
Evaluating Stochastic Floating-Point Superoptimization with
STOKE

Jop Schaap
Supervisor: Dennis Sprokholt
Professor: Soham Chakraborty

EEMCS, Delft University of Technology, The Netherlands

June 19, 2022

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering

1

Abstract
The superoptimizer STOKE has previously been shown to be effective at optimizing programs
containing floating-point numbers. The STOKE optimizer obtains these results by running a
stochastic search over the set of all programs and selecting the best-optimized one. This study
aims to find more clearly what floating-point programs STOKE optimizes particularly well and
for which ones it fails to find significant rewrites. To answer the research question, STOKE and
GCC optimized multiple small programs, and I compared these on execution speed. The results
showed numerous cases where STOKE failed to obtain a better optimization than GCC. The
results suggest that for specific floating-point functions, there exist limitations in both the test
case generator and the STOKE search algorithm that prevent it from finding good optimizations.
The findings of this paper suggest further research on the STOKEs test case generator to improve
its performance.

1 Introduction
Compilers form one of the primary interfaces that programmers use to develop programs. A compiler’s
main task is automatically translating a programming language to another one. However, most com-
pilers nowadays include optimizations to speed up the performance of the program they are compiling.
Generally, optimizations included in a compiler are restricted to several hand-coded transformations
that lead to enhancements in the generated output [1]. An example of such a compiler is the C compiler
GCC [2]. Nevertheless, the optimizations compilers apply often do not manage to reach an optimal
version because these optimizations are applied independently. Often the best possible code can only
be obtained by simultaneously considering multiple optimizations, and it is here where traditional
compilers may fail to find the optimum [3,4].

Superoptimizers do not have this limitation since they enumerate a subset of all programs and
select the programs they determine to be equivalent to the original program and the best optimized.
The main problem with superoptimizers is scaling them to run on more extensive programs since the
search space grows exponentially with the number of instructions. Therefore exhaustive searches are
generally unfeasible and instead is opted for alternative approaches [3, 5].

The STOKE [4] optimizer differs from traditional superoptimizers because it uses a stochastic
approach to optimize programs. Stochastic approaches have the benefit that they require less time
and memory to find a suitable candidate program over that of a traditional optimizer, which in turn
allows for bigger programs to be tackled by the optimizer [4].

The focal point of the performed experiments is on the extension in STOKE that adds floating-point
support. This extension works by setting a user-defined allowed error. This user-defined allowed error
makes STOKE able to optimize floating-point programs in ways that classical compilers cannot [6].

The authors of the extension for floating-point numbers in STOKE have shown that STOKE can
generate code that runs faster for some example programs [6]. However, they did not explain why these
experience a speedup and if there are programs where STOKE fails to provide a reasonable speedup.
Thus, this research aimed to find programs for which STOKE finds good optimizations and when it
fails to find such an improvement by comparing it to GCC. Therefore, the research question is:

• What classes of floating-point programs1 cause STOKE to give well/badly optimized results2?

The research question breaks down into the following three sub-questions:

1. How much variation in execution speed do different classes of floating-point programs experience
after being optimized with STOKE?

2. How much faster or slower are different classes of floating-point programs after being optimized
with STOKE compared to GCC version 12.1?

1A class of floating-point programs is a set of programs that heavily rely on certain programming concepts such as;
conditional jumps, multiplication, and division or addition and subtraction.

2A well optimized result is either a shorter execution speed or a smaller program size, i.e., fewer instructions.

2

3. How much does an optimized program vary in speed when reducing the floating-point accuracy?

All research questions were answered by performing experiments on multiple floating-point programs
and comparing the execution time. For the first sub-question, GCC compiled the C programs hereafter,
STOKE optimized them and were they timed. For the second sub-question, were the C programs also
compiled with GCC version 12.1 instead of 4.9, which STOKE requires. I answered The final subques-
tion by optimizing with different levels of floating-point accuracy. The focus in these experiments lies
on STOKE-optimized code and code optimized with GCC version 12.1. The optimization quality was
measured by timing the execution time of the optimized binary.

The results showed that STOKE failed to find a decent speedup for the programs presented com-
pared to GCC. Whereas the latest version of GCC often found binaries outperforming the results from
STOKE. Furthermore, STOKE once failed to provide a binary that replicates the original function
and instead got stuck in an infinite loop when given a specific input.

2 Information on STOKE and Floating-Point Numbers
This section provides background information on STOKE and general floating-point arithmetic. First,
this section explains the IEEE floating-point representation and unit in the last place (ulp). Secondly,
I discuss the internal algorithm of STOKE, and finally, this section describes the test case generation
phase of STOKE.

Floating-Point
The IEEE Floating-point representation [7, 8] is the most used representation for real numbers in

computers. This representation consists of three parts: the sign, the significant, and the exponent, as
seen in [8, eq. (1)]. Because of this representation, are floating-point numbers not evenly spaced across
the minimum and maximum range. Instead, they are more present around zero and less at the edges
of the number range. The fact that floating-point numbers are not evenly spaced causes operations
on these numbers to introduce rounding errors. Due to these rounding errors, do certain properties of
regular algebra not hold for floating-point arithmetic, for instance, a+ b = a for some a and nonzero
b [7, 8].

x = −1sign ∗ significant ∗ 2exponent (1)

Unit in the Last Place
The rounding errors present in floating-point arithmetic are most often represented in terms of unit

in the last place(ulp) [7,8]. The ulp at x is the difference between the two closest floating-point values
of x. For instance, if x would be 1.05 and the two closest floating-point values would be 1.00 and
1.10, then the absolute rounding error would be equal to 0.05, and x would round with an error of
0.5 ulp. The ulp has the advantage over the absolute and relative error in that it has a uniform error
representation over the entire range of floating-point values [6–8].

STOKE allows users to specify a value for how much the resulting program is incorrect based on
ulp. For instance, if the allowed ulp error is five, the program should always return a value that is
at most five ulp different than the original program. This allowed error allows STOKE to optimize
floating-point programs in different ways than traditional superoptimizers since the result does not
have to be exactly the same as the original [6].

Monte Carlo Markov Chain
STOKE uses a Monte Carlo Markov Chain (MCMC) algorithm known as Metropolis-Hastings (MH)

[6]. An MCMC algorithm is an algorithm that allows us to sample from a distribution that we are
unable to draw from directly but from which we can evaluate the likelihood of samples from the
distribution. The MH algorithm does this by maintaining a current sample, x, and then the algorithm

3

proposes a random3 new sample x∗ based on x. The suggested x∗ is then accepted or rejected based
on the target distribution. If x∗ is accepted, then x∗ becomes the new current sample. Otherwise, a
new random x∗ is proposed based on x [9].

The STOKE optimizer uses the MH algorithm to find programs that run faster than the original
input program. STOKE assigns a cost to each found algorithm based on a cost function and lets
the target distribution be the inverse of this cost. This cost function, by default, is the sum of the
execution time and a penalty for obtaining an incorrect result based on the distance of the result.
STOKE proposes a new x∗ by either adding, removing, deleting an instruction, or swapping two
instructions. When STOKE finds a new rewrite that is faster than the original and has no penalty
for returning incorrect results, then it registers this as the new best and is returned as the optimized
result after timing out [4].

STOKE Testcase Generation
As of writing, STOKE contains three fully working methods for generating test cases. The experi-

ments performed used the random generation + backtracking method. This method works by assigning
randomly selected values to the input variables and recording the result of the output using the original
binary. The random generation + backtracking method runs the fastest and works reliably with code
that does not trigger exceptions. Therefore, the experiments use this method as the test-case generator
for synthesizing [10].

3 Methodology
The following experiments aim to compare the floating-point optimization capabilities of STOKE to
that of the GCC compiler. I performed three experiments with C programs to analyze STOKE and
GCC. The experimental setup, including the C programs, was published on GitHub and can be accessed
here there4. In this section, first, the overall structure of the experiments is explained. Hereafter, this
section discusses the four C programs used in the experiments.

3.1 General Experimental Setup
To compare STOKE to GCC, I wrote multiple C programs. These were then compiled and optimized
with STOKE. However, STOKE requires GCC version 4.9 [10], while the latest version as of writing is
12.1. Therefore two different versions of GCC were necessary to compare GCC with STOKE. Thus, I
used GCC version 4.9 for STOKE and version 12.1 to compare the speedup, as illustrated in Fig. (1).
Furthermore, STOKE ran inside a docker container since it made the execution of STOKE easier. It
made the execution of STOKE easier since it prevented the need to set up the required environment,
such as the OS and the correct GCC compiler. The time required to execute the program is measured
using the clock function defined in the time.h header file [11]. All experiments ran on an Intel I7-8750H
operating at 4.100GHz and running Ubuntu 20.04.4 LTS x86_64.

3The distribution for this randomness can be chosen at will. However, different distributions will result in faster or
slower convergence towards local/global optima.

4https://github.com/JopSchaap/stoke_experimenting

4

https://github.com/JopSchaap/stoke_experimenting

Figure 1: Visualization of the optimization process. All binaries are optimized and timed 150 times
except for the STOKE binary, which is optimized five times and timed 30 times each optimization
round.

C program

GCC -O3

version 4.9

GCC -O3
version 12.1

STOKE

test generation
and synthesis

(5 times)

Optimized binary

Optimized binary

Superoptimized
binary

Optimized binary

With relaxed
floating-point
constraints

GCC -O3

-ffast-math

version 12.1

Timed 150 times

Timed 30 times

Result

I estimated the execution speed of the GCC optimized binary in the following procedure. First, I
passed the flag -O3 to GCC, and this flag tells GCC to enable all non-standard breaking optimizations
[2]. Then, I ran the compiled output files 150 times and timed them using the clock function described
above.

Additionally, GCC version 12.1 compiled a new binary with -ffast-math as an additional parameter.
This flag allows GCC to relax certain constraints set by the IEEE floating-point standard. I used this
flag since STOKE likely would break these constraints if the maximum error value is greater than
0 ulp. Therefore, the speedup obtained using this flag shows how well compilers optimize floating-
point programs when relaxing constraints. Finding this speedup is important since STOKE similarly
allows for increasing the maximum allowed error, which breaks the IEEE standard on floating-point
arithmetic. I finally measured the execution time by measuring the time the function runs using the
clock function.

I optimized the code with STOKE by running STOKE in a docker container with GCC version
4.9 installed. First, GCC compiled the original code with the flag -O3. After compilation, STOKE
extracted the binary. Hereafter, STOKE generated test cases using the random generation + back-
tracking method. The function was then optimized and rewritten to the binary file. After optimization,
I benchmarked the GCC binary 150 times and the superoptimized binary 30 times. I repeated the test
generation, optimization, and running phase, for the STOKE binary five times to prevent the random-
ness in the MCMC algorithm and the test case generation from impacting the averaged runtime, as
illustrated in (1).

Statistical Analysis
I performed a statistical analysis of the obtained results to determine the validity of the results

after the experiments. All the statistical analyses were performed using IBM’s SPSS software. First,
I executed an independent t-test comparing the STOKE binary with the binary produced by GCC
version 4.9. I tested the null hypothesis that STOKE had no impact on the execution speed. I
rejected the null hypothesis if a statistically significant result was found (p < 0.05). Only when the
results from STOKE proved to be statistically significant compared to GCC version 4.9 was a t-test
performed comparing the STOKE binary to GCC version 12.1 with ffast-math disabled. Hereafter, I
executed a t-test evaluating the STOKE binary to the GCC version 12.1 compiled binary with ffast-
math enabled. I also performed these steps for the experiment with the maximum tested allowed error.
For all performed t-tests, I first ran a Levene’s test to determine whether or not the variances can be
assumed equal. Hereafter, I either used the t-test that presumes equal variances or the t-test that does
not make this assumption.

5

The independent t-test assumes that the data has a normal distribution. For the experiments, this
assumption holds since I timed them over a large number of iterations, or the executed function ran a
fixed loop for most of the run time. Therefore, by the central limit theorem [12], the runtimes of the
tested functions approximate a normal distribution.

3.2 C Programs
Signum
The first written program was a simple function that takes in a floating-point number and returns the
sign of the number, as illustrated in Fig. (2). [5] claimed that non-stochastic super optimizers generated
a non-obvious optimization for the signum function that took integers as input. Therefore, the signum
function is an intriguing candidate to see the performance of floating-point functions based on integer
functions. This signum function is different in that the input is a floating-point number. The intriguing
part of the floating-point signum function is that floating-point numbers have interesting edge cases
concerning signedness. For instance, in contrast to the integers, do floating-point numbers have signed
zeros. Additionally, NaN values exist, which are neither greater than zero, smaller than zero, or equal
to zero [7]. It is clear that while looking at the code for the signum function that it should return zero
when receiving NaN as input. These edge cases made the signum function an intriguing candidate to
show how well STOKE preserves the IEE standard on floating-point arithmetic. I timed the signum
function over 10000000 calls since the function itself takes a too short amount of time to execute.

Figure 2: Signum function that takes in a double and returns 1 if it is bigger than zero, -1 if it is
smaller and 0 otherwise.

int signum(double x) {
if(x > 0.0) {

return 1;
} else if (x < 0.0) {

return -1;
} else {

return 0;
}

}

Range Sum
The second function takes in three values start, end and steps. It performs a sum of evenly spaced
values ranging from start to end, with the start being inclusive and the end exclusive, as illustrated
in Fig. (3). In order to benchmark this function the following input is given: start = 0.0, end = 10e6
and steps = 10e7. I chose the range sum function since it is possible to calculate the result in constant
time if we would rewrite the function enough.

6

Figure 3: Range function that sums up steps values in the range [start, end).

double range_sum(double start, double end, int steps) {
double total = 0.0;
double stepSize = (end - start) / steps;
for(int i = 0; i < steps; i++) {

double current = start + ((double)i * stepSize);
total += current;

}
return total;

}

The run time of the range sum function scales linearly in time with the steps parameter since the
loop executes for this amount of steps. However, a speedup exists that would run the calculations in
constant time if we perform the arithmetic in the domain of the real numbers. I obtained this faster
algorithm by first noting that for summing up integers starting at zero and up to an integer n, there
exists a well-known method known as Gauss sum, as seen in [13, eq. (2)].

n∑
i=1

i =
n ∗ (n+ 1)

2
(2)

I used the Gauss sum to find a formula that calculates the result of the function in constant time, as
seen in eq. (3) and (4).

steps∑
i=1

(stepsize ∗ i+ start) = stepsize ∗
steps∑
i=1

(i) +

start∑
j=1

(j) (3)

= stepsize ∗ steps ∗ (steps+ 1)

2
+

start ∗ (start+ 1)

2
(4)

One key observation in this formula is that the result might differ slightly from the function because of
floating-point rounding errors [7]. Therefore, GCC without ffast-math and STOKE with no relaxations
on the accuracy of the floating-point arithmetic should not be able to find this optimization.

Zero Finder
The third function is the zero finder function which tries to find an x value such that the provided third
order polynomial intersects the x-axis, as illustrated in Fig. (4). This function furthermore returns
NaN when the provided polynomial is a second or lower-order polynomial since it might not intersect
the x-axis in this case. This function is interesting since it contains multiple elements not present in
the previous test. These elements comprise returning NaN, having a loop with no clear ending, and
containing constants.

The Zero finder function takes a short time to execute, so timing it when running once would likely
be unreliable. Hence, similar to signum, I timed the zero finder function over 100000 iterations to
make the results more meaningful.

7

Figure 4: Zero finder function that tries to find a zero output value of a 3th order polynomial.

#define CALC(a,b,c,d,x) a * (x * x * x) + b * (x * x) + c * x + d
#define ABS(a) ((a < 0.0) ? -a : a)
double find_a_zero(double a, double b, double c, double d, double epsilon) {

if (ABS(a) < epsilon) {
return NAN;

}
double current_x = 0.0;
double current_result = CALC(a,b,c,d,current_x);
double previous_result;
double stepSize = 1.0;
while (1) {

previous_result = current_result;
current_x += stepSize;
current_result = CALC(a,b,c,d,current_x);
if (ABS(current_result) < epsilon) {

return current_x;
}
if ((previous_result >= 0.0 && current_result < 0.0) || (previous_result <

0.0 && current_result >= 0.0)) {↪→

stepSize = -0.5 * stepSize;
} else if (ABS(current_result) < ABS(previous_result)) {

stepSize = 1.5 * stepSize;
} else {

stepSize = -1.5 * stepSize;
}

}
}

4 STOKE’s Performance
The following section will present the results obtained from the experiments. Firstly this section
presents the results for signum. Secondly, this section discusses the results of the range sum function,
and lastly, it shows the results of the zero finder function. Figures show the found results, and the
text discusses the obtained p-values.

Signum
STOKE was able to find an optimization for every iteration of the signum function. STOKE, however,
was always unable to generate a function that handled zero’s correctly, i.e., one time it returned−1 and
the other times +1 instead of the expected zero result. The optimized STOKE binaries furthermore
took longer to execute than all other binaries, as illustrated in Fig. (5).

8

Figure 5: Average runtime for 10000000 calls to the signum function after being optimized.

4.356

4.358

4.36

4.362

4.364

4.366

4.368

4.37

4.372

GCC v4 GCC v12 ffast-math GCC with ffast-math STOKE

M
ea

n
ru

nt
im

e
fo

r 1
00

00
00

0
ex

ec
ut

io
ns

 (s
)

I performed a t-test on STOKE compared to GCC version 4.9 to find the validity of the findings.
The results were not statistically significant (p = 0.123). Furthermore, the mean difference was −2.670
milliseconds, and the 95% confidence interval has a −6.070 milliseconds lower and 0.730 milliseconds
upper bound. Therefore, I cannot reject the null hypothesis that STOKE provides no speedup com-
pared to the binary of GCC version 4.9. This insignificance suggests that the optimizations found had
either no or a limited effect on the execution speed.

Range Sum
STOKE was generally unable to find optimizations for the range sum function. One time STOKE was
able to find an optimization. However, this optimization caused the resulting program, as illustrated
in Fig. (6), to enter an infinite loop. STOKE caused this bug by replacing the loop variable from an
integer to a float and replacing the multiplication with addition, as illustrated in line 12 of Fig. (6).
The addition performed can, for some inputs, return the same result as the input since floating-point
arithmetic does not have the property that a+b 6= a for a non zero b [7]. The automated test generated
by STOKE likely often caught this behavior and therefore failed the equality test. However, sometimes
it might have passed because of the random nature of the test generation.

9

Figure 6: The optimization STOKE found(left) and the original compiled version from GCC(right).
The STOKE version is one line shorter but has a bug on line 12. STOKE replaced integer addition
and multiplication with floating-point addition. This optimization can cause the program to enter an
infinite loop on some inputs.

(a) Optimized binary found by STOKE.

1 .range_sum:
2 pxor %xmm2, %xmm2
3 subsd %xmm0, %xmm1
4 testl %edi, %edi
5 pxor %xmm3, %xmm3
6 cvtsi2sdl %edi, %xmm2
7 divsd %xmm2, %xmm1
8 jle .L_40064b
9 xorl %eax, %eax

10 .L_400630:
11 cmpl $0x1, %eax
12 addsd %xmm0, %xmm3
13 cmovnzl %edi, %eax
14 pxor %xmm2, %xmm2
15 pcmpeqq %xmm2, %xmm1
16 jne .L_400630
17

18 .L_40064b:
19 movapd %xmm3, %xmm0
20 retq

(b) Optimized binary found by GCC.

1 .range_sum:
2 pxor %xmm2, %xmm2
3 subsd %xmm0, %xmm1
4 testl %edi, %edi
5 pxor %xmm3, %xmm3
6 cvtsi2sdl %edi, %xmm2
7 divsd %xmm2, %xmm1
8 jle .L_40064b
9 xorl %eax, %eax

10 .L_400630:
11 cvtsi2sdl %eax, %xmm2
12 addl $0x1, %eax
13 cmpl %edi, %eax
14 mulsd %xmm1, %xmm2
15 addsd %xmm0, %xmm2
16 addsd %xmm2, %xmm3
17 jne .L_400630
18 .L_40064b:
19 movapd %xmm3, %xmm0
20 retq

Zero Finder
STOKE was able to find optimizations for the zero finder function, which caused speedups compared
to GCC, as shown in Fig. (7). When I performed a t-test on STOKE comparing it to GCC version
4.9, I found the results were statistically significant (p < 0.001). Additionally, the STOKE binary
speed was statistically significant compared to the binary of GCC version 12.1 without ffast-math
(p < 0.001). Furthermore, the mean difference between the STOKE binary and the GCC binary is:
0.948 milliseconds (a 1.07% decrease), and the 95% confidence interval has a 0.822935 milliseconds
lower bound and 1.074108 milliseconds upper bound. However, the STOKE binary was substantially
slower than the binary generated by GCC version 12.1 with ffast-math. Furthermore, I found that
the STOKE binary with an allowed error of 30 ulp was slower (p < 0.001) on average than the
binary generated by GCC version 4.9. However, the STOKE binary was not statistically significantly
(p = 0.26) slower or faster than the binary generated by GCC version 12.1. To summarize, the results
show that the STOKE binary received no significant speedup when increasing the allowed error and
that the STOKE binary with an allowed error of 0 ulp performed better than both versions of GCC
and substantially worse than when ffast-math was enabled.

10

Figure 7: Averaged runtime of 100000 executions of the STOKE and GCC optimized Zero Finder
functions where the allowed ulp for STOKE is altered for multiple experiments (x-axis).

0.08

0.081

0.082

0.083

0.084

0.085

0.086

0.087

0.088

0.089

0.09

0 5 10 15 20 25 30 35

Ex
ec

ut
io

n
tim

e
(s

)

STOKE allowed ulp

STOKE GCC v4 mean GCC v12 without ffast-math mean GCC with ffast-math mean

5 Responsible Research
Ethical Aspects
With the ever-increase of software applications in our personal lives, bugs more and more impact
users. An example of a software bug that had a significant effect on the users is the bug in Therac-25.
Therac-25 was a medical device that contained a software bug that exposed people to extreme radiation
levels. The bug in Therac-25 caused multiple people to die and is considered one of the worst bugs in
history [14].

Most bugs will not have such a disastrous impact as the bug in Therac-25. However, it is not
unthinkable that a bug introduced could have large-scale effects. STOKE has an increased chance of
introducing system bugs since it does not formally prove that the original program is equivalent to
the resulting binary. STOKE operating on assembly code further increases this risk by complicating
manual checks of the correctness of the program because assembly is more complex than higher-level
languages. Therefore, users should take special care when programs are optimized using STOKE. The
increased chance of introducing bugs in the program shows the importance of studies such as this one
that evaluate the capabilities of STOKE and showcase its limitations.

Reproducible
To increase the credibility and reproducibility of the performed experiments, should the data and code
required for the experiments be publicly available. Therefore, the scripts for running the experiments
are all uploaded to GitHub5. Additionally, this repository contains all of the programs discussed
previously. It incorporates automation scripts for compiling, running STOKE, and timing the binaries.
This repository is open for anyone to use, and I designed it to be expandable for generating data on
additional C programs.

5https://github.com/JopSchaap/stoke_experimenting

11

https://github.com/JopSchaap/stoke_experimenting

6 Discussion
This research aimed to find programs for which STOKE gave helpful and unhelpful optimizations. The
results indicate that, for the programs tested, STOKE did not find optimizations that gave meaningful
speedups. Furthermore, the study demonstrates that sometimes, STOKE struggles to generate tests
that properly find infinite loops in the optimized code. The experiments failed to identify programs that
gave significant speedups, but they showed several examples of cases where STOKE fails to generate
satisfying results.

The results show that STOKE fails to generate optimizations that provide substantial speedups for
the tested functions. The best speedup for the programs under test was for the zero finder function,
which only had an execution time reduction of 1.07% compared to the GCC version 12.1 binary.
Furthermore, the range sum function has a known optimization that causes the algorithm to execute
in constant time instead of polynomial time. However, STOKE did not find this optimization and
suggested an optimization that caused the program to loop infinitely. These findings show that STOKE
struggled to find optimizations for the given functions and sometimes even produced malfunctioning
optimizations.

These results seem to contradict the claims of [6] that STOKE can find significant speedups over
GCC. However, the experiments performed in [6] focus on different classes of programs. Namely, the
experiments [6] have fewer conditional jumps and generally optimize over loop-free code. Therefore, it
is likely that specifically, the class of programs tested in this experiment caused STOKE to produce the
unsubstantial optimizations it did. Thus, the results cannot be used to generalize the total capabilities
of STOKE and only show the limitations of STOKE for programs similar to the programs in the
experiments.

Fig. (7) might suggest that the STOKE binary runtime decreases when the allowed error increases.
However, it is more likely that a bias in the measuring setup causes this. The researchers of [15] show
that slight variations of aspects of an experimental setup can cause a substantial bias in program run
time. Likely, this caused the observed jump in the runtime of the binary for higher values of allowed
error because the experiments ran over two days. Therefore it is feasible that the measurement setup
had a slight but uncontrollable bias during the second day. However, the speedup found is still valuable
since I performed the first 4 STOKE and the GCC measurements on the same day.

The results highlight no cases where STOKE performed exceptionally well compared to GCC.
Therefore, the results are less helpful in finding further optimizations for the GCC compiler. However,
the converse that STOKE can be improved based on the results is valid. Specifically, the results show
an inability of the STOKE test case generator to generate input data for large loops. This inability is
likely because STOKE assumes that the program is in an infinite loop after a certain number of loops.
Future development could fix this shortcoming in STOKE by generating a couple of test cases that
use a larger bound for deciding when the program is in an infinite loop.

Furthermore, the results highlight the inability of STOKE to search programs that contain loops
with floating-point numbers. Since even when a simple optimization exists that results in a polynomial
speedup, STOKE cannot find it. The authors of STOKE say the following about loops in STOKE:
“STOKE identifies loop-free subsequences of the code which it will attempt to optimize” [6, p.7]. This
statement suggests that STOKE cannot find an optimization because it does not optimize the loop.
However, since finding the constant time optimization for the range sum only involves changing the
parts outside of the loop and leaving the loop empty, should STOKE still be able to find it. Further
research is needed to establish what prevents STOKE from optimizing these programs and if similar
programs exist that will get optimized.

The limited time constrained the methodological choices available for the performed research.
Therefore the results should not be interpreted as an assessment of the full capabilities of STOKE.
However, the results still are valid for answering the research questions since these aim to find cases
where STOKE under or overperforms, which can be seen in the results.

12

7 Conclusion and Future Research
This research aimed to identify programs for which STOKE optimizes well and when it fails to find
a significant optimization. To find these programs were multiple programs written and hereafter
optimized using both STOKE and GCC. The results show that STOKE failed multiple times to
provide satisfactory results when the function contains a loop. Therefore, I conclude that STOKE
generally struggles to optimize floating-point functions containing loops. Furthermore, the results
indicate that the STOKE test case generator fails to generate test cases that properly check infinite
looping behavior when looping over floating-point numbers.

Additionally, STOKE did not find optimizations that performed better than GCC version 12.1
with ffast-math enabled throughout the experiments. Therefore, the results might suggest that no
class of programs exists where STOKE synthesizes exceptionally well. However, STOKE’s inability to
optimize the given programs does not generalize to all programs since the experiments focused on a
small set. Therefore it is possible that for other programs, STOKE matches or even outperforms GCC
version 12.1 with ffast-math enabled. Future studies could address this gap in knowledge and focus on
different sets of programs to apply STOKE on.

The results indicate that the STOKE test case generator often fails to generate tests for floating-
point programs that properly verify the resulting program. For instance, the test case generator
sometimes fails to produce tests that check for infinite loops. Therefore, improving the test case
generator will likely benefit STOKE since this would cause STOKE to give more accurate results.
Furthermore, an enhanced test case generator will allow STOKE to run with a reduced training set
which would speed up the search and enables STOKE to check a larger space for optimized programs.
Future studies could focus on alternative methods for test case generation to more accurately validate
the generated programs and synthesize them with a smaller test set that reduces search time.

References
[1] W. M. Waite and G. Goos, Compiler Construction. Texts and Monographs in Computer Science,

New York: Springer Science & Business Media, 1996.

[2] “gcc(1) - Linux manual page,” May 2022.

[3] S. Gulwani, P. Oleksandr, and S. Rishabh, “Program Synthesis,” in Foundations and Trends®
in Programming Languages, vol. 10 of Applied Logic Series, pp. 105–134, Dordrecht: Springer
Netherlands, 2017.

[4] E. Schkufza, R. Sharma, and A. Aiken, “Stochastic Superoptimization,” ACM SIGARCH Com-
puter Architecture News, vol. 41, pp. 305–316, Mar. 2013. Number: 1.

[5] H. Massalin, “Superoptimizer: A Look at the Smallest Program,” ACM SIGARCH Computer
Architecture News, vol. 15, pp. 122–126, Oct. 1987.

[6] E. Schkufza, R. Sharma, and A. Aiken, “Stochastic Optimization of Floating-Point Programs with
Tunable Precision,” ACM SIGPLAN Notices, vol. 49, pp. 53–64, June 2014. Number: 6.

[7] D. Goldberg, “What Every Computer Scientist Should Know About Floating-Point Arithmetic,”
ACM Computing Surveys, vol. 23, pp. 5–48, Mar. 1991. Number: 1.

[8] J.-M. Muller, N. Brunie, F. de Dinechin, C.-P. Jeannerod, M. Joldes, V. Lefévre, G. Melquiond,
N. Revol, and S. Torres, Handbook of Floating-Point Arithmetic. Cham: Springer International
Publishing, 2018.

[9] C. Andrieu, N. de Freitas, A. Doucet, and M. I. Jordan, “An Introduction to MCMC for Machine
Learning,” Machine Learning, vol. 50, pp. 5–43, Jan. 2003. Number: 1.

13

[10] E. Schkufza, R. Sharma, B. Churchill, S. Heule, and J. Koenig, “GitHub - StanfordPL/stoke:
STOKE: A stochastic superoptimizer and program synthesizer,” May 2022.

[11] “time.h(0p) - Linux manual page,” May 2022.

[12] S. G. Kwak and J. H. Kim, “Central limit theorem: the cornerstone of modern statistics,” Korean
Journal of Anesthesiology, vol. 70, pp. 144–156, Feb. 2017. Publisher: The Korean Society of
Anesthesiologists.

[13] J. DeMaio, “Counting Triangles to Sum Squares,” The College Mathematics Journal,
vol. 43, pp. 297–303, Sept. 2012. Number: 4 Publisher: Taylor & Francis _eprint:
https://doi.org/10.4169/college.math.j.43.4.297.

[14] N. Leveson and C. Turner, “An Investigation of the Therac-25 Accidents,” UC Irvine: Donald
Bren School of Information and Computer Sciences, vol. 26, no. 7, pp. 18–41, 1992.

[15] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney, “Producing Wrong Data Without
Doing Anything Obviously Wrong!,” ACM SIGPLAN Notices, vol. 44, p. 12, Mar. 2009.

14

	Introduction
	Information on STOKE and Floating-Point Numbers
	Methodology
	General Experimental Setup
	C Programs

	STOKE's Performance
	Responsible Research
	Discussion
	Conclusion and Future Research

