and conclusions of the study will be presented. The spe-

cific details of these conclusions are introduced by answering the research questions. Sub-

sequently, the limitations encountered in the course of this research will be explored, and the

chapter will conclude by providing recommendations for future development.

7.1. Answer to the research questions
The main findings of this research were obtained after analyzing the data and simulation re-

sults. The analysis revealed that heterogeneous behavior not only exists across different

automation levels but also within the same level. It was found that ACC vehicles have differ-

ent time gap distributions when compared under similar conditions. Regarding the simulation

results, it was observed that the introduction of multi-level autonomous vehicles into the traffic

system may have a negative impact on both traffic efficiency and stability. The main result of

the simulation highlights the impact of AV heterogeneity on traffic flow.

Does empirical data exhibit evidence of autonomous vehicle heterogeneity?
The first research question could be answered with the result of the data analysis part. Within

the same automation level, the ACC vehicles manifest heterogeneity. The heterogeneity of

the ACC vehicle could be seen in the TTC, desired time gap, and acceleration. As for the TTC,

the vehicles that are analyzed have pretty different CDFs. And the start point: the minimum

TTC starts differently. Some ACC vehicles have a 2.5 seconds minimum TTC and some

vehicles have a larger minimum TTC which is larger than 3 seconds. Then the time gap

distribution of the different vehicles under different conditions are examined. The distribution

65
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of AVs’ time gap is quite different under different acceleration conditions or speed conditions.

Then the acceleration and the deceleration profile of the different ACC vehicles are different.

Some vehicles are more likely to produce sharp acceleration or sharp deceleration than other

vehicles. And the maximum acceleration/deceleration are different. In conclusion, Some ACC

vehicles are more likely to take more risky behavior than others. The heterogeneity of the AVs

manifests in the TTC, desired time gap, and acceleration.

The heterogeneity also shows in the parameters that are calibrated. As shown in Figure 4.4,

the shape of the ACC vehicle desired gap distribution is nail shape and the largest number

of data concentrate on about 1.1s. However, the range of the desired time gap distribution

is from 0.6 seconds to 1.6 seconds. the range is pretty wide. As for the acceleration, the

maximum acceleration of the ACC vehicle is mostly below 3m/s2 but ranges from 0.8m/s2 to

3m/s2. As for the HAV, the desired time gap is less concentrated and the range is still wide.

There is also a wide range of acceleration distribution.

What methodology is most suitable for modeling the inherent heterogeneity in au-
tonomous vehicles?

In this research, a method utilizing car-following model parameter distributions is employed

to model heterogeneous AV behavior. For each AV automation level, data calibration is per-

formed on the car-followingmodel, resulting in calibrated parameters. These calibrated param-

eters are subsequently utilized to identify the best-fitting distributions, particularly in relation to

the desired time gap and maximum acceleration. These distributions effectively capture the

heterogeneity observed in AVs’ desired time gaps and acceleration profiles.

Regarding differences in AV automation levels, our approach involves the simultaneous

presence of ACC vehicles, HDVs, and HAVs. For each automation level, the percentage of

vehicles anticipated in future years are taken into account for their presence in the simulation.

What are the traffic flow impacts of autonomous vehicles?
Within the context of AVs at the same automation level, there is a noteworthy observation:

as the penetration rate of ACC vehicles increases, traffic efficiency initially decreases before

subsequently increasing. This phenomenon can be attributed to the relatively shorter desired

time gap and reduced acceleration of ACC-equipped vehicles in comparison to Human-Driven

Vehicles. Congestion generated by the traffic becomes less frequent but harder to resolve as

the ACC penetration rate increases. It’s worth noting that the capacity drop becomes more

pronounced with the increasing ACC penetration rate. Furthermore, heightened ACC pene-

tration results in a significantly greater merging rate during non-congested periods, eventually

reaching similar capacities during congestion. In addition, the introduction of multi-level AVs

into the traffic system may have adverse effects on both traffic efficiency and stability. Traffic
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efficiency is expected to decrease in the near future. The emergence of unusual congestion

due to human error suggests that traffic becomes less stable when different levels of AVs are

introduced. While the year 2040 shows improvements compared to a decade ago, it does

not perform as well as the no-AV condition. The ultimate conclusion drawn from this analysis

underscores the necessity of validating AV performance comprehensively before embarking

on large-scale implementation endeavors.

7.2. Limitation
The limitations of this research primarily pertain to two aspects: data availability and modeling

methods. The first limitation relates to data availability. The primary data sources of this re-

search include the open ACC dataset, the processed Waymo dataset, and the processed Lyft

5 dataset, which are relatively limited in scope. Specifically, the ACC dataset comprises ap-

proximately 200 trajectories, which is considerably smaller when compared to the over 8000

trajectories available for HAV datasets. This disparity in data size poses constraints on our

ability to capture the heterogeneity of AVs. To address this limitation, increasing the dataset

size, possibly by subdividing single trajectories or gathering more extensive data, could lead

to a more comprehensive representation of AV behavior. Another issue arising from data avail-

ability pertains to the traffic context. In this research, due to the absence of detailed traffic con-

text provided by the database, we differentiate between urban and non-urban environments.

Additionally, for HAVs, an unsupervised machine learning method is employed. The research

could potentially be enhanced when databases with more comprehensive information become

available, allowing for the use of more specific data as input.

Concerning our modeling method, both car-following and lane-changing models are em-

ployed to simulate AV behavior. However, using the car-following model alone introduces

simplifications that may not accurately represent AV behavior. Although the IDM has been

utilized successfully by other researchers to model both HAVs and AVs, there remain critical

opinions about its applicability. While the need for better modeling methods is acknowledged,

the car-following model currently serves as a reasonable approach for simulating longitudinal

AV behavior, given the absence of superior alternatives.

Another limitation arises from the default parameters used for lane-changingmodels, which

are uniform for ACC vehicles, HAVs, and HDVs in this research. These parameters may

not align with real-world scenarios. Additionally, the lane-changing parameters for HAVs are

based on a report without empirical calibration, limiting their accuracy. Utilizing lane-changing

parameters derived from empirical data could enhance the credibility of models. Furthermore,

this research may be limited by the isolation of lane-changing and car-following models. De-
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veloping a more integrated, aggregate model could yield more persuasive results.

It’s important to note that once universal standards for AVs are established, addressing

the impact of AV heterogeneity could become a more precise endeavor. Nevertheless, our

research sheds light on potential traffic flow issues stemming from AV implementation, which

may contribute to the establishment of such standards.

7.3. Concluding remarks
In conclusion, the simulation results presented in Sections 6.1 and 6.2 shed light on the com-

plex dynamics of AV heterogeneity and its effects on traffic flow. It is evident that as the pen-

etration of ACC and HAV increases in the near future, there will be challenges and negative

impacts on traffic flow performance.

As we move forward into this transitional phase, it is essential to address these challenges

proactively in order to navigate through this not-so-brief period smoothly. This will require a

combination of technological advancements, policy interventions, and collaboration between

stakeholders. The key elements that help alleviate the shock of heterogeneous AV traffic are

as follows:

• Harmonized AV Technologies: It is crucial to promote the standardization and harmo-

nization of AV technologies. This can help reduce the variability in AV behavior on the

road and facilitate smoother interactions with conventional vehicles.

• Regulatory Framework: Developing a flexible and adaptive regulatory framework that

can accommodate evolving AV technologies is vital. This framework should encourage

innovation while ensuring safety and efficiency.

• Data Sharing and Collaboration: Encouraging data sharing among AV manufacturers

and relevant authorities can lead to a better understanding of traffic patterns and improve

overall traffic management strategies.

In essence, the challenges posed by the heterogeneity of autonomous vehicles can be

mitigated through a combination of technological innovations, well-thought-out policies, and

cooperation between stakeholders. As we prepare for the future of the traffic system, it is

important to recognize that the impacts of AVs on traffic flow are not set in stone but can

be influenced by our collective efforts. With a thoughtful and proactive approach, we can

navigate this transition period and ultimately harness the full potential of autonomous vehicles

to enhance the efficiency and safety of our traffic systems.
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