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ABSTRACT 
While existing literature has explored and revealed several insights 
pertaining to the role of human factors (e.g., prior experience, do-
main knowledge) and attributes of AI systems (e.g., accuracy, trust-
worthiness), there is a limited understanding around how the im-
portant task characteristics of complexity and uncertainty shape 
human decision-making and human-AI team performance. In this 
work, we aim to address this research and empirical gap by system-
atically exploring how task complexity and uncertainty infuence 
human-AI decision-making. Task complexity refers to the load of 
information associated with a task, while task uncertainty refers 
to the level of unpredictability associated with the outcome of a 
task. We conducted a between-subjects user study (� = 258) in 
the context of a trip-planning task to investigate the impact of task 
complexity and uncertainty on human trust and reliance on AI 
systems. Our results revealed that task complexity and uncertainty 
have a signifcant impact on user reliance on AI systems. When 
presented with complex and uncertain tasks, users tended to rely 
more on AI systems while demonstrating lower levels of appropriate 
reliance compared to tasks that were less complex and uncertain. 
In contrast, we found that user trust in the AI systems was not in-
fuenced by task complexity and uncertainty. Our fndings can help 
inform the future design of empirical studies exploring human-AI 
decision-making. Insights from this work can inform the design 
of AI systems and interventions that are better aligned with the 
challenges posed by complex and uncertain tasks. Finally, the lens 
of diagnostic versus prognostic tasks can inspire the operational-
ization of uncertainty in human-AI decision-making studies. 
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1 INTRODUCTION AND BACKGROUND 
With the emergence of human-AI decision-making as a promi-
nent paradigm across various domains, numerous investigations 
have been dedicated to understanding the factors that can impact 
trust and reliance on AI systems [84, 138, 142]. Such factors can 
be broadly classifed into three primary categories: human-related 
factors [35, 95, 96], attributes of the AI systems [94, 98], and charac-
teristics of the decision-making tasks [16, 56, 126]. Human factors 
such as prior experience [110, 119], cognitive biases [85, 102], and 
AI literacy [25], which can shape individuals’ perceptions and inter-
actions with AI systems. Attributes of the AI system include aspects 
such as predictions generated by AI [66, 76, 99], information about 
model predictions [11, 31, 93], as well as interventions that impact 
cognitive processes [17]. Furthermore, the level of trust and reliance 
on AI may difer across various domains and applications due to 
the attributes associated with decision tasks [42, 127]. 

The characteristics of tasks have been demonstrated to play a 
pivotal role in determining the level of reliance on AI systems, 
emphasizing the importance of methodically recognizing and com-
prehending these features in human-AI decision-making context. 
However, limited task characteristics have been systematically ex-
plored and their impact on human reliance on AI systems is not yet 
fully understood [68, 109]. Although a few studies have included 
multiple tasks with varying attributes [6, 14, 131], a systematic and 
empirical understanding of task features is notably absent from ex-
isting literature [68, 109]. Additionally, it remains unclear whether 
task attributes chosen in existing empirical studies have been ap-
propriately considered, in a manner that is commensurate with the 
claims of the studies [42, 68, 75]. These limitations have the poten-
tial to undermine the credibility and generalizability of research 
fndings, hindering our progress in developing efective strategies 
for human-AI decision-making [68, 109]. 

In this work, we propose empirically examining task complex-
ity and task uncertainty as two essential objective task charac-
teristics that that are manipulable from the task’s standpoint. Task 
complexity pertains to the characteristics of a task that contribute 
to an increased load of information [133], and it is distinct from 
task difculty [100], which relates to an individual’s perception of 
the task-based on their capabilities and previous experience [133]. 
It has been shown that task complexity is a crucial factor in de-
termining both human performance and behaviour [3, 23, 83], as 
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well as the success of human-AI teams [9]. Additionally, prior work 
has demonstrated that individuals tend to rely more heavily on 
AI systems when confronted with more complex tasks [28] due 
to the challenges associated with analyzing large volumes of in-
formation [23]. In line with work by Parkes [100], Vasconcelos 
et al. [126], we operationalize task complexity as an objective task-
related characteristic that can be measured based on the number 
of constraints involved in the task. On the other hand, the level of 
task uncertainty refers to the extent of unpredictability inherent 
in a given task [29]. We operationalize uncertainty in our study 
using diagnostic and prognostic tasks to capture diferent levels 
of uncertainty. Diagnostic tasks involve situations where partici-
pants are provided with detailed and comprehensive information 
about the task, (theoretically) enabling them to make accurate deci-
sions. Prognostic tasks, on the other hand, involve situations where 
participants must make predictions about future events based on 
incomplete or limited information. By operationalizing uncertainty 
in this manner, we can efectively capture the diverse levels of 
uncertainty that arise from the inherent nature of a task and its 
connection to information availability. Intuitively, in prognostic 
tasks, users can beneft from using AI systems due to their ability to 
reduce uncertainties, particularly when choosing the optimal route 
for a future trip by considering anticipated weather and trafc con-
ditions. Unlike planning immediate trips, this task entails a greater 
degree of uncertainty owing to future events’ unpredictability. 

Prior work has highlighted that appropriate trust and reliance 
play a critical role in achieving complementary human-AI team 
performance [58, 90, 139, 141]. Thus, it is essential to comprehend 
how task-related factors impact human trust and reliance on AI 
systems, as separate constructs [63, 90, 111], to foster successful 
collaboration between humans and AI. We thereby address the 
following research questions: 

RQ1: How does task complexity infuence user trust and 
reliance on an AI system? 

RQ2: How does task uncertainty, characterized by prognos-
tic versus diagnostic tasks, infuence user trust and reliance 
on an AI system? 

RQ3: How does task complexity interact with task uncer-
tainty to shape user trust and reliance on an AI system? 

To address these research questions, we selected the real-world 
scenario of trip-planning where both task complexity and uncer-
tainty are prominent factors. In such scenarios, individuals are 
confronted with circumstances that necessitate a choice between 
relying on an imperfect AI system or exercising their own judg-
ment. We conducted a 3 (task complexity) × 2 (task uncertainty) 
between-subjects study with 258 participants recruited from the 
Prolifc crowdsourcing platform. 

We found that users’ reliance on the AI system varied depending 
on the level of complexity and uncertainty in the task. Individuals 
facing tasks characterized by medium complexity and uncertainty 
i.e., prognostic tended to rely excessively on the AI system. How-
ever, their ability to diferentiate accurate AI advice from misleading 
advice was compromised, leading to a relatively low appropriate 

reliance, a higher over-reliance on AI, and subsequently lower over-
all task performance. However, we observed a point of transition 
where participants started to increase their appropriate reliance on 
the AI system. This led to enhanced overall performance in prognos-
tic tasks with high complexity, revealing a signifcant interaction 
between complexity and uncertainty. 

2 RELATED WORK 

2.1 Human-AI Collaborative Decision-Making 
In recent years, the use of AI technologies has evolved to encompass 
more collaborative approaches that involve both humans and AI 
systems working together [5, 21, 22, 73, 129]. While fully automated 
decision-making by AI systems may not always be appropriate, 
certain tasks still require human judgment. For example, in high-
stake scenarios such as in the medical [39, 61, 67, 97], legal [6, 
81, 86, 131], and fnancial [27, 36, 43, 45, 46] domains, individuals 
tend to exhibit a preference for human decision-makers over AI 
systems. This preference could be motivated by ethical and legal 
concerns [68, 74, 104], as well as a desire for individual agency and 
accountability [54, 70, 81, 117]. Additionally, it may also stem from 
the limited trust [18, 19] surrounding AI systems, coupled with 
concerns about potential biases or errors in algorithms [77, 120], 
particularly when human lives or ethical considerations are at stake 
due to possible failures of AI systems [68, 74, 104]. 

The primary objective of integrating human and AI is to unite 
their respective strengths, resulting in enhanced decision outcomes 
through complementary capabilities [17, 51]. To this end, previ-
ous research has focused on identifying the factors that infuence 
human-AI decision-making. Recent studies have explored variables 
that contribute to the fairness [31, 76, 124, 130] and trustworthi-
ness [34, 48, 80, 139] of AI systems, as well as the impact of assigning 
diferent decision-making roles to humans and AI on the reliance 
on such systems [52, 103, 122, 144]. Prior work has also been dedi-
cated to developing and evaluating interfaces [15, 30, 87, 89] and 
visualizations [43, 49, 134, 137, 140] aimed at improving human-AI 
collaboration. 

2.2 Trust and Reliance on AI Systems 
It is important to distinguish between trust and reliance, as they 
have diferent implications for the context of human-AI decision-
making. Lee and See [71] proposed the following defnition of trust, 
which we adopt for the scope of our work: 

Trust is an attitude that an agent will achieve an indi-
vidual’s goal in a situation characterized by uncertainty 
and vulnerability. 

Reliance, on the other hand, refers to the extent to which individu-
als rely on AI systems [71, 128]. When user decisions difer from 
AI advice, there are mainly three discernible patterns of reliance 
behavior [7, 112, 115], (i) appropriate reliance, switching to the AI 
advice when it is correct and overriding it when it is incorrect, 
(ii) over-reliance, excessively relying on AI advice even when it 
is incorrect, and (iii) under-reliance, not fully utilizing AI advice 
even when it is correct. While trust is an essential factor in deter-
mining the level of reliance on AI systems [55, 63, 71, 111], it is not 
always a guarantee. Prior studies have shown that individuals may 
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not necessarily increase their reliance on AI systems even if they 
trust them [62, 63, 90]. Instead, they might rely more on their own 
judgments despite acknowledging the capabilities of the AI system. 
This highlights that the trusting behavior of users can difer from 
their trusting beliefs. The evaluation of the system’s trustworthiness 
by individuals to establish perceived trustworthiness signifcantly 
infuences (subjective) trust and trusting behaviour (i.e., objective 
reliance) [113]. Even if a system is trustworthy, it does not auto-
matically ensure accurate perceived trustworthiness [8, 113]. To 
align the perceived trustworthiness of AI systems with their ac-
tual value, it is essential to consider aspects like the availability 
and relevance of system information and the detection and utiliza-
tion of this information by human decision-makers [113]. Trust in 
AI systems, namely perceived trustworthiness, can be evaluated 
through diferent methodologies, including subjective self-reported 
measures [26, 59, 63, 132] and relatively objective trust-related 
behavioral measures [51, 128, 138, 142], such as agreement and 
compliance. 

Through a wide range of studies, researchers have consistently 
found that reliance on AI systems is infuenced by various factors 
including human-related aspects [37, 51, 81, 101, 120], attributes 
of the AI systems [43, 79, 106, 107], and characteristics of the 
decision-making tasks [9, 12, 16, 46, 126]. Human factors encompass 
a variety of individual characteristics, including previous experi-
ence [95, 110], cognitive biases [85, 102], and AI knowledge [25]. 
For instance, cognitive [35, 68, 96] or meta-cognitive biases [51] 
have the potential to infuence how individuals comprehend and 
appraise the outcomes generated by AI systems which in turn can 
afect their reliance on AI. In addition, the attributes of AI systems 
can enhance decision-making outcomes [68], which include as-
pects such as predictions generated by AI [66, 76, 99], information 
about AI predictions or AI systems themselves [13, 70, 118, 136], 
and interventions that impact cognitive processes [65, 99, 105]. 
For instance, various explanation methods have been explored to 
enhance the interpretability and transparency of AI algorithms, al-
lowing humans to better understand AI advice [2, 50, 66]. Banovic 
et al. [8] discovered that reliance on AI systems is negatively af-
fected when untrustworthy AI systems overstate their capabilities 
compared to trustworthy ones. This is primarily because users 
struggle to diferentiate between the competence of trustworthy 
and untrustworthy AI systems, leading to deception and excessive 
reliance on the untrustworthy system. Moreover, the character-
istics of the decision-making tasks can also signifcantly impact 
human reliance on AI systems [68, 109]. Hence, the level of re-
liance may difer across various domains and applications due to 
the attributes associated with decision-making tasks [42, 127]. For 
instance, in high-stake felds like healthcare or fnance, individuals 
may exhibit distinct behaviours compared to low-stake areas such 
as entertainment [89, 136]. 

Recent research has revealed several challenges in fostering 
appropriate reliance on AI systems. Prior work has shown that 
depending on diferent factors [126, 143], users may blindly follow 
AI advice, leading to over-reliance [17], or underestimate the ca-
pabilities of AI, resulting in under-reliance [37, 131]. To overcome 
such challenges and improve performance-related outcomes, it is 
important to ensure that users can strike a balance between utiliz-
ing AI efectively while also considering the limitations of a given 

AI system. To this end, researchers and practitioners have explored 
the use of explanation methods [66, 94, 126], interventions such 
as tutorials [25, 84] and cognitive forcing functions [17] to foster 
appropriate reliance on AI systems with varying degrees of success. 

Building on the body of literature, our study aims to enhance the 
comprehension of appropriate reliance on AI systems in human-AI 
decision-making by investigating how task complexity and uncer-
tainty infuence user trust and reliance. To this end, we conducted 
a between-subjects study in the context of trip-planning task. We 
measured the extent to which individuals rely on AI systems for 
decision-making in various conditions by leveraging a series of 
common metrics in the feld. 

2.3 Task Characteristics in Human-AI 
Decision-Making 

Although much attention has been given to the efect of human 
and AI-related factors in shaping human reliance on AI, few stud-
ies have explored the infuence of task characteristics. Lee [75] 
found that individuals exhibited lower trust in AI systems in tasks 
that involve human skills, such as work evaluation, compared to 
tasks that require more analytical skills. Additionally, Vasconce-
los et al. [126] has also examined the concept of task difculty by 
considering the cognitive load required. Their fndings indicate 
that as tasks become more difcult, there is a tendency among 
users to rely excessively on AI advice, leading to over-reliance. 
A few studies have also explored the efect of task features on 
human-AI team performance. Bansal et al. [9] conducted a study 
where participants had to assess whether objects passing through 
a pipeline were defective or not. They manipulated the complexity 
by changing the number of the task features, such as color, shape, 
and size. They found that an excessive number of task features 
diminished the performance of human-AI teams signifcantly. Simi-
larly, in a study by Poursabzi-Sangdeh et al. [105], participants were 
presented with varying numbers of features to predict apartment 
selling prices. The features included variables such as the number 
of rooms, area size, days on the market, distance to amenities, and 
building maintenance fees. They also found that participants strug-
gle to distinguish AI errors in tasks with more features, leading to 
decreased performance. In contrast, Tolmeijer et al. [120] showed 
that the complexity of tasks did not signifcantly impact human-AI 
performance due to a learning efect. They conducted an exper-
iment in which participants were tasked with fnding a suitable 
house based on a set of constraints. The complexity of the tasks 
was manipulated, with some scenarios having three constraints 
(such as rent type, budget, and registration condition), while others 
had fve constraints (including rental duration and proximity to 
amenities). Buçinca et al. [16] conducted a study examining the 
infuence of proxy tasks, where participants were tasked to antici-
pate AI advice, compared to actual tasks where participants directly 
received AI advice. Their results indicate that participants’ behavior 
in proxy tasks did not align with their behaviour in actual tasks, 
underscoring the importance of carefully designing experiments to 
draw valid conclusions. Additionally, high-stake [6, 45, 46, 97] tasks 
and low-stake [44, 46, 66] tasks have been studied individually in 
literature in relation to human reliance on AI systems. 
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Furthermore, there is a lack of comprehensive investigations 
into categorizing task attributes and their specifc implications for 
human-AI decision-making [109]. Lai et al. [68] proposed a frame-
work that categorizes task characteristics in terms of their domain, 
required expertise, risk, and subjectivity. According to Lai et al. 
[69], tasks can also be diferentiated based on whether they are 
emulating human intelligence, like object recognition [20], or based 
on discovered patterns in data such as recidivism prediction [86]. 
Some prior works have also provided a taxonomy of task types 
existing in the literature [1, 92]. However, these taxonomies often 
focus on general task types rather than specifcally addressing the 
impact of these characteristics on human-AI decision-making. De-
Arteaga et al. [29] introduced diagnostic and prognostic tasks in 
which there is clear grand-truth in diagnostic tasks, while prognos-
tic tasks involve making predictions about future outcomes. They 
emphasized that the level of inherent uncertainty in predicting 
future outcomes is a crucial factor that can impact human reliance 
on AI systems. Inspired by this work, we operationalize task uncer-
tainty in our study using the distinction between diagnostic and 
prognostic tasks. 

In this paper, we aim to fll an empirical and research gap by 
examining the impact of task complexity and uncertainty, as im-
portant attributes in decision-making in real-world contexts. By 
providing application-grounded evaluation [32] with users relying 
on an AI system for assistance in practical tasks, our work is the 
frst to explore task uncertainty and how task uncertainty interacts 
with task complexity in shaping human-AI decision-making. 

3 HYPOTHESES AND TASK DESIGN 

3.1 Hypotheses 
The degree of task complexity is deemed one of the primary indica-
tors for determining the success of Human-AI teams [3, 9, 23, 83]. 
Consequently, it can be anticipated that as tasks become more 
complex, their infuence on human reliance on AI systems in-
creases [23, 82, 105]. More complex tasks tend to require more 
cognitive efort [23], making individuals more likely to rely on 
AI systems for assistance. Moreover, as task complexity increases, 
the verifability [40] and plausibility [57, 60] of AI advice tend to 
decrease. This can pose challenges for individuals in distinguishing 
misleading AI suggestions, leading to reduced levels of appropriate 
reliance on AI systems. Although there may not be a correlation 
between trust and reliance on AI systems [63, 71, 90, 114], prior 
work suggests a higher likelihood of individuals placing greater 
trust in AI systems for more complex tasks [53, 71]. 

When faced with prognostic tasks, individuals are likely to per-
ceive them as more complex and unpredictable, thus increasing 
their reliance on AI systems for assistance. With the presence of 
uncertainty in a task, individuals may lack sufcient capability to 
verify the correctness of AI advice and therefore rely more heavily 
on the AI systems [29], leading to reduced appropriate reliance on 
AI systems. Previous research has also demonstrated the infuence 
of uncertainty on trust formation in AI systems [121]. Considering 
highly complex and prognostic tasks, we hypothesize that indi-
viduals exhibit higher levels of trust and reliance on AI systems 
while showing a decrease in appropriate reliance. This could be 

due to the high cost of engaging cognitively in complex decision-
making processes, leading to a greater reliance on AI systems for 
guidance [126]. Therefore, we formulate our hypotheses as shown 
in Table 1. 

3.2 Trip-Planning Task 
We chose trip-planning to as the scenario for our study due to 
two primary reasons. Firstly, trip-planning is a common real-world 
problem that individuals frequently encounter and seek assistance 
from AI systems to make decisions. Secondly, this task allows us 
to meaningfully manipulate complexity levels (e.g., the number of 
constraints) and uncertainty levels in our experimental conditions, 
thereby enhancing the ecological validity of our fndings. In our 
study, participants are presented with a practical scenario where 
external assistance is potentially useful to successfully accomplish 
the task. We utilized an imperfect AI system with a 66.7% accuracy 
rate for trip-planning and manipulated its features accordingly (cf. 
section 4.1). This setup with the necessary complexity creates the 
desired sense of vulnerability and uncertainty, making it a suitable 
situation for analyzing human trust and reliance on AI systems [58, 
71]. Note that while trip planning is a frequently encountered real-
world task, the inclusion of time and budget limitations makes it 
unique, afecting how individuals rely on AI assistance. 

Figure 1: An overview of the trip-planning task interface that 
participants used including fve components: (1) task sce-
nario and description, (2) map, (3) route information, (4) gen-
eral information, and (5) two-stage decision-making. Note 
that this screenshot is meant to convey a bird’s-eye view 
of the interface. This interface is also dedicated to a highly 
complex scenario encompassing all constraints and the prog-
nostic experimental condition with high uncertainty. 

Planning a trip involves determining the most suitable route 
for travel, taking into account factors such as time limitations and 
budget constraints. Participants are tasked to select the trip that 
minimizes both travel time and expenses. Each task typically con-
sists of multiple components that support participants in making 
well-informed decisions, as depicted in a bird’s-eye view of the task 
interface in Figure 1. 

Quality Control: To ensure the accuracy and reliability of the 
collected data in our study, we employed multiple methods. We 
initially ofered instructional materials on the interface and task-
related features, followed by a training session for participants that 
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Table 1: Summary of Our Hypotheses. 

Hypothesis Description 

H1a Users demonstrate a lower level of appropriate reliance on AI systems for complex tasks compared to relatively 
less complex tasks. 

H1b Users trust AI systems to a greater extent in complex tasks compared to relatively less complex tasks. 
H2a Users demonstrate a lower level of appropriate reliance on AI systems in tasks with high levels of uncertainty 

compared to tasks with low levels of uncertainty. 
H2b Users trust AI systems to a greater extent in tasks with a high degree of uncertainty (prognostic) compared 

to tasks with lower levels of uncertainty (diagnostic). 
H3 Users demonstrate a relatively low level of appropriate reliance on AI systems in tasks with relatively high 

complexity and uncertainty. 

included both theoretical instruction and hands-on practice. Sec-
ondly, we evaluated participants’ comprehension by administering 
a quiz on task-related constraints. Individuals who scored below 
a certain threshold were excluded from the study to maintain the 
quality of data. Lastly, we incorporated four attention-check ques-
tions in the pre-questionnaire and post-questionnaire to screen out 
individuals who may not be fully engaged or attentive through-
out the study. Detailed explanations of these methods are publicly 
available on our companion page.1 

3.3 Design Considerations and Setups: Task 
Complexity vs. Task Uncertainty 

Wood’s seminal work [133] proposed that task complexity consists 
of three constructs: component, coordinative, and dynamic com-
plexities. Component complexity relates to the number of features 
in a task, while coordinative complexity pertains to executing se-
quences or steps within the task. Dynamic complexity arises from 
changing world states requiring further considerations at the point 
of decision-making. We utilized component complexity to defne 
task complexity and also adjusted the uncertainty as incomplete 
information in our setup. In dynamically complex tasks, decision-
making must adapt as the situation changes, with all information 
accessible at each point. However, uncertain tasks involve incom-
plete information at the point of decision-making, setting them 
apart from dynamically complex tasks. Therefore, it is valid to con-
sider these factors as separate dimensions although task uncertainty 
can increase task complexity. 

3.3.1 Task Complexity: To operationalize task complexity in 
our experimental conditions, we manipulated the number of con-
straints that are given to participants. This approach has been 
used in previous studies to control the level of complexity for a 
given task [9, 105, 120]. We categorized the tasks into three lev-
els of complexity: low, medium, and high. In low-complexity tasks, 
participants are presented with four features to consider while 
in medium-complexity tasks, eight features are provided. High-
complexity tasks entail twelve diferent features that must be taken 
into account. This design choice is guided by prior neuroscience 
research by Miller [91], suggesting that human cognitive capac-
ity for processing information is limited to around seven (± two) 
chunks of information at a time. Hence, we established fve to nine 
task features as representative of a medium level of complexity 
based on this fnding. Any number exceeding nine would classify 

1https://osf.io/kt8m4/?view_only=c6930ba990c8412cb3948c2cf2b0a39c 

as high complexity, while four or fewer would indicate low com-
plexity [109]. 

3.3.2 Task Uncertainty: Diagnostic tasks entail circumstances 
where participants are given access to well-defned and compre-
hensive information about the current task, allowing them to make 
precise judgments [29]. Prognostic tasks, on the other hand, in-
volve scenarios in which participants are presented with restricted 
or unclear data and need to generate predictions regarding future 
outcomes [29]. The necessity to anticipate uncertain results gives 
rise to increased uncertainty throughout the process of making 
decisions. To operationalize uncertainty in the contrasting exper-
imental conditions pertaining to diagnostic and prognostic tasks, 
we employed various strategies. 

For diagnostic tasks, participants are instructed to schedule a trip 
for the present moment within the narrative, while for prognostic 
tasks, participants are assigned to plan a trip that will take place 
two weeks later. Next, we customized the way task attributes are 
presented to align with the level of uncertainty. In situations involv-
ing diagnostic tasks, participants are given precise values for each 
constraint, eliminating any potential ambiguity. On the other hand, 
in prognostic tasks, a certain degree of uncertainty is introduced 
by ofering participants ranges or estimates instead of exact values 
for each attribute. We also presented the probability of diferent 
outcomes for certain constraints. For example, we highlighted the 
high likelihood of encountering trafc congestion during the rush 
hour or the low chance of experiencing rain during the scheduled 
trip. 

We created one task scenario for each task. In total, we generated 
24 diferent scenarios, with four scenarios in each experimental 
condition that difered in terms of task complexity and uncertainty. 
The full list of these task scenarios and all code for our im-
plementation is publicly accessible for the beneft of the research 
community and in the spirit of open science.2 

3.3.3 Task Features: We designed task features to impart and 
defne constraints in the decision-making tasks such that they do 
not afect each other and can be independently manipulated and 
measured. We communicated this independence explicitly and im-
plicitly by ensuring that each feature is presented separately and 
does not rely on or interact with other features. All task features 
were inspired by considerations typical in real-world trip-planning 
contexts. In our research, we can classify task characteristics from 
two diferent viewpoints: each feature has the potential to infuence 
either the overall duration of travel, the associated expenses, or 

https://osf.io/kt8m4/?view_only=c6930ba990c8412cb3948c2cf2b0a39c
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both factors. Furthermore, each feature can be categorized as being 
either time-dependent or time-independent. Time-dependent fea-
tures, such as trafc conditions and weather patterns, are prone to 
temporal changes based on external factors and their presentation 
difers when considering diagnostic tasks versus prognostic tasks. 
In tasks that have low complexity, we designed an equal distribu-
tion of time-dependent and time-independent features. However, 
for tasks with medium or high complexity, we increase the number 
of time-dependent features to enhance the degree of uncertainty 
that need to be considered in decision-making processes. Detailed 
explanations of all features are publicly available on our companion 
page.2 

4 STUDY DESIGN 

4.1 Experimental Conditions 
Our study was approved by our institutional ethics board. We de-
signed a between-subject study with a 3×2 factorial design. The 
three levels for task complexity were categorized as low, medium, 
and high, while the two distinct levels for uncertainty were diagnostic 
and prognostic tasks. We refer to these conditions as LowDiag, 
LowProg, MedDiag, MedProg, HighDiag, and HighProg. Partici-
pants were randomly assigned to one of the six experimental condi-
tions while ensuring a balanced distribution of participants across 
the diferent task complexity and uncertainty levels. In each condi-
tion, participants were presented with three diferent task instances 
to complete with the assistance of an AI system. The three task 
instances were determined based on each condition’s assigned com-
plexity and uncertainty levels. Detailed explanations regarding the 
complexity and uncertainty levels are provided in section 3.3. 

We fne-tuned the AI system to suggest routes that satisfy the 
given criteria with an accuracy of 66.7% across all experimental 
conditions. This level of accuracy was chosen since it is helpful 
if the system is relied on but still involves some risks. Hence, it 
calls for appropriate reliance instead of blindly following the AI 
system’s advice. This design choice is motivated by prior work 
emphasizing the role of uncertainty in dictating the need to facilitate 
appropriate reliance [71]. This implies that within each batch of 
three task instances that a participant completes, to control for 
potential ordering efects, we ensure that incorrect advice is ofered 
by the AI system once at random. 

4.2 Measures 
We leveraged a set of objective metrics to quantify participants’ re-
liance on the AI system (cf. Table 2) [58, 88, 90, 113, 139, 141]. These 
metrics include Agreement Fraction, Switch Fraction [51, 138, 142], 
and Accuracy with Disagreement [51], Relative Positive AI Reliance, 
and Relative Positive Self-Reliance [112]. These parameters are com-
monly adapted in literature to capture the level of reliance within 
the human-AI interaction context. In addition to these measures 
of reliance, we also evaluated participants’ decision-making accu-
racy, demonstrating the human-AI team performance [11, 108]. By 
measuring trust and reliance variables alongside human-AI team 
performance, we can gain a deeper understanding of whether per-
formance outcomes result from under-reliance, appropriate reliance, 
or over-reliance on AI systems. 

The subjective trust in the AI system was assessed using the 
Trust in Automation questionnaire (TiA) [63], which is a commonly 
employed and validated tool for measuring trust [78, 116, 120]. 
The questionnaire comprises multiple items that evaluate vari-
ous aspects such as participants’ perceptions regarding Reliabil-
ity/Competence (TiA-R/c), Understanding/Predictability (TiA-U/P), 
Familiarity (TiA-Familiarity), Intention of Developers (TiA-IoD), 
the Propensity to Trust (TiA-PtT), and the overall level of trust 
placed in the AI system, Trust in Automation (TiA-Trust). 

We collected information about participants’ perceived numer-
acy skills as well as their afnity for technology in the pre-task ques-
tionnaire. To measure numeracy skills, we employed the Subjective 
Numeracy Scale [38], which is a self-report measure of perceived 
ability to perform various mathematical tasks and preference for 
the use of numerical information. Additionally, we administered the 
Afnity for Technology Interaction Scale (ATI) [41] to determine 
participants’ level of comfort and familiarity with technology [120]. 

4.3 Participants 
We frst estimated the required sample size using G*Power software, 
considering a medium efect size of 0.25, a power of 0.90, and a sig-
nifcance level of 0.05, leading to a recommended minimum sample 
size of 210 participants, i.e., 35 participants in each of our experi-
mental condition. To obtain a sufcient sample for our study while 
accounting for potential exclusion, we enlisted the participation of 
285 individuals using the Prolifc crowdsourcing platform. To ensure 
the reliability of the data gathered, we applied inclusion criteria that 
were designed to select native English speakers with a minimum 
approval rate of 95% on the platform and at least 100 completed 
studies. A total of 27 participants who failed any attention-check 
questions or the quiz were excluded from participation in the study, 
resulting in a fnal sample size of 258 participants. On average, 
participants took approximately 25 minutes to complete the entire 
study. All participants were compensated at the fxed rate of 8 GBP 
per hour regardless of their performance in the study. Additionally, 
participants received bonus rewards amounting to 0.2 GBP for each 
accurate response they provided during the study period. Overall, 
participants earned an average of 8.44 GBP per hour, well over 
the wage considered to be ‘good’ and recommended by the Prolifc 
platform. 

4.4 Procedure 
The entire workfow of the study is illustrated in Figure 2. When par-
ticipants entered the study, they were frst provided with informed 
consent, a brief overview of the study’s goals, and instructions on 
how to complete the tasks (step 1). If they consented to partici-
pate, they were directed to the pre-task questionnaire in step 2, 
where they were presented with a series of questions related to 
their numeracy skills and afnity for technology. Participants were 
then randomly assigned to one of the six diferent experimental 
conditions. According to the assigned condition, participants were 
presented with an interface tutorial and task tutorial that provided 
step-by-step instructions on how to navigate and complete the task 
followed by a training session on a sample task. The participants 
were given sufcient time to familiarize themselves with the sample 
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Table 2: An overview of the diferent metrics that we considered in our user study. 

Metric Type Metric Name Value Type Value Range 

Performance Accuracy Continuous [0,1] 

Reliance 
Switch Fraction 

Agreement Fraction 
Continuous 
Continuous 

[0,1] 
[0,1] 

Accuracy-wid Continuous [0,1] 
Appropriate Reliance [51, 112] RAIR 

RSR 
Continuous 
Continuous 

[0,1] 
[0,1] 

TiA-ReliabilityCompetence Likert 5-point, strong distrust to strong trust 
TiA-UnderstandingPredictability Likert 5-point, strong distrust to strong trust 

Trust TiA-Intention of Developers Likert 5-point, strong distrust to strong trust 
TiA-Trust in Automation Likert 5-point, strong distrust to strong trust 
Subjective Numeracy (SNS) Likert 6-point: from low to high 

Covariates Afnity for Technology (ATI) 
TiA-Familiarity 

Likert 
Likert 

6-point: low to high 
5-point, strong distrust to strong trust 

TiA-Propensity to Trust (TiA-PtT) Likert 5-point, strong distrust to strong trust 

task and the interface. To ensure the understanding of the task, par-
ticipants were required to answer a quiz related to the task features 
before proceeding to the main task. If participants did not pass the 
quiz, they were excluded from the study. Otherwise, they received 
immediate feedback on their quiz performance to ensure that partic-
ipants proceeded to the main task with a complete understanding of 
the task and devoid of familiarity or comprehension-related biases. 
Participants were then asked to complete three trip-planning tasks. 
Each task instance consisted of a decision-making scenario, where 
participants had to analyze the information provided and make 
an AI-assisted decision. Lastly, participants were directed to fll 
out a post-task questionnaire to assess their perception of the task 
features and trust in the AI system. 

Figure 2: Illustration of the procedure participants followed 
within our study. 

5 RESULTS 

5.1 Descriptive Statistics 
5.1.1 Demographics. The resulting sample of 258 participants had 
an average age of 38 years old (�� = 11.8) and consisted of 39% 
females and 61% males. To account for potential confounding vari-
ables, we gathered information about the participants’ subjective 
numeracy skill (SNS), afnity for technology (ATI), TiA-Familiarity, 
and TiA-Propensity to Trust (TiA-PtT). Participants reported a mod-
erate level of perceived numeracy (� = 4.28, �� = 0.80) on the 
6-point scale. Similarly, participants were found to have a moderate 
afnity for technology interaction (� = 4.04, �� = 0.56) measured 
on a 6-point scale, low familiarity (� = 2.87, �� = 1.17), and a 
moderate propensity to trust AI (� = 3.72, �� = 0.49) measured 
on a 5-point scale. 

5.2 Hypothesis Tests 
H1a. Impact of task complexity on appropriate reliance: To 
explore the main efect of complexity on appropriate reliance, we 
conducted a Kruskal–Wallis test, Table 3. Subsequently, we con-
ducted Dunn’s post-hoc test to determine which levels of complex-
ity resulted in signifcant diferences in appropriate reliance. We 
reported adjusted p-values, calculated using Bonferroni correction 
to account for the increased likelihood of falsely declaring statistical 
signifcance when conducting multiple tests. If the adjusted p-value 
for an individual hypothesis is less than the signifcance level (0.05), 
then the null hypothesis is rejected, indicating a statistically signif-
icant result [135]. We frst report the infuence of complexity on 
reliance, followed by our examination of appropriate reliance. 

The observed signifcant diference in switch fraction between 
high and low-complexity tasks implies that task complexity does 
indeed exert an infuence on reliance. In tasks with higher com-
plexity levels, individuals tend to shift from relying on their own 
judgment to relying on the AI system. This can be attributed to a de-
crease in self-confdence regarding their decision-making abilities 
and, as a result, seeking guidance from the AI system. 

Tasks of higher complexity tend to diminish the appropriate 
reliance on the AI system. Participants demonstrated signifcantly 
lower levels of Accuracy-wid in tasks with greater complexity com-
pared to those with lower complexity. A similar trend is observed 
when examining RSR, wherein participants displayed signifcantly 
reduced levels of confdence in themselves during tasks with higher 
complexity than those with lower complexity. Consistent with these 
fndings, participants exhibited a contrasting trend in displaying 
a signifcantly higher level of reliance on the AI system for tasks 
that were more complex compared to those of lower complexity, 
as indicated by higher RAIR. The rise in RAIR does not necessarily 
imply a higher appropriate reliance on the AI system. Rather, it 
suggests that individuals under-rely on the AI system in tasks with 
relatively lower complexity, and over-rely on the AI system in tasks 
with relatively higher complexity without being able to recognize 
when the advice may be inaccurate. This excessive reliance can 
ultimately have a negative impact on performance by reducing 
appropriate reliance levels. 

Furthermore, we found that the accuracy of participants is sig-
nifcantly lower in tasks with higher levels of complexity than those 
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Table 3: Kruskall-Wallis test for the main efect of task complexity on reliance. † indicates that the efect of the variable is 
signifcant in the comparisons shown in the ‘Post-hoc Results’ column. 

Dependent Variable adjusted-p � ± �� (Low) � ± �� (Medium) � ± �� (High) Post-hoc Results 
Agreement Fraction .8 0.62 ± 0.20 0.54 ± 0.25 0.55 ± 0.28 -
Switch Fraction .003† 0.18 ± 0.32 0.26 ± 0.30 0.34 ± 0.36 Low < Medium < High 
Accuracy <.001† 0.79 ± 0.22 0.58 ± 0.27 0.61 ± 0.29 Low > Medium, High 
Accuracy-wid .001† 0.61 ± 0.40 0.40 ± 0.37 0.50 ± 0.35 Low > Medium, High 
RAIR .001† 0.22 ± 0.41 0.33 ± 0.41 0.43 ± 0.45 Low < Medium, High 
RSR <.001† 0.64 ± 0.48 0.34 ± 0.48 0.38 ± 0.49 Low > Medium, High 

with lower complexity. This fnding provides additional evidence 
to our previous fndings regarding the infuence of task complexity 
on appropriate reliance. Overall, these results partially support
our hypothesis H1a.

H1b. Impact of task complexity on trust: We aimed to ex-
amine the main efect of task complexity on trust in the AI system. 
Therefore, we conducted a two-way ANCOVA to consider the po-
tential confounding efects of the covariates, namely subjective 
numeracy skill, afnity for technology, TiA-Familiarity, and TiA-
Propensity to Trust. We did not fnd a signifcant efect of task 
complexity on human trust in the AI system, leading us to reject
our hypothesis H1b. However, this fnding supports that the sub-
jective nature of trust in the AI system does not always follow the 
objective measure of reliance on the AI system [90, 114]. 

H2a. Impact of task uncertainty on appropriate reliance:
We investigated the main efect of task uncertainty on reliance by 
conducting the Kruskal–Wallis test, reported in Table 4. We found 
that task uncertainty signifcantly afects participants’ reliance on
the AI system. Participants showed signifcantly higher levels of 
switch fraction when faced with prognostic tasks, indicating their 
tendency to rely more on the AI system due to lower self-confdence. 
Our fndings further suggest that individuals can accurately assess 
the level of uncertainty in a task and adjust their reliance on the AI 
system accordingly. 

Furthermore, our fndings revealed that the degree of uncer-
tainty in a task signifcantly infuenced participants’ appropriate
reliance on the AI system. We found that participants were more
likely to appropriately rely on the AI system in diagnostic tasks, 
leading to higher accuracy rates, as indicated by higher Accuracy-
wid compared to prognostic tasks. In line with this fnding, we
also observed that participants exhibited a slightly higher level of 
reliance on their own decision-making skills (RSR) when faced with
diagnostic tasks. On the other hand, in prognostic tasks, partic-
ipants showed signifcantly higher degree of reliance on the AI 
system as indicated by higher RAIR. This fnding suggests that
participants tend to rely heavily on the AI system in uncertain 
situations. However, this does not necessarily lead to appropriate 
reliance. It can be challenging for them to distinguish between 
accurate and inaccurate AI advice in prognostic tasks, resulting in 
lower appropriate reliance on the AI system and decreased accuracy 
levels. As a result, our fndings partially support the hypothesis
H2a.

H2b. Impact of task uncertainty on trust: The main efect
of task uncertainty on trust in the AI system was also examined 
in this study through the ANCOVA test. The results indicated that 

there was no signifcant main efect of task uncertainty on any 
trust subscales. These fndings indicate that participants’ trust in 
the AI system remains relatively stable regardless of the level of 
uncertainty in the task. Thus, we reject our hypothesis H2b.

H3. Interaction efect of task complexity and uncertainty: 
We conducted an ANOVA to investigate the interaction efect of 
task complexity and uncertainty on appropriate reliance and trust. 
We found a signifcant interaction efect between task complexity 
and uncertainty on Accuracy-wid as a measure of appropriate re-
liance. Figure 3a illustrates the interaction efect of task complexity 
and uncertainty on Accuracy-wid, focusing on diferent levels of 
complexity. We observed that the trend of Accuracy-wid is descend-
ing for tasks with low and medium complexity while increasing the 
level of uncertainty. However, for tasks with high complexity, the 
trend is the opposite, where Accuracy-wid increases with increas-
ing uncertainty. Although we found earlier that participants have 
a lower Accuracy-wid for prognostic tasks, the interaction efect
suggests that the impact of uncertainty on appropriate reliance 
depends on the level of task complexity. This fnding suggests that 
participants tend to engage more cognitively in tasks they perceive 
as less complex, believing they can make accurate judgments. This 
trend is also observed in diagnostic tasks with high complexity. 
However, when faced with highly complex and prognostic tasks, 
participants are more likely to relinquish some cognitive control 
and rely heavily on the AI system. This could be attributed to their 
perception of the task’s complexity exceeding their own capabilities. 
Participants may also view the AI advice as being more reliable 
and trustworthy, resulting in increased agreement and appropri-
ate reliance. This fnding is further supported by the signifcant 
interaction efect identifed in Accuracy, Figure 4a, demonstrating
that participants’ ability to make accurate predictions increases 
when they are faced with prognostic tasks with high complexity, 
compared to prognostic tasks with medium and low complexity. 
Consequently, their level of accuracy aligns with that of the AI 
system due to their increased appropriate reliance. Figures 5a and 
5b illustrate the Accuracy and Accuracy-wid for diferent levels of 
task complexity and uncertainty. 

We can observe the interaction efect of complexity and uncer-
tainty for diagnostic and prognostic tasks in Figure 3b. For diagnos-
tic tasks, the trend Accuracy-wid is descending as the complexity of
the task increases. However, for prognostic tasks, diferent efects 
are observed. Participants tend to have lower Accuracy-wid as we in-
crease the complexity from low to medium. In medium-complexity 
tasks, Accuracy-wid reaches its local minimum. So, as we further
increase the complexity to high levels, Accuracy-wid starts to rise
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Table 4: Kruskall-Wallis test for the main efect of task uncertainty on reliance. † indicates the efect of the variable is signifcant 
in the comparisons shown in the ‘Post-hoc Results’ column. 

Dependent Variable adjusted-p � ± �� (Diagnostic) � ± �� (Prognostic) Post-hoc Results 
Agreement Fraction .01† 0.60 ± 0.23 0.54 ± 0.26 Diagnostic > Prognostic 
Switch Fraction .02† 0.22 ± 0.32 0.31 ± 0.34 Diagnostic < Prognostic 
Accuracy <.001† 0.72 ± 0.30 0.60 ± 0.24 Diagnostic > Prognostic 
Accuracy-wid .04† 0.56 ± 0.43 0.45 ± 0.33 Diagnostic > Prognostic 
RAIR .02† 0.27 ± 0.42 0.38 ± 0.44 Diagnostic < Prognostic 
RSR .1 0.50 ± 0.50 0.40 ± 0.49 -

(a) Diferent task complexity levels across uncertainty levels (b) Diferent task uncertainty level across complexity levels

Figure 3: Interaction efects between task complexity and uncertainty on the Accuracy-wid metric refecting appropriate 
reliance. 

(a) Diferent task complexity levels across uncertainty levels (b) Diferent task uncertainty levels across complexity levels

Figure 4: Interaction efect between complexity and uncertainty on Accuracy metric. 

again, suggesting that participants rely more appropriately on the 
AI system, and their accuracy improves in highly complex prognos-
tic tasks, aligning more closely with accuracy of the AI system (cf. 
Figure 4b). Furthermore, we can see that the appropriate reliance is 
always greater for diagnostic tasks compared to prognostic tasks, 
except for high complexity, where the values for prognostic tasks 
surpass those for diagnostic tasks, further supporting our fndings. 
In summary, we found that the interaction efect between com-
plexity and uncertainty in conditions with high complexity and 
uncertainty plays a signifcant role in human-AI decision-making. 
While the appropriate reliance drops as the complexity and uncer-
tainty of a task increase, there is a turning point where participants 
start to rely more appropriately on the AI system, resulting in in-
creased accuracy in prognostic tasks with high complexity. Thus, 
our fndings reject hypothesis H3.

6 DISCUSSION 

6.1 Key Findings 
Our study examined the impact of task complexity and uncertainty 
on human-AI decision-making. The results of our study demon-
strated that increasing the level of complexity and uncertainty
in decision-making tasks led to signifcant diferences in users’
reliance on the AI system. In more complex and uncertain tasks,
we found that users were often in initial disagreement with the 
advice provided by the AI system. However, they demonstrated a 
heavy reliance on AI advice during the second stage of the decision-
making process, leading to higher Switch Fraction. This can be at-
tributed to the potential recognition that AI ofers valuable insights 
for decision-making under complexity and uncertainty, coupled 
with a lack of confdence in their own judgment, corroborating 
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(a) Mean of Accuracy-wid (b) Mean of Accuracy 

Figure 5: Mean of Accuracy-wid and Accuracy across diferent levels of task complexity and uncertainty. 

what has been uncovered by other work in human-AI decision-
making [23, 105]. Furthermore, the greater cognitive efort linked 
to complex tasks may also be a contributing factor. The cost of rely-
ing on the AI system would prove to be less compared to evaluating 
the reliability of the AI advice, thereby prompting individuals to 
lean towards following AI advice [126]. Additionally, users showed 
higher engagement and information-gathering behavior in prog-
nostic scenarios, demonstrated by signifcantly more clicks on route 
control buttons, indicating greater inclination to explore diferent 
route options. 

We also found that the appropriate reliance on the AI sys-
tem varied signifcantly depending on task complexity and un-
certainty. Users exhibited lower appropriate reliance on the AI 
system ( lower Accuracy-wid), leading to lower accuracy in tasks 
with medium complexity or uncertainty compared to those with low. 
However, users demonstrated higher appropriate reliance on the 
AI system, resulting in improved accuracy in the experimental con-
ditions with tasks with high complexity or uncertainty compared 
to those with medium complexity or uncertainty. Users perceived 
that tasks with higher complexity and uncertainty required greater 
efort and information processing, making them more willing to 
rely on the AI system. In such scenarios, their performance ap-
proaches AI accuracy, indicating the efectiveness of integrating AI 
in decision-making. 

Our fndings showed that individuals generally place signif-
cantly more reliance on the AI system when faced with tasks 
characterized by high uncertainty. However, in such prognostic 
tasks, their ability to appropriately rely on AI advice is lower 
compared to diagnostic tasks, subsequently afecting their overall 
performance. Tasks that involve inherent uncertainty are often 
those where humans tend to rely on AI systems for advice, such as 
loan approval [27, 34, 124], recidivism prediction [31, 47, 86], house 
price estimation [2, 13, 25], and student admission [13, 24]. Individ-
uals may be more inclined to adhere to AI advice in these types 
of tasks. This could stem from the belief that AI systems possess 
advanced analytical abilities and have access to a greater amount of 
data [75]. On the other hand, when individuals are faced with tasks 
that have lower uncertainty, such as annotation and classifcation 
task [4, 77, 117], they tend to rely less on the AI advice and rely 
more on their expertise and judgment. Since the heavy reliance 

on AI systems in uncertain situations does not always lead to im-
proved decision-making accuracy, several mechanisms have been 
proposed to optimize the combination of human and AI decisions 
to achieve the best outcomes and facilitate appropriate reliance on 
the AI system. These mechanisms include providing interpretable 
explanations for AI advice [21, 72, 123], using cognitive forcing 
functions[17, 47, 99], and incorporating feedback loops to enhance 
the interaction between humans and AI systems [10, 11, 139]. De-
spite implementing a two-stage decision-making process to en-
courage individuals to be cognitively involved in the procedure, as 
well as incorporating visual and textual explanations for increased 
transparency, our research emphasizes the necessity for additional 
exploration into strategies that can facilitate appropriate reliance on 
AI systems in contexts characterized by high levels of uncertainty. 

The complexity of tasks plays a signifcant role in determining 
the degree of reliance on AI advice, consistent with the fndings of 
[9, 105]. The more complex a task is, the more individuals may be 
inclined to rely on the AI system. We use the number of features or 
constraints as the measure of task complexity similar to previous 
studies [9, 105, 120]. Tasks with a larger number of constraints 
that need to be accounted for in decision-making are often more 
challenging for individuals to process, making them more likely 
to seek guidance from AI [63, 90, 111]. Our fndings, which were 
based on objective measures, align with [126] study and suggest 
that users tend to rely more heavily on AI systems when faced 
with complex tasks that demand higher cognitive efort. This is 
further backed by [100] indicating that the complexity of a task 
can elevate its perceived difculty, potentially resulting in greater 
reliance on AI systems. As shown by Salimzadeh et al. [109], the 
majority of tasks that have been studied in the context of decision-
making are characterized by low and medium complexity. Prior 
studies that investigated tasks exceeding individual information 
processing capabilities (i.e., 9 constraints [91]) suggested employing 
visualization techniques to assist individuals in understanding the 
AI advice and the underlying decision-making process [43, 137, 140]. 
We used visual and textual techniques to support individuals in 
understanding the factors playing a role in shaping the given AI 
advice. However, in higher complexity scenarios, an individual still 
lacks cognitive engagement with the AI system and may be more 
likely to rely heavily on its advice. This is supported by the tendency 



Impact of Prognostic Versus Diagnostic Tasks on Trust and Reliance in Human-AI Decision-Making CHI ’24, May 11–16, 2024, Honolulu, HI, USA 

of individuals to rapidly make their decision within approximately 
twenty seconds after receiving advice from AI, without carefully 
reassessing the provided information or exploring alternative route 
options. Although these visual and textual strategies have shown 
promise in improving decision-making outcomes in literature, they 
were not sufcient to mitigate over-reliance on AI advice in high 
complexity tasks. 

According to the Trustworthiness Assessment Model (TrAM) [111], 
accurate perceived trustworthiness of AI systems is essential for 
establishing meaningful trust and reliance on AI systems. Factors 
such as relevance and availability of system information, as well 
as the ability of individuals to detect and utilize this information, 
play a crucial role in determining accurate perceived trustworthi-
ness. In our study, we only presented relevant task features using 
visual and textual formats to participants. We utilized user behavior 
metrics and validation of participant perceptions through training 
and quizzes to ensure the detection of these features. However, 
we expected the complexity and uncertainty of tasks to impact the 
availability and utilization of system information, thus afecting per-
ceived trustworthiness [98]. However, participant trust remained 
consistent regardless of task complexity or uncertainty, which was 
in contrast to what is suggested by the TrAM framework. 

6.2 Implications of Our Work 
6.2.1 Implications for Methodology and the HCI Community. The 
implications of methodology in HCI research pertain to the design 
and analysis of studies [125]. These implications specifcally address 
data collection methods and the construction of new knowledge. 
Our work has important implications for the methods used to study 
human-AI decision-making, for increasing the external validity of 
empirical work and strengthening the understanding of the trans-
ferability of fndings across diferent studies. It has been observed 
that task characteristics, such as complexity and uncertainty, are 
seldom examined or analyzed systematically in human-AI decision-
making studies. While it may not be experimentally feasible to 
account for every facet of a task, our research emphasizes the sig-
nifcance of considering these factors when assessing human-AI 
collaboration. Future research should consider the incorporation of 
methodologies that take into account task-related features when 
evaluating human-AI decision-making. Our fndings also contribute 
to the interpretation of human behaviour and reliance on AI sys-
tems through the lens of task complexity and uncertainty. Current 
studies often focus on generic decision-making scenarios or tasks 
with low to medium complexity, which may not fully refect or 
represent the challenges and dynamics of the full range of real-
world scenarios. This is particularly important in highly complex 
tasks coupled with high uncertainty, where humans tend to re-
quire, appreciate, and rely on advice from an AI system. Future 
research should consider the systematic identifcation and inclusion 
of task-specifc characteristics in the design of studies in the realm 
of human-AI decision-making. 

To initiate a systematic evaluation of task characteristics, we 
propose the lens of diagnostic and prognostic tasks as a framework 
for modeling uncertainty in decision-making, which can be used as 
a basis for designing experiments and gathering data on human-AI 
interactions. This approach acknowledges the inherent uncertainty 

in determining or estimating diferent constraints that infuence 
decision outcomes. Additionally, it ofers a relatively more precise 
representation of decision-makers’ challenges. Incorporating this 
lens into research methodology would involve designing studies 
that specifcally control the uncertainty inherent in diagnostic and 
prognostic tasks and exploring their impact on human-AI decision-
making processes and outcomes. We also encourage researchers to 
consider highly complex tasks in their experiments to capture the 
challenges and nuances of decision-making in real-world scenarios. 
This can be achieved by developing scenarios or simulations that 
closely resemble complex decision-making situations in diferent 
domains. Our task details and all code for the interface are made 
publicly available to support future research in the community.2 

Our study also highlights the need for further examination and 
development of techniques tailored specifcally to support high-
complexity and prognostic tasks in human-AI decision-making. 
Although many interventions have been developed for decision-
making in various domains, there is still a need to focus on the 
unique challenges posed by high complexity and prognostic tasks. 
Such interventions could be targeted to ofer users indicators that 
can help them accurately assess the reliability, plausibility, and 
verifability of the AI advice. Consequently, these methods will 
promote appropriate reliance on the AI system in complex and 
uncertain decision-making scenarios. There is a heightened ur-
gency in developing and creating these mechanisms to prevent 
potential deception arising from the complexity and uncertainty of 
tasks, which can make it challenging to detect untrustworthy AI 
systems [8]. By reducing the cost of verifability and plausibility 
of such XAI techniques, decision-makers can gain a better under-
standing of the basis for AI advice based on their own expertise 
and judgment, potentially leading to improved performance and 
appropriate utilization of AI systems. 

The decline in performance of human-AI teams when tackling 
tasks of medium complexity suggests that users may have faced 
challenges in accurately assessing their own abilities and the ca-
pabilities of AI systems, primarily by overestimating their own 
abilities [64]. This aligns with previous research fndings, high-
lighting the need for interventions to assist users in evaluating 
their skills and appropriately adjusting their reliance on AI sys-
tems [25, 51, 69]. This may be particularly important in tasks with 
relatively moderate complexity which may lead to illusory self-
assessments among some users, compared to tasks with evidently 
low or discernibly high complexity. 

6.2.2 Implications for Theory. Theoretical implications focus on 
the understanding of task characteristics and their impact on human-
AI decision-making. Based on our fndings, it is evident that the 
complexity and uncertainty of tasks signifcantly infuence how 
humans rely on AI systems. This study serves as the application-
grounded evaluation [32] in the context of trip-planning, centering 
on the individuals the system intends to support in actual tasks. It 
empirically validates the commonly held belief that task complexity 
and uncertainty play a crucial role in determining human reliance 
on AI systems. While the primary objective of combining humans 
and AI is to achieve enhanced performance through collaboration, 

2https://osf.io/kt8m4/?view_only=c6930ba990c8412cb3948c2cf2b0a39c 
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an over-reliance on AI can potentially impede the advantages of-
fered by human judgment and decision-making abilities. Therefore, 
it is crucial for researchers to develop theoretical frameworks that 
can help identify and motivate the optimal balance between human 
and AI involvement in decision-making, taking into consideration 
task complexity and uncertainty. 

Contrary to previous research suggesting that trust in AI sys-
tems increases with the complexity and uncertainty of tasks, our 
fndings indicate that trust is orthogonal to these factors. These 
results suggest that trust is not the sole determinant of reliance 
on AI advice, and other factors such as task characteristics play a 
signifcant role. This also indicates the diference between human 
trustworthy beliefs and behavior toward AI systems, where trust 
may not always translate into increased reliance, highlighting the 
need to measure, calibrate, and understand factors beyond trust 
that infuence human-AI decision-making. 

6.3 Caveats and Limitations 
According to the checklist of cognitive biases provided by Draws 
et al. [33], it is important to acknowledge that humans are prone 
to cognitive biases. In our task, we identify the familiarity bias and 
availability heuristic, which can cause individuals to exhibit an incli-
nation towards decisions that align with their pre-existing beliefs or 
past experiences. Although we created artifcial routes, individuals 
may still tend to prefer familiar or known options or prefer spe-
cifc transport modes due to personal biases. Confrmation bias and 
overconfdence bias are other potential limitations, as individuals 
may be more likely to seek out and give more weight to information 
that confrms their preconceived notions or beliefs regarding AI 
capabilities and their decision-making abilities. We should also con-
sider the self-interest bias, where individuals may prioritize their 
own monetary reward over objective decision-making criteria. 

The fndings discussed in this paper are not universally applica-
ble to all decision-making tasks. Diferent tasks may have varying 
characteristics and contexts that can infuence human-AI decision-
making. Although this is a valid approach to operationalize uncer-
tainty, it is important to acknowledge that there could be other 
approaches to capturing task uncertainty that were not explored 
in this study (e.g., missing data or conficting information). Future 
research should consider exploring diferent operationalizations of 
task complexity and uncertainty to further understand their impact 
on human reliance on AI systems. It is worth noting that we asked 
participants in our study to consider that the trafc features were 
unrelated to each other and carried equal weights in determining 
the best route. This may not always be the case in real-world con-
texts. We also considered trafc conditions in both diagnostic and 
prognostic scenarios, although, in the real world, trafc conditions 
can change over time and at the time of decision-making, making 
them predominantly prognostic. 

7 CONCLUSION AND FUTURE WORK 
In this study, we explored how task complexity (RQ1) and task 
uncertainty (RQ2) and their interaction (RQ3) inform user trust 
and appropriate reliance on AI systems. To this end, we conducted a 
user study with 258 participants across six experimental conditions 
varying in three levels of task complexity (low, medium, and high) 

and two levels of task uncertainty (diagnostic and prognostic). 
We selected trip-planning as the decision-making task and evalu-
ated participants’ trust, reliance, and decision-making behaviors 
when interacting with an AI system. The study showed that task 
complexity and uncertainty signifcantly impact human reliance 
on AI systems. Participants tended to rely more on AI in tasks with 
higher complexity and uncertainty, with no signifcant diferences 
in human trust across diferent levels of complexity and uncertainty. 

Future studies should further explore the relationship between 
task complexity and uncertainty to better understand their intercon-
nections in human-AI decision-making. Further research is needed 
across a range of domains and task types to fully understand the im-
pact of task complexity and uncertainty. We encourage researchers 
to investigate the impact of other task characteristics, such as time 
pressure and information overload, on human-AI decision-making. 
Future work should also focus on understanding how to efectively 
present AI-generated predictions and explanations to enhance hu-
man understanding and decision-making, particularly in complex 
and uncertain situations. Given the increasing complexity and un-
certainty of tasks, it becomes crucial to develop strategies that can 
help users evaluate the reliability and verifability of AI advice in 
these scenarios. 
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