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Abstract

This research investigates the use of Causal Multi-
task Gaussian Process (CMGP) for estimating the
individualized treatment effect (ITE) of low ver-
sus high Positive End-Expiratory Pressure (PEEP)
regimes on ICU patients requiring mechanical ven-
tilation. The study addresses the complexities of
determining ITE due to the inability to observe
counterfactual outcomes and the confounding bias
in observational studies. By employing Conditional
Average Treatment Effect (CATE) estimators, such
as S-Learner, T-Learner, and CMGP, the research
evaluates the impact of different PEEP settings on
patient survival across varied patient characteris-
tics. The precision of these estimators is assessed
using simulated data, real-world observational data
from the MIMIC-IV dataset, and an external RCT
dataset. The findings of this study are inconclusive,
highlighting the need for further research to refine
these methods and explore larger, more balanced
datasets.

1 Introduction

Mechanical ventilation is crucial for critically ill patients with
acute respiratory failure in the intensive care unit (ICU) [10].
About a third of the beds in the ICU in US hospitals are filled
with patients that require mechanical ventilation [12]. Me-
chanical ventilation helps the patient by keeping the lungs
properly aerated and keeping the oxygenation levels in the
blood in order. One key setting of mechanical ventilation is
the Positive End-Expiratory Pressure (PEEP) [1]. A higher
PEEP regime will keep the alveoli in the lungs properly aer-
ated, but could also cause unwanted extra damage to the
lungs. Despite numerous trials, the debate between higher
and lower PEEP remains [11]. Rather than a universal ap-
proach, it is believed that the benefits of higher PEEP might
depend on patient characteristics.

This report has investigated the benefits of a higher vs
lower PEEP regime using the Individual Treatment Effect
(ITE). The ITE is a measure of how a certain individual
within a population responds to receiving treatment compared
to having not received treatment. Difficulties arise because an
individual can only receive or not receive the treatment once.
This means that only the factual outcome can be observed
and not the counterfactual. Moreover, in observational/non-
random studies, the treatment effect and selection into treat-
ment can be intertwined. This may lead to confounding bias.
Confounding bias can make correlational relationships be-
tween features seem like causative associations, which can
lead to invalid conclusions in observational experiments. Fig-
ure 1 gives a generic example of confounding bias.

Confounder

Figure 1: Own work. Example of a confounding feature in a dia-
gram.

Normally this is where Randomised Controlled Trials
(RCTs) come into play. By randomising treatments to certain
patients, marginally on confounders, a good approximation
of the counterfactuals can be made. In an ideal world it is
also preferred to perform RCTs and observational tests side
by side [5]. However the world is not ideal and performing
RCTs is not always feasible, especially in the medical field.
Patients might, understandably, not want to receive a random
treatment assignment but the “best”. This can cause sample
sizes in RCTs to be too small to conclude anything meaning-
ful.

Instead this report used the Conditional Average Treatment
Effect (CATE) to infer the ITE [7]. CATE is similar to the
ITE with the difference that instead of looking at an individ-
ual, the Average Treatment Effect (ATE) of a set of the pop-
ulation is examined. To this end CATE estimators are used.
These are machine learning methods used in causal inference
to estimate the ATE conditional on observed covariates. In
simpler terms, it helps with understanding how the treatment
(in this case, the choice between low and high PEEP) affects
outcomes (such as survival) for different groups of patients.
By estimating CATE, it can be determined if certain patients
benefit more from one treatment over another, depending on
their individual characteristics.

This research considered several CATE estimators, includ-
ing S-Learner, T-Learner [9] and Causal Multi-task Gaussian
Process (CMGP) [3]. The S-Learner and T-Learner both be-
long to the family of meta learners. These are models that
are designed to work on top of base learners, which are exist-
ing machine learning algorithms that model the relationships
between covariates and outcomes. CMGP works by treat-
ing the estimation as a multi-task learning problem, leverag-
ing Bayesian nonparametric methods to handle observational
data. Each of these CATE estimators provides a distinct ap-
proach and each has its strengths and weaknesses, for exam-
ple CMGP starts to slow down for larger datasets because
of an O(n?) matrix inversion. The precision of these CATE
estimators was evaluated on simulated data, real world obser-
vational data and an external RCT dataset. The observational
dataset is based on the MIMIC-IV dataset [8].

These CATE estimators address potential issues arising
from the lack of complete and controlled randomization by



making a set of accepted assumptions for the dataset. The first
assumption is unconfoundedness, which ensures that there are
no unobserved confounding factors influencing the selection
into treatment. The second assumption is common support,
which states that every individual, identified by a given set
of covariates, has a non-zero probability of being observed in
each of the treatment groups. Finally, the Stable Unit Treat-
ment Value Assumption (SUTVA) asserts that the response to
treatment of one individual is not affected by other individ-
uals’ treatment assignments and that the observed outcome
is equal to the factual outcome, thereby ensuring no interfer-
ence.

Within the context of using CATE estimation in medical re-
search, this research seeks to answer the following question:
“How can Causal Multi-task Gaussian Process be used to
estimate the individualized treatment effect of a low vs high
PEEP regime on ICU patients?” Accompanying this main
research question are the following sub-questions:

1. How do S-Learner, T-Learner and Causal Multi-Task
Gaussian Processes perform in estimating the individ-
ualized treatment effect of low vs high PEEP regimes?

2. What are the trade-offs between model complexity and
computational efficiency among these methods?

3. Do the SUTVA, common support and unconfounded-
ness assumptions hold for the MIMIC-IV dataset?

The main related work is [3] which provided the knowl-
edge and implementation for using Gaussian Processes in
CATE estimation with the novel Causal Multitask Gaussian
Process model. This also gave the inspiration for implement-
ing the S-Learner and T-Learner with Gaussian Process Re-
gression as a base learner. The findings of this research will
contribute to gaining a better understanding of the effects on
mortality of a high vs low PEEP regime on patients on me-
chanical ventilation in the ICU.

The paper is structured as follows. Section 2 describes the
problem at hand. Section 3 will give more insight into the
the methodology that was applied. Section 4 gives the exper-
imental setup and results. Section 5 places the results in the
broader context of the research field. Section 6 touches upon
the ethical aspects of the research. This is followed by the
conclusions in section 7. Finally section 8 discusses possible
future research.

2 Problem description

This section gives some formal definitions and more con-
cretely describes the difficulties with estimating the CATE on
the observational ICU patient dataset specifically. This prob-
lem holds for multiple other real world use cases, although
the medical field gets the most attention because of the high
stakes associated with the decision to perform a treatment or
not.

2.1 MIMIC-IV dataset

This research used the MIMIC-IV dataset [8]. This is a real
world observational dataset of patients admitted to ICU in the
United States between 2008 - 2019. This dataset houses the
data of approximately 2900 patients, each with 24 features

(age, sex, heart rate etc.). There is a treatment variable indi-
cating if a high or low PEEP regime was chosen and finally
there is an outcome variable which indicates the mortality of
a patient 28 days after having received the treatment.

MIMIC-1V is an observational dataset. This means that the
data has only been obtained after the fact and it is not known
why an ICU doctor made a choice for a certain treatment.
Also the dataset is unbalanced being skewed to substantially
fewer patients having received a high PEEP regime treatment
(= 12%). Lastly the dataset also has confounding variables.
These are variables that affect the decision to treat and the
outcome variable. For example, whilst a higher age might
influence a doctor to choose a certain PEEP regime, someone
who is older is also indirectly more likely to pass away.

Some assumptions have to be made on the MIMIC-IV
dataset before CATE estimation can be performed. These are
unconfoundedness, common support and SUTVA.

The first assumption, unconfoundedness, makes sure that
all confounders causing selection for treatment are observed
in the data. This assumption is difficult to prove since it is
only possible to reason about potential confounding factors
and other potential confounders might have been missed if
they were not recorded in the dataset to start with. In the
MIMIC-IV dataset it can be reasonably argued that the most
important confounders have been recorded, as this was the
same patient data the ICU doctors had in front of them when
choosing the PEEP regime for the patient. Looking at medical
literature from the same period as when the data was recorded
helps identify if recommendations for a treatment were given
when certain patient features met certain values. Lastly there
are other relevant covariates in the data that can act as a proxy
for any possible missing confounders.

The next assumption, common support, states that each
patient, with a set of covariates, has a non-zero probability
of being observed with a high or low PEEP regime. Un-
like the first assumption, common support can be inspected
in the MIMIC-IV dataset. This was achieved by plotting den-
sity plots for each covariate and visually identifying if there
are overlapping distributions between the the treated and un-
treated group. This can be observed in Figure 13 in Appendix
D

The last assumption made, SUTVA, ensures that there is no
interference between patients and that the observed outcome
is equal to the factual outcome. In other words how a patient
reacts to a high PEEP regime should not be affected by an-
other patient’s assignment to the high PEEP regime. Again
this is difficult to check but it can be reasonably assumed
that the treatment was given consistently across patients in
the dataset.

2.2 Formal descriptions

This research is interested in estimating the ITE for an indi-
vidual 7. The two potential outcomes for ¢ can be modeled
as Y;' when treatment has occurred and Y, if it has not. In
this research receiving the high PEEP regime is equivalent to
receiving treatment. From this it then follows that for 7:

ITE=Y!-Y) (1
However as discussed in the introduction, one of the funda-
mental problems in causal inference is that it is impossible to



know the counterfactual outcome of an individual. Only one
of the two possible treatments (Y;},Y,?) € R? is observed.
Therefore the CATE was used. Firstly a patient ¢ was defined
in the dataset as D; = {X;, Z;,Y;}. X; is a set of covariates
which are possible confounders that need to be controlled for,
Z; is the possible treatment assignment and Y is the possible
outcome. For the MIMIC-1V dataset Z;,Y; € {0,1} holds.
The CATE is then defined as:

7(x;) = E[Y; - Y[X; = xi] 2

3 Methodology

In this section the mechanisms and theory behind the different
CATE estimators - analysed in this research - are explained.
As well as their advantages and disadvantages based on previ-
ous literature. Finally the experimental approach each CATE
estimator was put through will be discussed.

3.1 Mechanism, advantages and disadvantages of
the CATE estimators

Five CATE estimators were explored in this research. Four
of these estimators are variations of the S-Learner and T-
Learner frameworks, as described by [9], using different base
learners: LGBMRegressor and Gaussian Process regression.
The last estimator is the Causal Multitask Gaussian Process
(CMGP), as described by [3].

S-Learner

The S-Learner combines the treatment and control data into a
single model by augmenting the feature set with an indicator
variable representing the treatment assignment. The model
then predicts outcomes based on this augmented feature set.
The estimated CATE can be represented as:

7(xi) = f(xi,1) — f(xi,0) (3)

Because an S-Learner only fits one regression / learner to the
dataset, applying the same one to both the treated and un-
treated groups, it can get poor performance if there are big
differences in the level of sparsity and smoothness between
the treatment groups [2; 6]. For example if there is a big dif-
ference in outcome surface complexity between the groups,
the S-Learner will perform poorly. However if the CATE is
not complex the S-Learner will perform well. The S-Learner
is also “easy” to implement and reason about and thus often
used as a baseline.

T-Learner

The T-Learner builds separate models for the treatment and
control groups. The difference between the predictions of
these two models represents the CATE. The estimated CATE
can be represented as:

#(x:) = f1(x:) — fo(x) )
Unlike the S-Learner, the T-Learner fits two different regres-
sions for the treated and untreated groups. This alleviates
the problem of performing poorly when there is a big differ-
ence in outcome surface complexity. The T-Learner is also

expected to do very well when the size of the data goes to in-
finity [2]. However, because the T-Learner splits the dataset

into two, each individual regression has less data to train on,
which can cause problems in accuracy if the dataset is very
unbalanced and/or small. The T-learner can also not share
any underlying information between the two groups as it es-
timates them independently, which can be detrimental in ran-
domized studies where patients in the two groups can share
the same distributional characteristics.

Causal Multi-task Gaussian Process

The Causal Multi-task Gaussian Process (CMGP), extends
Gaussian Processes to handle multiple tasks simultaneously.
It leverages the correlation between tasks (e.g., treatment
and control) to improve the estimation of treatment effects
by sharing information across related tasks. The estimated
CATE can be represented as:

#xi) = fi(xs) = folx:) f(xng, -

where ¢' 1 1]

CMGEP is similar to the T-Learner, as it splits the data into
the two subgroups for estimation. However due to the mul-
titask approach of CMGP these two subgroups are not esti-
mated independently. Instead CMGP is able to “combine”
the optimization for estimation through some of the hyperpa-
rameters. This gives the advantages of both the T-Learner and
S-Learner. An added bonus of CMGP is that it also gives in-
dividualized measures of confidence in the estimates through
the posterior variance, making it more suitable for real life
medical decisions.

Base learners

Both the S-Learner and the T-Learner are meta learners that
use base learners. These base learners are machine learning
models that already exist for other applications but have been
augmented in their application by the meta learners to an-
swer causal inference tasks. This research looked at two base
learners for the S- and T-Learners. These are Gaussian Pro-
cess Regression (GPR) and Light Gradient Boosting Machine
Regression (LGBMR). GPR was chosen so that the differ-
ence between the single output regression models of the meta
learners and the multi output regression model of CMGP can
be analysed while keeping the type of regression similar. The
downside of GPR is that it can run into computational issues
if the datasets become too large due to a O(n?) matrix inver-
sion, where n is the size of the covariance matrix. LGBMR
was chosen as it is widely used and does not have as many
performance issues as GPR.

Kernels and hyperparameters

Kernels need to be defined for the Gaussian Processes. A ker-
nel (or covariance function) defines the covariance between
any two points in the input space. A Radial Basis Function
(RBF), also known as a Squared Exponential Function was
used for the GPR. The function for this kernel is defined as:

‘ |d?
KRBF('I’I ) =exp | — 212 9
6
where d=x —z‘ ©

and [ is the characteristic length-scale



RBF is a stationary kernel that is infinitely differentiable,
making it very smooth. The length-scale parameter controls
how quickly the correlation between points decrease with dis-
tance. The RBF kernel was chosen as it is commonly used in
Gaussian Processes and is also used when making the kernel
for the Linear Coregionalization Model (LCM) in CMGP. To
allow the model to capture the variations in the data more ac-
curately, a separate length-scale was set for each dimension.
This approach is known as Automatic Relevance Determina-
tion (ARD). CMGP also has a subroutine built in that ini-
tializes more hyperparameters, such as the signal and noise
variance. For simplicity this was not done for the GPR base
learners.

The CATE estimators utilizing Gaussian Process are op-
timized with a maximum of 100 iterations using a built-in
Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimizer. The
CATE estimators with LGBMR as a base learner are fitted
with a maximum depth of 2 and 20 minimum child samples.
All other (hyper)parameters are default values as defined by
the GPy ! and LightGBM 2 python libraries.

3.2 Experimental Approach

The selected CATE estimators have been applied in three sep-
arate settings. Firstly, they have been validated and compared
using simulated datasets. Secondly, they have been trained
on a part of the MIMIC-IV dataset and used to make predic-
tions on the other part. Lastly, the CATE estimators have been
trained on the entire MIMIC-IV dataset and used to perform
CATE prediction on an external RCT dataset.

Simulation

Since there is no access to the counterfactual in real-world
data, simulating data according to predefined functions is a
popular way of validating and comparing models. The simu-
lation can calculate the factual and counterfactual outcomes,
thus providing the true CATE. The models are then trained
while withholding the counterfactuals, predict the CATE for
the simulated data, and then are validated by comparing the
predicted CATE with the true CATE. To determine the accu-
racy of the models, the average n = 10 Mean Squared Error
(MSE) between the predicted CATE and true CATE for in-
creasing training set sizes [200, 500, 1000, 1500, 2000] has
been plotted.

Three different simulations have been run based on param-
eters described in [9]. Each simulation provides a different
scenario. The first simulation emulates an unbalance in treat-
ment assignment, the second simulation emulates confound-
ing features and lastly the third simulation emulates an un-
balanced and confounded dataset similar to the MIMIC-IV
dataset. The exact simulation parameters can be found in Ap-
pendix A.

Real-World Data

Before the models could be executed on the MIMIC-IV
dataset, preprocessing steps have been undertaken. Firstly,
two columns with metadata, ‘id’ and ‘Unnamed: 0’, have

Uhttps://gpy.readthedocs.io/en/devel/index.html
*https://lightgbm.readthedocs.io/en/latest/index.html

been removed. Categorical features have then been encoded
to numerical ones:

* sex: ‘F’ has been mapped to 0 and "M’ to 1
» mort_28: ‘False’ has been mapped to 0 and *True’ to 1

* peep_regime: ‘low’ has been mapped to 0 and "high’ to
1

After remapping the data, the next step of preprocessing in-
volved normalizing the data using the standard normal scaler,
with all (hyper)parameters set to the default values as defined
by the scikit-learn® python library. Gaussian Processes often
require the individual features to look like standard normally
distributed data. This is why, for example, Min-Max scaling
was not chosen. Lastly, a KNN-Imputer was used to estimate
missing values within the dataset. A KNN-Imputer imputes
missing data by taking the mean of the m nearest neighbors
found in the training dataset. For this imputation, n = 5
was chosen, with all other (hyper)parameters set to the de-
fault values as defined by the scikit-learn Python library. Im-
putation was chosen, as dropping the rows with empty values
would have yielded a dataset about half the size of the origi-
nal dataset. This would have been approximately 1500 rows,
which would have been too small a sample for the models.

Next, the covariates in the dataset that are possible con-
founders were selected. This was achieved by explor-
ing which covariates are good at predicting outcome and
treatment and/or are mentioned in other research. This
approach resulted in the following list of potential con-
founders: ’age’, ’pfiratio’, ’'po2’, ’pco2’, ’fio2’, ’hco3’,
‘peep’, 'plateau_pressure’, ’respiratory_rate’, 'weight’, ’driv-
ing_pressure’.

The dataset was split into 70% train and 30% test sets. The
test set was then calibrated / debiased. The calibrating was
done using a Random Forest, with 50 estimators, 20 min-
imum leaf samples and a max depth of 2, to estimate the
propensity score. The debiasing was done as described by
[4]. The calibrated data is depicted in Figure 12.

The performance of the models was analysed using a cu-
mulative gain curve and the area under it. The cumulative
gain curve is a graphical representation of how well the model
is able to identify the positive responders for a treatment com-
pared to a random selection. The x-axis represents, accord-
ing to the model, from left to right the top 10% responders,
the top 20 % and so on. The y-axis represents the cumula-
tive percentage of positive instances identified by the model.
“Positive” instances are true instances of mortality after 28
days, thus indicate death. The cumulative gain curve was im-
plemented as by [4].

External validation

Aside from the MIMIC-IV dataset there was also a RCT
dataset used for external validation. Therefore the models
were trained on the complete MIMIC-IV dataset and then
these saved models were sent off for external validation. Sim-
ilarly to the previous section the performance of the models
was analysed using cumulative gain curves and the area under
1t.

3https://scikit-learn.org/stable/index.html



4 Experimental setup and results

This section provides and interprets the results of the exper-
iments and gives the environment variables which the exper-
iments were ran on. All the experiments were run on a lap-
top with an Intel(R) Core(TM) 17-9750H CPU @ 2.60 GHz,
16 GB Memory @ 2667 MHz, NVIDIA Quadro P2000 and
Windows 11 Home.

4.1 Simulation results

This section provides the results of the simulation experi-
ment, that emulates the MIMIC-IV dataset. Figure 2 plots
the average MSE of each CATE estimator against the train-
ing set size. Figure 3 plots the execution times of each CATE
estimator against training set size. Table 1 provides the mean
MSE and standard deviation of the CATE estimators for the
largest training size. Results for the other simulations can be
found in Appendix B.
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Figure 2: Average (n=10) MSE for each CATE estimator for in-
creasing training set sizes. Lower is better. Simulation 3 emulates
the MIMIC-1V dataset.
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Figure 3: Average (n=10) execution time (seconds) for each CATE
estimator for increasing training set sizes. Lower is better.

Model Mean Standard Deviation
S Learner GPR 8.13e-04 1.44e-04

T Learner GPR 8.11e-04 1.46e-04

S Learner LGBMR  3.21e-03 0.0

T Learner LGBMR  2.07e-01 5.13e-02
CMGP 8.13e-04 1.44e-04

Table 1: Mean and Standard Deviation of the MSE for Simulation 3
for different models with train size 2000. Lower is better.

4.2 MIMIC-IV results

This section presents the results of running the CATE estima-
tors on the MIMIC-IV dataset. Cumulative gain curves for
each different CATE estimator with their estimations for the
test and train sets have been provided. A large difference be-
tween these two lines indicates that the estimator is overfitting
on the training data. Additionally, a table with the normalized
area between random allocation and the predictions for the
test set has been provided, where a larger score is better.

S-Learner with Gaussian Process Regression
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Figure 4: Cumulative gain curve for S-Learner with GPR. x-axis:
Cumulative Population (%). y-axis: Cumulative Gain (%).
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Figure 5: Cumulative gain curve for S-Learner with LGBMR. x-
axis: Cumulative Population (%). y-axis: Cumulative Gain (%).



T-Learner with Gaussian Process Regression
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Figure 6: Cumulative gain curve for T-Learner with GPR. x-axis:
Cumulative Population (%). y-axis:Cumulative Gain (%).
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Figure 7: Cumulative gain curve for T-Learner with LGBMR. x-
axis: Cumulative Population (%). y-axis: Cumulative Gain (%).
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Figure 8: Cumulative gain curve for CMGP. x-axis: Cumulative
Population (%). y-axis: Cumulative Gain (%).

Model Normalized ROC-AUC score
S-Learner with GPR 3.415e-02
T-Learner with GPR 2.151e-02
S-Learner with LGBMR 5.601e-02
T-Learner with LGBMR 1.967e-02
CMGP 3.314e-02

Table 2: ROC-AUC scores for the cumulative gain curves for the
different CATE estimators. Larger is better.

4.3 RCT results

This section provides the results of the models performing
CATE estimation on the external validation dataset after hav-
ing been trained on MIMIC-IV.

Cumulative Gain Curves RCT
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Figure 9: Cumulative gain curves for all models. x-axis: Cumulative
Population (%). y-axis: Cumulative Gain (%)

5 Discussion

This section analyses the results from the experiments pro-
vided in section 4 and looks critically at the methodology de-
scribed in section 3.

5.1 Simulation

In the simulations it can be observed that the S-Learner with
GPR and CMGP perform the best from the start but do not
improve significantly. The other CATE estimators perform
poorly at the start - especially the T-learners - and improve
when the training set size increases. This is the expected be-
haviour as it already has been mentioned that T-Learners per-
form badly in unbalanced and small datasets. Another inter-
esting observation is that in nearly all simulations the meta
learners with GPR as a base learner outperforms the meta
learners with LGBMR.

As expected the CATE estimators with Gaussian Processes
experience significant slow down when increasing the train-
ing set size. CMGP performed the worst because it has a more
complex kernel to optimize with more dimensions. This is
followed by the S-Learner with GPR and then the T-Learner
with GPR, that performed slightly better because it splits the
dataset into two separate optimization tasks and does not add
an extra dimension (treatment variable). The meta learn-
ers with LGBMR performed significantly better. The ma-
trix inversion slow down could dissuade usage of Gaussian



Processes for larger or high dimensional datasets. However
for smaller datasets the run time is similar and mean MSE
is smaller, making them attractive for this usecase. Also
datasets - even observational - are usually smaller in the med-
ical field, like MIMIC-IV. Moreover the execution time is not
cripplingly slow. There are also other methods of speeding
up the execution time that were not examined in the method-
ology. These are using Sparse Gaussian Process Regression
methods or down sampling the training set, like is already
done in example implementations of CMGP.

5.2 MIMIC-1V

From the cumulative gain curves, it is possible to check for
overfitting in the models and compare them based on the area
under the test gain curve. All meta learners show some de-
gree of misfitting, with the T-Learner using LGBMR over-
fitting the most. Figures 4, 5, and 6 initially show the test
and train gain curves in close proximity, indicating a good fit.
However, the train cumulative gain curve stagnates or dips
compared to the test gain curve when reaching the top 60%
- 80% responders according to the model. Figure 7 shows
misfitting throughout the entire dataset by the model.

The T-Learners show the most misfitting, which is ex-
pected as the MIMIC-IV dataset is unbalanced and not very
large. This imbalance causes the T-Learners to fit or opti-
mize on a relatively small treated group, potentially leading
the models to learn noise and therefore overfit. As shown
in Figure 8 CMGP does not exhibit overfitting, with the test
and train gain curves closely matching each other. CMGP
handles overfitting the best, incorporating Leave-One-Out
Cross-Validation (LOO-CV) to evaluate the empirical error
in factual outcomes. LOO-CV helps in assessing how well
the model generalizes to new data points, providing a check
against overfitting.

The cumulative gain curve slopes upwards indicating that
for a higher PEEP regime there are more instances of mor-
tality. Comparing the normalized AUC scores between the
models in Table 2 shows barely any difference among them,
with S-Learner LGBMR slightly ahead of the other models.
The models that perform worse than the rest are the two T-
Learners. These outcomes were also present in the simula-
tions, i.e. most models having the same performance and the
T-Learner with LGBMR performing slightly worse.

Nevertheless the other models do not appear to show sig-
nificantly better performance than the baseline random allo-
cation, with all showing a relatively a low ROC - AUC score.

5.3 RCT

The RCT results provide a different conclusion than what
arose from predicting on the MIMIC-IV dataset. Instead of
the cumulative gain curves sloping upwards, the curves and
baseline slope downwards. This indicates that a high PEEP
regime has less responders to mortality. In other words a high
PEEP regime results in less deaths. However simlar to the
MIMIC-1V results the ROC-AUC scores are very low and the
models all hover around the random allocation baseline. Only
S-Learner with GPR and CMGP appear to perform better than
random.

6 Responsible Research

This section describes the steps taken to address concerns re-
garding the results collected, the reproducibility of the exper-
iments conducted, and the MIMIC-IV patient data.

By demonstrating how these issues have been addressed,
this research aims to foster trust in the findings and contribute
to the body of knowledge in the field of ICU treatment re-
search. This commitment not only enhances the credibility
of the study but also enables other researchers to build upon
this work, advancing the understanding of CATE estimation
in critical care settings.

6.1 Data Collection

Rigorous data collection and analysis practices have been ad-
hered to, ensuring the integrity and reliability of the find-
ings. The data used in this study comprises both real-world
anonymized patient data and simulated data, allowing for a
comprehensive analysis while maintaining patient confiden-
tiality.

To mitigate the impact of outliers and reduce variance in
the results, a robust methodology has been adopted where the
results of multiple predictions have been averaged. This ap-
proach helps to stabilize the estimates, providing a more ac-
curate representation of the treatment effects across different
PEEP regimes.

6.2 Transparency and Reproducibility

To facilitate reproducibility and ensuring that the findings can
be independently verified, comprehensive documentation of
all implementation details has been provided. This includes
the specifics of data preprocessing, model training, and eval-
uation processes. The code and data processing scripts have
been made available to the research community*, allowing
others to replicate the study and validate the results.

6.3 MIMIC-IV

Given the sensitive nature of real-world patient data, the
MIMIC-IV database already implements stringent measures
to address privacy concerns [8]. Firstly, access to the data
is restricted to approved individuals after completing an on-
line course covering important aspects of research with hu-
man participant data; CITI Data or Specimens Only Re-
search®. Additionally, all patient data has already been rig-
orously anonymized to ensure that individual identities are
protected. The anonymization process involves removing or
encrypting all personally identifiable information (PII) to pre-
vent any possibility of re-identification. The dataset has also
been reviewed by an Institutional Review Board at the Beth
Israel Deaconess Medical Center, which has granted a waiver
of informed consent and approved the data sharing initiative
(8].

Moreover, the models are designed solely to estimate treat-
ment effects and do not attempt to infer or predict the iden-
tities of the patients. The focus remains strictly on under-
standing the impact of different PEEP regimes on patient out-
comes, without compromising patient privacy. All relevant

“https://github.com/kierma/CSE3000-CATE-estimators
Shttps://about.citiprogram.org/



data protection regulations and ethical guidelines have been
adhered to, safeguarding the confidentiality of the data.

7 Conclusions

This section provides the final conclusions on the main re-
search question and its accompanying sub questions.

How can Causal Multi-task Gaussian Process be used to
estimate the individualized treatment effect of a low vs high
PEEP regime on ICU patients? It cannot be concluded
whether a CMGP can be used to to predict a high or low PEEP
regime, as the cumulative gain curves of the external dataset
and test set contradict each other. In addition the normalized
areas are too small to draw any definite conclusions.

How do S-Learner, T-Learner and Causal Multi-Task
Gaussian Processes perform in estimating the individualized
treatment effect of low vs high PEEP regimes? The S-Learner
with GPR and CMGP performed the best in the simulations,
MIMIC-1V predictions and RCT predictions.

What are the trade-offs between model complexity and
computational efficiency among these methods? There is sig-
nificant performance degradation in the CATE estimators us-
ing Gaussian Processes, which may dissuade usage for large
datasets / datasets with a high dimension. The T-Learners
performed the worst.

Do the SUTVA, common support and unconfounded-
ness assumptions hold for the MIMIC-1V dataset? The
three assumptions - unconfoundedness, common support and
SUTVA - can reasonably be assumed to hold for the MIMIC-
IV dataset.

8 Future Work

There are some interesting aspects that can be looked at in fur-
ther research. Firstly the Gaussian Process base learners have
currently been implemented with quite simplistic RBF ker-
nels. Kernel selection is important and can result in varying
levels of performance. Also investigating the use of sparse
GPR can be interesting if the excessive run time is a hin-
drance.

Secondly this research only investigated GPR as a base
learner in the two most common meta learners, S and T. How-
ever there is a whole swathe of other meta learners such as X,
R, DR etc. that might benefit from having GPR as a base
learner. Especially since the simulations showed that in gen-
eral the meta learners with GPR outperformed their LGBMR
counterparts in terms of mean MSE.

Thirdly there is still quite a lot unknown about possi-
ble confounders for the PEEP regime. Only a handful of
confounders are quite certain, with the rest being educated
guesses based on domain knowledge. Further research could
more robustly try to identify possible confounders.

Lastly the MIMIC-IV dataset was quite a small dataset -
~ 2900 rows - making it difficult to reliably draw conclusions
without just attributing a result to a model learning noise. A
larger dataset could help with this and provide more accurate
/ better results.

A Simulation parameters
Simulation 1

e(r) =0.1, d=20,

po(z) = zT B + 5I(z1 > 0.5),
p1(x) = po(z) + 8I(x2 > 0.1)

with B ~ Unif([-5,5]*),

Simulation 2

() = 7 (1+ 8, 2,4))

wo(x) =221 — 1,
p(z) = po(w),

Simulation 3

d= 24,
1
@) = T orm
_ 0.12 ( )
Cunbalanced = mean(e(x)) o

wbere L = {x1> L3, L4, L5, L9, L15, L165L20,L21, L2, x6}7
po(z) = Brx1 + Boxs + Bawy + Paxs + Bsxe + Pet1s
+ Brxi + Bsx20 + Boxar — 1,

pi(x) = po(z) + Brozig

B Simulation results

Performance of CATE Estimators with Different Training Set Sizes - Simulation_1
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—®— T-Learner LGBMR
—®— CMGP
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Figure 10: Average (n=10) MSE for each CATE estimator for in-
creasing training set sizes. Lower is better. Simulation 1 emulates
an unbalanced treatment assignmen.t



Performance of CATE Estimators with Different Training Set Sizes - Simulation_2

—e— S-Learner GPR

T-Learner GPR
—®— S-Learner LGBMR
—e— T-Learner LGBMR.
—8— CMGP

Average MSE (log)
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Figure 11: Average (n=10) MSE for each CATE estimator for in-
creasing training set sizes. Lower is better. Simulation 2 emulates
confounding features.

Model MSE Standard Deviation
S Learner GPR 1.00e+01 9.57e-01
T Learner GPR 1.49e+01 1.93e+00
S Learner LGBMR  2.35e+01 3.85e+00
T Learner LGBMR  2.93e+01 4.61e+00
CMGP 1.14e+01 4.70e+00

Table 3: Mean and Standard Deviation of the MSE for Simulation 1
for different models with train size 2000. Lower is better.

Model Mean Standard Deviation
S Learner GPR 3.88e-01 6.49¢e-02
T Learner GPR 3.90e-01 6.53e-02
S Learner LGBMR  6.66e-01 5.55e-02
T Learner LGBMR  5.96e-01 9.56e-02
CMGP 3.87e-01 6.35e-02

Table 4: MSE and Standard Deviation of the MSE for Simulation 2
for different models with train size 2000. Lower is better.

C Debiasing MIMIC-1V

Calibration Curve
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Fraction of Positives
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Average Prediction

Figure 12: How well the debiased test set is calibrated. Closer to the
dashed line is better.

D Density plots
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Figure 13: Density plots for the features that are possibly con-
founders. A bigger overlap is better.
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