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Layman’s summary

Equable triangles are triangles that have equal area and perimeter. This paper aims
to find all equable triangles that can be placed on a grid. A grid is a set of points
that is placed in a regular way, similar to, for example, a chessboard or a beehive.
In this paper, we look for a general method of finding these equable triangles on an
arbitrary grid. Adapting the proof by Aebi and Cairns [1], we were able to find all
equable triangles on a large amount of grids, if possible. On most grids, no equable
triangles could be placed. When it was possible however, the equable triangles often
had integer side lengths.
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Summary

Equable triangles are triangles that have equal area and perimeter. Although there
are infinitely many such triangles, this paper aims to find all equable triangles, up
to Euclidean motions, that can be placed on a lattice. A lattice is a set of points
that is generated with integral combinations of a set of basis vectors. Examples of
lattices are Z2 and the Eisenstein lattice. In 1980, Foss proved that there are 5 dif-
ferent equable triangles that can be placed on the integer lattice [6]. In 2023, Aebi
and Cairns proved that there are only 2 equable triangles placeable on the Eisen-
stein lattice [1]. This paper tries to generalize these proofs for other 2-dimensional
lattices.
We did this to all lattices generated by two unit vectors at an angle θ such that
cos(θ) is rational. To find all equable triangles on such a grid, we follow three steps:

1. Find r such that all side lengths of equable triangles are of the form rn with
n ∈ N.

2. Find all equable triangles with side lengths rn.

3. Check for each of these triangles if they can be placed on the grid.

When applying these steps to all grids with cos(θ) = p
q for co-prime p, q ∈ Z with

0 ≤ p < q ≤ 100, we found that, for most values, there were no equable triangles
placeable on the grid. When there were equable that could be placed however, they
often had integer side lengths. We found that can only be possible if p and q are
part of a Pythagorean triple.
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Chapter 1

Introduction

Grids or lattices can be found frequently in nature. Look for example at the hexag-
onal shape of beehives or look at the molecular structure of crystals. Apart from
their occurrences in nature, they also have applications in mathematics and com-
puter science. For example in cryptography [10]. This paper aims to examine
geometric properties of lattices and in particular look for so-called equable triangles
that can be placed on such lattices.

An equable triangle is a triangle that has equal area and perimeter. It can be
shown that there are infinitely many such triangles. However, we look for equable
triangles for which the vertices lie on a lattice. For two specific grids, the number
of different equable triangles up to Euclidean motions has already been found. In
1980, Foss showed that there are 5 different triangles that can be placed on the
integer lattice [6]. In 2023, Aebi and Cairns proved that there are only 2 different
equable triangles possible on the so-called Eisenstein lattice [1]. This last paper
inspired me to look for equable triangles on arbitrary grids.

In Chapter 2, we introduce a definition for grids (Section 2.1) and use symme-
tries to define different lattice types (Section 2.2). We provide the definition for
equable triangles (Section 2.3) and give theorems we will use later in the paper
(Section 2.4). In Chapter 3, we will look for possible candidates for equable tri-
angles on an arbitrary grid. This is done by first placing a constraint on the side
lengths of an equable triangle (Section 3.1) and then finding all equable triangles
satisfying that constraint (Section 3.2). In Chapter 4, we use a brute-force approach
to place these triangles on a grid. In Chapter 5, we combine these concepts to find
all equable triangles on a grid by implementing them in Python. We will run this
program for various grids and look for patterns.
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Chapter 2

Preliminaries

The aim of this report is to find all equable triangles on arbitrary grids. Before we
do this however, we first need formal definitions for these concepts. In Section 2.1,
we define a grid and give some examples. In Section 2.2, we look at symmetries
in grids and use them to define different lattice types. In Section 2.3, we give a
definition for equable triangles and give some simple results. Lastly, in Section 2.4,
we give some other well-known theorems that will be used in proofs later.

2.1 Grids
In the book "Complexity of Lattice Problems" [9], Micciancio and Goldwasser define
a general lattice or grid in Rn as the integral combinations of linearly independent
vectors. We will use the same definition in this paper.

Definition 2.1. A lattice or grid in Rn is a set

Λ(v1,v2, . . . ,vm) =
{ m∑

i=1

aivi : ai ∈ Z
}
,

where the vectors v1,v2, . . . ,vm ∈ Rn are linearly independent. The set
{v1,v2, . . . ,vm} is called a basis of Λ. The values n and m are called the dimension
and rank of the lattice. We say a lattice is full rank if n = m.

In this paper, we will consider full rank lattices in R2, i.e. lattices with two
linearly independent vectors v1 and v2.
These lattices are also sometimes defined using complex numbers instead of vectors.
In that case we get a lattice Λ(ω1, ω2) with ω1, ω2 ∈ C. The complex numbers ω1

and ω2 are also called the fundamental pair of periods. We will use this definition
in the following chapters. In this chapter however, we will mostly use the vector
definition as this is common for theorems involving bases.
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Example 2.2. The most basic example is the integer lattice Z2. This lattice can
be generated by the vectors e1 = [1, 0]T and e2 = [0, 1]T . It consists of all pairs of
integers and is shown in Figure 2.1.

e1

e2

Figure 2.1: Integer Lattice from Example 2.2.

This concept can be extended to an n-dimensional integer lattice Zn. This can
be done with vectors e1, . . . , en where ei = [0, . . . , 0, 1, 0, . . . , 0]T with a 1 in the
i-th coordinate.

Example 2.3. We can also generate a grid with non-orthogonal vectors, for ex-
ample v1 = [2, 1]T and v2 = [0, 2]T . These vectors are linearly independent and
therefore generate a full rank lattice. Another grid we can investigate is generated by
b1 = [2, 1]T and b2 = [2,−1]T . In Figure 2.2, we see what these two grids look like.

v1

v2

(a) Lattice generated with v1 and
v2.

b1

b2

(b) Lattice generated with b1 and
b2.

Figure 2.2: Lattice with two different bases from Example 2.3.

We notice that these two grids consist of the same points and are therefore the
same. We conclude that lattices can have different bases. The conditions under
which two bases produce the same lattice are given in Lemma 2.4.
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Lemma 2.4. Two lattice bases B1 = {v1,v2} and B2 = {w1,w2} generate the
same lattice if and only if there exist values a, b, c, d ∈ Z and with ad − bc = ±1
such that

v1 = aw1 + bw2

v2 = cw1 + dw2.

Proof. This is a special case of Theorem 1 from [8].

Remark 2.5. If we use this lemma, we can find that it is always possible to change
the sign of a vector in a basis. That is because if we choose b = c = 0, a = ±1
and d = ±1, then ad − bc = ad = ±1. Therefore, the bases B1 = {v1,v2} and
B2 = {±v1,±v2} produce the same lattice.

2.2 Grid symmetries
When we look again at the grids from Figure 2.1 and Figure 2.2, we can see that
there is some symmetry in these grids. This is true for every lattice. In particular,
every lattice has 180° rotational symmetry around the origin.

Lemma 2.6. Every 2-dimensional lattice Λ has 180° rotational symmetry around
the origin.

Proof. Let p be a point in Λ(v1,v2) for some v1,v2 ∈ R2. So there are some
a, b ∈ Z such that p = av1 + bv2. Rotating around the origin with 180° is the same
as multiplying by −1. Then rotated point −p = −av1−bv1 ∈ Λ(v1,v2). So indeed
we have 180° rotational symmetry.

Apart from this 180° rotational symmetry, some lattices also have additional
symmetries. For example, the integer lattice Z2 also has 90° rotational symmetry,
as can be seen in Figure 2.1. In the 1800s, French chemist Auguste Bravais observed
this during his research into crystallography. He classified different lattices based
on whether they have different symmetries. For 2-dimensional grids, there are five
different types of lattices. For 3-dimensional grids, he identified 14 different lattice
types. These different lattices are also called Bravais lattices [7].

Definition 2.7. In R2, there are five types of Bravais lattices. Let Λ(v1,v2) with
angle ϕ between v1 and v2, then this lattice is called:

1. a square lattice, if |v1| = |v2| and ϕ = 90°.

2. a rectangular lattice, if |v1| ≠ |v2| and ϕ = 90°.

3. a hexagonal lattice, if |v1| = |v2| and ϕ = 120°.

4. a centered rectangular lattice, if it is a rectangular lattice with an additional
point in the center of each rectangle.

5. an oblique lattice, if it is no other special lattice type.
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To get a more intuitive understanding of the different lattice types, examples
for different Bravais lattices are given in Figure 2.3.

v1

v2

(a) Square lattice.

v1

v2

(b) Rectangular lattice.

v1

v2

(c) Hexagonal lattice.

v1

v2

(d) Centered rectangular lattice.

v1

v2

(e) Oblique lattice.

Figure 2.3: Different lattice types

The definition of a centered rectangular lattice is quite vague compared to the
definitions of other lattice types. This is because this lattice type is closely related
to the rectangular lattice. If we have a rectangular lattice generated with [a, 0]T

and [0, b]T , then the corresponding centered rectangular lattice is generated with,
for example, [a, 0]T and 1

2 [a, b]T .

Similar to how the integer lattice Z2 is the unit square lattice (i.e. square lattice
with basis vectors of length 1), there is also a unit hexagonal lattice. This lattice is
called the Eisenstein lattice. In most literature, this lattice is defined using complex
numbers instead of vectors, so we will do this as well.

Definition 2.8. The Eisenstein lattice is the hexagonal lattice generated by ele-
ments 1 and ω = − 1

2 + 1
2

√
3i.

Although this is the most used basis for the Eisenstein lattice, throughout this
paper, we will use a different basis. With Lemma 2.4, we can see that a lattice
generated with 1 and 1

2 +
1
2

√
3i is the same. We will use this basis because it has a

positive real part.
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2.3 Equable triangles
Definition 2.9. A triangle is called equable if the area and the perimeter are equal.
We say that a triangle is realizable or placeable on Λ if it can be created with 3 points
from Λ.

Example 2.10. The Pythagorean triangle with side lengths 5, 12 and 13 is an
equable triangle. We can see this because it has area 1

2 · 5 · 12 = 30 and perimeter
5 + 12 + 13 = 30.

In this paper, we are interested in the amount of different equable triangles
that can be placed on a grid up to Euclidean motions or congruence. This means
that a triangle cannot be transformed into another triangle using a combination of
translation, rotation and reflection [13]. This is the case if and only if they have
different side lengths. The total amount of equable triangles placeable on a grid has
already been proven for both the integer lattice and the Eisenstein lattice.

Theorem 2.11. On the integer lattice, there are 5 different equable triangles up to
Euclidean motions. They have the following side lengths:

a b c
1 29 25 6
2 20 15 7
3 17 10 9
4 13 12 5
5 10 8 6

Table 2.1: Side lengths of all equable triangles on Z2.

Proof. This was proven in 1980 by Arthur Foss [6].

The different equable triangles on the integer lattice can be found in Figure 2.4.

1

2

3

4

5

Figure 2.4: Equable triangles on the integer lattice with numbering from Table 2.1.
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Theorem 2.12. On the Eisenstein lattice, there are 2 different equable triangles
up to Euclidean motions. They have the following side lengths:

a b c

1 8
√
3 7

√
3 3

√
3

2 4
√
3 4

√
3 4

√
3

Table 2.2: Side lengths of all equable triangles on the Eisenstein Lattice.

Proof. This was proven in 2023 by Christian Aebi and Grant Cairns [1].

The different equable triangles on the Eisenstein lattice can be found in Fig-
ure 2.5.

1

2

Figure 2.5: Equable triangles on the Eisenstein lattice with numbering from Ta-
ble 2.2.

Apart from the equable triangles from Table 2.1 and Table 2.2, there are many
more equable triangles. In fact, there are infinitely many such triangles.

Lemma 2.13. There are infinitely many equable triangles.

Proof. Consider a right-angled equable triangle T with side lengths a, b and hy-
potenuse c. Because we have a right-angled triangle, c =

√
a2 + b2 and Area(T ) =

10



1
2ab. T is equable if and only if

a+ b+
√
a2 + b2 =

1

2
ab

a2 + b2 = (
1

2
ab− a− b)2

a2 + b2 =
1

4
a2b2 − a2b− ab2 + a2 + b2 + 2ab

1

4
a2b2 − a2b− ab2 + 2ab = 0.

Since a, b > 0, we can divide by ab:

1

4
ab− a− b+ 2 = 0

(
1

4
b− 1)a = b− 2

a =
4b− 8

b− 4
.

So for all b > 4, there is some a > 0 such that T is equable. Therefore, there are
infinitely many equable triangles.

Although there are infinitely many equable triangles, we are only concerned
with those that can be placed on a given grid. To make this easier, we make a few
assumptions on the triangles and on the grids we will investigate:

1. Triangles always have one vertex on the origin.

2. The basis of a grid consists of one vector on the x-axis and another vector
with non-negative x- and y-coordinates.

This first assumption is based on the translational invariance of a lattice. Suppose
we have two points x = av1+bv2 ∈ Λ(v1,v2) and y = cv1+dv2 ∈ Λ(v1,v2). Then
x+ y = (a+ c)v1 + (b+ d)v2 ∈ Λ(v1,v2). Therefore, if we have a triangle that is
placed on a grid, then we can always translate it such that one vertex lies in the
origin.
The second assumption is based on congruence of triangles. Recall that if we rotate
or reflect a triangle, it is congruent. Therefore, if an equable triangle is placeable
on a grid and we apply a rotation or reflection to that grid, then there must be
a congruent triangle that is placeable on this new grid. So, applying a rotation
or reflection to a grid does not change the amount of equable triangles that are
placeable on the grid. We can therefore rotate or reflect the basis vectors such that
one vector lies on the x-axis and the other has non-negative x- and y-coordinates.
This is illustrated in Example 2.14.

Example 2.14. For a given θ1, θ2 ∈ [0, 2π) with θ1 < θ2 and r1, r2 > 0, we
can look at the lattice Λ(v1,v2) where v1 = [r1 cos(θ1), r1 sin(θ1)]

T and v2 =
[r2 cos(θ2), r2 sin(θ2)]

T . Now, we can rotate both basis vectors by −θ1 such that
v1 lies on the x-axis. This would give us an equivalent lattice Λ(b1,b2), where
b1 = [r1, 0]T and b2 = [r2 cos(θ), r2 sin(θ)]

T with θ = θ2 − θ1. Note that θ ̸= π,
because otherwise b1 and b2 would be linearly dependent. Thus, we have four cases:
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1. If θ ∈ (0, π
2 ], then cos(θ) ≥ 0 and sin(θ) > 0 and we are done.

2. If θ ∈ (π2 , π), then cos(θ) < 0 and sin(θ) > 0. We can first flip the sign
of b2 and then apply a reflection along the x-axis to get an equivalent lat-
tice Λ(w1,w2) with w1 = [r1, 0]T and w2 = [−r2 cos(θ), r2 sin(θ)]

T , which
satisfies our assumptions.

3. If θ ∈ (π, 3π
2 ), then cos(θ) < 0 and sin(θ) < 0. By flipping the sign of

b2, we get an equivalent lattice Λ(w1,w2) with w1 = [r1, 0]T and w2 =
[−r2 cos(θ),−r2 sin(θ)]

T , which satisfies our assumptions.

4. If θ ∈ [ 3π2 , 2π), then cos(θ) ≥ 0 and sin(θ) < 0. We can apply a reflection along
the x-axis to b2 to get an equivalent lattice Λ(w1,w2) with w1 = [r1, 0]T

and w2 = [r2 cos(θ),−r2 sin(θ)]
T , which satisfies our assumptions.

Therefore, for every lattice, we can find an equivalent lattice generated with one
vector on the x-axis and one vector under an angle θ ∈ (0, π

2 ].

2.4 Useful theorems
This section will introduce some theorems that we will use for proofs in Chapter 3.
Since they are well-known, we will not prove them ourselves.

Lemma 2.15. Let a1, a2, . . . , an be positive rational numbers and let k1, k2, . . . , kn
be integers greater than 1. If

∑n
i=1

ki
√
ai ∈ Q, then ki

√
ai ∈ Q for all i.

Proof. The proof of this theorem can be found in [12] exercise 2.

We will use this to put some constraints on the side lengths of equable triangles.
Next, we have two useful results about the area of a triangle.

Theorem 2.16 (Heron’s Formula). Let T a triangle with side lengths a, b, c and
semiperimeter s = 1

2 (a+ b+ c). The area of the triangle is then given by:

Area(T ) =
√

s(s− a)(s− b)(s− c).

This can also be written in the following way:

Area(T ) =
1

4

√
(a+ b+ c)(−a+ b+ c)(a− b+ c)(a+ b− c).

Proof. The proof of this theorem can be found in [14].

This formula describes the area of a triangle using its side lengths. In our case,
this is especially helpful since we know that the area is equal to the perimeter, i.e.
the sum of the side lengths.

Lemma 2.17 (Area of a triangle). Let T be a triangle with vertices (0, 0), (x1, y1)
and (x2, y2). The signed area of the triangle is then given by:

1

2
det

[
x1 x2

y1 y2

]
=

1

2

(
x1y2 − x2y1

)
.

Proof. This is a special case of the Surveyor’s formula. The proof of which can be
found in [3].
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Chapter 3

Equable triangles on grids

In this chapter, we look for possible candidates of equable triangles that can be
placed on grids. We will do this by adapting the proof given by Aebi and Cairns
for the Eisenstein lattice [1]. In Section 3.1, we will first put restrictions on the
side lengths of equable triangles. In Section 3.2, we will find all equable triangles
satisfying this constraint.

3.1 Constraint on side lengths
For the results we will see in Section 3.2, we will need some constraints on the side
lengths of equable triangles. In particular we will need that the side lengths are
of the form rn with n ∈ N for a given r > 0. We will see that for many different
grids, the side lengths of equable triangles that can be realized on that grid will be
of that form. We will limit ourselves to grids generated by vectors that lie on the
unit circle. We first need a simple result about splitting an integer into a squared
part and a square-free part. A square-free number is a number that has at most
one factor for each prime in its prime factorization.

Lemma 3.1. Let m ∈ N, then there exist u, v ∈ N with v square-free such that
u2v = m

Proof. Let the prime factorization of m be m = pa1
1 . . . pal

l . Suppose that primes are
ordered such that the first k primes have even and the rest have odd exponents. We
can say that if i ≤ k, then ai = 2bi and otherwise ai = 2bi+1 for some bi ∈ N∪{0}.

13



We can rewrite this as follows:

m = pa1
1 . . . pak

k

m =

k∏
i=1

(
pai
i

) l∏
i=k+1

(
pai
i

)
m =

k∏
i=1

(
p2bii

) l∏
i=k+1

(
p2bi+1
i

)
m =

k∏
i=1

(
p2bii

) l∏
i=k+1

(
p2bii

) l∏
i=k+1

(
pi
)

m =
( l∏

i=1

(
pbii

))2 l∏
i=k+1

(
pi
)

We can define u =
∏l

i=1

(
pbii

)
and v =

∏l
i=k+1

(
pi
)

to get that m = u2v with v
square-free.

With this result, we can find a constraint on the side lengths of equable triangles.

Theorem 3.2. Let Λ be a grid generated by 1 and ω = cos(θ) + i sin(θ) with
θ ∈ (0, π

2 ] such that cos(θ) = p
q ∈ Q for co-prime p, q ∈ Z with 0 ≤ p < q. We can

find u, v ∈ N with v square-free such that u2v = q2 − p2. Then the side lengths of
equable triangles realizable on Λ are of the form rn with r = 1

q
√
v

and n ∈ N.

Proof. Let Λ and ω as in the claim. Let T be an equable triangle on Λ with vertices
A = a1 + a2ω, B = b1 + b2ω and the origin for some a1, a2, b1, b2 ∈ Z. We call the
side lengths of T a, b and c.
By Lemma 2.17, the signed area of T is given by:

Area(T ) =
1

2

(
(a1 + a2 cos(θ))b2 sin(θ)− (b1 + b2 cos(θ))a2 sin(θ)

)
=

1

2

(
a1b2 sin(θ) + a2b2 cos(θ) sin(θ)− a2b1 sin(θ)− a2b2 cos(θ) sin(θ)

)
=

sin(θ)

2

(
a1b2 − a2b1

)
.

Furthermore, if we look at the length a of one side squared, then

a2 = AĀ = (a1 + a2ω)(a1 + a2ω̄)

= a21 + a1a2(ω + ω̄) + a22ωω̄

= a21 + a1a2(cos(θ) + i sin(θ) + cos(θ)− i sin(θ))i+ a22

= a21 + 2a1a2 cos(θ) + a22.

Since we know that cos(θ) = p
q , we have that

qa2 = qa21 + 2a1a2p+ qa22 ∈ N.

14



Furthermore also q2a2 ∈ N. The same is true for side lengths b and c. By rationality
of cos(θ), we also have that sin2(θ) = 1− cos2(θ) = q2−p2

q2 ∈ Q. Because θ ∈ (0, π
2 ],

sin(θ) > 0, so we can say that sin(θ) =

√
q2−p2

q . From Lemma 3.1, we can find

u, v ∈ N such that u2v = q2 − p2 with v square-free. We get that sin(θ) = u
√
v

q
Since T is equable, we can say that

a+ b+ c =
sin(θ)

2

(
a1b2 − a2b1

)
a+ b+ c =

u
√
v

2q

(
a1b2 − a2b1

)
√
vqa+

√
vqb+

√
vqc =

uv

2

(
a1b2 − a2b1

)
√
vq2a2 +

√
vq2b2 +

√
vq2c2 =

uv

2

(
a1b2 − a2b1

)
.

Because the right-hand side of the equation is rational, the left-hand side must be
rational as well. From Lemma 2.15, we must then have that

√
vq2a2,

√
vq2b2 and√

vq2c2 are all rational. Then, because vq2a2, vq2b2 and vq2c2 are all natural,√
vq2a2,

√
vq2b2 and

√
vq2c2 must all be natural as well. This means that all side

lengths are of the form 1
q
√
v
n.

Example 3.3. The integer lattice Z2 can be generated with the complex numbers
1 and i, so we have that cos(π2 ) = 0 = 0

1 and q2 − p2 = 1. From Theorem 3.2, we
therefore get that all equable triangles on this lattice must have integer side lengths.
Triangles with integer area and side lengths are also called Heronian triangles.

In Section 3.2, we will try to find equable triangles with side lengths of the form
rn with n ∈ N for a given r > 0. To reduce the amount of candidates we will find,
we want r to be as large as possible. For example, if we know that all equable
triangles on a certain grid have side lengths of the form 2n, then the side lengths
are also of the form n. But this will give more possible candidate equable triangles
that will definitely not lie on the grid. We have two ways to optimize this value of
r.

Corollary 3.4. Let Λ be a grid generated by 1 and ω = cos(θ) + i sin(θ) with
θ ∈ (0, π

2 ] such that cos(θ) = p
q ∈ Q for co-prime p, q ∈ Z where 0 ≤ p < q and q is

even. We can find u, v ∈ N with v square-free such that u2v = q2 − p2. Then the
side lengths of equable triangles realizable on Λ are of the form rn with r = 2

q
√
v

and n ∈ N.

Proof. We follow the proof of Theorem 3.2. We still have that

Area(T ) =
sin(θ)

2

(
a1b2 − a2b1

)
and

a2 = a21 + 2a1a2 cos(θ) + a22.

Now we use the fact that cos(θ) = p
q . Since q even, we can say that q = 2m for

some m ∈ N. So now we get that

ma2 = ma21 + a1a2p+ma22 ∈ N.
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Since m ∈ N, also m2a2 ∈ N. Again, we have that sin(θ) = u
√
v

q = u
√
v

2m with
u2v = q2 − p2 and v square-free. Since triangle T is equable, we must have

a+ b+ c =
sin(θ)

2

(
a1b2 − a2b1

)
a+ b+ c =

u
√
v

4m

(
a1b2 − a2b1

)
√
vma+

√
vmb+

√
vmc =

uv

4

(
a1b2 − a2b1

)
√
vm2a2 +

√
vm2b2 +

√
vm2c2 =

uv

4

(
a1b2 − a2b1

)
.

We use the same logic as in the proof of Theorem 3.2 to derive that
√
vm2a2,√

vm2b2 and
√
vm2c2 are natural. We therefore get that all side lengths are of the

form 1
m

√
v
n = 2

q
√
v
n.

This already doubles the value of r compared to Theorem 3.2, but there is
another, more significant optimization we can make. For this we first need a simple
observation about divisibility by square-free numbers.

Lemma 3.5. Let n, v ∈ N such that v is a divisor of n2. If v is square-free, then v
is also a divisor of n.

Proof. Let n = pa1
1 . . . pak

k and v = q11 . . . q
1
l be the prime factorizations of n and v.

Then n2 has prime factorization n2 = p2a1
1 . . . p2ak

k . Then, since v divides n2, we
must have that for every i ∈ {1, . . . l}, there exists some j ∈ {1, . . . k} such that
qi = pj . Therefore also every qi divides n. This implies that v also divides n.

We can use this lemma to make the constraints on the side lengths even stricter.

Theorem 3.6. Let Λ be a grid generated by 1 and ω = cos(θ) + i sin(θ) with
θ ∈ (0, π

2 ] such that cos(θ) = p
q ∈ Q for co-prime p, q ∈ Z with 0 ≤ p < q. We can

find u, v ∈ N with v square-free such that u2v = q2 − p2. Then the side lengths of
equable triangles realizable on Λ are of the form rn with r =

√
v
q and n ∈ N.

Proof. Consider an arbitrary side length a of the triangle. From Theorem 3.2, we
have that a = 1

q
√
v
n for some n ∈ N. In the proof of Theorem 3.2, we also saw that

q2a2 = n2

v ∈ N. This means that v is a divisor of n2. From Lemma 3.5, we get
that v must also be a divisor of n. Say n = vs for some s ∈ N. We then get that
a = 1

q
√
v
n =

√
v
q s, so we get the required result.

This is actually a very large improvement. If we have a grid as in Theorem 3.2
with v large, then instead of r = 1

q
√
v
, we get r =

√
v
q which is v times larger. This

will significantly reduce the amount of equable triangle candidates.

Remark 3.7. We can combine Corollary 3.4 and Theorem 3.6 to get a better con-
straint on the side lengths of equable triangles. If cos(θ) = p

q with q = 2m even,
then from Corollary 3.4, we get that the side lengths are of the form 1

m
√
v
n. Fur-

thermore, we saw that m2a2 ∈ N for a side length a. We can therefore follow the
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proof of Theorem 3.6 to find that all equable triangles on this grid must have side
lengths of the form rn with r = 2

√
v

q .

Example 3.8. The Eisenstein lattice can be generated with the complex numbers
1 and 1

2 +
1
2

√
3i. We therefore have that p = 1 and q = 2. Furthermore, we get that

q2 − p2 = 3 is prime. We can use both Corollary 3.4 and Theorem 3.6 to find that
the side lengths are of the form rn with r =

√
3n.

3.2 Finding equable triangles
In the previous section, we saw that for many grids, we can find a value r such that
the side lengths of equable triangles on that grid are of the form rn with n ∈ N. In
this section, we will find all equable triangles subject to this constraint. We first
look at an equation that must hold for these equable triangles.

Lemma 3.9. Suppose we have an equable triangle with side lengths a, b, c of the
form rn with n ∈ N for a given r > 0. Let x = 1

r (−a+ b+ c), y = 1
r (a− b+ c) and

z = 1
r (a + b − c). We have that x, y, z ∈ N. The following equation must then be

true:
r2xyz = 16(x+ y + z). (3.1)

The side lengths of the triangle expressed in terms of x, y and z are then

a = r
2 (y + z), b = r

2 (x+ z), and c = r
2 (x+ y).

Proof. Let r > 0. Let T be an equable triangle with side lengths a, b and c of the
form rn with n ∈ N. From Heron’s formula (Theorem 2.16), we know that

Area(T ) =
1

4

√
(a+ b+ c)(−a+ b+ c)(a− b+ c)(a+ b− c)

16 · Area(T )2 = (a+ b+ c)(−a+ b+ c)(a− b+ c)(a+ b− c).

Since T is equable, we also know that Area(T ) = a+ b+ c. Therefore we have that

(−a+ b+ c)(a− b+ c)(a+ b− c) = 16(a+ b+ c). (3.2)

Let x = 1
r (−a + b + c), y = 1

r (a − b + c) and z = 1
r (a + b − c). Then since

all lengths are of the form rn, we know that x, y, z ∈ N. One can show that then
a = r

2 (y + z), b = r
2 (x+ z), and c = r

2 (x+ y).
If we substitute, x, y and z into (3.2), we get that

rx · ry · rz = 16r(x+ y + z)

r2xyz = 16(x+ y + z).

We can use Equation (3.1) to find equable triangles with side lengths of the form
rn. This can be done by checking whether the equation holds for certain values of
x, y and z. We will show that we only need to check a finite amount of these values.
We will first make some observations that will be useful in the future.

17



Corollary 3.10. There are no equable triangles with side lengths of the form rn
for n ∈ N if r2 is irrational.

Proof. If we look at Equation (3.1), we see that the right-hand side of the equation
is clearly integral. Therefore, the left-hand side of the equation should also be
integral. This is impossible if r2 is irrational.

This result is quite powerful. If we observe that in some grid the equable triangles
must have side lengths of the form rn with r2 irrational, we immediately know that
this grid cannot have any equable triangles on it.
The next corollary significantly reduces the amount of values for x, y and z we need
to check.

Corollary 3.11. Let x, y, z be a solution to Equation (3.1) for a certain equable
triangle, then x, y and z all have the same parity.

Proof. Since a, b and c are all of the form rn with n ∈ N for a given r > 0, we can
say that a = rn1, b = rn2 and c = rn3 with n1, n2, n3 ∈ N. We then get that

x = −n1 + n2 + n3

y = n1 − n2 + n3

z = n1 + n2 − n3.

If we add two numbers or subtract two numbers, the two outcomes will have the
same parity. Therefore, they all must have the same parity as they are made from
adding or subtracting the same numbers.

For certain values of r, we might have additional information about the values
of x, y and z. We will see later on that, in many cases, we can say that all solutions
must be even.

Theorem 3.12. Let r > 0. Let T be an equable triangle with side lengths of the
form rn with n ∈ N and values x, y, z ∈ N as in Lemma 3.9. We can assume that
x ≤ y ≤ z. Then these values are subject to

x ≤ 4

r

√
3

y ≤ 1

r2x

(
16 + 4

√
16 + r2x2

)
(3.3)

z =
16(x+ y)

r2xy − 16
.

Furthermore, the values of x, y and z must be either all odd or all even. The side
lengths of the triangle expressed in terms of x, y and z are then

a = r
2 (y + z), b = r

2 (x+ z), and c = r
2 (x+ y).

Proof. From Corollary 3.10, we know that r2 must be rational. So let r2 = p
q for

some p, q ∈ N co-prime. Equation (3.1) then becomes

pxyz = 16q(x+ y + z). (3.4)
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We can assume that x ≤ y ≤ z. Using Equation (3.4), we can get an inequality for
y:

y ≤ z =
16q(x+ y)

pxy − 16q
.

Because we know that z > 0 and 16q(x + y) > 0, it must be that pxy − 16q > 0.
We can take the denominator to the other side of the inequality:

(pxy − 16q)y ≤ 16q(x+ y)

pxy2 − 16qy ≤ 16qx+ 16qy

pxy2 − 32qy − 16qx ≤ 0.

This is a parabola with a minimum, so, using the quadratic formula, we can find
that

y ≤ 1

2px

(
32q +

√
(−32q)2 − 4px(−16qx)

)
y ≤ 1

px

(
16q +

1

2

√
1024q2 + 64pqx2

)
y ≤ 1

px

(
16q + 4

√
16q2 + pqx2

)
. (3.5)

Note that 16q2 + pqx2 > 0. We can rewrite 3.5 to get an equation in terms of r:

y ≤ 1

r2x

(
16 + 4

√
16 + r2x2

)
.

If we use Inequality (3.5) and the fact that x ≤ y, we get that

x ≤ 1

px

(
16q + 4

√
16q2 + pqx2

)
px2 ≤ 16q + 4

√
16q2 + pqx2

px2 − 16q ≤ 4
√

16q2 + pqx2.

Note that squaring both sides of an inequality and keeping the sign the same is
valid when both sides are positive. For the right side this is trivially true, but for
the left side, this may not be the case. If we assume that the left side is negative,
we find the following upper bound

px2 − 16q ≤ 0

px2 ≤ 16q

x2 ≤ 16q

p
=

16

r2

x ≤ 4

r
.
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If instead, we assume that the left side is positive, we can take a square on both
sides. This gives

(px2 − 16q)2 ≤ 16(16q2 + pqx2)

p2x4 − 32pqx2 + 256q2 ≤ 256q2 + 16pqx2

p2x4 − 48pqx2 ≤ 0

px2 − 48q ≤ 0

x2 ≤ 48q

p
=

48

r2

x ≤ 4

r

√
3.

In both cases, we have that x ≤ 4
r

√
3. Therefore in total, we must have that the

values x, y, z ∈ N must have the same parity and be subject to

x ≤ 4

r

√
3

y ≤ 1

r2x

(
16 + 4

√
16 + r2x2

)
z =

16(x+ y)

r2xy − 16
.

We now have a way to check a finite amount of values for x, y to see if z is integer.
If we find such values with the same parity, they correspond to an equable triangle
with sides a = r

2 (y+z), b = r
2 (x+z), and c = r

2 (x+y). Therefore, this also gives an
upper bound for the amount of equable triangles with side lengths of form rn. This
upper bound increases rapidly as r decreases, so we want r to be as large as possible.

This theorem also gives us a way to see when there are definitely no equable
triangles of the form rn. We already saw that this was the case if r2 is irrational.
But also if the upper bound (x ≤ 4

r

√
3) for x is lower than its lower bound (x ≥ 1),

then there are no possible solutions for x. This implies that there are no solutions
if r > 4

√
3.

Remark 3.13. Although Equation 3.5 gives a tight bound on the possible values of
y, it might be easier to use a bound that is independent of the value of x. If we call
the right-hand side of Equation 3.5 f(x), then we can look at its derivative:

f ′(x) =
−1

px2

(
16q + 4

√
16q2 + pqx2

)
+

1

px

( 8pqx

2
√

16q2 + pqx2

)
=

−1

px2

(
16q + 4

√
16q2 + pqx2 − 4pqx2√

16q2 + pqx2

)
=

−1

px2
√

16q2 + pqx2

(
16q

√
16q2 + pqx2 + 4

(
16q2 + pqx2

)
− 4pqx2

)
=

−1

px2
√

16q2 + pqx2

(
16q

√
16q2 + pqx2 + 64q2

)
< 0.
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Since the derivative is negative, f(x) is decreasing in terms of x. Therefore, the
largest value is for x = 1. We get a constant upper bound for y:

y ≤ 1

p

(
16q + 4

√
16q2 + pq

)
=

1

r2

(
16 + 4

√
16 + r2

)
.

Remark 3.14. From Corollary 3.11 we know that the values for x, y and z must have
the same parity. We can use this fact to reduce the search space from Theorem 3.12.
If r2 = p

q for p, q co-prime and p not a multiple of 16, then we can say that x, y and
z must all be even. To see this, we look at Equation 3.4 again:

pxyz = 16q(x+ y + z).

If p is not a multiple of 16, we can say that p = 2am with 0 ≤ a ≤ 3 and m odd.
Then we get that

mxyz = 24−aq(x+ y + z).

The right-hand side is still even. If x, y and z were all odd, then the left side would
be odd, which is impossible. Therefore, x, y and z must be even.
In this case, we can make the substitution u = 1

2x = 1
2r (−a + b + c), v = 1

2y =
1
2r (a− b+ c) and w = 1

2z = 1
2r (a+ b− c). Now instead of Equation 3.1, these values

should satisfy:
r2uvw = 4(u+ v + w).

With this equation, we can follow the proof of Theorem 3.12 again to get new upper
bounds. The details of this can be found in Appendix A. We can also do the same
as in Remark 3.13 to get new constant upper bounds:

u ≤ 2

r

√
3

v ≤ 1

r2
(4 + 2

√
4 + r2) (3.6)

w =
4(u+ v)

r2uv − 4
.

Example 3.15. In Example 3.3, we have shown that, on the integer lattice Z2, all
equable triangles have side lengths of the form n ∈ N, so r = 1. We can use the
upper bounds from Equation 3.6 to see that these triangles are a = v+w, b = u+w
and c = u+ v with u, v, w ∈ N and subject to

u ≤ 2
√
3 ≈ 3.46

v ≤ 4 + 2
√
5 ≈ 8.47

w =
4(u+ v)

uv − 4
.

So then u ≤ 3 and v ≤ 8. If we try different values for u and v, we find only 5
feasible solutions. The results can be found in Table 3.1.
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u v w a b c
1 5 24 29 25 6
1 6 14 20 15 7
1 8 9 17 10 9
2 3 10 13 12 5
2 4 6 10 8 6

Table 3.1: All possible equable triangles on Z2.

These are exactly the same solutions found by Foss [6]. In Figure 2.4, we see
that these can indeed be placed on the integer lattice.

Example 3.16. On the Eisenstein lattice, we can do something similar. In this
case, the side lengths are of the form

√
3n with n ∈ N as was shown in Example 3.8.

From Remark 3.14, we get the upper bounds

u ≤ 2

v ≤ 4

3
+

2

3

√
7 ≈ 3.10

w =
4(u+ v)

3uv − 4
.

So then u ≤ 2 and v ≤ 3. This time, we find two feasible solutions. These can be
found in Table 3.2.

u v w a b c

1 2 6 8
√
3 7

√
3 3

√
3

2 2 2 4
√
3 4

√
3 4

√
3

Table 3.2: All possible equable triangles on the Eisenstein lattice.

These are the same solutions found by Aebi and Cairns [1]. In Figure 2.5, we
see that these can indeed be placed on the Eisenstein lattice.

So we see that this method for finding equable triangles works for the integer
and the Eisenstein lattice. We can also see what happens for a new grid.

Example 3.17. Consider Λ generated by 1 and ω = cos(θ) + sin(θ)i such that
cos(θ) = p

q = 2
3 . Since q2 − p2 = 9 − 4 = 5, we use Theorem 3.6 to find that

all equable triangles must be of the form rn with r =
√
5
3 and n ∈ N. Since

the numerator of r2 = 5
9 is not a multiple of 16, we can use the bounds from

Remark 3.14:

u ≤ 6√
5

√
3 ≈ 4.65

v ≤ 9

5
(4 + 2

√
4 +

5

9
) ≈ 14.88

w =
36(u+ v)

5uv − 36
.
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So then u ≤ 4 and v ≤ 14. When we try different values for u and v, we get 7
different equable triangles. We see these in Table 3.3.

u v w a b c

1 8 81 89
√
5/3 82

√
5/3 3

√
5

1 9 40 49
√
5/3 41

√
5/3 10

√
5/3

2 4 54 58
√
5/3 56

√
5/3 2

√
5

2 5 18 23
√
5/3 20

√
5/3 7

√
5/3

2 6 12 6
√
5 14

√
5/3 8

√
5/3

3 3 24 9
√
5 9

√
5 2

√
5

3 6 6 4
√
5 3

√
5 3

√
5

Table 3.3: Equable triangles with side lengths of form
√
5
3 n.

Although these triangles all satisfy the constraint, they cannot all be placed on
the grid. We will see why in Example 4.1.

23



Chapter 4

Placing triangles on a grid

In this chapter, we will try to place the candidates found in Chapter 3 on the grid.
In Section 4.1, we will see that not every candidate can be placed on a grid and we
will look at some theorems about placing triangles on specific grids. In Section 4.2,
we will use a brute-force approach to place triangles on a grid.

4.1 Triangle placeability theorems
In Chapter 3, we presented a method to find candidate equable triangles given a
specific grid. However, not all candidates can actually be realized on the grid. To
see that this is indeed the case, we look at an example.

Example 4.1. We look at Λ generated by 1 and ω = cos(θ) + sin(θ)i such that
cos(θ) = 2

3 . In Example 3.17, we saw that all equable triangles must be of the form
√
5
3 n with n ∈ N and that (6

√
5, 14

3

√
5, 8

3

√
5) is an equable triangle satisfying this

constraint. This triangle can, however, not be placed on the grid. To see why this
is the case, we look at the side with side length 8

3

√
5. Let A = a1 + a2ω such that

|OA| = 8
3

√
5, then

a21 +
4

3
a1a2 + a22 = (

8

3

√
5)2

a21 +
4

3
a1a2 + a22 =

320

9

9a21 + 12a1a2 + 9a22 = 320.

Since the left-hand side is a multiple of 3 for all a1, a2 ∈ Z and the right-hand side is
not, this equation is impossible. Therefore, we cannot place a side with side length
8
3

√
5 on the grid and so the triangle cannot be realized on this grid.

We can use similar logic to eliminate other triangles from Table 3.3. Only two of
these triangles can actually be placed. These can be found in Table 4.1.
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a b c

1 4
√
5 3

√
5 3

√
5

2 9
√
5 9

√
5 2

√
5

Table 4.1: Equable triangles on the grid with cos(θ) = 2
3 .

These two triangles are visualized in Figure 4.1.

1

2

Figure 4.1: Equable triangles on a grid where cos(θ) = 2
3 with numbering from

Table 4.1.

In general, placing a triangle on a grid is a hard problem. When looking at
the side lengths of a triangle it might not be immediately clear whether it can be
realized on a grid or not. However, Yiu proved a condition for when this is possible
on the integer lattice.

Theorem 4.2. All Heronian triangles can be realized on the integer lattice.

Proof. The proof can be found in [16].

Recall that a Heronian triangle is a triangle with integer side lengths and area.
We can use this result to immediately see that all candidates found in Example 3.15
can actually be realized on the integer lattice. In 2023, Aebi and Cairns adapted
the proof by Yiu to work on the Eisenstein lattice.

Theorem 4.3. A planar triangle T with side lengths a, b, c is realizable on the
Eisenstein lattice if and only if the following three conditions hold:

(i) the area of T is of the form
√
3
4 n, where n ∈ N,

(ii) a2, b2, c2 ∈ N,

(iii) one of the side lengths of T is of the form r
√
t, where r, t ∈ N and t has no

prime divisors congruent to 2 (mod 3).
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Proof. The proof can be found in [2].

In Example 3.16, we found that the equable triangle candidates on the Eisen-
stein lattice have side lengths (8

√
3, 7

√
3, 3

√
3) and (4

√
3, 4

√
3, 4

√
3). We see that

all conditions are satisfied for both candidates and so they are realizable on the
Eisenstein lattice.

4.2 Brute-force approach
In general, we do not have a good way to determine whether or not a triangle
can be placed on a grid. Instead, we use a brute-force approach to check possible
coordinates and try to place the triangle. To do this, we need to find a way to only
have to check a finite number of points.

Theorem 4.4. Let a > 0 be the side length of a triangle. Let Λ be a grid generated
by 1 and ω = cos(θ) + sin(θ)i. Then there exists a point A ∈ Λ with |OA| = a if
and only if there exist a1, a2 ∈ Z such that:

−a

sin(θ)
≤ a1 ≤ a

sin(θ)
(4.1)

a2 = −a1 cos(θ)±
√
a2 − a21 sin

2(θ).

Then A = a1 + a2ω.

Proof. Let A = a1 + a2ω for some a1, a2 ∈ R. Note that if |OA| = a, then A must
lie on the circle ca : x2 + y2 = a2. Furthermore, if we fix the value of a1, then A
must lie on line l through (a1, 0) in the direction of ω. When looking for feasible
solutions, we therefore look at the intersection points between ca and l. We see this
illustrated in Figure 4.2.

a1

Figure 4.2: Circle ca and line l with their intersections for given a and a1.

Since |OA|2 = AĀ, the point A lies on ca exactly when

a21 + 2a1a2 cos(θ) + a22 = a2.
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We can rewrite this to express a2 in terms of a1 by completing the square:

(a1 cos(θ) + a2)
2 − a21 cos

2(θ) = a2 − a21

(a1 cos(θ) + a2)
2 = a2 + (cos2(θ)− 1)a21

a1 cos(θ) + a2 = ±
√

a2 − a21 sin
2(θ)

a2 = −a1 cos(θ)±
√

a2 − a21 sin
2(θ). (4.2)

Note that there is only a solution if a2 − a21 sin
2(θ) ≥ 0. Therefore, we get that

a21 ≤ a2

sin2(θ)
, so −a

sin(θ) ≤ a1 ≤ a
sin(θ) . Note that A ∈ Λ only if a1, a2 ∈ Z.

With this result, we can construct a brute-force algorithm to try and place a
triangle on a grid when given its side lengths a, b and c. Recall from Section 2.3,
that we assumed that one vertex of the triangle lies in the origin. For the other
vertices A = a1+ a2ω and B = b1+ b2ω, we will find all possible pairs (a1, a2) ∈ Z2

and (b1, b2) ∈ Z2 such that |OA| = a and |OB| = b using Theorem 4.4. Since the
amount of values that need to be checked is proportional to the side length, we will
do this for the shortest two sides a and b.
Now we can try every combination of the pairs (a1, a2) and (b1, b2) to see if the
other side has length c. We will check that |AB|2 = c2, so we get

(a1 − b1)
2 + 2(a1 − b1)(a2 − b2) cos(θ) + (a2 − b2)

2 = c2.

If we find any combination of the pairs (a1, a2) and (b1, b2) such that this holds, we
know that the triangle can be placed on the grid.
From Lemma 2.6, we know that lattices have 180° rotational symmetry. There-
fore, if the pairs (a1, a2) and (b1, b2) produce a valid triangle, then (−a1,−a2) and
(−b1,−b2) will also produce a valid triangle. Therefore, we can reduce the compu-
tation time by forcing a1 ≥ 0.
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Chapter 5

Implementation and
observations

In this chapter, we will use the previous results to find all equable triangles on
a grid. We will create a python program that will do this for us. The code can
be found in Appendix B. In Section 5.1, we will explain how the code works. In
Section 5.2, we run the code for a large range of values and look for patterns in the
data.

5.1 Implementation
When looking for the equable triangles that are placeable on a grid, we follow three
steps:

1. Find r such that all side lengths of equable triangles are of the form rn with
n ∈ N.

2. Find all equable triangles with side lengths rn.

3. Check for each of these triangles if they can be placed on the grid.

In our code, each of these steps is a function. In particular, these functions are
called SideLength(), FindCandidates() and IsPlacable(). We only look for equable
triangles on grids generated by 1 and ω = cos(θ)+sin(θ)i with θ ∈ (0, π

2 ] and cos(θ)
rational.
When calculating, for example, the value of r, we often get fractions and square
roots. Python rounds these values to speed up computations. However, for our
purposes, we need the exact values to be able to determine when something is inte-
gral or not. We will therefore be using a symbolic math package called SymPy [11].
This package allows us to make exact calculations.

5.1.1 SideLength()
This function calculates the largest value of r such that all equable triangles on
a particular grid have side lengths of the form rn with n ∈ N. The input of the
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function consists of the variables p, q. These values represent the numerator and
the denominator of cos(θ), respectively.
We want to apply Theorem 3.6. To do so, we need to find the values u, v ∈ N such
that q2 − p2 = u2v with v square-free. This is done by first initializing u = 1 and
v = q2 − p2. Then we check every value for d ≤

√
v to see if d2 is a divisor of v. If

this is the case we update u 7→ ud and v 7→ v/d2. We then set r =
√
v
q . Lastly, we

check if q is even. If this is the case, we apply Corollary 3.4 and multiply r by 2.
The function then returns this value.

5.1.2 FindCandidates()
The goal of this function is to find all equable triangles that have side lengths of the
form rn with n ∈ N for a given r. The input of this function is this value of r as an
exact SymPy value. As output, the function will return a list of tuples containing
the side lengths of each triangle.
We first check if r2 is rational. From Corollary 3.10, we know that if this is not
the case, there are no equable triangles, so we return an empty list. Otherwise we
define p to be the numerator of r2 and initialize an empty list of candidates. As
was specified in Remark 3.14, we need to check different values depending on the
value of p.
If p is not a multiple of 16, we use the upper bounds from Theorem A.1. We check
for each value of u with u ≤ 2

r

√
3 and each v with u ≤ v ≤ 1

r2u

(
4 + 2

√
4 + r2u2

)
whether w = 4(u+v)

r2uv−4 is integral. We also check if v ≤ w to prevent double counting
of triangles. Then we calculate the values a = r(v+w), b = r(u+w) and c = r(u+v)
and add the tuple (a, b, c) to the list of candidates.
If p is a multiple of 16, we do the same thing for the upper bounds from Theo-
rem 3.12. So we check each value of x with x ≤ 4

r

√
3 and each value of y with

x ≤ y ≤ 1
r2x

(
16 + 4

√
16 + r2x2

)
to see if z = 16(x+y)

r2xy−16 is integral. Here, we also
need to check if the values of x, y and z are all of the same parity and that y ≤ z.
Then we calculate the values a = r

2 (y + z), b = r
2 (x+ z) and c = r

2 (x+ y) and add
the tuple (a, b, c) to the list of candidates.

5.1.3 IsPlaceable()
The goal of this function is to determine whether a given triangle can be placed on
the grid. As input, we give it a tuple containing the side lengths of a triangle and
the value for cos(θ). The output of this function will be a boolean saying whether
the triangle can be placed on the grid.
To start with, we also calculate the value for sin(θ) using the fact that sin(θ) =√
1− cos2(θ). We also sort the side lengths (a, b, c) such that a ≤ b ≤ c. This will

reduce the amount of values we need to check.
For side lengths a and b, we calculate all possible values a1, a2, b1, b2 ∈ Z such that
for A = a1 + a2ω and B = b1 + b2ω, we have |OA| = a and |OB| = b. We find
these values using Theorem 4.4. We also use the 180° rotational symmetry to force
a1 ≥ 0. Then for each combination of values (a1, a2) and (b1, b2), we will check that
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|AB|2 = c2. So we check if

(a1 − b1)
2 + 2(a1 − b1)(a2 − b2) cos(θ) + (a2 − b2)

2 = c2.

If there is such a combination, then we know that the triangle can be placed on the
grid and we return True. Otherwise, we return False.

5.2 Observations
Now that we have implemented a way to find all equable triangles on a grid, we can
use this on specific grids and analyse the results. The calculations were performed
for grids generated by 1 and ω = cos(θ) + sin(θ)i with cos(θ) = p

q for co-prime
p, q ∈ Z with 0 ≤ p < q ≤ 100 . We can see the side lengths for different grids in
Table 5.1. On other grids with these values for p and q, no equable triangles can be
realized.

cos(θ) a b c

0

29 25 6
20 15 7
17 10 9
13 12 5
10 8 6

1/2 8
√
3 7

√
3 3

√
3

4
√
3 4

√
3 4

√
3

1/3 6
√
2 6

√
2 4

√
2

2/3 9
√
5 9

√
5 2

√
5

4
√
5 3

√
5 3

√
5

3/5

29 25 6
20 15 7
17 10 9
13 12 5
10 8 6

4/5

29 25 6
20 15 7
17 10 9
13 12 5
10 8 6

1/9 58
√
5/3 56

√
5/3 2

√
5

5/13 20 15 7
13 12 5

12/13 29 25 6
13 12 5

15/17 17 10 9
10 8 6

cos(θ) a b c

7/25

10301/5 10201/5 102/5
629/5 101 126/5
1402/5 1352/5 54/5
754/5 702/5 56/5
226/5 152/5 78/5
202/5 104/5 102/5
776/5 754/5 6
104/5 58/5 54/5
29 25 6

318/5 306/5 24/5
78/5 56/5 34/5
10 8 6
39/5 39/5 6

24/25

2729/5 2626/5 21
629/5 101 126/5
754/5 702/5 56/5
313/5 252/5 13
229/5 156/5 77/5
20 15 7
78/5 56/5 34/5
538/5 533/5 21/5

21/29 29 25 6

35/37 20 15 7
13 12 5

49/81 1949
√
65/9 1945

√
65/9 2

√
65/3

77/85 17 10 9

Table 5.1: All equable triangles realizable on grids for different cos(θ) = p
q with

p, q ≤ 100.
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5.2.1 Integer equable triangles
When we look at Table 5.1, we see that the equable triangles with integer side
lengths occur frequently. In particular, we might notice that, on these grids, the
values p, q are often found in Pythagorean triples. We can prove that this must
always be the case.

Corollary 5.1. If an equable triangle with integer side lengths is realizable on a
grid with cos(θ) = p

q , then p and q are part of a primitive Pythagorean triple with q
the largest element.

Proof. From Theorem 3.6, we know that all equable triangles on this grid have side
lengths of the form

√
v
q n with n ∈ N and v square-free such that u2v = q2 − p2 for

some u ∈ N. Now since the side lengths of the equable triangle are integers and v
square-free, we get that v = 1. Therefore, q2 − p2 = u2 for some u ∈ N. We find
that indeed p and q are part of a Pythagorean triple with q the largest element.
Since p and q are co-prime, this must be a primitive Pythagorean triple.

From this, we can also see that, on grids with p and q part of a Pythagorean
triple, the side lengths of equable triangles will be of the form 1

qn. Therefore, the
equable triangles with integer side lengths are valid candidates for these grids.
We can use Euclid’s formula to generate such pairs (p, q) such that they are part of
a primitive Pythagorean triple [15]. We have that if m > n are co-prime and have
different parity, then x = m2 − n2, y = 2mn and z = m2 + n2 form a primitive
Pythagorean triple. From this we get the two pairs (x, z) and (y, z). We can now
check more of these pairs to see when the integer equable triangles can be placed on
them. The results for all possible pairs (p, q) with q ≤ 1000 is shown in Table 5.2.

Triangle Valid grids

(10, 8, 6)

3/5
4/5

15/17
7/25

143/145

(13, 12, 5)

3/5
4/5
5/13
12/13
35/37

(17, 10, 9)

3/5
4/5

15/17
77/85

323/325

Triangle Valid grids

(20, 15, 7)

3/5
4/5
5/13
24/25
35/37

220/221

(29, 25, 6)

3/5
4/5

12/13
7/25
21/29
99/101
143/145

Table 5.2: Grids on which the equable triangles with integer side lengths could be
placed for q ≤ 1000.
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5.2.2 Constraints
We can also investigate what happens to the value of r for different grids. We know
that when r is smaller, the amount of values we need to check in FindCandidates()
is much larger. This means that finding all equable triangles takes more time. We
therefore would like some additional insight in the value of r. In Figure 5.1, the
values of r are plotted for different values of cos(θ).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

1.5

2

cos(θ)

r

Figure 5.1: Different values of r depending on cos(θ)

We see several clear lines appearing. These come from how we calculate the
value of r. Recall that from Theorem 3.6, we had that r =

√
v
q for square-free v

such that u2v = q2 − p2 for some u, v ∈ N. We can say that v = 1
u2 (q

2 − p2).
Substituting this in the equation for r gives

r =

√
1
u2 (q2 − p2)

q

=
1

u

√
q2 − p2

q2

=
1

u

√
1− cos2(θ)

Now, each line in Figure 5.1 corresponds a line 1
u

√
1− cos2(θ) for different values

of u. So for example, the line starting at r = 1 corresponds to u = 1 and the line
starting at r = 0.5 corresponds to u = 2. Furthermore, for every line there is also a
line at twice the height. These are formed by grids with q even, since, in that case,
the value of r is doubled because of Corollary 3.4.
In Figure 5.1, we also see that as cos(θ) → 1, r → 0. This is because, as cos(θ)
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gets closer to 1, the two basis vectors get closer together. Therefore, the shortest
distance between two points in the lattice gets smaller and r decreases.
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Chapter 6

Conclusion and discussion

The goal of this paper was to find all equable triangles on arbitrary grids. We
did this for all lattices generated with unit length basis vectors with angle θ such
that cos(θ) is rational. We can assume that a grid is then generated with 1 and
ω = cos(θ) + sin(θ)i for some θ ∈ (0, π

2 ]. To find all equable triangles on a grid, we
follow three steps:

1. Find r such that all side lengths are of the form rn with n ∈ N. In particular,
we saw that if cos(θ) = p

q for p, q ∈ Z co-prime with 0 ≤ p < q and if

q2−p2 = u2v for some u, v ∈ N with v square-free, then we have that r =
√
v
q .

2. Find all equable triangles with side lengths rn. We can do this by finding
all values x, y, z ∈ N with x ≤ y ≤ z and the same parity satisfying the
constraints:

x ≤ 4

r

√
3

y ≤ 1

r2x

(
16 + 4

√
16 + r2x2

)
z =

16(x+ y)

r2xy − 16
.

These values then correspond to a triangle with side lengths a, b and c where

a = r
2 (y + z), b = r

2 (x+ z), and c = r
2 (x+ y).

3. Check for each of these triangles if they can be placed on the grid. This is
done by finding all points A ∈ Λ such that |OA| = a and all B ∈ Λ such that
|OB| = b. To do this, we find all values a1, a2 ∈ Z such that

−a

sin(θ)
≤ a1 ≤ a

sin(θ)

a2 = −a1 cos(θ)±
√
a2 − a21 sin

2(θ).

Then A = a1 + a2ω. We can do the same for B = b1 + b2ω. Then for every
combination of values a1, a2, b1, b2, we can check if |AB| = c. If this is indeed
the case, the triangle can be placed on the grid.
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These three steps were implemented in Python and applied to all grids with cos(θ) =
p
q where 0 ≤ p < q ≤ 100. For most values, there were no equable triangles that
could be placed on the grid. When it was possible however, the equable triangles
often had integer side lengths. It was proven that if these triangles were placeable
on a grid, then p and q were part of a Pythagorean triple.

In future research, more values for p and q could be checked to gain more insight
into when equable triangles can be placed on a grid. Additionally, since this paper
only considered bases with unit vectors, it would also be interesting to see what
happens for arbitrary vector lengths. Lastly, one could investigate whether it is
possible to place equable triangles if cos(θ) is irrational.
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Appendix A

Improved upper bounds

Theorem A.1. Let r > 0. Let T be an equable triangle with side lengths of the
form rn with n ∈ N and values x, y, z ∈ N as in Lemma 3.9. If x, y and z are even,
we can say that x = 2u, y = 2v and z = 2w. We can assume that u ≤ v ≤ w. Then
these values are subject to

u ≤ 2

r

√
3

v ≤ 1

r2u

(
4 + 2

√
4 + r2u2

)
w =

4(u+ v)

r2uv − 4
.

The side lengths of the triangle expressed in terms of u, v and w are then

a = r(v + w), b = r(u+ w), and c = r(u+ v).

Proof. If x, y and z always even, we can substitute u, v and w into Equation 3.1 to
get

r2uvw = 4(u+ v + w).

From Corollary 3.10, we know that r2 must be rational. So let r2 = p
q for some

p, q ∈ N co-prime. We now have that

puvw = 4q(u+ v + w). (A.1)

We can assume that u ≤ v ≤ w. Using this, we can get an inequality for v:

v ≤ w =
4q(u+ v)

puv − 4q
.

Because we know that w > 0 and 4q(u + v) > 0, it must be that puv − 4q > 0 as
well. We can take the denominator to the other side of the inequality:

(puv − 4q)v ≤ 4q(u+ v)

puv2 − 4qv ≤ 4qu+ 4qv

puv2 − 8qv − 4qu ≤ 0.
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This is a parabola with a minimum, so, using the quadratic formula, we can find
that

v ≤ 1

2pu

(
8q +

√
(−8q)2 − 4pu(−4qu)

)
v ≤ 1

pu

(
4q +

1

2

√
64q2 + 16pqu2

)
v ≤ 1

pu

(
4q + 2

√
4q2 + pqu2

)
. (A.2)

Now we use the fact that u ≤ v. We get that

u ≤ 1

pu

(
4q + 2

√
4q2 + pqu2

)
pu2 ≤ 4q + 2

√
4q2 + pqu2

pu2 − 4q ≤ 2
√
4q2 + pqu2.

Note that squaring both sides of an inequality and keeping the sign the same is
valid when both sides are positive. For the right side this is trivially true, but for
the left side, this may not be the case. If we assume that the left side is negative,
we find the following upper bound

pu2 − 4q ≤ 0

pu2 ≤ 4q

u2 ≤ 4q

p
=

4

r2

u ≤ 2

r
.

If instead, we assume that the left side is positive, we can take a square on both
sides. This gives

(pu2 − 4q)2 ≤ 4(4q2 + pqu2)

p2u4 − 8pqu2 + 16q2 ≤ 16q2 + 4pqu2

p2u4 − 12pqu2 ≤ 0

pu2 − 12q ≤ 0

u2 ≤ 12q

p
=

12

r2

u ≤ 2

r

√
3.

In both cases, we have that u ≤ 2
r

√
3. Therefore in total, we must have that the
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values u, v, w ∈ N must be subject to

u ≤ 2

r

√
3

v ≤ 1

r2u

(
4 + 2

√
4 + r2u2

)
w =

4(u+ v)

r2uv − 4
.
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Appendix B

Code

In this chapter, all major functions from Section 5.1 are written as Python functions.
The functions all make use of the SymPy library. On my Github [5], there is
a notebook that makes use of these functions to find equable triangles for new
grids. Here, there is also a pickled dictionary containing the values r, the placeable
triangles and the candidate triangles for each grid investigated in Section 5.2. For
those interested, I have also made a demo in Geogebra to visualize different grids [4].

B.1 SideLength

Code B.1: Finding side length constraint
def SideLength(p,q):
"""
Find all equable triangles of the form rn with n integral.
Args:

- p: the numerator of cos(theta).
- q: the denominator of cos(theta).

Returns:
- r: a sympy value, each equable triangle on this grid must have

side lengths of the form rn with n integral.
"""
# reduce p and q such that they are co-prime
g = math.gcd(p,q)
p,q = p // g, q // g

# apply Theorem 3.6
u,v = 1, q**2 - p**2
d = 2
while d**2 <= v:

if v % d**2 == 0:
u,v = u*d, v // d**2

else:
d+=1

r = sympy.sqrt(v) / (q)
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# apply Corollary 3.4 if possible
if q % 2 == 0:

r *= 2
return r

B.2 FindEquableTriangles

Code B.2: Finding equable triangles
def FindCandidates(r):
"""
Finds all equable triangles of the form rn with n integral.
Args:

- r: a sympy value, each side length is of the form rn with n
integral.

Returns:
- candidates: a list of tuples, each tuple contains the 3 side

lengths of the triangle as a sympy value.
"""

# r^2 must be rational
if not (r**2).is_rational:

return []

p = (r**2).numerator
candidates = []
if p % 16 != 0 :

# Use upper bounds from theorem A.1
u_upper = 2 / r * sympy.sqrt(3)
u = 1
while u <= u_upper:

v = u
v_upper = (4 + 2 * sympy.sqrt(4 + r**2*u**2)) / (r**2*u)
while v <= v_upper:

if r**2 * u * v - 4 > 0:
w = 4*(u+v) / (r**2 * u * v - 4)
if v <= w:

if w.is_integer:
a,b,c = r*(v+w), r*(u+w), r*(u+v)
candidates.append((a,b,c))

v+=1
u+=1

else:
# Use upper bounds from theorem 3.12
x_upper = 4 / r * sympy.sqrt(3)
x = 1
while x <= x_upper:
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y = x
y_upper = (16 + 4 * sympy.sqrt(16 + r**2*x**2)) / (r**2*x)
while y <= y_upper:

if r**2 * x * y - 16 > 0:
z = 16*(x+y) / (r**2 * x * y - 16)
if y <= z:

if z.is_integer:
# check if the same parity
if x % 2 == y % 2 == z % 2:

a,b,c = r/2*(y+z), r/2*(x+z), r/2*(x+y)
candidates.append((a,b,c))

y+=1
x+=1

return candidates

B.3 IsPlaceable

Code B.3: Placing Triangles
def IsPlaceable(triangle, cos_theta):
"""
Checks if a triangle is placeable on a grid generated by 1 and

cos(theta) + sin(theta)*i.
Args:

- triangle: a tuple with 3 sympy values, these are the side lengths
of the triangle we want to check.

- cos_theta: a sympy value for cos(theta).

Returns:
- placeable: boolean whether the triangle is placeable on the grid.

"""
# define sin_theta
sin_theta = sympy.sqrt(1 - cos_theta**2)
# sorts the side lengths to reduce search space.
triangle = sorted(triangle)

# finds all possible values for a1 and a2 to get the 1st length using
Theorem 4.4

first_coord_options = []
a = triangle[0]
n = sympy.floor(a / sin_theta)
for a1 in range(sympy.floor(n)+1): # can ignore negative part because

of 180 degree rotational symmetry
a2_plus = -a1*cos_theta + sympy.sqrt(a**2 - sin_theta**2 * a1**2)
if a2_plus.is_integer:

first_coord_options.append((a1,a2_plus))
a2_min = -a1*cos_theta - sympy.sqrt(a**2 - sin_theta**2 * a1**2)
if a2_min.is_integer:

first_coord_options.append((a1,a2_min))
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# If side length a cannot be placed, triangle cannot be placed
if len(first_coord_options) == 0:

return False

# finds all possible values for b1 and b2 to get the 2nd length Theorem
4.4

second_coord_options = []
b = triangle[1]
n = sympy.floor(b / sin_theta)
for b1 in range(-sympy.floor(n),sympy.floor(n)+1):

b2_plus = -b1*cos_theta + sympy.sqrt(b**2 - sin_theta**2 * b1**2)
if b2_plus.is_integer:

second_coord_options.append((b1,b2_plus))
b2_min = -b1*cos_theta - sympy.sqrt(b**2 - sin_theta**2 * b1**2)
if b2_min.is_integer:

second_coord_options.append((b1,b2_min))

# If side length b cannot be placed, triangle cannot be placed
if len(second_coord_options) == 0:

return False

# try different combinations of (a1,a2) and (b1,b2) to see if they make
the 3rd side length

c = triangle[2]
for (a1,a2) in first_coord_options:

for (b1,b2) in second_coord_options:
c_squared = (a1-b1)**2 + 2 * (a1-b1) * (a2-b2) * cos_theta +

(a2-b2)**2
if c_squared == c**2:

return True

return False

B.4 TryGrid

Code B.4: Trying a certain grid
def TryGrid(p,q):
"""
Find all equable triangles in 3 steps: 1. Find constraint on side

lengths.
2. Find equable triangles with that

constraint.
3. Try to place triangles on the

grid.
Grid is generated with 1 and cos(theta) + sin(theta)*i, with

cos(theta)=p/q rational.

Args:
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- p: numerator of cos(theta)
- q: denominator of cos(theta)

Returns:
- r: a sympy value, each side length is of the form rn with n

integral.
- placeable_triangles: a list of tuples containing the side lengths

of equable triangles placeable on the grid.
- candidates: a list of tuples containing the side lengths of

candidate equable triangles.
"""
# find r
r = SideLength(p,q)

# find possible candidates
candidates = FindCandidates(r)

# try to place triangles on grid
placeable_triangles = []
for triangle in candidates:

if IsPlaceable(triangle, sympy.Rational(p,q)):
placeable_triangles.append(triangle)

return r, placeable_triangles, candidates
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