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ABSTRACT: Vaporizing Liquid Microthrusters (VLM) have recently received attention as promising 

propulsion technology for highly miniaturized spacecraft due to its high thrust levels and low power 

consumption. This paper presents the results of numerical optimization of the parameters for the design of 

the heating chamber of VLMs that use water as the propellant. The optimization is aimed to increase the 

heat transfer coefficient of the heating chamber in order to maximize the heat convection while minimizing 

the heat and pressure losses from the inlet to the nozzle as well as the size of the device. The simulations 

are carried out in a combined environment using Computational Fluid Dynamics (CFD) and an optimization 

tool to run the algorithms. The results of the optimization are compared to the results of a comprehensive 

experimental campaign and are intended to be used in the next design of the VLMs produced by TU Delft 

that will fly on-board of a PocketQube. 
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1. INTRODUCTION 

Micropropulsion has been recognized as one of 

the key development areas for the next generation 

of highly miniaturized spacecraft such as 

CubeSats and PocketQubes. It will extend the 

range of applications for this class of satellites to 

include missions where, e.g., formation flying, 

station keeping, or space debris maneuvers are 

required. 

Many concepts of micropropulsion have been 

proposed during the last decades in order to 

provide these satellites with mentioned 

capabilities. Most of the systems are 

manufactured using MEMS (Micro Electro-

Mechanical Systems) [1] fabrication technologies 

and generate thrust by ejecting gases or plasma 

at high velocities, for example liquid propellant 

microthrusters [2], solid propellant microthrusters 

[3], [4], and cold-gas microthrusters [5], [6]. Other 

concepts generate thrust by other means, for 

example accelerating a spray of particles [7] or 

using the solar radiation pressure [8]. 

An interesting option for CubeSats and 

PocketQubes are resistojets which use a resistive 

heater to heat up the propellant and eject it 

through a nozzle. In the context of MEMS 

micropropulsion systems there are two variants 

commonly found in the literature: the Low 

Pressure Microresistojet (LPM) [9–11] and the 

Vaporizing Liquid Microthruster (VLM) [12]. The 

VLM has received attention due to its ability to 

provide high thrust levels with relatively low power 

consumption. The thruster uses the gases 

generated in the vaporization to produce thrust 

using a nozzle. The vaporization is usually done 

by applying power to resistive heaters that could 

be integrated into the device or externally 

attached to it. The nozzle is usually a convergent-

divergent nozzle that can accelerate the 

propellant to supersonic velocities. 

This paper presents the numerical optimization of 

the parameters used to design the vaporization 

chamber of a VLM system. Water is used as 

propellant as it has been proved to be an 

interesting option for this kind of propulsion 

system [13]. The vaporization chamber contains 

pillars that help to increase the heat transfer to the 

fluid improving the efficiency of the vaporization. 

The goal of the optimization is to find the shape of 

the pillars inside the chamber that maximizes the 

heat transfer and minimizes the pressure drop. 

The system is implemented in an environment 

combining MATLAB and COMSOL. The 
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optimization algorithms run in MATLAB defining 

the geometry used in COMSOL to solve the fluid 

dynamics and heat transfer problems. Four 

different optimization algorithms are tested and 

compared in terms of the best solutions found. 

2. VAPORIZING LIQUID MICROTHRUSTER 

The Vaporizing Liquid Microthruster considered in 

this paper is manufactured using MEMS and 

silicon technology. The details of the complete 

design and characterization of the devices 

produced at TU Delft are presented in [14]. The 

VLM system is composed of a tank to store the 

liquid propellant in this case water, a valve to 

control the fluid flow, and a thruster to vaporize 

the propellant and accelerate it to space. 

Figure 1 – Diagram of a VLM system showing a 

tank (1), a valve (2) and a thruster (3). 

The thruster is composed by an inlet section 

where the fluid flows in, a vaporization chamber 

used to increase the enthalpy of the fluid to the 

boiling point, and a nozzle to accelerate the vapor. 

The chamber contains resistive heaters attached 

to the back side of the thruster chip. These 

heaters are made out of molybdenum and are 

deposited on the surface of the chip during the 

manufacturing. 

3. OPTIMIZATION 

3.1 Problem formulation 

The goal of the optimization is related to two 

important aspects of the VLM system which are 

the energy efficiency and the propulsion 

efficiency. The former relates to the efficiency in 

the heat transfer process occurring inside the 

vaporization chamber. The latter relates to the 

friction losses in the fluid flow inside the 

vaporization chamber that affects the thrust and 

specific impulse. Friction losses are known to 

impact the nozzle performance as well but here 

we focus only on the chamber aspects. 

Figure 2 – Wafer and thruster made at TU Delft 

[14]. The form factor of the chip is 7 x 17 mm. 

The optimization variables are the coordinates of 

the points defining the shape of the pillars inside 

the chamber. These pillars can have any shape 

so long as there are no intersecting or coincident 

lines. 

In this paper, the total heat transfer coefficient h  

is used to measure the efficiency in the heat 

transfer and it is desired to be as high as possible, 

i.e. it has to be maximized. The propulsion 

efficiency is measured by the pressure drop 

caused by the pillars. 

The problem is reduced to the area surrounding 

one of the pillars of the vaporization chamber. 

Figure 3 shows the diagram of the section used in 

the simulations. The average heat transfer 

coefficient is calculated for the entire section 

whereas the pressure drop is calculated from the 

left to the right boundaries. 

The objective function, given by (1.1), is the sum 

of the heat transfer coefficient h  and the pressure 

drop p  normalized by the values given by a 

circular pillar (index 0) as the one in Figure 3. 

   0

0
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h p

F h p
h p


  


 (0.1) 

The heat transfer coefficient has to be maximized 

whereas the pressure drop has to be minimized. 

Both objectives are given the same weight 
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because they are normalized by a reference value 

which makes them comparable to each other. 

The vector of optimization variables contains the 

coordinates x  and y  of the n  points composing 

the edges of the pillar: 

 1 11{ , , , 0, , , , 0}n nX x x y y     (0.2) 

The first and last y  values are fixed in order to 

keep the consistency of the model. 

Figure 3 – Detail of the section used in the 

simulations. The liquid flows from left to right with 

a given flow rate. The top and bottom sides are 

symmetry boundaries. 

 

3.2 Algorithms 

Four evolutionary algorithms have been selected 

in order to evaluate their performance in solving 

the problem of topology optimization of the 

vaporization chamber of VLM systems. 

The algorithms are Genetic Algorithm (GA) [15], 

Particle Swarm Optimization (PSO) [16], 

Evolutionary Strategy (ES) [17], Biogeography 

Based Optimization (BBO) [18] and Differential 

Evolution (DE) [19]. The details of each method 

are given in the following. 

Genetic Algorithm: each candidate solution has a 

set of optimization variables that are treated as 

chromosomes and each variable is treated as a 

gene. Based on the fitness value of each solution 

(that is related to the objective function) the 

algorithm applies genetic operators, such as 

mutation and crossover, to create new evolved 

solutions and generate the best one after a stop 

criterion is met. 

Genetic Algorithm – pseudocode 

1: Initialize population 
2: Compute fitness of all solutions 
3: while stop criteria not met do 

4: Select candidates based on fitness 
5: Generate new solutions 
6: Compute fitness of new solutions 
7: Update the current population 

8: Present the best solution 

 

Particle Swarm Optimization: in this method the 

solutions are considered particles moving in the 

search space. Each particle moves with certain 

velocity according to its own best position, the 

best position of neighboring particles and the best 

position of the entire population of solutions. The 

solutions are classified by the values of the 

objective function. 

Particle Swarm Optimization – pseudocode 

1: Initialize population (position and velocity) 
2: Compute fitness of all solutions 
3: while stop criteria not met do 

4: Calculate new velocities for each particle 
5: Update the positions 
6: Compute fitness of all solutions 
7: Update the current population 

8: Present the best solution 

 

Evolutionary Strategy: this algorithm computes the 

solutions based on evolutionary operators such as 

mutation and selection. The solutions are 

randomly mutated and combined to generate new 

solutions and the best ones in terms of the 

objective function are kept for the next 

generations whereas the others are discarded. 

Evolutionary Strategy – pseudocode 

1: Initialize population 
2: Compute fitness of all solutions 
3: while stop criteria not met do 

4: Select random candidates to cross 
5: Generate new solutions 
6: Apply mutation and selection operators 
7: Compute fitness of new solutions 
8: Update the current population 

9: Present the best solution 
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Biogeography Based Optimization: this method 

uses the concept of migration of species between 

habitats. Each solution is treated as a habitat that 

shares information with other habitats due to 

migration. The emigration and immigration rates 

are used to generate new solutions based on the 

existing ones. A mutation operator can also be 

applied. 

Biogeography Based Optimization – pseudocode 

1: Initialize population 
2: Compute fitness of all solutions 
3: while stop criteria not met do 

4: Compute migration rates 
5: Generate new solutions 
6: Apply mutation operator 
7: Compute fitness of new solutions 
8: Update the current population 

9: Present the best solution 

 

Differential Evolution: unlike the previous 

methods, this one is not directly related to a 

natural process such as migration but it linearly 

combines three existing solutions into a new 

solution that is either added to the current 

population of solutions or simply discarded. 

Differential Evolution – pseudocode 

1: Initialize population 
2: Compute fitness of all solutions 
3: while stop criteria not met do 

4: Select three random candidates 
5: Generate new solution 
6: Compute fitness of the new solution 
7: Update the current population 

8: Present the best solution 

 

3.3 Implementation 

The algorithms were implemented in MATLAB 

using the codes presented in [18] and [20]. The 

optimization algorithms generate the points 

defining the geometry in Figure 3. These values 

are then updated to the model structure used by 

COMSOL which runs the CFD code that outputs 

the heat transfer coefficient and the pressure drop 

for the given geometry. The algorithm used in all 

methods is presented in Figure 4. 

The objective function is then calculated using 

(1.1). The stop criterion is set as the number of 

iterations of the algorithm. This allows the 

comparison between the different methods also in 

terms of computational effort.  

Figure 4 – Algorithm used in the simulations 

4. RESULTS 

All the algorithms were set to run 100 iterations 

and to start with the same randomly generated 

initial solutions. The population of solutions was 

set to 20 candidates. A list of all parameters is 

presented in Table 1. 

Figure 5 shows the convergence plot of all the 

algorithms after 100 iterations. As it is clear, the 

GA ends with the best solution. The BBO and 

PSO end with solutions that are close in terms of 

the objective function but the geometries 

generated are very different as shown in Figure 6. 

 

Figure 5 – Convergence plot of all algorithms. 

Figure 7 shows the evolution of the best solution 

during the execution of the GA. We can see that 

some of the features of the geometry are actually 
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evolving along time and not only being randomly 

generated. 

Table 1 – Parameters used in the algorithms. 

Algorithm Parameter Value 

BBO 

Mutation rate 0.01 

Max. migration rate 1 

Elite size 2 

DE 
Weighting factor (F) 0.5 

Crossover constant (CR) 0.5 

ES 
Offspring size 10 

Elite size 2 

GA 

Crossover type single point 

Mutation rate 0.01 

Elite size 2 

PSO 
Inertial constant 0.25 

Elite size 2 

 

Figures 8-10 show the plots of the velocity, 

pressure and temperature fields of the best 

solution. 

Table 2 shows the values of the objective function 

together with the heat transfer coefficient and 

pressure drop for the best solutions of each 

algorithm. As we can see the GA presents the 

best values for both criteria and a much lower 

objective function than the other algorithms. 

 

Figure 6 – Best solutions found by all algorithms. 

 

 

Figure 7 – Generations of the best solution found 

by the GA. 

 

Figure 8 – Velocity field of the best solution found 

by the GA. 

 

Figure 9 – Pressure field of the best solution 

found by the GA. 
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Table 2 – Optimization results after 100 
generations. 

Algorithm 
 h [W/(m

2
 

K)] 
p [Pa] 

Objective 
function 

BBO 4.17E+13 2.968678 0.463811 

DE 1.13E+13 6.602596 1.150814 

ES 3.27E+13 6.055864 0.802772 

GA 2.92E+14 0.191197 0.036234 

PSO 7.56E+12 0.22926 0.478261 
 

 

Figure 10 – Temperature field of the best solution 

found by the GA. 

5. CONCLUSIONS 

This paper presented the approach and results of 

optimization of VLM systems. The goal of the 

optimization is define an optimal shape for the 

pillars of the vaporization chamber of VLM 

system. A combined simulation environment was 

established to allow the information exchange 

between the optimization software (MATLAB) and 

the CFD software (COMSOL). 

Several different algorithms were tested in this 

combined simulation environment in order to 

evaluate them and select the best one to be 

applied in future developments.  

The genetic algorithm has performed better than 

the other methods and was able to generate a 

solution that satisfies all the constraints of the 

problem and provides very low value for the 

objective function which is composed by the heat 

transfer coefficient and the pressure drop of one 

of the pillars of the vaporization chamber. This 

improved performance could be attributed to the 

combination between the crossover operator that 

enhances the information sharing and the nature 

of the problem which does not have equality 

constraints which limits large individual changes 

to the optimization variables. 

Future work will be done to extend the number of 

generations the algorithm runs in order to achieve 

better results that can be considered for the next 

generation of the Vaporizing Liquid Microthrusters 

developed by TU Delft. Also, more constraints 

have to be added to the optimization in order to 

produce solutions that are more technically 

feasible, for example, the minimum feature size 

that can be manufactured with MEMS and 

structural constraints such that not too narrow or 

thin walls are generated that might be easily 

broken during operation. 
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