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Risk-Aware Operating Regions for PV-Rich
Distribution Networks Considering

Irradiance Variability
Edgar Mauricio Salazar Duque , Member, IEEE, Juan S. Giraldo , Member, IEEE,

Pedro P. Vergara , Member, IEEE, Phuong H. Nguyen , Member, IEEE, Anne van der Molen, Member, IEEE,
and J. G. Slootweg , Senior Member, IEEE

Abstract—This article proposes a framework to identify, visual-
ize, and quantify risk of potential over/under voltage due to annual
energy consumption and PV generation growth. The stochastic
modeling considers the following: (i) Active and reactive power
profiles for distribution transformers, dependent on annual energy
consumption and activity in the serviced areas. (ii) Variable solar
irradiance profiles that allow a broader range of PV generation
scenarios for sunny, overcast, and cloudy days. The proposed
framework uses multivariate-t copulas to model temporal corre-
lations between random variables to generate synthetic scenar-
ios. A probabilistic power flow is computed using the generated
scenarios to define critical static operating regions. Results show
that classical approaches may underestimate the maximum PV
capacity of distribution networks when local irradiance conditions
are not considered. Moreover, it is found that including annual
energy consumption growth is critical to establishing realistic PV
installation capacity limits. Finally, a sensitivity analysis shows that
taking a 5% of overvoltage risk could increase up to 15% of the PV
installed capacity limits.

Index Terms—Multivariate copulas, stochastic modeling, load
modeling, irradiance modeling, hosting capacity.

I. INTRODUCTION

EUROPEAN policies continue encouraging the adoption
of low-carbon technologies at a rapid pace. Domestic
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customers have continuously adopted new low-carbon (LC)
technologies driven by new subsidies and environmental con-
sciousness. Such technologies can be commonly found in house-
holds as electric heat pumps (EHPs) for thermal needs and adopt-
ing of electric vehicles (EVs) as a cleaner transport alternative.
This implies that a rampant increase in electricity consumption
is expected in the incoming years, increasing loading in the
electrical distribution network.

Distributed energy resources (DERs), such as photovoltaic
systems (PV), are becoming omnipresent in the distribution
network. Solar irradiance, the energy source for PV genera-
tion, is intermittent by nature due to geographical location,
temperature, and cloudiness conditions. These characteristics
make PV generation an irregular and highly variable source of
energy. Load growth and intermittency in the DERs have im-
posed new challenges to operating distribution networks within
technical limits [1]. Increased PV installed capacity may bring
operational challenges, such as voltage quality problems [2],
[3], reverse load flows [4], and load unbalance [5], among
others.

Distribution network operators (DNOs) must develop tools to
help to assess and quantify the impacts and risks of violating
technical limits considering the uncertainties. Specifically, the
framework introduced in this article aims to assess the un-
der/overvoltage and overloading conditions for a medium volt-
age (MV) distribution network. The framework allows DNOs
to make a risk-informed decision about the technical violations
before committing to a network enhancement or expansion. Two
main topics of interest for the DNOs are considered and eval-
uated in this work: The technical impacts of local PV installed
capacity growth (under stochastic power generation conditions)
and time-varying loads considering the increase in annual energy
consumption.

The data used in this article is commonly available for
modern DNOs, i.e., historical load consumption, meteorolog-
ical data, and distribution network topology. Each topic cov-
ered in this work has extensive literature, and it is a field of
research on its own. The following two subsections present
the state-of-the-art with relevant examples for each topic, fol-
lowed by our contribution, which holistically combines new
approaches.
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A. Related Works

1) Quantifying Impacts From PV Installations: Maximizing
the amount of PV installed capacity in the distribution network
is a priority for DNOs. PV hosting capacity (PVHC) is the
maximum allowable PV capacity in the distribution network
without violating its technical limits [6]. Multiple techniques
have been proposed in the literature to quantify its value and
operational issues [7]. The methods described in the literature
can be assessed and categorized into three groups:

i) Deterministic methods such as [8] analyze maximum PVHC
by doing a value sweep of predefined values of system parame-
ters, e.g., network data, PV capacities, and installation locations.
This approach is practical, fast, and helped to determine practical
limits to quantify hosting capacities in different countries, as
summarized in [9]. Nevertheless, ignoring intrinsic character-
istics of uncertain variables such as PV location, panel sizes,
load, and irradiance variability results in PVHC values that can
be over or underestimated.

ii) Stochastic methods are the most common in the literature.
The work in [10] assigns random PV installation capacities
at random connection points in the low voltage distribution
network. The mathematical models to determine the PVHC
are designed to be run as probabilistic power flow (PPF), in
which PVHC limits are based on technical violation counts.
Nevertheless, these approaches do not consider the uncertainty
of temporal correlation and the coincidence of PV generation
and customer power consumption. Additionally, load profiles are
often simulated with representative load consumption profiles,
which are standardized and deterministic. Therefore, stochastic
approaches also tend to underestimate PVHC. Observations
in [10] note that an increase in the loading increases the PVHC,
and the matter should be explored in order to quantify the
increased PVHC margin. This article includes the annual en-
ergy consumption growth, which increases the values of the
load profiles, changing the maximum PV installed capacity
estimation.

iii) Time-series methods are more precise in identifying
and quantifying technical violations but are computationally
demanding. Such techniques are used to study the effective-
ness of multiple controller types, e.g., tap changers, capaci-
tor banks, and solar panel inverters [11] which can enhance
PVHC. The current work on those methods does not incor-
porate load profile changes due to increased load growth or
different irradiance scenarios, e.g., cloudiness conditions. The
reason is that simulations for different high-resolution scenarios,
e.g., 1-sec, 1-min, can become computationally challenging or
infeasible [12]. Nevertheless, the work in [13] highlights the
need for time-series simulation to allow realistic concurrency
between generation and production, which is more realistic
for effectively analyzing control options that enhance PVHC.
The focus of our framework is not to speed up or analyze the
impacts of different PVHC enhancing technologies. However,
it is built upon the fact that time series simulations bring an
objective and accurate perspective of the potential distribution
network problems, which limits the amount of PV installed
capacity.

2) Probabilistic Load Modeling and Electricity Consumption
Growth: A probabilistic time-series load modeling requires con-
sumer characterization to represent the different activities that
are serviced by distribution networks, e.g., residential, commer-
cial, and office areas. Probabilistic clustering techniques can
simultaneously find customer groups while building a proba-
bilistic model. The probabilistic clustering models can be used as
generative models to simulate scenarios for a PPF formulation.
The most relevant techniques which use probabilistic models
on electricity consumption data are Gaussian mixture models
(GMM) [14], Dirichlet process mixture models [15], or more
flexible techniques such as C-vine copula mixture models [16].
The modeling methods mentioned above accurately capture each
consumer group’s statistical properties. However, modifying the
generative model to simulate profiles corresponding to a specific
annual energy consumption value is not straightforward, not
allowing simulations that include load growth. Nonetheless,
the recent work in [17], which uses a multivariate-t (MVT)
copula, proposed a flexible generative model to simulate profiles
conditioned to annual energy consumption. In this article, we
extend the work of [17] with clustering techniques to have a
flexible tool to model time series load consumption for different
serviced areas activities, taking into account different annual
energy consumption values to simulate load growth.

3) Probabilistic Solar Generation Modeling: A common
practice used in PPF studies is to loosely model the variability
of PV generation with a normal or beta distribution [18], which
does not characterize realistic variability on solar irradiance.
Characterization and modeling solar energy intermittency are
critical to quantify realistic reliability indexes for the future
distribution network [19]. Intermittency levels of solar irradiance
data can be measured using variability indexes metrics (VIMs),
which groups days based on cloudiness conditions, e.g., clear
sky, cloudy, and overcast [20]. The VIMs can be used as a
parameter to classify solar irradiance data in order to be used
in simulations [21]. However, determining the VIMs parameter
thresholds for the type of day classifications can be vague [22].

Aside from using VIMs for irradiance variability characteriza-
tion and grouping, probabilistic clustering techniques can also be
applied to recognize and build probabilistic models for different
daily irradiance groups [23], [24], [25], [26], [27]. Nevertheless,
the generative models from the clustering can not be used in the
same way as for load profiles. The samples will not represent
the natural physical irradiance process because solar irradiance
has different sunrise/sunset times and intensity parameters due
to geographical location, making the modeling challenging.

Additionally, previous studies in generative modeling for ir-
radiance profiles also use Markov models [28], [29] or Dirichlet
distribution [30] as flexible probability distribution solutions
to capture the wide uncertainties created by the cloudiness
conditions. Nevertheless, those approaches lack the flexibility
to control the generation of profiles with specific cloudiness
scenarios, i.e., different percentages of sunny, cloudy or overcast
days.

The irradiance phenomena’ high variance and non-linear
properties require flexible mathematical probability techniques
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Fig. 1. Framework is designed for the technical assessment step (blue rectan-
gle) to identify networks that require a further expansion study (techno-economic
analysis) for future topology changes or grid enhancements.

to model such patterns. To obtain such flexibility, this article
proposes a new generative model for irradiance profiles based on
a mixture of MVT copulas, which has the following properties:
(i) It follows sunrise and sunset times. (ii) The solar irradiation
is upper bounded by the maximum possible physical irradiance
value based on the geographical location. (iii) It can be flexible
in selecting the number of days with different cloudiness condi-
tions, i.e., clear sky, cloudy, and overcast. (iv) It follows natural
variability behaviors measured by VIMs. Modeling different
cloudiness (hence intermittency) scenarios allows us to precisely
quantify the risks of overvoltage events and the times when the
distribution transformer/lines can be overloaded.

Analysis of the impact of the PV generation considering load,
PV growth, and irradiance variability at the same time is chal-
lenging not only for the modeling but also from the visualization
perspective. In this work, we propose a framework that is used in
the early stages of the distribution network planning (highlighted
in blue in Fig. 1) with the objective is to identify early the
distribution networks prone to have a technical problems based
on a prognosis of load, PV growth, and irradiance variability
conditions in the serviced area. Then, the identified networks
require further techno-economical analysis for grid enhance-
ment/expansion, which is out of the scope of this research.

It should be emphasized that even though the framework is
for an initial phase of distribution network planning, the simu-
lations are conducted in a 15 min resolution time (blue arrow in
Fig. 1) to respect the concurrency between the PV generation
and consumption to provide accurate and quantifiable technical
violation results.

The concepts of static operating regions or static secure
regions can be found in the literature since the ’80s [31], and
they have evolved for different applications and time frames
of power system operations; for dynamic and voltage security
assessment in transmission systems [32] or assessing the steady-
state security in distribution networks with high penetration of
distributed energy sources [33]. Unlike previous approaches, the
work in [34] includes distributed energy sources uncertainties
and correlations for risk assessment. Nevertheless, the cited
works aim to find the secure regions for a short-time operational
perspective (hours to days) applied to the distribution system
base of N-1 security criterion and contingencies, and their focus

Fig. 2. Visualization of static regions for the voltage technical limits in the
network. (a) Four different areas are determined by the distribution network’s
annual energy consumption and PV installed capacity. (b) Further inspection on
the caution regions is done with the ternary plot. Caution region is influenced by
the type of irradiance days for the period of study i.e., percentage of sunny,
cloudy, and overcast days. Contour colors guide to visualize the maximum
voltage over the network. Subplot (c) shows an example of total grid annual
energy consumption growth w(l) for ten years, which is composed of the sum
of the different area activities growth functions w̃(l). Total PV installed capacity
growth curve α(l) is shown in (d), including PV growth functions on each node
in the grid α̃(l). The x-axis of (a) is the total grid annual energy consumption
in percentage values shown in the secondary axis in subplot (c). Similarly, the
y-axis of subplot (a) is the total grid PV installed capacity in percentage values
shown as a secondary axis in (d). Simulations with total grid annual energy
consumption and PV installed capacity functions define the colors in the static
regions in (a). The linear parametric path Γ(l) = [w(l), α(l)]ᵀ (red line) in
subplot (a) is the result of following the total growth of (c) and (d). Point A,
highlighted by the white circle, is an example of where is located a specific
single step of the growth curves (c) and (d); in the growth path Γ(l) in (a). Here,
we use year six (l6). i.e., A = Γ(l6) = [w(l6), α(l6)]

ᵀ.

is not intended in the mid-term operation on the distribution
(considering load and PV installed capacity growth). The previ-
ous works use the term secure regions in the context of reliability
analysis. Here we use the term secure regions to identify the
safe PV and load growth values where the network is still within
technical constraints, according to a hypothesis of load and PV
installed capacity growth curves for a time horizon of years.
Our framework also incorporates the novelty of simultaneously
considering the local irradiance variability conditions, load, and
PV growth. These are essential factors in quantifying the risk of
overvoltage due to PV generation.

Nomograms are figures that express the safe states of opera-
tion in a geometrical form, and they are tools that are easy to use
for operators to make a decision. Here, we introduce a simple
nomogram and a ternary plot to interpret the results of the frame-
work. Fig. 2 is the sketch of the proposed visualization. It helps
to understand and quantify the changes in three components
(load growth, PV growth, and irradiance variability), including
generation, consumption, and irradiance uncertainties.
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B. Our Contribution

The framework presented in this article shows a holistic
solution to model the following uncertainties: active and reactive
time-series consumption adjusted by annual energy consump-
tion growth, and PV generation due to different cloudiness
conditions (irradiance variability). The framework uses only one
flexible multivariate probabilistic modeling technique: MVT
copula. More precisely, the main contributions of this article
are as follows:
� A framework is proposed to support DNOs’ monitoring

process for MV distribution networks to assess the un-
der/overvoltage impacts of load and PV growth under
stochastic conditions. The model exploits the MVT cop-
ula’s flexibility to create scenarios that capture temporal
correlation for PV generation, annual energy, and active
and reactive power consumption, to generate accurate daily
profiles for different area activities serviced by the distri-
bution grid.

� A new irradiance model based on MVT copulas that simu-
lates irradiance profiles for different cloud conditions, e.g.,
clear sky (sunny), cloudy and overcast. The model has the
statistical properties of irradiance variability, sunrise and
sunset times which is adaptable to any period of the year
in any geographical position.

� The concept of critical static operating regions is intro-
duced as a new representation and visualization tool used
to understand and assess the results of the probabilistic
load flow, for simulations that includes load, PV growth,
and local irradiance variability conditions. Additionally,
the proposed nomograms and ternary plots are used as
versatile tools to help the DNO steer the load, and PV
growth plans to maintain technical limits in the distribution
network.

II. PROPOSED METHODOLOGY AND VISUALIZATION

Our approach focuses on MV distribution networks, which
service different activity areas, e.g., residential, commercial, and
offices, via MV to low voltage (LV) distribution transformers.
DNOs calculates the expected load growth, computed as annual
energy consumption increase per year, and PV panel installed
capacities for the different serviced areas based on techniques
like [35]. It is also assumed that each area’s PV installed capacity
growth schedule does not overcome the PVHC on the LV side.
Fig. 2(c) and 2(d) shows an example of total grid growth for
annual energy consumption and PV installed capacity, respec-
tively. In this example, which shows the total network annual
energy consumption growth function w(l) for ten years (red
line Fig. 2(c)), which is the sum of the energy growth consump-
tion functions for three serviced areas with different activities,
denoted as commercial, residential and mixed activities, e.g.,
offices, mixture commercial and residential. Variable γ labels
each type of area. It should be noted that the areas (which
are groups of MV grid buses) could have different growth rate
functions w̃γ(l). More precisely, the total grid annual energy

growth function is defined as

w(l) =
∑
φ∈Ωγ

w̃φ(l) ∀ γ = {1, . . . ,Ξ}, (1)

where φ = {1, . . . , B} is the node number of a grid with B
nodes, Ωγ represents the set of buses that belongs to the area
activityγ, andΞ is the total number of type of area activity, which
in this particular example is three. The choice for grouping the
grid nodes by areas is for daily profile modeling. For example,
the daily load profile for a node with 3 [GWh/Year] energy
consumption for a commercial area differs from a residential
area, even though they have the same annual energy value.
Separating the type of consumption by groups allows us to create
specific types of daily profiles, which is critical to maintain the
concurrency between load consumption and PV generation, to
quantify the overvoltage risks accurately.

Similarly, the total grid PV installed capacity growth function
α(l) is the sum of the grid PV installed capacity functions per
node α̃(l), which is expressed as

α(l) =

B∑
i=1

α̃i(l). (2)

It is critical to notice that the percentages in the axes of
Fig. 2(a) do not mean a homogeneous growth on the grid for total
annual energy consumption or PV installed capacity because
each area/node has its growth rate as defined by functions (1) and
(2). The percentage denotes the values between the minimum
and maximum for the total grid growth and total grid PV installed
capacity. For instance, in Fig. 2(c), 0% means a total grid annual
energy consumption of 4.6 [GWh/year], and 100% is 39.02
[GWh/year] (total grid annual energy consumption values are
in the secondary axis highlighted in red). The same rationale
applies to the percentages of PV installed capacity growth
(Fig. 2(d)), which corresponds to the y-axis of Fig. 2(a).

A colored nomogram depicted in Fig. 2(a) is the proposed de-
scriptive quantification of the maximum/minimum MV network
voltage magnitude for all the different combinations of scenar-
ios of total network annual energy consumption versus total
network PV installed capacity growth (in percentage), which
also includes cloudiness conditions (irradiance variability). The
nomogram consists of four distinctive regions. (i) Safe region
(green): the network will not have any voltage problems in
the respective combination of PV installed capacity and annual
energy consumption growth. (ii) Caution (orange): these com-
binations could potentially cause voltage magnitude problems
in the network, which could be triggered by PV generation,
and it is related to seasonal irradiance conditions, i.e., different
types of day combinations of clear sky (sunny), cloudy, and
overcast days. The caution frontier begins for voltages that are
≥ Vcaution. (iii) Over-voltage (red) depicts the combinations in
which the network might have voltage magnitude violations,
which also depends on the local irradiance variability conditions.
The frontier begins for voltages that are ≥ V . (iv) The plot’s
under-voltage (blue) region corresponds to an overloaded net-
work in which voltages magnitude fall below the lower technical
limit, and the region starts for voltage magnitudes that are ≤ V .
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Next, we analyze the path created by the load and PV installed
capacity growth curves on the colored nomogram. The growth
functions w(l) and α(l) create a parametric curve [36] on the
static regions nomogram defined as

Γ(l) =

[
w(l)

α(l)

]
, (3)

where the values of w(l) and α(l), in percentages, determine
the curve’s x and y coordinate values. We refer to the parametric
curve as a growth path throughout the document. In our example,
the growth path is shown as a straight line (no curvature) in
Fig. 2(a). The nomogram is used to assess the year when the grid
starts to have technical violations. In the figure’s example, the
grid enters a caution region at year six. The benefit of having the
parametric representation of the growth path in the nomogram is
that the DNO can analyze other potential paths that stay within
technical limits. This topic is discussed in the section VI-F.

The static regions are affected by irradiance characteristics of
the particular geographical area in which the MV distribution
network is located, and also by the level of risk that DNOs is
willing to take on the network grid operation (more details in
Section VI-E). Thus, depending on each case, the regions can
be further inspected using ternary plots, as shown in Fig. 2(b)
for the point highlighted with letter A. The ternary plot relates
the type of day’s fraction for each month in a season, and the
fractions sum up to 100%. For instance, one particular summer
month in the Netherlands might have fractions of 42% clear
sky (sunny), 29% cloudy, and 29% overcast days. The fractions
of days in this particular example is marked by a black square
on the ternary plot in Fig. 2(b). The colored contour regions
in the ternary plot determine if that month does not have an
overvoltage violation for the combination of total annual energy
consumption and PV installed capacity. A ternary plot can be
constructed for each combination of PV installed capacity and
annual energy consumption growth from the nomogram.

The data used to generate the plots described in Fig. 2 comes
from extensive scenario simulations using a PPF formulation.
Fig. 3 gives an overview of the framework, describing the data
processing and modeling needed to generate the scenarios for
the simulations. The following sections explain the approach in
detail.

III. DISTRIBUTION TRANSFORMER LOAD MODELING

This section describes the probabilistic modeling for load
profiles given a historical data set. Here, a load profile refers to
an MV/LV distribution transformer loading, which is connected
to an MV-distribution network.

A. Areas Characterization by Clustering

Here we use the active power profile of the distribution
transformer as the data that represents the activity for each
serviced area. Let the matrix P = [p1, . . . ,pN ] ∈ RM×N be
the distribution transformer active power loading. M is the total
number of data points recorded during a determined period,
and N is the number of distribution transformers. Each vector

Fig. 3. Proposed approach for the study of MV distribution network, under
stochastic conditions.

pn = [pn,1, . . . , pn,M ]ᵀ ∈ RM is the data of the n-th distribu-
tion transformer for n = {1, . . . , N}. The daily profile for the
distribution transformer is characterized by averaging every T
data points in pn, creating a representative load profile (RLP)
vector p̄n = [p̄n,1, . . . , p̄n,T ] ∈ RT . i.e., for a daily profile at
15-min resolution T = 96. An RLP matrix is constructed as
P̄ = [p̄1, . . . , p̄N ] ∈ RT×N . A clustering algorithm determines
the number of clusters Ξ that best describe the data set in P̄ .

The distribution transformer clustering is an unsupervised
learning problem without ground truth, i.e., there is no previous
labeling to know the correct number of clusters (Ξ) in advance.
Therefore, cluster validation is done using internal evaluation
metrics to guide the correct number of clusters. Such indices are
the modified Dunn index (MDI), Davies-Bouldin index (DBI),
Caliński-Habarasz index (CHI), and Silhouette index (SI). The
clustering result assigns a label to each of the N -RLPs. i.e.,
distribution transformers, with a number from the label set
γ = {1, . . . ,Ξ}. Thus, we define the set of transformers Φγ
that belongs to cluster γ.

B. Probabilistic Load Modeling by Multivariate-t Copulas

The data set for each transformer n is characterized by a
tuple of data Mn = {(pi, qi,wi)}Di=1, where vectors: p ∈ RT

is the active power, q ∈ RT reactive power, andw ∈ R is annual
energy consumption. The data set of the transformer is for D
days. The data set for the cluster γ is Dγ = {Mn∈Φγ}. We use
the following multivariate random variable expression for the
load profile modeling: x = (p, q, w) ∈ Rd where d = 2T + 1.
Using a multivariate copula, we create a multivariate cumulative
distribution function for each cluster that models the non-linear
dependency between random variables, i.e., time steps and
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annual energy consumption. For clarity, we drop the γ cluster
index. The copula model allows us to construct the multivariate
probabilistic model based on the random variables’ marginal
distributions as

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd))

= C(u1, . . . , ud). (4)

Here, we do not assume a parametric probability function for the
marginals Fj(xj) �→ uj ∀ j = 1, . . . , d. Therefore, the transfor-
mation to uniform values of the marginals is done using an
empirical distribution function,

FΠj
(xj) =

1

D + 1

D∑
r=1

1{xj,r≤xj} ∀ xj ∈ D, (5)

In this work, we approximate C(·) with a multivariate-t
copula,

Ct(u1, . . . , ud) = Td(T
−1(u1; ν), . . . , T

−1(ud; ν); (Σ, ν))

= Td(z1, . . . , zd; θ). (6)

The term T−1(·; ν) is the inverse cumulative distribution func-
tion of the univariate t-distribution with ν degrees of freedom,
Td(·; (Σ, ν)) is the d-dimensional multivariate-t distribution
with covariance matrix Σ, and θ = (Σ, ν). The procedure to
fit the parameters on Ct(·), denoted as θ̂ = (Σ̂, ν̂) can be found
in [17]. It should be noted that the parameter Σ in the MVT
copula model describes the correlation between the random
variables in the form of a matrix. In our case, it relates to the
temporal correlation between the time steps of the load profile.
The benefit of using an MVT copula is that it captures tail
dependency, which means that the model can simulate extreme
events of high/low active and reactive consumption.

The multivariate joint distribution (4) can be conditioned with
respect to one variable using (6) as

F (x1|x2) = C(u1|u2) ≈ Ct(z1|z2; θ̂1|2), (7)

In our application, the meaning of the variables isx1 = (p, q) ∈
R2T and x2 = w ∈ R, where w is the annual energy consump-
tion of the MV distribution transformer. The expression (7)
allows us to create a conditional probability distribution with
a specific energy level ŵ, i.e., GWh per year, which allows
us to simulate profiles for different annual energy consumption
values.

The projection from the annual energy consumption value (ŵ)
to the copula domain values are made by

ẑ2 = T−1(FΠw
(ŵ); ν̂). (8)

The value ẑ2 is used to condition the MVT copula parameters
θ̂1|2 (for more details, the reader is referred to the appendix
on [17]). The conditioned copula in (7) can be sampled to get a
vector ẑ1 ∼ Ct(z1|z2 = ẑ2; θ̂1|2).

The sampled vector values are projected to power units, e.g.,
kW, as

x̂i = F−1
Πi

(T (ẑ1,i; ν̂)) ∀ i = 1, . . . , 2T. (9)

The use of conditional copula modeling is used as a generative
model to create the profiles of active and reactive power of the
transformers based on a specific annual energy value, which
maintains the non-linearity and statistical properties of the elec-
trical load profile data set. The simulation of the profiles of active
and reactive power for the cluster γ is summarized as

(p̂, q̂)γ ∼ F pg
γ (p, q|w = ŵ; θ̂(p,q)|ŵ) = Fγ(x1|x2 = ŵ; θ̂1|2).

(10)
Sampling from the conditional MVT copula (10) results in

a time-correlated profile for active and reactive power for an
annual energy consumption ŵ. For instance, if the modeling
is at 15 min resolution, sampling (10) generates a profile of
96 ∗ 2 = 192 time steps, the first 96 corresponding to active and
the rest for reactive power.

IV. IRRADIANCE MODELING

The challenge of creating a probabilistic model that generates
irradiance profiles during the year is that the model should be
able to handle the maximum irradiance according to geograph-
ical position, and it should also adhere to the sunrise and sunset
times on different days of the year. In this section, we formulate
the irradiance profile modeling of the framework shown in Fig. 3.

A. Generative Irradiance Profile Model

Let the matrix G = [g, . . . , gD] be the data set describing the
irradiance data for D days, with g ∈ RT describing the daily
irradiance profile. The process of building a probabilistic model
for the data set G is described in Fig. 4. This procedure can
be summarized in three steps: (i) Irradiance normalization and
common time frame transformation, (ii) Irradiance clustering
and probabilistic modeling, and (iii) Irradiance profile genera-
tion by a copula mixture sampling.

The first step consists of setting a common time reference
(t̂) and normalization of the measured solar irradiance for the
following two reasons: (i) It makes the clustering meaningful
as it decouples the two sources of natural variation of solar
irradiance (Fig. 4(a)), which are the different sunset/sunrise
hours throughout the year, and different irradiance intensities at
noon [25]. (ii) The advantage of having the same time reference
is that it has a fixed number of time steps (random variables)
where the MVT copula model can be created.

The normalization of the irradiance is done using a global
horizontal irradiance (GHI) model, which estimates the amount
of irradiance on the earth’s surface at a specific geographical lo-
cation. The GHI works as a theoretical upper bound of maximum
possible radiation.

The time reference conversion is done by approximation with
a linear interpolation function per day gi,t̂ = hi(t̂) ∀i ∈ ΩD =

{1, . . . , D} and t̂ ∈ Ωt̂ = {1, . . . , T̂}, with T̂ as the maximum
count of sunlight time steps for the year (summer solstice).
Variable gi,t̂ is the irradiance value for the sunlight in the
common time reference. Similarly, the irradiance of the GHI
model should be converted to the common time reference in
order to create the normalized profile named clear sky index
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Fig. 4. Irradiance modeling approach. The global irradiance model (a) and the measured irradiance time series (c) are transformed into a common time frame as
shown in (b) and (d). The computed clear sky index (CSI) shown in (e) is clustered into three groups: (f) Cloudy, (g) Overcast, and (h) Sunny. An MVT copula
model is fitted for each cluster to generate CSI profiles. The models are sampled according to a mixture πk , generating a CSI profile (i), which is transformed back
to irradiance units by multiplying it with the model GHI profile (j) for one day of the year, creating the profile in (k). The synthetic irradiance profile is transformed
from the common time domain to actual time units producing the final result in (l).

(CSI) profile, defined as

k(i,t̂) =
g(i,t̂)

GHI(i,t̂)
∀ t̂ ∈ Ωt̂, i ∈ ΩD. (11)

Additionally, the daily clear sky index (DCSI), named Ki,
is defined as the ratio of the sum of values for daily irradiance
and GHI. The DCSI is a metric to characterize the daily solar
conditions used to label the type of cloudiness in the day.

The second step consists of clustering the CSI profiles in
Fig 4(e) into three groups. The number of clusters is fixed to three
to indicate the sunny, cloudy and overcast groups, and the label
of the clusters are denoted by κ. The clustering methods and val-
idation indices are the same already discussed in Section III-A.
A visual inspection of the three resulting clusters, guided by the
DCSI, determines the naming convention for sunny, cloudy, and
overcast. High values of DCSI in the cluster indicate that the
days have a clear sky, meaning a sunny day. On the other hand,
lower values of DCSI mean overcast days, i.e., less irradiance.
The remaining group is cloudy, characterized by a significant
variation of DCSI values.

Each of the grouped CSI profile data sets is used to create
an MVT copula model as outlined in Section III-A and named
F csi
κ (kt̂). The complete probabilistic model for the CSI profile

set (Fig 4(e)) is the mixture of copulas

F irr
π (k1, . . . , kT̂ ) =

3∑
κ=1

πκF
csi
κ (k1, . . . , kT̂ ), (12)

where
∑3

κ=1 πκ = 1, and π = (π1, π2, π3).
In the third step, the procedure to generate a CSI profile

from the mixture copula model, i.e., k ∼ F irr(·), as follows:
(i) Generate a sequence of labels κ (cluster number) based on the
multinomial distribution with three categories κ ∼ Multi(D,π)
for D days. (ii) Sample k ∼ F csi

κ (·) from the selected κ copula

model, based on the label sequence created in the previous
step. It is critical to notice that modifying the mixture of π
controls the type of day that the model is generating. e.g.,
Mixture π = (0, 0, 1) generates profiles from cluster 3 all the
time, or π = (1/3, 1/3, 1/3) samples equally on all types of
days. Parameter π indicates the fraction of the type of days that
are simulated to generate the plots in Fig. 2.

The sampled values are brought to irradiance units by doing
the inverse process, using (11) to generate irradiance units,
and using the interpolation function fi(·), which is the inverse
mapping of hi(·). In that way, we reference the irradiance values
to actual time. The simulation of the profiles or irradiance for a
mixture π is summarized as

k̂i ∼ F irr
π (k)

ĝi = fi(k̂i � GHIi) ∀ i ∈ ΩD, (13)

where � is the Hadamard product.
The main advantage of this model is that it follows precisely

sunset and sunrise times. Also, it is upper bounded with the
maximum solar irradiance, which depends on the geographical
location of the distribution network under study. This makes
the concurrency between consumption and PV generation more
accurate. Additionally, controlling the copula mixture brings the
versatility on which the DNOs can simulate different scenarios
of cloudiness, i.e., irradiance variability conditions.

B. Variability Index Metrics for Irradiance Profiles

The generated irradiance profiles are validated using irradi-
ance variability index metrics (VIMs). In this way, we ensure
that the statistical properties of the synthetic irradiance profiles
compared to the actual measurements are retained. Details of
the VIMs metrics computation can be found in the appendix.
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All VIMs are computed for every single profile generated by
the model from section IV, creating a probability distribution
per VIM. The probability distributions are compared against
the original irradiance’s VIMs probability distributions. The
probability distance metrics used to compare are Kolmogorov–
Smirnov (KS) and Wasserstein (WD) distances.

V. SCENARIO GENERATOR AND SIMULATION

An MV distribution network has a set of buses φ =
{1, . . . , B}. Based on the historical consumption of each node,
one can assign each bus to a cluster that belongs to the γ cluster
via a supervised learning algorithm as in [16]. Alternatively,
social demographic data of the area can be used to predict the
cluster assignment for each node [37], which it can be more
accurate using commercial datasets [38]. It is essential to notice
that the cluster assignment to the node specifies which is the
load profile model (10) is used for the PPF analysis.

The set of buses in the γ cluster is defined as Ωγ. The
matrix Ŵ ∈ RB×L defines all buses’ annual energy consump-
tion growth. Each matrix element is ŵ(φ,l), where the index
(φ, l) represents the row and column for the matrix. Index l is
the one-step increment in the annual energy consumption. For
instance, if bus three has a base annual energy consumption
of 1.0 GWh per year, then ŵ(φ=3,l=0) = 1.0. If the same bus
has a expected growth of 10%, then the one-step increment is
ŵ(φ=3,l=1) = 1.1 · ŵ(φ=3,l=0), and so on. It should be recalled
that the framework does not require that the annual energy
consumption be linear or proportional through the network. Each
node could have its own annual energy consumption growth
function based on the step increments, i.e., ŵ(φ,l)(l).

Similarly, matrix Â ∈ RB×PV with elements α(φ,pv) defines
the PV installed capacity at each bus. Sub indexes (φ, pv)
represent the row and column of Â, and pv is the one-step
increment in the PV installed capacity.

It is assumed that all PVs work at a unity power factor. The MV
network is not excessively large, so all PV panels are exposed to
approximately the same solar irradiance. Additionally, set ΩΠ

is the set of mixture combinations of π, which simulates the
impact of different variable irradiance conditions. The active
and reactive power used for each node in cluster γ for the PPF
formulation is defined by

P̂
φ

(ŵ(φ,l),pv,π) = P̂
γ

ŵ(φ,l)
+ α(φ,pv)Ĝπ (14)

Q̂
φ

(ŵ(φ,l),pv,π) = Q̂
γ

ŵ(φ,l)

∀ φ ∈ Ωγ , l ∈ ΩL, pv ∈ ΩPV, π ∈ ΩΠ. (15)

Matrices P̂
φ

and Q̂
φ

are of size RMC×T , on which MC is the
number of Monte Carlo simulations. Matrices P̂

γ
and Q̂

γ
come

from sampling (10) MC times conditioned in annual energy
value ŵφ,l. Matrix Ĝπ results from sampling (13) MC times
using the mixture π. This means that we have |ΩL| · |ΩPV| ·
|ΩΠ| · MC daily scenarios per node. The power flow technique
used for the PPF is described in [39], which is highly robust and
efficient for radial network systems.

Fig. 5. MV distribution test system with distributed PV generation.

TABLE I
LOAD PROFILES CLUSTERING METRICS AND TRANSFORMER COUNT FOR

THREE CLUSTERS

VI. CASE STUDY

The test case is based on an 11 kV MV-distribution network
shown in Fig. 5 [40]. The substation voltage was set to 1.0 p.u.
on the secondary side since it is a symmetrical set point and
allows a fair assessment, as it allows significant amounts of
PV installed that could surpass the technical limits V = 1.05
p.u. and drops for peak loads below V = 0.95 p.u. The limit
to define the caution frontier is set to Vcaution = 1.045. In our
case study, it was found that the value of Vcaution = 1.045 was
a sensitive threshold to define the caution frontier, detecting
scenarios that may lead to an overvoltage level. However, this
specific threshold value is not mandatory for the functioning of
the framework, and the only condition is that Vcaution < V . The
current limit of the transformer feeder is set to Imax = 230 A.
The loads in Fig. 5 are highlighted by color according to the
clustering results in Section VI-A.

A. Clustering Validation Results

The data set of load profiles consists of 543 MV/LV distribu-
tion transformers from a municipality in the Netherlands for the
summer season, at 15 min resolution. Six clustering techniques
are used to group the load profiles as they have different algo-
rithmic approaches to search for the best grouping. A cluster
parameter sweep was done from two to fourteen clusters, as
shown in Fig. 6. All techniques are evaluated on the indexes
discussed in Section III-A. The CHI index indicates that three
is the best number of clusters and it is also clear the different
load patterns of each group (Fig. 7). A closer inspection of the
metric values shown in Table I shows that K-Means and Spectral
clustering are the top performers. The highlighted values in
Table I are the best clustering metric values for SI, DBI, MDI
(lower is better) and CHI (higher is better). However, K-means
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Fig. 6. Clustering validation metrics for different algorithms. For (a) MDI,
(b) DBI, and (d) SI lower values are better, and for (c) CHI high values are
better.

Fig. 7. Load profiles are clustered by the K-means algorithm. Each row
corresponds to data of the same cluster. The first column is active power, and
the second column is reactive power. The third column is the histogram of
the power factor. The fourth column is the distribution of the annual energy
consumption. The 95% confidence intervals of the original and simulated profiles
are highlighted in columns one and two.

has more balanced groups compared to the Spectral algorithm.
K-Means labels are used for load modeling.

B. Load Modeling Simulation Validation

Fig. 7 shows that clusters 1 and 2 are groups of residential
consumption characteristics. Cluster 1 contains transformers
with higher active power consumption values between 9:00
and 3:00 p.m. than cluster 2. Also, cluster 1 has the highest
reactive power consumption among residential clusters. Cluster
3 corresponds to profiles of office/commercial areas, with higher
and flatter power consumption between 7:00 a.m. and 5:00 p.m.

Fig. 8. Example of one hundred daily load profiles generated from sampling
the conditioned MVT copula for cluster 3 for high and low annual energy
consumption values. (a) Active power. (b) Reactive power.

The 95% percentiles between the original and simulated data
sets using (4) show a high agreement between the profiles. It
should also be noticed that the distribution of the power factor
(Fig. 7(c,g,k)) and annual energy consumption (Fig. 7(d,h,l))
it is also maintained between clusters for the original data and
simulated profiles.

An example of profiles generated using the conditioned cop-
ulas in (10) is presented in Fig. 8. One hundred profiles are
generated for two different annual energy values. One for high
energy consumption ŵ1 = 1.77 [GWh/year], where the mean
values of the profile for active and reactive power are highlighted
by a red dotted line. The second set of simulated profiles has
ŵ2 = 0.43 [GWh/year] for the low energy consumption, and the
means are highlighted with a blue dotted line. It should be noted
that consumption values per time step does not follow a linear
growth, i.e., increasing annual energy consumption ∼4 times
does not necessarily increase all power values in the load profile
by the same factor. This is a significant benefit of the copula as
it captures the non-linear change of each time step according
to the annual energy consumption. The accuracy of the load
profile scenarios is evaluated using the Kolmogorov–Smirnov
(KS) and Wasserstein (WD) distance metrics, following the
research in [17].

C. Irradiance Modeling Validation

The irradiance data set comes from the closest meteorological
station in the same municipality where the loading data was ac-
quired. The resolution is 15-min. The Haurwitz solar irradiance
model [41] is used as GHI. The Haurwitz irradiance model is
referenced to the exact geographical coordinates of the pyra-
nometer that acquired the irradiance data. The irradiance data
set is transformed to CSI values using (11) as shown in Fig. 4(e).
The groups for the CSI data set were partitioned by the K-Means
algorithm based on the analysis of the clustering indexes. The
groups are shown in Fig. 4(f-h). Clusters 1, 2, and 3 correspond
to cloudy, sunny, and overcast days, respectively, according to
the DSCI values. In order to justify the need for MVT copula
as a generative model for the CSI, we compare its performance
against two probability distributions to model F csi

κ (·) in (12):
(i) A multivariate Gaussian (MVG) and (ii) univariate Normal
(UN) distributions, i.e., one Normal distribution per time step.

All three models (MVT copula, MVG, UN) are tested to
check if they maintain the irradiance variability statistical prop-
erties of an actual irradiance profile, i.e., Qπ∗ ≈ Q̂π∗ , where
π∗ = (0.44, 0.26, 0.3) is the original data set mixture. The VIMs
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TABLE II
PROBABILITY DISTANCE METRICS FOR VARIABILITY INDEXES

discussed in Section IV-B are computed for each of the irradiance
profiles generated by the models (using π∗) and the original
data set. The difference between the probability distribution of
each VIM from the generated profiles is measured against the
original VIM distribution of the original profiles using the KS
and WD probability distance metrics, as described in section IV.
In order to have a significant statistical result, a bootstrapping
method with 1000 repetitions is performed, and the means of
the probability distance metrics are reported in Table II. The
highlighted values in Table II are the lowest probability distance
metrics for the three clusters (lower is better). It is shown that
in almost all VIMs, the MVT copula has superior performance,
especially in modeling sunny days, which are the critical profiles
for the worst-case overvoltage scenario for high PV generation.

Fig. 9 shows the irradiance profiles for different π values
for the irradiance mixture model (12). The first row of subplots
shows the original data set, which has a mixture of π∗. The
second row of subplots shows data from sampling (13) with
mixtureπ∗ for the same amount of days as the original irradiance
data set. In extreme scenarios, the subplots on the third-row show
samples from a mixture that generates 100% of overcast days
and the last row 100% percent of sunny days. The last column’s
heat maps show that irradiance profiles follow the sunrise and
sunset times for all the seasons of the year, and the intensity of the
heatmaps corresponds to the desired generative process based
on the mixtures (bright yellow for clear sky and dark purple for
low irradiance/overcast days).

D. Estimating Voltage Magnitude Risk

The critical static operating regions were identified using
a PPF formulation via Monte Carlo simulations. For simplic-
ity, annual energy consumption for each area activity is lin-
early incremented as percentages above an initial base an-
nual energy consumption per area. In the same way, the PV
installed capacity growth is linearly increased for each bus
in the distribution grid. Fig. 2(c) and 2(d) show the differ-
ent annual energy consumption growth rates used for each
cluster and PV installed capacities growth rates per node.
The combinations of total annual energy consumption and PV
growth are in steps of 10% from 0% to 100%, for a total
of |ΩL| · |ΩPV| = 121 combinations. Similarly, the mixtures of
the types of days (π) have a resolution of 0.1 per mixture
component. More precisely, the set of mixture π is ΩΠ =
{ (0.0, 0.0, 1.0), (0.0, 0.1, 0.9), (0.0, 0.2, 0.8), . . . , (1.0, 0.0,
0.0) }. The count of allowable combinations, i.e.,

∑3
κ πκ = 1, is

|ΩΠ| = 66. The time step for time series simulations is at 15-min

Fig. 9. Sampling example of the probabilistic irradiance model using the
mixture of copulas following the procedure in Fig. 4. Subplots in the first
row correspond to the meteorological station’s measured irradiance data
(original data set). The subplots in the second-row show synthetic gener-
ated profiles using the mixture values of the original irradiance data set,
i.e., (π1 = 0.44, π2 = 0.26, π3 = 0.3). Being π1 cloudy, π2 sunny and π3

overcast fractions. The third row of subplots are the generated profiles for a
mixture that only produces overcast days, i.e., (π1 = 0.0, π2 = 0.0, π3 = 1.0).
The last row of subplots shows profiles of sunny days the whole year,
i.e., (π1 = 0.0, π2 = 1.0, π3 = 0.0). Image plots in the last column show that
the generated irradiance profiles follow the year’s corresponding sunrise and
sunset times.

resolution (T=96), and a total of MC=1000 scenarios for all
possible combinations are performed. This results in ∼= 766M
of power flows.

The maximum voltage magnitude in the network for each
annual energy consumption and PV installed capacity growth
combination is analyzed with the heat map shown in Fig. 10.
Each row’s figures come from voltage magnitudes simulated
from a specific mixture value of irradiance profiles. The first row
subplots are for an instance of mixture values for cloudy/overcast
days only. i.e., (π1 = 0.4, π2 = 0.0, π3 = 0.6) specified in the
title of the heat map’s subplot (Fig. 10(a)), the middle row is for
a more typical summer mixture, and the bottom row has extreme
values of 100% sunny days. It should be reminded that π1, π2,
and π3 correspond to cloudy, sunny, and overcast proportion
mixture (indicating the fractions for each type of day). The
color of the rectangles in each heat map refers to inset plots
for four specific cases. The profiles in the insets represent the
daily maximum (black) and minimum (grey) network voltage
magnitude profiles for a specific percentile, which is the 90%
percentile in this example (or 10% risk). The maximum peak
voltage magnitude for the 90% percentile gives the color inten-
sity in the heat maps.

The solid black contour line in the heat maps, first column
subplots Fig. 10 (a,f,k), represents a frontier in which the
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Fig. 10. Analysis of maximum and minimum network voltage magnitude. Heat maps subplots (a,f,k) correspond to 90% percentiles (10% risk) of maximum
network voltage magnitude for different annual energy consumption and PV installed capacity growth combinations. Each of the rows shows different irradiance
scenarios. First row of subplots (a)-(e) for predominant cloudy/dark days, second row (f)-(j) typical summer mixture, and third row (k)-(o) for 100% sunny irradiance
scenarios. The inset rectangles colors on each heat map represent the row inset subplots by color. The inset subplots are the percentiles profiles for the network’s
maximum (black) and minimum (grey) voltage magnitude values. In the profiles subplots the maximum 90% and minimum 10% voltage magnitude percentiles
are highlighted. The maximum peak voltage magnitude for the 90% percentiles gives the color intensity in the heat maps.

maximum 90% percentile of V is reached in the network. For
instance, the purple rectangle of the upper left in Fig. 10(a), with
30% annual energy consumption growth and 50% PV installed
capacity growth lies close of the contour line for voltage limit V
(seen in the purple inset in the upper-right plot. i.e., Fig. 10(e)
with a value of 1.049 [p.u.]). In this example, annual energy
consumption and PV growth values below the contour line in the
heat map represent safe combinations on which the voltage stays
within the network’s technical limits with a 90% probability. The
same logic applies to the Vcaution frontier shown in the heat maps
as dotted lines.

It is critical to notice that the frontier is not a static value,
and it depends on the irradiance conditions of the summer (V
and Vcaution contour lines move down in the heat maps). The
frontier lowers when the fraction of sunny days increases (π2

is higher) as higher irradiance scenarios increase the percentiles
of maximum voltage profiles. The 90% percentile means a 10%
risk of having a day of summer falling outside technical limits.
Similar plots like Fig. 10 can be constructed for different levels
of risk, e.g., 2% risk (98% percentile), 5% risk (95% percentile),
and so on.

All the inset plots have the same lower network voltage
magnitude for different irradiance mixtures (minimum voltage
magnitude on the grey profiles in Fig. 10). Irradiance condi-
tions do not influence the minimum voltage magnitude on the
network. The only factor that affects its value is the increase in
annual energy consumption growth. The green insets (Fig. 10(c),
(h), and (m)) shows that there is an under voltage magnitude

Fig. 11. Overlay of collection of critical frontiers generated by different
irradiance conditions for different levels of risk: (a) 0% risk and (b) 10% risk
and (c) 25% risk. Purple frontier is the same for all subplots and represents the
0% risk scenario.

violation at the maximum annual energy consumption growth,
and the critical value for the under voltage frontier V is found
when the annual energy consumption growth is 88%. A similar
analysis can be done for overloading in the HV/MV transformer.

E. Static Secure Regions

The collection of voltage contour lines (frontiers of V ) for all
irradiance conditions, i.e., all π mixtures, are plotted in Fig. 11
with red lines that define the overvoltage region. Similarly, the
collection of Vcaution contour lines for all π mixtures is the lines
in orange, which defines the caution region. There is a total
of 2 · |ΩΠ| lines for each subplot, each set for V and Vcaution.
The purple line represents the worst and most stringent case
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Fig. 12. PV installed capacity over-voltage frontier value versus risk. Color
in the lines represents different annual energy consumption growth values.
Superscript in λ means risk, subscript means annual energy consumption growth.
e.g., λ5%

80%
is the PV installed capacity growth over-voltage frontier value for

5% risk and 80% of annual energy consumption growth.

for an overvoltage violation, i.e., 100% sunny days with 0%
risk of overvoltage (all simulated scenarios within the maximum
voltage magnitude limits). Here, the safe region means that there
is a chance of having an overvoltage given the chosen level
of risk. The 0% risk scenario is the typical PV capacity value
computed by deterministic approaches discussed in Section I- A,
which is a conservative PV network capacity estimation.

Using our framework, we can now quantify how much PV
capacity can be allowed to increase as a function of the allowed
risk. The purple frontier highlighted in Fig. 11 are the same
for reference (stringent case 0% risk). The lambda values are
instances over the frontiers for their respective risks. For in-
stance, λ10%

60% is the PV growth limit for a 60% annual energy
consumption growth with a 10% risk for all sunny days simula-
tion (first overvoltage frontier in red). The group of λ points for
different cases is shown in Fig. 12. It is noticeable that there is a
substantial increase in PV growth limits between 0− 5% of the
risk. For instance, the PV limits increase from 26.5% to 42.3%
for the 40% annual energy growth case. In average, there is a
15% PV installed capacity limits increase for all annual energy
consumption growth for the 5% risk. Such small risk can be
covered using technologies or services, e.g., PV droop control,
tap changer settings, or flexibility markets, allowing a higher
level of PV installations.

F. Growth Paths on the Static Operation Regions

Another advantage of the static operation regions nomogram
is that the DNO can analyze multiple growth path scenarios.
The static operation regions computed in Fig 11 are used as
a template for the growth path analysis. For instance, Fig. 13
shows three sets of growth curves (each row of subplots are
the curves that define each parametric growth path Γ(l) defined
in (3)). The nomogram used in this example is for the 10% risk
scenario shown in Fig. 11(b). The sub-indexes label each growth
path as A, B, and C. It should be noted that each dot in each path

Fig. 13. Example of three different growth function and growth paths for
the total grid annual energy consumption and PV installed capacity for a static
operating region with 10% risk. Different growth functions, i.e., w(l) and α(l),
create different paths Γ(l). Linear growth path ΓA(l) = [wA(l), αA(l)]

ᵀ is
composed of the linear function wA(l) show in (a) and the linear function αA(l)
shown in (b). Non-linear growth functions wB(l) and αB(l), shown in (c) and
(d), creates a non-linear path shown in purple in (f). The DNO adjusts the growth
functions like (e) and (f) aided by the static operating region while considering
the risk and maintaining a safe operation. Subplot (g) shows the three different
growth paths created by the three sets of growth functions. The square, triangle,
and diamond markers in the subplot (g) show the growth path location for year
4 for the different growth functions.

(Fig. 13(g)) corresponds to one step increment l (in years) of
the growth functions w(l) and α(l). The growth path ΓA(l) is
the initial plan used for the PPF; therefore, it defines colors in the
nomogram. In year four of ΓA(l) (highlighted by a red square
marker), the grid enters the caution region, corresponding to
annual energy consumption and PV installed capacity growth
of 40%. Then, it reaches the overvoltage region in year six. A
different growth path in which most of the years in the growth
horizon are in the safe regions is shown as ΓB(l), where later, at
year eight, the grid enters an undervoltage region.

Authorized licensed use limited to: TU Delft Library. Downloaded on November 02,2023 at 07:16:45 UTC from IEEE Xplore.  Restrictions apply. 



2104 IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, VOL. 14, NO. 4, OCTOBER 2023

Fig. 14. Example of voltage fraction static operating regions with 10% risk.
Ternary plots guide the assessment of the caution and danger regions which are
variable due to irradiance conditions. Three cases of annual energy consumption
and PV installed capacity growth combinations (A, B, C) are shown with their
respective ternary plot. The blue line in the upper left plot is the growth path
ΓC(l) = [wC(l), αC(l)]

ᵀ from Fig. 13(g). Blue scatter dots on the ternary plots
show the historical π mixtures for the summer months in the last 20 years for
the particular geographical area in the case study.

Nevertheless, the DNO can design a path within the safe
region, as shown in ΓC(l). A natural question may arise about
the validity of the static regions when a different growth path
is sketched in the nomogram. In Appendix B, we show which
are the restrictions and mathematical proof explaining why the
solutions are still correct. It is essential to notice that the paths
in the nomogram decouple the time horizon and the PV and
energy percentages values, and the points in the paths can be
closer to each other for similar combinations. e.g., years 6-9 in
ΓC(l). This is a versatile tool for DNOs to decide and steer the
original growth plan ΓA(l) into a different one that stays within
technical limits. Technologies, services, techniques, or control
mechanisms to reach a new growth path are out of the scope of
this article, but it is of interest for future research.

The frontiers of the operating regions in Fig. 11 and 13(g)
are built using a wide range of combinations of types of days (π
mixtures). In reality, all irradiance scenarios do not have the same
chance of occurrence in the distribution network, as it depends
on the characteristics of the geographical location. Each location
has different characteristics that affects cloud coverage, such as
topography, air humidity, and temperature.

A ternary plot is used to discern and navigate through the fron-
tier lines in the regions (Fig. 14). The ternary plot means that for
each annual energy consumption and PV growth combination,
the maximum network voltage magnitude for all combinations of
mixtures π (cloudiness conditions) can be precisely evaluated.
For instance, the upper-left plot in Fig. 14 highlights three
combinations of annual energy consumption and PV installed
capacity growth (A, B, and C) with their respective ternary plots.
The blue scatter dots, overlaid in the ternary plot, represent the
irradiance mixture for each summer month in the past 20 years

on the grid’s location under study. For instance, the combination
that lies in the frontier between the safe and caution region,
highlighted by point A, is year four in the growth path ΓC(l)
shown in Fig. 13(g), and it is still between technical limits as
the historical irradiance data lies below the Vcaution value (shown
in upper right ternary plot in Fig. 14). In the frontier of the
over-voltage region, highlighted by point B in the upper-left
plot (case where all days are perfectly sunny), the likelihood
of having an overvoltage is still low because the location never
reaches a completely clear sky in summer, i.e., there is not a
historical blue dot in the lower right corner of the ternary plot
B. The historical worst case month in summer has a mixture
of 71% sunny, 23% cloudy, and 6% overcast days (highlighted
by the blue star in ternary plot B), indicating that most of the
historical cases are below V and the PV limit can potentially be
increased even further. Point C is always in over-voltage as all
historical points lie in the over-voltage region.

VII. DISCUSSION

The current framework operates under the assumption of
constant irradiance in the area serviced by the MV distribution,
which may not be the case for rural areas. A future research
direction is the inclusion of spatial correlation for irradiance
models such as in [42], [43], or models with satellite-aided data
like in [44].

Reliability analysis adds an extra layer of complexity, as not
only over and undervoltage technical limits are included, but also
overloading on lines and transformers in the event of a failure.
The current framework does not support an “N-1” reliability
analysis. Nevertheless, similar nomograms can be proposed to
analyze grid components’ overloading restrictions. This exciting
analysis is left for a future research direction.

The case study presented in this work relies on historical
consumption data on serviced areas. However, the load profiles
could have new shapes due to disruptive technologies such
as electric vehicles and heat pumps. Additionally, the non-
heterogeneous changes in the profile can cause the node to switch
clusters during the load growth. For instance, one node could
change from cluster two, which are residential profiles with low
daily consumption, to cluster two in a year to come, which is a
residential profile with higher consumption during the daylight,
or change to cluster three due to a change on the land use for
commercial activities. Nevertheless, the framework can be fed
with the possible scenarios based on the possible likelihood
of technology adoption [35] or activity change, keeping the
uncertainty quantification with the proposed framework.

Another application of the framework is to quantify the ben-
efits of different control technology strategies, e.g., classical
PV droop controls [45], data-driven methods [46], using active
or reactive power compensation. For this matter, the “proba-
bilistic power flow” step in Fig. 3 should be modified to run
the simulations with the control mechanisms to determine each
technology’s effectiveness. In that way, risk reduction can be
quantified due to different control mechanisms.
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Including control mechanism comes with a computational
challenge. Our framework relies on a computationally fast for-
mulation of the power flow [39] to execute the probabilistic
power flow in a laptop with average specifications. Including
the actions of the control could increase the computational
time dramatically. Therefore, future research should also be
focused on effectively including the control mechanism in the
probabilistic power flow in a reasonable computational time.

VIII. CONCLUSION AND FUTURE WORK

This article proposed a complete probabilistic modeling
framework using MVT copulas for load profiles (including area
activity) and variable solar irradiance profiles to quantify the
voltage magnitude impact of annual energy consumption and PV
installed capacity growth in a distribution network. The nomo-
gram and ternary plots can help DNOs to diagnose potential
problems in the network, considering different levels of risk and
local historical irradiance data. Results show that local irradiance
conditions can change the maximum PV installed capacity limits
on the network, and calculation of maximum PV capacity using
conventional approaches can severely underestimate the PV
generation potential on the network, restraining the penetration
of clean energy generation. The case study shows that taking 5%
of risk could increase in average 15% of the PV installed capacity
limits. Additionally, it is shown that the static operating regions
are an effective tool for the DNOs to steer the PV installed
capacity and annual energy consumption growth to maintain
the safe operation of the grid for a pre-defined growing horizon.

The framework relies on existing consumption data sets to
model the annual energy consumption growth. Nevertheless, fu-
ture loads comes with different energy profiles due to EVs, heat
pumps, batteries, and thermal storage. A vast body of research
has been done on this topic and is out of this article’s reach.
Future research direction is to incorporate those uncertainties
from new technologies into the load profiles, which extended
with proposed irradiance modeling can bring an even more
precise decision tool for DNOs.

APPENDIX

A. Variability Index Metrics (VIMs)

The four VIMs used in this work are the following:
1) Fractal Dimension (FD) [21]: The metric uses fractal

analysis to characterize the variability of the the irradiance
profile for the day. It uses a rectangle as the structuring element
to cover the irradiance signal with the area defined as

S(Δτ) =

T−1∑
t=0

Δτ |(gt+Δτ − gt)|. (16)

A sweep of different Δτ steps is done to calculate the area for
the total signal and calculate the fractal dimension (FD) using
the following linear regression

ln

(
S(Δτ)

Δτ2

)
∼= FD · ln

(
1

Δτ

)
+ constant (17)

Fig. 15. Example of the fractal dimension (FD) calculation for a sunny
and cloudy day. (a) Cloudy irradiance curve covered by rectangles with area
computed by (16). (b) The fractal dimension value is the slope of the fitted
line by (17). Lower FD values corresponds to sunny days and higher values for
cloudy days.

Fig. 15 shows an example for computing the fractal dimension
metric for a cloudy and sunny day.

2) Mean of Increments (MI) [20]: Quantifies the average of
the absolute ramp values of irradiance during the day, and it is
expressed as

MI =
1

T − 1

T−1∑
t=1

|Δgt|. (18)

3) Standard Deviation of Increments (SDI) [47]: Measures
the standard deviation of the changes in irradiance and around
its mean, and it is described as:

SDI =

√∑T−1
t=1 (|Δgt| − MI)2

T − 1
(19)

4) Variability Index (VI) [48]: It quantifies the variability
or the irradiance signal using the ratio of the envelope of the
measured irradiance and the GHI model. The relation is the
following:

VI =

∑T−1
t=1

√
(Δgt)2 + (Δt)2∑T−1

t=1

√
(ΔGHIt)2 + (Δt)2

. (20)

Higher values of VI means that measured signal is highly
stochastic, and values closer to 1 are days that are have a clear
sky.

B. Growth Paths for Annual Energy and PV Installed Capacity

The growth path A over the static operating region in
Fig. 13(g) is defined by the parametric curve

ΓA(l) =

[
wA(l)

αA(l)

]
, (21)

where the total annual energy consumption growth wA(l) con-
sists of the total sum of the annual energy growth functions
wi,A(l) for all nodes, on a grid with B number of nodes, for
i = {1, . . . , B}. The growth is assumed to have a finite horizon
H , i.e., l ∈ [0, H]. Also, each node has a minimum ((w)i)
and maximum (wi) annual energy consumption for the growth
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horizon. More precisely, it is expressed as

wA(l) = f1,A(l)(w1 − (w)1) + (w)1

+ . . .+ fB,A(l)(wB − (w)B) + (w)B

=

B∑
i=1

(
fi,A(l)(wi − wi) + wi︸ ︷︷ ︸

w̃i,A(l)

)
(22)

=

B∑
i=1

(fi,A(l)Δwi + wi) (23)

Similarly, the total PV installed capacity growth (αA(l)), with
minimum (pv

i
) and maximum (pvi) installed capacity in the

same horizon, is defined as

αA(l) =

B∑
i=1

(
hi,A(l)(pvi − pv

i
) + pv

i︸ ︷︷ ︸
α̃i,A(l)

)
. (24)

The functions fi,A(l) and hi,A(l) are normalized growth func-
tions with a range of values between [0,1] and strictly mono-
tonically increasing. e.g., linear, squared, root growth functions
in the domain l ∈ [0, H]. It should be noted that the functions
w̃i,A(l) and α̃i,A(l) are just curve de-normalization operations
for each node for their respective normalized growth function
fi,A(l) and hi,A(l).

The static operating regions computed by the growth path
functionsΓA(l) = [wA(l), αA(l)]

ᵀ can be used for a new growth
path curve ΓB(l) = [wB(l), αB(l)]

ᵀ if it satisfies the relations

w̃i,A(l)

wA(l)
=

w̃i,B(l
∗)

wB(l∗)
, (25)

α̃i,A(l)

αA(l)
=

α̃i,B(l
∗)

αB(l∗)
∀ i = {1, . . . , B}. (26)

Without loss of generalization for the total PV installed capacity
growth relation in (25b), we show that for (25a), there is a unique
solution l∗ on which the ratio is satisfied by the new curve at
wB(l

∗) assuming: (i) all normalized growth functions are of the
same type for the total growth function. i.e., f1,A(l) = . . . =
fi,A(l) forwA(l) andf1,B(l) = . . . = fi,B(l) forwB(l); (ii) both
total growth functions have the same value at the solution point.
i.e., wA(l) = wB(l

∗). In that case, relation (25a) becomes

w̃i,A(l) = w̃i,B(l
∗)

B∑
i=1

(fi,A(l)Δwi + wi) =
B∑
i=1

(fi,B(l
∗)Δwi + wi)

fi,A(l) = fi,B(l
∗), (27)

with the unique solution

l∗ = f−1
i,B(fi,A(l)), (28)

where we use the fact that normalized growth functions are
strictly monotonically increasing, which has an inverse with
one-to-one mapping, meaning that l∗ is unique.

As a numerical example, Fig. 16 shows three monotonically
increasing load growths which follow relation (25a), for a grid
with three nodes. In this particular example, it is evident that

Fig. 16. Example of three growth curves that satisfies the relation (25a) for
the normalized growth curve functions: (a) lineal fi,A(l) = (l/H), (b) nor-
malized spline function fi,B(l) = spline(l/H), and (c) square root fi,B(l) =√

(l/H). All highlighted red points are for the total energy consumption of
25 [GWh/year] (secondary y-axes in red). The ratio between the energy values
for each individual node and the total energy growth is preserved for all cases
(green, blue and orange points have the same values in the left-hand y-axes).

all the annual energy consumption values for each node (blue,
green, and orange markers) have the same values in the left y-axis
for the same total annual energy consumption (the red marker
value shown in the right-hand axis in red).

The relation (25) implies that any path ΓB(l) with strictly
monotonically increasing growth functionswB(l) andαB(l) can
be sketched on the static operating regions nomogram (Fig. 2(a)
and Fig. 13(g)), and the computed solutions by ΓA(l) (colored
zones in the static regions) are still valid. In other words, the
total grid annual energy consumptions simulated in the lineal
case exists in the other two cases (in reference to Fig. 16). The
node energy values preserve the same ratios with respect to the
total energy consumption across the growth horizon, meaning
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that the energy values per node used as an input for model (14)
and (15) are the same, and therefore the PPF results are equal
(same static operating regions). The only difference between
the different growth curves is that the total energy values of the
lineal case happen sooner or later on the other new growth curve
plans. In the example shown in Fig. 16, the total annual energy
consumption of 25 [GWh/year] occurs in lA = 6.2 in the lineal
case; for the spline growth function at lB = 8.2; and the root
function at lC = 3.9 years.
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