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SUMMARY

Hybrid semiconducting-superconducting mesoscopic circuits are the basis of topologi-
cal and parity quantum bits or ‘qubits’. Both qubits are expected to be intrinsically pro-
tected from decoherence, making them promising candidates for fault-tolerant quan-
tum computation. As topological phases effectively manifest exotic nonabelian particles
which might not exist in nature, these systems are also of fundamental interest. This the-
sis primarily employs radio-frequency (RF) reflectometry, an important measurement
tool for qubit readout, in order to study localized states in hybrid circuits. Since the hy-
bridization of localized quantum dot and Andreev bound states is foundational to the
aforementioned qubit implementations, our focus is on using RF tools to characterize
such hybridization. We therefore begin by outlining background theory of these states
and of RF reflectometry accompanied by simulations. Subsequently, we describe the
results of four distinct experiments.

First, in a system comprised of multiple quantum dots, we demonstrate a signal-to-
noise ratio of 15 in 1µs for resolving interdot electron tunneling with RF reflectometry
of the dot gate electrodes, a proxy for the readout of numerous types of qubits includ-
ing spin and topological qubits. Additionally, we show RF reflectometry of the device
leads is mappable to DC conductance a priori, implying it can completely replace DC
measurement techniques for the characterization of semiconducting quantum circuits.

In the next experiment, we probe a superconducting island surrounded on either
side by a semiconducting quantum dot with RF gate reflectometry. Therein, we electri-
cally isolate the system from its leads, fixing the system’s total charge. Afterwards, we
correlate electron tunneling events between dots using frequency multiplexing of differ-
ent gate resonators, culminating in the controllable splitting of a single Cooper pair into
its constituent electrons. We also demonstrate a form of parity sensing using a strongly
coupled double quantum dot and gate reflectometry.

Continuing, we present a study of an irregularly shaped double quantum dot ar-
ranged in a loop and threaded by a magnetic flux. Employing gate reflectometry to mea-
sure the interdot hybridization, we observe that it oscillates as a function of flux with
a period of one flux quantum but with unpredictably varying amplitude and contrast.
This result is a prerequisite for the readout and manipulation of measurement-based
topological qubits and hybrid parity qubits.

As a final experiment, we investigate markers of the hybridization between Andreev
bound states in a multiterminal Josephson junction, itself a potential platform for sim-
ulating topological Weyl systems. There, we characterize the current-flux relation of a
four-terminal junction using two coupled DC superconducting quantum interference
loops, observing a ‘nonlocal’ Josephson effect tuned by the magnetic fluxes through both
loops. With a minimal theoretical model, we show that this behavior can be fully de-
scribed by an array of two-terminal Josephson junctions and is not a unique signature of
the hybridization of Andreev bound states in the junction.

ix



x SUMMARY

To conclude, we summarize our experimental results and discuss potential future
work. Namely, we emphasize the importance of understanding quasiparticle poisoning
for the performance of topological and parity qubits, and consider further applications
of RF measurement tools in studying hybrid systems. The results of this dissertation es-
tablish RF sensing as a complete characterization tool for hybrid quantum circuits, dis-
play its utility in studying floating systems to probe the movement of single electrons and
Cooper pairs, and demonstrate the flux-control of interdot tunnel couplings required for
hybrid parity qubits. Lastly, we highlight the indistinguishability of hybridized Andreev
states from trivial multiterminal Josephson effects in a multiterminal junction’s current-
phase relation.



SAMENVATTING

Hybride halfgeleider-supergeleider mesoscopische circuits vormen de basis van topolo-
gische en pariteit quantumbits of ‘qubits’. Van beide qubits wordt verwacht dat ze in-
trinsiek beschermd zijn tegen decoherentie, waardoor ze veelbelovende kandidaten zijn
voor fouttolerante quantumcomputatie. Aangezien topologische fasen effectief exoti-
sche niet-abeliaanse deeltjes manifesteren die mogelijk niet in de natuur voorkomen,
zijn deze systemen ook van fundamenteel belang. Dit proefschrift maakt voorname-
lijk gebruik van radiofrequentie (RF) reflectometrie, een belangrijk meetinstrument voor
qubit uitlezing, om gelokaliseerde toestanden in hybride circuits te bestuderen. Aange-
zien de hybridisatie van gelokaliseerde quantum dots en Andreev bound states de basis
vormt voor de eerder genoemde qubit-implementaties, richten wij ons op het gebruik
van RF-instrumenten om dergelijke hybridisatie te karakteriseren. We beginnen daarom
met het schetsen van de theoretische achtergrond van deze toestanden en van RF reflec-
tometrie, vergezeld met simulaties. Vervolgens beschrijven we de resultaten van vier
verschillende experimenten.

Ten eerste, in een systeem bestaande uit meerdere quantum dots, demonstreren we
een signaal-ruisverhouding van 15 in 1µs voor het blootleggen van elektrontunneling
tussen dots met RF reflectometrie van de dot gate elektroden, een proxy voor de uitlezing
van talrijke soorten qubits, waaronder spin- en topologische qubits. Daarnaast tonen we
aan dat RF reflectometrie van de apparaatleidingen a priori kan worden vertaald naar
DC-geleiding, wat impliceert dat het DC-meettechnieken volledig kan vervangen voor
de karakterisering van halfgeleider quantum circuits.

In het volgende experiment onderzoeken we een supergeleidend eiland omgeven
aan beide zijden door een halfgeleidende quantum dot met RF gate reflectometrie.
Daarin isoleren we het systeem elektrisch van zijn leidingen, waardoor de totale lading
van het systeem wordt vastgezet. Vervolgens correleren we elektrontunneling gebeurte-
nissen tussen dots met behulp van frequentiemultiplexing van verschillende gate reso-
natoren, wat resulteert in het controleerbaar splitsen van een enkel Cooper paar in zijn
samenstellende elektronen. We demonstreren ook een vorm van pariteitsdetectie met
behulp van een sterk gekoppelde dubbele quantum dot en gate reflectometrie.

Vervolgens presenteren we een studie van een onregelmatig gevormde dubbele
quantum dot opgesteld in een lus en doorboord door een magnetische flux. Door gate
reflectometrie te gebruiken om de interdot hybridisatie te meten, observeren we dat
deze oscilleert als een functie van flux met een periode van één flux quantum, maar
met onvoorspelbaar variërende amplitude en contrast. Dit resultaat is een vereiste voor
de uitlezing en manipulatie van op metingen gebaseerde topologische qubits en hybride
pariteit qubits.

Als laatste experiment onderzoeken we de signaturen van de hybridisatie tussen An-
dreev bound states in een multiterminal Josephson junction, welke zelf een potentieel
platform vormen voor het simuleren van topologische Weyl systemen. Daar karakte-
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xii SAMENVATTING

riseren we de stroom-flux relatie van een vier-terminal junction met behulp van twee
gekoppelde DC supergeleidende kwantum interferentie lussen, waarbij we een ‘niet-
lokaal’ Josephson effect waarnemen dat wordt afgestemd door de magnetische fluxen
door beide lussen. Met een minimaal theoretisch model tonen we aan dat dit gedrag
volledig kan worden beschreven door een array van twee-terminal Josephson junctions
en geen unieke signatuur is van de hybridisatie van Andreev gebonden toestanden in het
knooppunt.

Tot slot vatten we onze experimentele resultaten samen en bespreken we poten-
tieel toekomstig werk. We benadrukken het belang van het begrijpen van quasiparti-
cle poisoning voor de prestaties van topologische en pariteit qubits, en overwegen ver-
dere toepassingen van RF meetinstrumenten bij het bestuderen van hybride systemen.
De resultaten van dit proefschrift vestigen RF-sensing als een compleet karakterisatie-
instrument voor hybride quantum circuits, tonen het nut ervan aan bij het bestuderen
van zwevende systemen om de beweging van enkele elektronen en Cooper paren te on-
derzoeken, en demonstreren de flux-controle van interdot tunnelkoppelingen die nodig
zijn voor hybride pariteit qubits. Tot slot benadrukken we de ononderscheidbaarheid
van gehybridiseerde Andreev toestanden van triviale multiterminal Josephson effecten
in de stroom-fase relatie van een multiterminal junction.



FREQUENTLY USED ACRONYMS

Acronym Meaning Explanation

QD quantum dot A confined quantum system of electrons where
Coulomb repulsion effects are significant

DQD double quantum
dot

Two QDs coupled capacitively or through
tunneling

SCI superconducting
island

A QD made superconducting, either by forming
the entire island out of superconducting
material or by adding a floating piece of
superconductor to a semiconducting QD

DGS dispersive gate
sensing

Reflectometry measurement technique where a
resonator is coupled to the gate of a quantum
device, operated at frequencies far detuned from
the device’s energy scales

SNR signal-to-noise
ratio

The ratio of the distance between two signals of
interest to some measure of the noise in this
signal

ABS Andreev bound
state

Subgap state formed in a normal conducting
material when it is confined by a boundary
which is superconducting

CSD charge stability
diagram

Map of a multi-QD system’s ground state charge
distribution

JJ Josephson
junction

Weak link between two superconducting leads,
formed by a narrow constriction, insulating
region, or normal/semiconducting region

SQUID superconducting
quantum

interference
device

A circuit of a single JJ (RF SQUID) or two JJs (DC
SQUID) in a superconducting loop threaded by a
magnetic flux

CPR current-phase
relation

The supercurrent through a JJ as a function of
the phase difference of the superconducting
pairing potentials on either lead

CFR current-flux
relation

The supercurrent through a SQUID circuit as a
function of the magnetic flux threading the
SQUID
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1
INTRODUCTION

We shouldn’t fear a world that is more interacted.

George W. Bush

Advancements in technology often arise when scientists come to appreciate the ap-
plicability of ideas from seemingly disparate research areas to their own. For example,
nuclear magnetic resonance imaging was employed to characterize organic molecules
for decades before it was considered as one of the earliest avenues to create a quantum
computer [1]. Likewise, one of the currently most promising types of quantum bits or
‘qubits’ proposed to construct a quantum computer are superconducting qubits, which
use circuit quantum electrodynamics (cQED) as a foundation for their operation [2, 3].
This arose from the realization that principles of cavity quantum electrodynamics, where
light is made to coherently interact with atoms, could similarly be applied in supercon-
ducting circuits containing ‘artificial atoms’ in the form of qubits [4, 5].

In the world of mesoscopic physics where small electrical circuits are described by
quantum mechanics [6], the search for a scalable quantum computer has seen great
advancements as different technologies meet, not the least of which is the advent of
cQED mentioned above. More pertinently to this thesis however, a flurry of research
commenced after the technique of combining properties of superconductors with those
of semiconductors through the proximity effect was shown to enable the formation of
topologically protected phases of matter [7, 8]. These include Majorana ‘quasi’-particles,
an effective realization of the hypothetical particle which is its own antiparticle proposed
by Ettore Majorana in 1937 [9]. Majorana quasiparticles, if conclusively observed, could
form the basis of topologically protected quantum computers [10, 11], the principal mo-
tivation for the experiments of this thesis.

In parallel, microwave reflectometry techniques have been employed since the ad-
vent of radar technology, but only in the past couple decades have they proven indis-
pensible for the investigation of mesoscopic quantum systems [12]. Not only are these

1



1

2 1. INTRODUCTION

techniques now the basis for readout of semiconducting qubits [13], they are also cru-
cial for the readout and control of topological qubits [11] and useful for the investiga-
tion of topological phases [14]. They provide fast access to many physical properties of
mesoscopic systems including and beyond those retrievable from direct-current mea-
surements, an idea which we try to further cement herein.

This thesis discusses experiments which aimed to exploit these combined technolo-
gies just a little bit further. We emphasize through these experiments that microwave
techniques are powerful tools for characterizing and understanding all semiconduct-
ing and superconducting hybrid devices. In particular, we focus on studying one of
the most fundamental characteristics of mesoscopic quantum devices: the quantum hy-
bridization of localized states. These states could be electron levels in a semiconducting
quantum dot, Andreev bound states in a superconducting Josephson junction, or a hy-
brid middleground in superconducting islands—all three of which are potential building
blocks of future topologically protected qubits, and all three of which are investigated in
the coming chapters.

1.1. THESIS OUTLINE
This thesis begins in Chapter 2 with an outline of the theoretical concepts in mesoscopic
physics and microwave measurement techniques employed in the subsequent chapters.
Namely, we discuss how electrons and quasiparticles form localized states in semicon-
ductors and superconductors, then discuss how these states can be probed with mi-
crowave reflectometry techniques, accompanied by example simulations. These tech-
niques form the basis of most of this thesis’ experiments.

As a fundamental illustration of the utility of microwave measurements for investi-
gating and characterizing semiconducting and hybrid systems, in Chapter 3 we present
experiments probing a nanowire multi-quantum-dot device with GHz-frequency res-
onators. We show that these techniques can effectively replace DC measurements for
characterization of semiconducting quantum devices. With an extremely high signal-
to-noise ratio we also demonstrate the rapid measurement of electron hybridization be-
tween two quantum dots, relevant for spin and topological qubits [11, 13].

Next, in Chapter 4 we use the same resonators to probe a more advanced device con-
sisting of quantum dots separated by a superconducting island. This system is probed
while completely isolated from Ohmic contacts, and we locally resolve interdot tunnel-
ing processes by frequency-multiplexing resonators coupled to each dot or island in the
system. With this approach, we manage to split individual Cooper pairs from the su-
perconducting island and retain them on the quantum dots, and also demonstrate a
technique using a strongly hybridized double quantum dot for measuring parity in such
systems.

Chapter 5 revisits the hybridization of electron levels in quantum dots with a twist:
with two elongated dots connected at two points to form a loop, a magnetic flux was
passed through to magnetically tune the hybridization. We successfully measure a hy-
bridization controlled by this flux, demonstrating the principle of quantum interference
in an irreducibly simple system of two hybridized states. We also quantify the limitations
of this tunability, since it is necessary for measurement-based topological qubits and un-
avoidably present in two-dimensional quantum dot arrays used in quantum computing.
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The experiment of Chapter 6 aimed to study hybridization of a different type of lo-
calized state: Andreev bound states in Josephson junctions, as the bound state spectrum
of multiterminal junctions may host topological phases [15]. We do so by studying the
current-phase relation of a four-terminal Josephson junction, finding that it has a highly
nontrivial dependence on the superconducting phase differences across its terminals,
even appearing as a Josephson junction with a tunable superconducting phase offset. It
is tempting to view these measurements as arising due to the hybridization of different
bound states localized between different junction terminals, however we find that these
results and the results of related experimental works can be modeled simply by consid-
ering a network of two-terminal Josephson junctions.

Finally, in Chapter 7 we summarize the experimental results of this thesis, and de-
scribe potential experiments in which the advantages of microwave measurement tech-
niques could further be put to good use in hybrid semiconducting-superconducting ex-
periments.

Separate data repositories for each subsequent chapter of this thesis are available
on Zenodo and referred to within each chapter, except for Chapters 2 and 7 which have
a combined repository available in Ref. [16]. Every repository contains code necessary
to generate all figures and fits from raw experimental and simulation data, as well as
the code necessary to run any simulations (the only exception being the charge stability
simulations of Chapter 4 which are described in that chapter’s supplemental sections).





2
THEORY

I’m going to try to see if I can remember as much
to make it sound like I’m smart on the subject.

George W. Bush

2.1. CONFINED SYSTEMS OF QUASIPARTICLES OR CHARGE
The field of mesoscopic physics primarily explores the quantum nature of electrons and
photons in solid materials1, achievable by lowering the system’s temperature T such that
kBT is much less than the characteristic energy scales of the quantum electronic sys-
tem, where kB is Boltzmann’s constant. Such discrete electronic states and bands can be
formed through electrostatic confinement of electrons, by condensing them into a su-
perfluid through superconductivity [19], or by the application of strong magnetic fields
to reach the quantum Hall regime [6]. This section discusses the first two mechanisms,
which in this thesis enable us to study the hybridization of individual fermionic states,
aided by radio-frequency reflectometry and DC transport measurements.

2.1.1. CLASSICAL CHARGE ISLANDS AND QUANTUM DOTS

CLASSICAL ISLANDS

To begin, we describe the technique by which we can control and study individual elec-
trons in mesoscopic circuits: electrostatic confinement2. Any piece of conducting mate-
rial or ‘island’ has some self-capacitance Cself arising from Coulomb repulsion of charges
inside the finitely-sized material, and some capacitance Ce to the environment, leading
to a total capacitance CΣ = Cself +Ce. A circuit with such a charge island is depicted in

1Researchers also actively explore the quantum mechanics of phonons – quantized vibrations of the crystal
lattice – through studies of nanomechanical resonators [17] and quantum thermodynamics [18].

2Reviews of the physics discussed in the next two sections can be found in Refs. [6, 20–23]

5
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Fig. 2.1(a) connected via tunnel barriers to two leads. Placing N electrons on this island
then has an energy cost of Uel(N ) = e2N 2/2CΣ, corresponding to the energy stored in the
capacitor CΣ. To add an electron, there is a chemical potential cost of

µ(N ) ≡Uel(N )−Uel(N −1) = e2(1−2N )/2CΣ (2.1)

to accommodate for Coulomb repulsion [6]. A charge reservoir at Fermi level3 µF can
only add another electron on the island after the energy has been shifted so µ(N ) < µF,
at which point the ground state charge increases from N −1 to N . The fixed distance be-
tween these successive transitions motivates defining the charging energy EC ≡ e2/(2CΣ).
This is half the spacing between consecutive charge resonances4 ∆µ(N ) ≡ µ(N )−µ(N −
1), which itself is more generally called the addition energy.

Remarkably, we have found discrete energies separate charge states in small capac-
itors. As a consequence, we can add or remove individual electrons by controlling the
Fermi level of a coupled reservoir or through electrostatic gating, as we describe below.
So far, we have also treated the capacitances coupled to this island as grounded, but if
a ‘gate’ electrode at voltage Vg capacitively couples to the island with Cg, it induces an
opposing charge CgVg on the island’s side of the capacitor, so the island energy becomes

Uel(N ) = EC
(
N −ng

)2 , (2.2)

where ng ≡ CgVg/|e| is the reduced gate voltage. These energies are plotted in black in
Fig. 2.1(b). In this way, we can tune the chemical potential µ(N ) = EC(N −ng −1/2) to
change the ground charge state of the island. As illustrated with the chemical potential
diagrams of Fig. 2.1(c), the island can support a current whenµ(N ) is within the chemical
potential ‘bias window’ due to an applied voltage Vbias across the island near the Fermi
level. In fact, the most common characterization tool for islands is to measure Coulomb
diamonds—a map of DC conductance5 as a function of Vg and Vbias [21]. A schematic
of such a measurement is shown in Fig. 2.1(d). Due to the aforementioned condition
of µ residing within the bias window for current to flow, the island forms diamond-
shaped regions where its charge is stably fixed. This state of fixed charge is known as
Coulomb blockade. Outside these diamonds, current may flow across the island (shown
as gray). The slopes of the diamond edges are determined by capacitances Cs and Cd to
the source and drain contacts, as well as whether Vbias is applied symmetrically about
the charge island or with the drain grounded [23]. In Fig. 2.1(d), the case of Cs = Cd = 0
and a grounded drain is plotted. From the expression for µ(N ) we see that the degree to
which Vg tunes the chemical potential is quantified by the lever arm α ≡ Cg/CΣ, which
can be extracted from Coulomb diamond measurements as the ratio of the full width of
a diamond in Vg to its half height in Vbias.

Interestingly, nothing about the above reasoning has invoked quantum mechanics.
Indeed, charge islands can be completely classical: while the energy separation in the

3As a reference point, we hereon take µF = 0 since all microscopic models considered in this thesis are only
valid near the Fermi energy.

4Note that by convention, EC is often defined as e2/CΣ instead [20–23], but examples of the e2/(2CΣ) defini-
tion’s usage are similarly common (see Refs. [11, 24, 25] among many other examples).

5RF conductance or RF gate sensing measurements can also probe Coulomb diamonds, as will be introduced
later in this thesis and measured in Chapters 3 and 5 respectively.
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Figure 2.1: (a) Circuit model of a charge island or QD. The inset defines a commonly used symbol for tunnel
barriers modeled by a parallel RC circuit [22]. (b) Energy spectrum of a QD. Here, we chose δn alternating
between δa = 0.2EC (red excitations) and δb = 0.5EC (orange excitations) and only show the first excited state
for each charge state. (c) Chemical potential diagram of the QD at different conductance resonances. Con-
ductance is only possible when µ00(N ) is within the bias window formed by Vbias across the source and drain.
Excited states introduce an additional conducting path when they enter the bias window, provided the ground
state transition µ00(N ) is also in the bias window [23]. (d) ‘Coulomb diamond’ stability diagram of charge and
tunneling processes a finite Vbias, assuming Cs =Cd = 0. Blockaded regions with a stable QD charge are white
and form diamond shapes, while conducting regions are shown in gray. The onset of resonant tunneling pro-
cesses between charge ground states (dark gray) appear in measurements as a spike in conductance. From
these diagrams, α can be extracted as the ratio of a diamond’s half height in Vbias to its full width in Vg, while
excitation energies can be read from the Vbias value at which excited state transitions appear (dashed lines).
Inset: Zoomed plot at the window indicated by the green rectangle. Green markers correspond to the reso-
nances indicated in (c).

Fock space between states involving a different charge on the island is of the order EC,
the Hilbert space of states for fixed N ≫ 1 may be an arbitrarily large and completely
incoherent system. This is the case for an island made out of a small piece of metal, for
example [26]. Such classical charge islands are often called Single-Electron Transistors
or SETs [12, 27].

QUANTUM DOTS

Let us now consider the quantum limit of the charge island: quantum dots (QDs). For
mesoscopic islands at cryogenic temperatures in general, µ(N ) = Uel(N )−Uel(N −1)+
EN −EN−1 where EN is the ground state energy of the Hilbert space with N charges on
the island in excess of Uel. When EN −EN−1 is large compared to kBT , the island be-



2

8 2. THEORY

comes a quantum mechanical system or QD with a clear ground state |N〉 for each dot
charge. In this case we refer to the resulting spacing between charge-state transitions
as the addition energy, since it contains both EC and EN terms. We then treat the dot

as having the low-energy Hamiltonian Ĥ = EC
(
N̂ −ng

)2 +∑
n En |n〉〈n|, where the total

charge N̂ =∑
n n |n〉〈n| is now an operator. Even now, however, because the energy scale

EC associated with electron-electron interactions is typically much larger than the exci-
tation energy EN −EN−1 arising from quantum confinement of the system’s electrons, it
is feasible that the energy spectrum of the N -electron Hilbert space is completely uncor-
related with the (N ±1)-electron spectra [28]. Nonetheless, it is very often the case that
the QD spectrum behaves as though each added electron sequentially fills independent
single-electron states [29–32], as we will observe in the measurements of Fig. 5.4.

When this behavior is observed, we may describe the dot with fermionic creation
operators ĉ†

j ,σ indexed by quantum number j and spin σ ∈ {↓,↑}. Though not obviously

true, one can accurately assume Coulomb repulsion forms a separate term in the Hamil-
tonian from some single-particle energies δ j ,σ [33], giving

Ĥ = EC
(
N̂ −ng

)2 +∑
j ,σ
δ j ,σĉ†

j ,σĉ j ,σ, (2.3)

with eigenenergies U = Uel(N ) plus N energies δ j ,σ for the occupied levels. By these

assumptions we have that N̂ = ∑
j ,σ ĉ†

j ,σĉ j ,σ and EN is the sum over the N smallest δ j ,σ

values. Because EC is typically the largest energy scale compared to all δ j ,σ, charge is
still a good quantum number. In other words, only the ĉ j ,σ with δ j ,σ very close to the
N ’th lowest energy δ j ,σ for a QD of charge N need to be considered at low energies.
Consequently, QDs form mesoscopic systems where individual fermionic states can be
studied, as is the focus of Chapter 5.

For semiconductor QDs with many electrons, the situation can be somewhere in be-
tween this noninteracting fermion case and one where individual ĉ j ,σ levels are not pos-
sible to define [32]. Ranges of Coulomb transitions may show correlated addition ener-
gies and others could show lesser correlation or none at all. For the large ring-shaped
QD measured in Fig. 5.2 for example, we observe a consistently finite excitation energy
in the QD but only partial correlation between successive Coulomb resonance positions.
Importantly, neither observing a finite excitation energy nor a Zeeman splitting of ener-
gies with applied magnetic field in a QD definitively proves the system states are well-
described by spinful single-particle states, though it strongly suggests this is the case.

Aside from granting the system a well-defined quantum ground state, the above-
mentioned fermionic levels have measurable signatures at higher energies. The lowest
two energies are given by Ug (N ) ≡ Uel(N )+∑N

j=0δN and Ue (N ) ≡ Ug (N )+δN+1 if we
suppress the spin index and assume all fermionic levels are nondegenerate. In this case,
for the ground state we have ∆µ(N ) = Uel(N )−Uel(N − 1)+δN . The excitation energy
Ue (N )−Ug (N ) is measurable as alternations in Coulomb diamond sizes in experiment
(see Fig. 2.1(d)). Additionally, many tunneling pathways produce additional conduc-
tance resonance lines at finite bias (orange and red lines in Fig. 2.1) [23, 34]. Chemical
potential diagrams for the transitions Ue (N ) ↔ Ug (N − 1) and Ug (N ) ↔ Ue (N − 1) are
shown in Fig. 2.1(c) to illustrate this process, but care must be taken: Even if the excited
process’ chemical potential Ue (N )−Ug (N − 1) or Ug (N )−Ue (N − 1) is within the bias
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window, transport via this pathway cannot occur if the bias window doesn’t include the
Ug (N ) ↔Ug (N −1) transition as well. Some excited state transitions may be less promi-
nent if the lead reservoirs cannot directly inject electrons into the excited state [23, 34]. If
any discrete states exist in the contacts near the QD, for example in the gap in a nanowire
QD between the QD and deposited metal contacts, these states can also appear in dia-
mond measurements and are easily mistaken for excited states of the QD [35, 36]. A clue
that resonant lines correspond to lead states, however, is that they have a different slope
than the Coulomb diamond resonances, indicating that Vg has a different capacitance
to those states.

MULTI-DOT SYSTEMS

Since QDs can be viewed as artificial atoms with discrete fermionic ‘orbitals’ [21], mul-
tiple QDs connected together hold interest as articial molecules [22], particularly as a
platform where quantum hybridization between discrete states can be controlled and
studied. In a system with multiple charge islands, we must also consider Coulomb re-
pulsion of charges on different islands. We consider M islands with cross-capacitances
ci j = c j i for i ̸= j and total capacitances CΣi summed over all ci j , the gate capacitance
Cgi of the island, and its remaining stray capacitance to the environment Cei . A cir-
cuit diagram for the case of a double quantum dot (DQD) in series with two leads is
shown in Fig. 2.2(a). The electrostatic charging energy of this system in the charge state
N⃗ = (N1, N2, ..., NM ) and with reduced gate voltages n⃗g = (ng1,ng1, ...,ngM ) is

Uel(N⃗ ) = e2

2

(
N⃗ − n⃗g

) · [C−1(N⃗ − n⃗g
)]

(2.4)

where C is the capacitance matrix of the system6. It has off-diagonal elements Ci j =−ci j

and diagonal elements Ci i = CΣi . This energy still contains the single-dot energies ∝
(Ni −ngi )2, but now also contains ‘mutual’ charging terms. resulting from the Coulomb
repulson of electrons across different QDs. These terms are characterized by a mutual
charging energy Emi j = e2c−1

i j (CΣi CΣ j /c2
i j −1)−1 and contribute Emi j (Ni −ngi )(N j −ng j )

to the energy [22]. Importantly, there are now different chemical potentials for each
QD. Considering a DQD for example, one has µ1(N1, N2) ≡U (N1, N2)−U (N1−1, N2) and
µ2(N1, N2) ≡U (N1, N2)−U (N1, N2 −1) where U includes Uel and the individual QD level
spacings.

By measuring zero-bias conductance through the multi-dot system or reflectometry
from the dots’ gates (discussed in Sec. 2.2) as a function of different gate voltages, we can
measure the resulting charge stability diagram (CSD) of stable charge ground states. As
an example, we show the CSD for a DQD in Fig. 2.2(b). Stable charge states are separated
by gray lines when a charge must be exchanged with an external lead, while blue lines
show interdot transitions where a charge is exchanged between the QDs. If the lever
arms αi ≡ Cgi /CΣi of the gates are known, the system’s charging energies and other en-
ergy scales such as tunnel couplings can be inferred from CSD measurements, as labeled
in the figure. Lever arms can be extracted from Coulomb diamond measurements as de-

6Despite appearing to be a natural extension of the single-dot formula in eq. 2.2, the derivation of this expres-
sion is nontrivial. It is given in Ref. [22] and more rigorously in Ref. [37].
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Figure 2.2: Double quantum dots. (a) Circuit model of a DQD with charging energies EC j = e2/(2CΣ j ) for
j ∈ {1,2}. (b) CSD showing the ground charge state in the absence of tunnel couplings (solid lines) near an
interdot charge transition (blue line) with Em12 = 0.5EC1 = 0.5EC2. The expectation value of charge on the
left QD is also plotted for an interdot tunnel amplitude tc = 0.3EC1. (c) Energy spectrum of a DQD near the
interdot charge transition along the red line in (b). (d-f ) Zoomed out CSDs in the absence of interdot coupling
for Em12 = 0 (d), 0.5EC1 (e), and 2EC1 (f ). The system continuously evolves from two independent QDs (d) to a
strongly capacitively coupled DQD (f ) described by a single charging energy with its chemical potential tuned
by both QD gates. All CSDs are labeled with the charge ground states (N1, N2) in each Coulomb blockaded
region up to some arbitrary offset. Figure is based on Refs. [22, 38].

scribed in Sec. 2.1.1, but ci j will change as the system is tuned from a single dot into a
multidot system, affecting αi .

Given α1 and α2, we now discuss how the system energy scales manifest in the CSD.
In the absence of tunnel coupling, interdot transitions only have a finite length (labeled
in Fig. 2.2(b)) in the CSD when c12 ̸= 0. In Figs. 2.2(d-f), we illustrate this by plotting
CSDs for c12 values ranging from 0 to encompassing the entire dot capacitances CΣ,i .
The intersections between the interdot and lead transitions are known as triple points
because each nearest dot level is resonant with each other and the lead reservoirs, en-
abling zero-bias conductance [22]. We see that the size of interdot charge transitions
increases with increasing c12, and grants the stable charge regions a hexagonal shape for
modest c12 values indicative of DQD behavior. For very large c12, the lead transitions of
the two dots appear as though they are a single QD sharing one charging energy, even if
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the two QDs cannot actually directly exchange charge with each other but only with the
lead reservoirs [39].

Now if we include a quantum tunnel coupling tc hybridizing, for example, the ground
states |2,3〉 and |3,2〉 of each charge configuration, the interdot transition broadens in a
hyperbolic shape, shown by a plot of the expectation value of charge on dot 1 in Fig. 2.2
(b). From the distance between the hyperbolic lead transitions and the triple points, tc

can be extracted as illustrated in the figure [22]. Near the interdot transition, the DQD
forms bonding and antibonding states separated by an energy gap 2tc [40] which enable
its usage as a semiconducting charge qubit [41–43], albeit with coherence times severely
limited by charge noise. The corresponding energy spectrum is shown in Fig. 2.2(c).

Outside of this DQD example, we remark that CSDs of systems with more than two
dots quickly become complicated to interpret in any two-dimensional measurement
[44]. Nonetheless, floating triple and quadruple QD systems isolated from lead reser-
voirs are investigated in Chapter 4 of this thesis.

2.1.2. CONFINEMENT BY SUPERCONDUCTIVITY: ANDREEV BOUND STATES

We move on to consider what happens if we construct charge islands out of supercon-
ducting materials, or strongly couple semiconducting regions to a superconductor. We
will find that localized states can appear bound not by electrostatic confinement, but
also by boundaries with a superconductor. Further, we will see that properties of su-
perconductors – such as their excitations being superpositions of electrons and holes –
directly compete with the Coulomb repulsion in charge islands, since the latter distin-
guishes between positive and negative charge.

Superconductivity is an electronic phase characterized by a vanishing electrical re-
sistance and an expulsion of all magnetic fields from the material in the form of the
Meissner effect [19]. Many conventional superconductors such as Al or NbTiN are well
described by Bardeen-Cooper-Schrieffer (BCS) theory, wherein electrons form bound
pairs of opposite spin and momenta known as Cooper pairs due to an effective attrac-
tion between them mediated by electron-phonon interactions [45]. Considering ĉ†

k,σ as
the creation operator for an electron of wave vector k and spin σ ∈ {↓,↑}, this interac-
tion leads to terms in the Hamiltonian of the form ĉ†

k,↑ĉ†
−k,↓ĉk′,↑ĉ−k′,↓, making it difficult

to diagonalize exactly. In the mean field approximation where fluctuations of Cooper
pair occupations ĉk,↑ĉ−k,↓ about the mean value 〈ĉ†

k,↑ĉ†
−k,↓〉 are small, the system can be

solved. This is at the expense of removing the Hamiltonian’s charge conservation, how-
ever, as the approximate Hamiltonian then contains terms of the form ∆ĉ†

k,↑ĉ†
−k,↓. The

parameter ∆ is known as the superconducting pairing potential.
The system’s ground state |g 〉 under this approximation is a condensate of Cooper

pairs: The pairing potential makes it more favorable for electrons to exist in Cooper pairs
than on their own, opening an energetic gap to any single particle excitations. Injecting
an electron or hole into the system requires an energy of at least |∆| to reach the possible

excitation energies Ek =
√
ε2

k +|∆|2, so |∆| is referred to as the superconducting gap. The

density of states in this system is

νSC(E) = |E |√
E 2 −|∆|2

νN (2.5)
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where νN is the system’s density of states in the absence of superconductivity. which
we plot in Fig. 2.3(a). The added electron or hole brings the system to a state γ̂†

k,σ |g 〉 at
energy Ek above the ground state |g 〉 where {γ̂k,σ} are fermionic operators given by

γ̂k,σ = ukĉk,σ−σvkd̂ †
−k,σ

e−i φ̂ (2.6)

with electron- and hole-like coherence factors satisfying

|vk|2 =
1

2
− εk

2
√
ε2

k +|∆|2
, |uk|2 =

1

2
+ εk

2
√
ε2

k +|∆|2
, u∗

k vk =− ∆

2
√
ε2

k +|∆|2
. (2.7)

Above,σ=+1 forσ=↑ and−1 forσ=↓, while e−i φ̂ removes a Cooper pair from the super-
conducting condensate. These γ̂k,σ excitations obey fermionic anticommutation rules
and in that sense are like particles. Because they are described as a superposition of an
electron and a hole added to the condensate rather than a single real particle, however,
they are referred to as quasiparticles, in this case Bogoliubons specifically.

In the spectrum of Fig. 2.3(a) where all states below the Fermi level are filled, a natural
question arises: Where are the Cooper pairs in this picture? In terms of the electron vac-
uum state |0〉, the superconducting ground state is equal to |g 〉 =∏

k(uk + vkĉ†
k↑ĉ†

−k↓) |0〉.
This is a superposition of the presence or absence of Cooper pairs—the Cooper pair con-
densate described above. It turns out, however, that |g 〉 = ∏

k γ̃
†
k↓ |0γ〉 where we identify

the negative-energy ‘excitation’ operator γ̃†
k↓ ≡ γ̂k↓ and |0γ〉 is the vacuum state of the

Bogoliubons in the {γ̂k↑, γ̃k↓} quasiparticle basis [46]. The state |0γ〉 has an energy
∑

k Ek

above the ground state energy. In this sense, we can view |g 〉 equivalently as the Bogoli-
ubon vacuum with all negative energy excitations filled. This picture shows that the su-
perconducting condensate is described by the single-particle excitation spectrum rather
than being something independent. Relative to |g 〉, on the other hand, applying any of
the original Bogoliubon operators γ̂†

kσ raises the system’s energy by Ek. Thusly we can
view an excitation of the condensate as adding a positive-energy electron above the gap
or removing a negative energy electron below the gap: in either case breaking the corre-
sponding k-vector’s Cooper pair.

Finally, we are prepared to discuss how superconductivity can lead to bound quasi-
particle states. Consider an interface between a normal conducting material and a su-
perconducting one. Electrons and holes impinging on the superconductor at energies
below |∆| and above −|∆| respectively cannot enter ordinarily due to the excitation gap.
If an electron enters the superconductor at positive energy E while a hole leaves the su-
perconductor at energy −E , however, energy is conserved and the superconductor can
remain in its ground state while gaining a Cooper pair. This process is called Andreev
reflection. Of course the reverse process can occur for current to flow in the opposite
direction.

It is interesting to take this principle a step further and consider a normal conducting
region confined either electrostatically or by a superconductor on all sides. Introducing
superconductivity into a system, we find it is not only simple electrostatic fields that can
confine charge into bound states. Boundaries between normal conducting and super-
conducting regions can form potential barriers in the form of the superconducting pair-
ing potential ∆(x), which switches from ∆(x) = 0 inside the normal region to ∆(x) =∆ for
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Figure 2.3: Superconductivity, and the connection between Yu-Shiba-Rusinov and Andreev bound supercon-
ducting states. (a) Density of states in a bulk superconductor according to eq. 2.5 along with a discrete subgap

state. (b) Schematic of a single electron level ĉ†
σ coupled to superconducting leads with a superconducting

phase difference of φ applied across them. The electron level has chemical potential ε, may have charging
energy EC, and has a superconducting pairing potential ∆ind induced by the leads. (c) Phase diagram of the
system. For EC < ∆ind, the ground state has even parity—consisting of a varying superposition of the level
containing zero electrons or a pair. At higher EC, a region of fixed odd parity forms (outlined by a black line).
(d) Energy spectra of the system at the markers indicated in (c) as a function of φ.

x in the superconductor. Outside the normal region, the system has a superconducting
gap, and ordinary electrons and holes with energies below ∆ cannot enter except by An-
dreev reflection. Particles also reflect ordinarily from any electrostatic confining bound-
ary, so overall a bound state is expected to form. Because the resulting state consists of
superpositions of reflected holes and electrons, it has a superconducting character and
is referred to as an Andreev bound state (ABS) [46, 47]. In particular, the bound state has
an energy gapped above the Fermi level but below ∆ by an amount depending on the
miroscopic characteristics of the system.

To illustrate this and investigate superconducting pairing’s competition with elec-
trostatic confinement, we consider a single electronic level ĉ†

σ where σ ∈ {↑,↓} with some
coupling to two superconducting terminals. We plot a schematic of the system in Fig. 2.3
(b). These terminals have a phase difference of φ in their superconducting wave func-
tions, applied for example by forming them into a loop and threading a magnetic flux
[19]. The dot itself may have charging energy EC ≥ 0 and level energy εσ. In the ‘atomic
limit’ where the leads’ superconducting gap is taken |∆| →∞, the leads induce an effec-
tive pairing term Ĥp ≡−∆ind cos(φ/2)e iφ/2ĉ†

↑ ĉ†
↓+h.c. for some induced gap∆ind [48]. ∆ind

is a function of the tunnel coupling between the level and leads. At zero magnetic field,
εσ = ε and the dot may be described by the Hamiltonian Ĥ = Ĥp + ε∑

σ n̂σ+ 2ECn̂↑n̂↓.
Note the latter two terms are equivalent to eq. 2.3 up to a constant offset. Diagonaliz-
ing the system, we plot the expected charge 〈n̂〉 of the electron level in Fig. 2.3(c). For
EC <∆ind, the system ground state has fixed even parity and consists of a superposition
of zero charge on the level and two charges. The state in this region is localized on the
dot solely by superconductivity (though admittedly that was done a priori in this exam-
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ple by assuming the existence of ĉ†
σ) and so is referred to as an ABS. On the other hand,

when EC > ∆ a region in parameter space with an odd-parity ground state forms, but
this region is narrower as a function of ε than if there were no superconducting pair-
ing. From the example energy spectra plotted in Fig. 2.3(d), we see that the odd-parity
ground states are unaffected by φ. In this latter case, excitation energies may be thought
of as a spinful electron in the level being screened by a quasiparticle in the supercon-
ductors, accordingly lowering the excitation energy [49]. Usually, the excitations in this
case are referred to as Yu-Shiba-Rusinov (YSR) states for historic reasons relating to mod-
els of impurities embedded in superconductors [49–52]. As the superconducting states
are traced out by taking the |∆| →∞ limit, this spin-screening effect is not captured in
our model, though it does reveal the competition between superconducting pairing and
charging energy, which defines the boundary between the YSR and ABS scenarios.

In this thesis, subgap excitations in superconductors are formed by coating a semi-
conducting region epitaxially with a superconducting shell, such as in excitations of the
superconducting island of Chapter 4 or the ABSs mediating supercurrent in Chapter 6.
Due to varying degrees of electrostatic confinement and coupling to the superconductor
which is not necessarily fully transparent, the resulting subgap excitations in the hybrid
semi- and superconducting system are always determined by a combination of charging
and pairing effects. The former effect is what leads to gate-voltage-dependent subgap
state spectra in hybrid systems [53], but in literature these states are broadly referred to
as ABSs [54, 55].

2.1.3. SUPERCONDUCTING ISLANDS

A superconducting island (SCI) is simply a charge island made up of a piece of supercon-
ducting material either on its own, or collectively forming a hybrid island with a small
semiconducting region strongly coupled to the superconductor, see Fig. 2.4(a). The re-
sult is a charge island modified by an energy cost associated with containing an odd
number of charges due to the superconducting excitation gap. The former case is the
basis of many early experiments on SCIs [56–58] and superconducting qubits like super-
conducting charge qubits and transmons, where a piece of superconductor is connected
to reservoirs by a Josephson junction and has a weak charging energy shunted by a ca-
pacitance to ground [5, 24]. Meanwhile, the latter hybrid situation has also been widely
explored [59–72], principally with the motivation of seeking Majorana bound states [10,
11, 73–78] or for engineering hybrid qubits based on ABSs [25, 79]. By coupling a semi-
conducting material to a superconductor, the material properties of the semiconduc-
tor (such as spin-orbit coupling, large g -factors, and gate tunability) are combined with
superconducting pairing via the proximity effect [47, 80–83]. It has been shown that
in such a system formed in a one-dimensional nanowire with extremely low disorder,
topologically-protected Majorana bound states can appear at the ends of the wire since
it effectively forms a Kitaev chain [7, 8, 84]. Moreover, prominent qubit proposals ex-
ploiting these protected states form a Coulomb-blockaded island out of the system [10,
11], granting it protection from quasiparticle poisoning [85]. Additionally, hybrid SCIs
can be chained together as a metamaterial to effectively form a Kitaev chain [86–88].
These and other applications have driven the wealth of research into SCIs over the last
two decades, and motivated the experiments of this thesis.
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Figure 2.4: Characterization of superconducting islands. (a) Schematic of a hybrid SCI of charging energy
EC connected via tunnel barriers to lead reservoirs. A floating superconducting material (gray) of gap ∆ =
1.3EC proximitizes a semiconducting QD (green), potentially inducing subgap states at energies below ∆. In
this case, we consider a single subgap state at energy E0. (b-c) Energy spectrum for different charge states
in the island with E0 = ∆ (b) and E0 = 0.5EC (c). Even-parity ground states are shown in blue while odd-
parity ground states are in green. Notably, odd-parity charge states have a minimum energy E0 higher than
any even-parity state. (d-e) Coulomb diamond schematics for the E0 values in (b-c), with only ground-state
Coulomb resonances depicted, and with source and drain capacitances neglected. For biases larger than 2∆
(grayed regions), cotunneling via the superconducting shell’s quasiparticle states may occur, enabling non-
zero conductance even in Coulomb blockade [89].

Unfortunately, modeling SCIs presents an obvious difficulty: the BCS Hamiltonian
describing a superconductor under mean-field theory does not conserve particle num-
ber [19], while a charging energy on the superconductor pressures particle number in-
toto being a good quantum number. Solving a superconductor’s Hamiltonian without
applying the mean-field approximation is difficult, but can be done for example with
numerical renormalization group methods [90]. Thankfully, to understand the behav-
ior of SCIs, in many cases it is sufficient to simply ignore this contradiction. Small-size
effects are not expected to appear in SCIs until their size decreases enough such that
the single-particle level spacing exceeds the superconducting gap [91] — a limit which is
not easily reached [92] — so projecting the system onto states where quasiparticle parity
matches the charge parity is often sufficient [73, 74] (see also Appendix F).

If a SCI is weakly coupled to other QDs or leads and we are indifferent to spin effects,
we can then simulate the charge stability of the system using the ground state energies

USCI(N ) =Uel(N )+E0
1+ (−1)N

2
, (2.8)

simply imposing a free energy cost E0 of the superconducting gap on states with an odd
number of charges [57, 76, 89]. Here, E0 is the lowest energy quasiparticle excitation en-
ergy, and could be less than ∆ if subgap states are present. Aside from spin-splitting ef-
fects on the island’s quasiparticle states and effects of the superconductor proximitizing
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neighboring QDs, this toy model is sufficient to calculate the CSD of a system consisting
of normal and superconducting QDs. More generally, one can model a SCI by adding the
charging energy term to the Hamiltonian for the superconductor. Most notably, nonzero
E0 results in two distinct regimes of behavior of a SCI: that for charging energy EC < E0

and that for EC > E0, see Fig. 2.4(b),(c).

In the former case, single-electron or ‘1e’ transport is suppressed in favor of Cooper
pairs tunneling on and off the island (notable exceptions include floating systems, see
Sec. 2.1.4). The relevant chemical potential determining the locations of transitions is
thus USCI(N )−USCI(N−2), adding two electrons to the system. As the chemical potential
in the source contact eVbias is the energy available to supply a single electron, the condi-
tion for conductance resonance with the source is now 2eVbias =USCI(N )−USCI(N −2).
Hence, the height of Coulomb diamonds can be found to be 4EC, in contradiction with
Refs. [62, 93] which claim it is 8EC. As we will see from the case E0 < EC, the latter would
lead to an unphysical discontinuous jump in the diamond size as E0 is lowered. The
resulting expected Coulomb diamonds are plotted in Fig. 2.4(d). The fact that E0 > EC

can be inferred by observing a splitting of Coulomb resonances as the gap is suppressed
below EC, or a transition from 2e- to 1e-periodic Coulomb resonances as a bias voltage
across the island |eVbias| is increased above 2E0 [58]. In the figure, we only show the po-
sitions of ground state Coulomb resonances in black and mark the region of |eVbias| > 2∆
in gray rather than showing the precise location of excited-state Coulomb oscillations.
What can be said with certainty, however, is that above biases of 2E0 the lead reservoirs
may supply quasiparticles to maintain the island in a state consistently ‘poisoned’ with
quasiparticles. For |eVbias| > 2E0 the Coulomb oscillations therefore must be 1e-periodic
outside of the Coulomb diamonds. This allows one to read off E0 from such measure-
ments, in fact. Inference of ∆ itself is made possible by noting that above ∆, many states
become available for second-order tunneling processes across the island (see Sec. 2.1.5),
greatly increasing the amplitude of cotunneling currents [94]. Often then, 2∆ can be
identified as the eVbias at the onset of horizontal cotunneling lines in the Coulomb dia-
monds [60, 62, 69, 89].

In the second case where EC > E0 on the other hand, single-electron tunneling occurs
at Coulomb resonances. Notably though, because of the E0 cost of having odd numbers
of electrons, the regions in parameter space consisting of a stable odd charge are smaller
than those with an even charge. This is evident from the chemical potential differences
µ(N )−µ(N − 1) = 2EC − 2E0 and µ(N + 1)−µ(N ) = 2EC + 2E0 for even N . Hence, both
E0 and EC can be read out from Coulomb diamond measurements in this regime, as is
illustrated in Fig. 2.4(e). Finally, note that as E0 → 0, we recover the conventional 1e-
periodic Coulomb oscillations of a metallic charge island or QD.

2.1.4. ELECTRICALLY FLOATING DOT SYSTEMS

In discussions of QD systems up to this point, we have assumed that the system’s total
charge can freely vary. In this case, given that the dots’ charging energies are large energy
scales compared to kBT , the system always resides in states near in energy to its ground
charge state. Isolating or floating a multi-QD system from all leads fixes its total charge,
on the other hand, forcing it to remain in an excited subspace of charge states satisfying
charge conservation. Without leads, one must resort to RF measurement methods (see
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Sec. 2.2) or charge sensing techniques to probe the system, so why impose this additional
constraint?

For one, broadened lead transitions in CSDs can overlap with and conceal details
of more interesting charge-conserving tunneling processes within the multidot system.
Additionally, interdot transitions in floating systems are not interrupted by lead transi-
tions and therefore occupy larger regions in gate space, facilitating their investigation.
For example, one can measure successive interdot transitions in a floating double QD
or SCI system (schematized in Fig. 2.5(a)) by simply sweeping one of the QD’s gate volt-
ages instead of measuring a two-dimensional CSD [64, 67, 95]. There, we consider an
island with charging energy EC2 smaller than its lowest subgap excitation E0, and a QD
of charging energy EC1 > E0. The general principle behind this is that without lead reser-
voirs, there is no chemical potential serving as a reference for the QD energies, removing
one charge degree of freedom. Hence, for an N -dot floating system, only N − 1 gates
need be swept to navigate the full space of allowed charge states. This is evident in the
CSD shown for a floating QD-island system in Fig. 2.5(d), which only contains diago-
nal lines. To visualize how a nonfloating QD-island evolves into this picture, one must
imagine that all transitions disappear from the CSD except for the interdot transitions
conserving the now-fixed total charge. These transitions extend across gate space since
there are no others to interrupt them. As another example, the CSD of a floating triple
QD (depicted in Fig. 2.5(b)) is shown in Fig. 2.5(c). There, we see that interdot transitions
between any pair of dots can be reached by tuning only two of the three QDs’ gate volt-
ages. From both of these CSD examples, we also observe that increasing a reduced gate
voltage Cgi Vgi /|e| by one no longer necessarily increases a semiconducting QD’s charge
by one. This is because without lead reservoirs, adding charges to a QD requires adding
the energy required to increase its charge and the energy required to remove charge from
another QD.

A second interesting property of floating hybrid systems is that fixing their charge
can reveal tunneling processes which were not energetically accessible in equilibrium
otherwise. Returning to the example of a QD-island: at zero bias voltage and weak tunnel
couplings the SCI with charging energy EC2 < E0 exchanges charges two at a time as
Cooper pairs with any other dots or leads. Meanwhile, if we remove the leads from this
system and keep only the island tunnel coupled to the QD of substantial charging energy
EC1 > E0, only interdot charge transitions can occur. In this case, the energy cost of two
electrons tunneling is always at least 2EC1 +2EC2 −2E0 as both dots’ charging energies
must be paid for a charge transition to occur. We show the CSD and energy spectrum of
such a system in Figs. 2.5(d) and 2.5(e) respectively. The latter illustrates how higher and
higher energy charge states become the system’s ground state as gate voltages deviate
from the analogous nonfloating system’s ground state. By making the system floating, we
may therefore probe quasiparticle states and single-electron tunneling at equilibrium
even in a SCI with a vanishing charging energy [64, 67]. Though not featured in this
thesis, we thusly tuned multidot systems into floating QD-QD or QD-island systems as
a technique for characterizing the devices pertaining to the projects of Chapters 3 and 4
[37, 38].

As a final example, we consider the case of Cooper pair splitters: devices which use
charging energies of separated QDs to force a Cooper pair’s constituent electrons to
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Figure 2.5: Floating systems of quantum dots. (a) Schematic of a floating system consisting of a semicon-
ducting QD of charging energy EC1 coupled to a SCI with lowest subgap excitation energy E0 and charging
energy EC2. (b) Schematic of a floating triple QD. (c) CSD of the floating triple QD system depicted in (b), with
EC1 = EC2 = EC3 and Em12 = Em23 = 0.3EC1 and with tunnel couplings and quantum level spacings neglected.
Charge states are labeled as (N1, N2, N3) up to some arbitrary charge offset. (d) CSD of the floating QD-island
system depicted in (a), using EC2 = 0.2EC1, E0 = 0.3EC1, and neglecting mutual capacitances. Charge states
are labeled as (N1, N2) up to an arbitrary even offset with N2 = 0 corresponding to some even charge on the
island. Regions of odd parity are narrower in gate space due to their additional minimum energy cost of E0. (e)
State energies for the QD-island system depicted in (a) with Cg1Vg1/|e| = 5. Energies increase rapidly as gate
voltages deviate from the values at which their charge state in a nonfloating system would equal the floating
system’s total charge. The system exhibits 1e charge transitions even though EC2 < E0 because the energy of
transfering an electron is at least 2(EC1 +EC2) in a floating DQD.

‘split’ into separate locations [96], see Chapter 4 for further discussion. Fixing the QD
chemical potentials at the Fermi level of their metallic leads, only single electrons can
flow from the superconducting lead unless it is biased by at least its superconducting
gap ∆. This is because the QD charging energies EC imply there is a cost of at least EC

for two excess electrons to enter this QD simultaneously, inhibiting entire Cooper pairs
from tunneling. If the two QDs are placed within the superconducting coherence length
of each other, there is a possibility for crossed Andreev reflection (CAR) to occur, however.
In this process, the spin-entangled electrons from a Cooper pair coherently split and tun-
nel into separate QDs [96]. As long as the QDs have the same chemical potential and are
within the bias window, this can occur at any finite bias voltage of the superconducting
lead. In this manner Cooper pair splitting has been demonstrated in numerous mate-
rial systems, including InAs nanowires [97–101], carbon nanotubes [102–104], graphene
[105–107], two-dimensional electron gases [108], and others [109]. A disadvantage of this
approach is that individual Cooper pairs are not retained on the QDs but quickly tunnel
into the metallic drain reservoirs, making tests of their coherence or entanglement diffi-
cult. But what happens if we remove the metallic leads, essentially rendering the system
‘half-floating’? In this case electrons cannot escape from the QDs upon entry, and tun-
ing the superconductor’s chemical potential between µ > 0 and µ < 0 tunes the system
between a Cooper pair being split onto the dots or recombined into the superconduc-
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tor, respectively. The Cooper pair’s electrons now stably reside on the QDs and could
be tested for spin entanglement by checking for violations of the Bell inequality, as has
been done in spin qubit platforms [110]. In Chapter 4, we similarly split Cooper pairs in
the case where the system is fully floating with the superconducting lead replaced by a
SCI. We also consider the applicability of such a floating hybrid triple QD as a basis for
forming dot-based Kitaev chains in Chapter 7. More generally, half-floating a system by
pinching off all leads except for one makes the remaining lead’s bias voltage behave as
a gate voltage for all dots with a lever arm of one. Accordingly, lever arms of QDs can
be extracted from the slope of measurements of bias against QD gate voltages in such
systems.

2.1.5. SECOND-ORDER TUNNELING PROCESSES

Second-order tunneling processes occur when two quantum states that do not have a
wave function overlap are indirectly coupled via some intermediate states. As a generic
example, consider arbitrary states |a〉 and |b〉 coupled to a central mediating manifold
of N ≥ 1 states detuned in energy, say |v j 〉 with quantum number j ∈ {0,1, ..., N −1}. The
system may then tunnel from |a〉 to |b〉 via the states’ mutual wave function overlaps
with |v j 〉, schematically depicted in Fig. 2.6(a). Second-order tunneling or cotunneling
processes are fundamental to the functionality of hybrid quantum technologies, and un-
avoidable in any system using more than two QDs [111]. In hybrid systems, CAR is es-
sential to the formation of Majorana bound states in QD-based Kitaev chains [86–88]. It
is a cotunneling process where a superconductor having an excess Cooper pair or two
normal regions around it containing a pair of excess electrons take the place of |a〉 and
|b〉, while states with a quasiparticle in the superconductor take the place of |v j 〉. We
observe coherent CAR and compare it to the cotunneling formalism described below in
Sec. 4.7.4. As another example, charging-energy-protected Majorana qubits can mea-
sure the qubit state from the effective tunneling amplitude between two QDs, consti-
tuted partially from cotunneling via the fermionic mode formed by two Majorana states
as |v j 〉 [10, 11]. Given the importance of second-order tunneling processes, we discuss
more precisely how they arise in this subsection.

To be concrete, let us consider the generic Hamiltonian

Ĥ = ε

2

( |a〉〈a|− |b〉〈b|)+∑
j

E j |v j 〉〈v j |︸ ︷︷ ︸
≡Ĥ0

+∑
j ,α

(
tα j |v j 〉〈α|+h.c.

)
︸ ︷︷ ︸

≡V̂

, (2.9)

where ε is a small detuning between |a〉 and |b〉, tα j for α ∈ {a,b} are weak tunnel cou-
plings to the virtual states which need not be the same, and the mediating state energies
E j > E0 for some E0 ≫ ε, tα j . Essentially, the states |v j 〉 are energetically inaccessible,
but are still relevant as the only states coupled to the more energetically favorable states
|a〉 and |b〉.

Under these assumptions, we aim to project the system onto its low energy subspace,
which will consist of the states |a〉 and |b〉 ‘dressed’ by some occupation of |v j 〉 states
and with an effective cotunneling amplitude between them. To do so, we apply a unitary

Schrieffer-Wolff transformation e Ŝ Ĥe−Ŝ to the Hamiltonian [112], using the transforma-
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Figure 2.6: Limits of the cotunneling approximation’s validity. (a) Schematic of the generic system: states |a〉
and |b〉 detuned by ε are coupled indirectly via states {|v j 〉} j at energies E j ≫ |ε| with tunnel couplings tα j
for α ∈ {a,b} such that |tα j | ≪ Ek ∀ j ,k. (b-d) Simulations of this system for N = 2 |v j 〉 states of equal energy
E0, with all tunnel couplings set equal to t . (b) Total wave function overlap of the ground state |ψgs〉 with the
mediating states |v j 〉 in the full Hamiltonian (solid red) and the low-energy Hamiltonian of eq. 2.16 (dashed).
For comparison, the effective coupling between |a〉 and |b〉 is plotted in blue. (c) Wave function overlap of |ψgs〉
with |a〉 as a function of ε and t , showing how the transition broadens due to hybridization between |a〉 and
{|v j 〉} j with increasing coupling. (d) Low-energy spectra of the system at the two linecuts indicated in (c) in
the full Hamiltonian (solid lines) and in the low-energy Hamiltonian of eq.2.16 (dashed lines). Inset: Zoomed
view of the center of the plot. The low-energy Hamiltonian drastically diverges from the true spectrum even
for t = 0.1E0 (orange).

tion matrix Ŝ defined as

Ŝ =∑
j ,α

(
t∗
α j

E j
|α〉〈v j |−

tα j

E j
|v j 〉〈α|

)
. (2.10)

Note the property Ŝ† = −Ŝ ensures e Ŝ is unitary. To calculate the transformed Hamilto-
nian, we make use of the Baker-Campbell-Hausdorff formula to expand the exponential
and find

e Ŝ Ĥe−Ŝ = Ĥ + [
Ŝ, Ĥ

]+ 1

2

[
Ŝ,

[
Ŝ, Ĥ

]]+O
(
t 3
α j /E 3

j +ε3/E 3
j

)
. (2.11)

With this relation, the purpose of our choice of Ŝ becomes clear. It satisfies
[
Ŝ, Ĥ0

] =
−V̂ +O (εtα j /E 2

j ), such that

e Ŝ Ĥe−Ŝ = Ĥ0 + 1

2

[
Ŝ,V̂

]+O
(
t 3
α j /E 3

j +εtα j /E 2
j

)
. (2.12)

To second order in the small energy parameters we may calculate the commutator and
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explicitly write the Hamiltonian as

e Ŝ Ĥe−Ŝ ∼ ε′

2

( |a′〉〈a′|− |b′〉〈b′|)+ tco |b′〉〈a′|+ t∗co |a′〉〈b′|

+∑
j

E ′
j |v ′

j 〉〈v ′
j |+

∑
j ̸=k,α

tα j t∗αk

(
1

E j
+ 1

Ek

)
|v ′

j 〉〈v ′
k |+h.c.

(2.13)

up to a constant offset, where ε′ ≡ ε+∑
α, j |tα j |2/(2E j ), E ′

j ≡ E j + (|ta j |2 + |t 2
b j )/E j +∑

k,α |t 2
αk /(2Ek ), and

tco ≡−∑
j

2ta j t∗b j

E j
(2.14)

Crucially, the Hamiltonian is now in a transformed basis given by

|α′〉 ≡ e Ŝ |α〉 =
(

1−∑
j

|tα j |2
2E 2

j

)
|α〉−∑

j

tα j

E j
|v j 〉−

∑
j

tα j t∗
α j

2E 2
j

|α〉+O (t 3
α j /E 3

j )

|v ′
j 〉 ≡ e Ŝ |v j 〉 =

(
1− |ta j |2 +|tb j |2

2E 2
j

)
|v j 〉+

∑
α

t∗
α j

E j
|α〉− ∑

k ̸= j ,α

( tα j t∗
αk

2E j Ek

)
|vk〉+O (t 3

α j /E 3
j ),

(2.15)
calculated from the series expression for e Ŝ . As written above, the states are orthogonal
to second order in tα j and ε.

The Hamiltonian is now also in two decoupled blocks, one for the {|a′〉 , |b′〉} states
and one for the {|v ′

j 〉} j states. At low energies, we then only need to consider the Hamil-

tonian block of the |a′〉 and |b′〉 states, since the eigenvalues of the |v ′
j 〉 block are of the

same order of magnitude as E j , while those of the {|a′〉 , |b〉} block are of the order ε′ ≪ E j .
We therefore have

e Ŝ Ĥe−Ŝ ∼ ε′

2

( |a′〉〈a′|− |b′〉〈b′|)+ tco |b′〉〈a′|+ t∗co |a′〉〈b′| . (low energies) (2.16)

Hence, for weak tunnel couplings the system is naturally described in the basis of our
original states |a〉 , |b〉 → |a′〉 , |b′〉 dressed by some occupation of the mediating states,
and effectively coupled to each other via tco. In practice, eq. 2.16 is implicitly applied in
dot-based Kitaev chain models to describe both elastic electron cotunneling (ECT) and
CAR [87], is used to describe ECT in semiconducting QD systems [111], and we consider
the applicability of this formalism to a floating hybrid triple QD in Sec. 4.7.4.

We assess the range of validity of the low-energy model of eq. 2.16 in Fig. 2.6. Consid-
ering the case of N = 2 with E1 = E0 and setting all tα j = t for some coupling t , we plot
the wave function overlap of the system ground state with the mediating states |v j 〉 (red
lines) as well as the effective cotunneling amplitude between |a〉 and |b〉 in Fig. 2.6(b)
(blue line)7. As is evident from eqs. 2.15 and 2.16, both tco and the wave function overlap
with {v j } j increase quadratically with t .

7The case N = 2 is often the minimum number of states involved in cotunneling, since electron tunneling
processes via a middle Bogoliubon or QD usually have at least one nearby electron-like or hole-like tunneling
path [111].
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With this in mind, we emphasize the main point of this section: it is at best mislead-
ing and at worst incorrect to refer to |v j 〉 as a ‘virtual’ state mediating cotunneling as
is done pervasively in literature [6, 93, 111, 113, 114]. The effective coupling tco is only
nonzero insofar as the system’s low energy states involve wave function overlap with the
‘virtual’ states, which is of the order of |tco|/E j . Additionally, we remark that by the point
where tco (plotted in blue) is a few percent of the mediating state energy E j , the cotun-
neling approximation already significantly diverges from the full Hamiltonian’s solution.
In Figs. 2.6(c) and 2.6(d) we emphasize this further, by showing the broadening of the
|a〉→ |b〉 transition (see Fig. 2.6(c)) and the low-energy spectrum for two small values of
tunnel couplings in Fig. 2.6(d). Even for tunnel couplings 10 % as large as the E j ener-
gies, tco is an ill-defined measure of the effective coupling between |a〉 and |b〉. Since the
true eigenstates involve substantial wave function overlap with the |v j 〉 states, there is
no obvious way to define a single energy scale describing an effective hybridization be-
tween |a〉 and |b〉 for such tα j values. It may seem apt to refer to cotunneling as occuring
via ‘virtual’ states since these states are classically inaccessible in energy, but it is crucial
to remember that higher-order tunneling processes may only occur so long as there is a
real wave function overlap of the eigenstates with these mediating states [115].

2.2. PROBING QUANTUM CIRCUITS WITH MICROWAVE

RESONATORS
To measure properties of quantum systems as fast as possible and avoid 1/ f noise ubiq-
uitous in quantum circuits, it is desirable to probe quantum systems at high frequencies
f in the microwave range8 [12]. When doing so, one typically scatters a microwave tone
from the device of interest (e.g. from a gate or lead), measuring its complex reflection
coefficient Γwith a vector network analyzer or other readout electronics9, defined as the
ratio of reflected to incident voltage. Portions of the signal reflected in-phase or out-of-
phase with the incident photons form the real and complex parts of Γ [116]. Unfortu-
nately, stray capacitances shunt the microwave signal to ground, meaning conventional
DC measurement lines are impractical for this purpose. By using a transmission line
such as a coaxial cable where inductances and capacitances are tuned to form a waveg-
uide for microwave photons, however, this obstacle can be overcome. The characteristic
impedance of most coaxial lines is a standard Z0 = 50Ω, making Γ= (Z −Z0)/(Z +Z0) for
a device impedance of Z [116], with example circuits depicted in Figs. 2.7(a,c). Here we
encounter another issue however: semiconducting quantum devices are typically char-
acterized by large resistances and small capacitances [13], making |Z |≫ Z0. In this limit
|Γ|→ 1 becomes insensitive to changes in Z , making the measurement useless. We show

8For too large of a frequency, the resulting energy scale h f approaches the energy scales of the system, making
driving effects and circuit quantum electrodynamics (cQED) important [5]. We avoid this regime as much as
possible throughout this dissertation, though we encounter it in Ch. 4.

9Other devices capable of measuring high frequency complex scattering parameters include ultra or super high
frequency lockin amplifiers or electronics tailor-made for measuring qubits such as the QBlox QRM module,
Quantum Machines OPX, Zurich Instruments UHFQA, and Intermodulation Products Presto. All of these
devices boil down to a combination of digital-to-analog converters generating the RF signals, mixers used to
reach desired frequencies, filters, and analog-to-digital converters to read the returning signals, which can
be built out of individual components by the experimenter as well. Note that scalar network analyzers are
phase-insensitive and can only measure |Γ|.
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Figure 2.7: Impedance matching reflectometry circuits. (a) A minimal circuit measuring the reflected RF signal
Γ(Z ) from a resistive impedance Z into a transmission line of characteristic impedance Z0 = 50Ω, shifted by
a change in impedance ∆Z . (b) Absolute difference in RF signal change ∆Γ ≡ Γ(Z +∆Z )−Γ(Z ) for different
bare impedances Z and impedance shifts ∆Z . Z0 is plotted as a dashed red line. When Z ≲ Z0, a change in
impedance can be resolved in |∆Γ|, while for Z ≫ Z0, the reflected signal is insensitive to ∆Z . (c) A minimal
circuit measuring the reflected signal from a bare capacitance C shifted by a change in capacitance ∆C . (d)
Absolute change in Γ for the circuit in (c) with or without ∆C , using a bare capacitance C = 0.5pF. The mea-
surement frequency f at which |1/(2πi f C )| = Z0 is shown as a red dashed line. This frequency aligns with the
maximal possible signal, indicating the importance of impedance matching. The range of ∆C shown corre-
sponds to charge islands of charging energies ranging from e2/(2∆C ) ≈ 1µeV upwards.

the expected reflected signal change from a real impedance Z changing by ∆Z > 0 in
Fig. 2.7(b). Similarly, coupling a coaxial line via bonding wires to a device chip where
one expects to measure a capacitance (see Fig. 2.7(c)), there is generally an unavoidable
parasitic capacitance of at least C = 0.1pF to ground [13]. Measuring a superimposed
change of capacitance∆C , we plot the absolute change in Γ expected for the impedance
1/(2πi f (C +∆C )) for different probe frequencies f in Fig. 2.7(d). Choosing f to create a
capacitive impedance matching Z0 maximizes the signal, but one is restricted to mea-
sure near this frequency, and even in this case the optimal signal is nowhere near the
maximum possible |∆Γ| = 2. Due to this requirement of Z ≲ Z0 in both cases, we say
that it is desirable to match the impedance of Z to the readout circuit.

Here is where resonators come in. A circuit resonates at frequencies where all of
its reactive components – capacitors and inductors that is – have an impedance which
cancels out to zero. At angular frequency ω= 2π f , the impedance of a capacitance C is
−i /ωC and that of an inductance L is iωL. A system of an inductor and capacitor forms a
simple harmonic oscillator, with the charged capacitor plate forcing current to increase
or decrease, resisted by the inductor. Since the former impedance has a negative imag-
inary part and diverges at small ω while the latter’s imaginary part diverges to +∞ as
ω→∞, these resonances will always exist if the circuit isn’t damped by excessive dissi-
pation [116]. Due to their impedance’s high sensitivity to L and C near a resonance, they
form a simple impedance transformer.

By embedding our device of impedance Z in such an LC circuit, the impedance of
the entire circuit becomes strongly sensitive to changes in Z near resonance frequencies.
For the circuit depicted in Fig. 2.8(a) with internal losses modeled by a resistance R (not
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Figure 2.8: Reflectometry response of a loaded resonator circuit. (a) A minimal reflectometry circuit formed
by an inductance L in series with a parallel capacitance C and admittance Y , which in this example is either a
resistance or capacitance. (b-d) The resonator response near its bare resonance frequency f0 ≈ 400MHz given
parameters L = 420nH and C = 0.377pF chosen based on Chapter 5. The response of the resonator is shown for
Y = 0 (black), Y = 2e2/h (one conductance quantum, red), and Y = 2πi f ∆C (blue) where ∆C = 30fF is chosen
very large compared to typical experimental values in order to exaggerate the resonance frequency shift it
imparts on the resonator. We plot the reflected signal’s amplitude (b), phase (c), and full complex response
(d).

pictured), the input impedance is

Zres = iωL+R + 1

iωC +Y
(2.17)

where Y ≡ 1/Z is the complex admittance of the device. For Y = 0, this circuit resonates
at frequency f0 =ω0/2π= 1/(2π

p
LC ), and near resonance we have [116]

Zres ∼ R +2i RQ
ω−ω0

ω0
|ω−ω0|≪ω0 (series circuit) (2.18)

which holds over all frequencies of interest, since the bandwidth in frequency space
where the resonator responds is typically much narrower than its resonance frequency.
Here, Q ≡ ω0RC is the quality factor of the resonator circuit, roughly representing the
number of cycles the resonator can oscillate over before a photon leaves or is dissipated
from the circuit.

Now, suppose Y can be modeled as Y = G + iω∆C , that is, a resistor and capacitor
in parallel. When G Z0 is very small, as is often the case for reflectometry across semi-
conducting QDs and their gates, we can Taylor expand eq. 2.17 to find that eq. 2.18 holds
with ω0 → 1/

p
L(C +∆C ) and Q → ω0(R(C +∆C )+LG) to lowest order in G . By fitting

a resonator’s response to extract Q and ω0 (see Appendix C), one can thus measure the
impedance of a quantum circuit, a possibility we pursue further in Chapter 3. Resonators
may also be formed from distributed elements like coplanar waveguides, but in Sec. 3.7.1
we show that a similar result holds for such resonators. To illustrate the effect of Y on
the resonator response, we plot the reflected signal from a resonator for capacitive and
dissipative Y and R = 0 in Figs. 2.8(b-d). With no internal losses, the resonator forms a
circle of unit radius in the complex Γ plane (see Fig. 2.8(d)), and a capacitive shift moves
the resonance frequency without changing the resonator lineshape. As a result, the ca-
pacitive shift is only resolvable in Arg[Γ], shown in Fig. 2.8(c). Real resonators with some
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internal losses shrink the circle towards Γ= 1, giving it a characteristic dip in amplitude
near the resonance. This effect, pictured in the red curve of Fig. 2.8(b), enables resolving
changes in device conductance. A capacitive shift in the presence of internal losses is
then also resolvable as a shift in this dip as well as a change in its depth, since Q depends
onω0 when R ̸= 0. To ensure no information is lost, it is best to consider the full complex
Γ data when looking for a signal.

Notably, the lineshape of the resonator response can be alternatively viewed by com-
paring the loss rate of photons from the LC circuit into the readout line characterized
by an external or coupling quality factor Qc, to the loss rate of photons to the environ-
ment characterized by the internal quality factor Qi. Expressions for these quantities de-
pend on the specific resonator circuit [13, 116]. In this case, the total Q = 1/(Q−1

c +Q−1
i ).

In these terms, the resonator has a unit-radius lineshape in the complex plane when
Qi ≫ Qc. Conversely, when Qc ≫ Qi, the resonator response shrinks to a point either
due to excessive losses (low Qi) or from not enough photons being exchanged with the
readout line (high Qc). For this reason we therefore call the resonator undercoupled or
overcoupled when Qi <Qc or Qi >Qc respectively. When Qi =Qc the resonator amplitude
dips precisely to 0 on resonance, and the resonator is critically coupled. For measuring
small resistive or capacitive signals, the maximal signal often occurs for critically cou-
pled resonators [13, 117], depending on the circuit.

These principles form the basis of radio frequency reflectometry techniques rou-
tinely applied in semiconducting quantum devices [13]. As described below, resonators
are quantum harmonic oscillators whose excitations are photons, but for this disserta-
tion’s purposes we do not exploit this fact. Resonators serve only as tools for probing
quantum circuits here. This begs the question: when can we safely neglect the quan-
tum mechanical nature of our resonator and treat its electromagnetic fields classically,
focusing on the device of interest?

2.2.1. RESONATORS IN THE QUANTUM AND SEMICLASSICAL LIMITS
Practical resonator circuits may consist of numerous capacitors and inductors, and may
not even be lumped-element circuits. The speed of light in a medium can be a fraction
of that in vacuum10, so for millimeter-scale resonator circuits operating at few-GHz fre-
quencies the light wavelength can be comparable to the circuit size. As a result, the cir-
cuit elements are ‘distributed’ and the spatial dependence of voltages and currents must
be considered. Nonetheless, for a given frequency (e.g. near a resonance) any circuit
with only linear components can be written as an equivalent circuit with a single induc-
tor L, capacitor C , and resistor Rr via Norton’s and Thévenin’s theorems [118]. Whether
the resulting RLC circuit is in parallel or series configuration, its classical Hamiltonian is
Hr =Q2/2C +Φ2/2L where Q is the capacitor charge andΦ= ∫ t

−∞V (t ′)dt ′ is the integral
of the voltage across the inductor. In a superconducting circuit these variables can be
promoted to canonical quantum variables Q̂ and Φ̂ obeying the commutation relation
[Φ̂,Q̂] = iħ so that Hr → Ĥr becomes a quantum Hamiltonian [2]. As this Hamiltonian is
of the form of a quantum harmonic oscillator, we can solve it by introducing the bosonic
ladder operator â ≡ iQ̂/

√
2Cħω0+Φ̂/

√
2Lħω0 with [â†, â] = 1 andω0 = 1/

p
LC . In terms

of â the Hamiltonian becomes Ĥr =ħω0(â†â+1/2). In other words, the RLC circuit hosts

10The speed of light in a typical coaxial cable is roughly 2c/3, for example.
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a single photonic mode with annihilation operator â of energyω0. Meanwhile, the resis-
tor can be viewed as a coupling between the cavity photons and a thermal bosonic bath,
inducing dissipation [119, 120].

This quantization of superconducting circuits is the basis for circuit quantum elec-
trodynamics (cQED): the coupling of photons to quantum circuits. Aside from introduc-
ing microwave-frequency methods like two-tone spectroscopy for probing the energy
spectrum and state of quantum circuits [121], this field is crucial for the formation and
coupling of superconducting qubits [4, 5], and even semiconducting qubits [122]. Mod-
eling resonators as quantum mechanical systems as in cQED is the approach usually
taken when resonator frequencies approach the energy scales of the system – typically
in the range of a few-GHz11.

Nonetheless, in this dissertation we mainly use microwave resonators as a probe for
the quantum device of interest, and not for its own quantum behavior. Hence, it is rel-
evant to consider when we can treat the resonator as a classical system of oscillating
voltages and currents, instead of a photonic cavity. Following Ref. [123], we describe an
expression for the response of the resonator including both parametric contributions
and quantum interactions between the resonator and probed device. Counter to intu-
ition, we find that these two contributions are additive, and both can simultaneously
be relevant. As an example, we apply the theory to a charge qubit where an electron is
tunnel-coupled between the states of two QDs.

Broadly, the argument is as follows: The Hamiltonian of the system is Ĥ = Ĥr+ Ĥd(x)
where Ĥd is the device’s Hamiltonian with bare eigenstates {|ψi 〉}i at energies Ei . It is a
function of some charge or flux variable x. The resonator couples to the device through
quantum variations of x → x0 + x̂r related to photons in the resonator. For a resonator
capacitively coupled to a device by capacitance Cg, we have x̂r = (Cg/C )Q̂/e = iλ(â† − â)

where λ ≡ 2(Cg/C )
√

ħ/(2e2
p

L/C ). Essentially, x̂r is the charge induced on the device-
resonator capacitor by resonator photons in units of e while x0 is a DC charge offset [2,
123]. Galvanic coupling of the resonator to a semiconducting device inevitably involves
incoherent tunneling into the device’s leads and is ill-suited for this purely quantum
description. Instead, the approaches of Section 2.2.2 should be employed. For capac-
itances between a gate electrode and a submicron-scale QD, we typically have Cg ≪ C
such thatλ≪ 1. Accordingly, one may Taylor expand the Hamiltonian to second order in
λ. The x̂r-dependent part of the Hamiltonian is the resonator-device coupling Hamilto-
nian, while the x0-dependent part describes the bare device Hamiltonian. Additionally,
we assume the resonator is in the dispersive regime where ħω0 − |Ei −E j | for any i , j is
much larger than the energy scales of the coupling Hamiltonian ∝ λ. In this way, we
can neglect resonant excitations in the device induced by the resonator. Considering the
resonator as containing n photons, from the second-order energy corrections in λ pro-
portional to n we may finally read out the resonator frequency shift. When the device is

11The reason for this is one of convenience: It happens that many semiconducting and superconducting
qubits are easily tuned such that their transition frequencies are in the range of a few to tens of GHz. On
the other hand, it is convenient that standard SMA cables operate from DC to 18 GHz, as do a great deal of
other useful microwave components such as amplifiers, circulators, and measurement electronics.
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Figure 2.9: Parametric and dispersive response of a resonator to a DQD charge transition when the resonator
is coupled to one of the dot’s gates. (a-c) Thermally averaged expected resonance frequency shift 〈δω0〉 of a
resonator with equivalent parallel L = 1.28nH and C = 0.427pH (such that ω0/2π = 6.81GHz) for different tc
including only the parametric shift (a), the dispersive shift (b), and both contributions (c). (d) The fraction
of 〈δω0〉 given by the parametric contribution at ng = 0.5 for the 6.81 GHz resonator (dashed) and for a lower
frequency resonator with L = 420nH, C = 0.377pF, andω0/2π= 400MHz as was measured in Chapter 5 (solid).
For all plots, a QD charging energy EC = 500µeV, temperature T = 71mK (based on the results of Chapter 5),
and lever arm of 0.1 are used.

in state |ψi 〉, it is

δω0,i = λ2

ħ
∂2Ei

∂x2 + 1

ħ
∑
j ̸=i

g 2
i j

(
2

Ei −E j
− 1

Ei −E j −ħω0
− 1

Ei −E j +ħω0

)
(2.19)

where gi j =
∣∣∣〈ψi | ∂Ĥd

∂x (x0) |ψ j 〉
∣∣∣ is the resonator coupling strength to the transition |ψi 〉↔

|ψ j 〉. The first term is a parametric shift of the resonator frequency due to the device oc-
cupying state |ψi 〉: this may be viewed as arising due to the quantum capacitance Cq =
4e2(∂2Ei /∂x2)−1 of the device. Meanwhile, the second term is the dispersive shift result-
ing from virtual second-order photon transitions between the device and resonator.

Often, only the former is considered at low frequencies while only the latter is con-
sidered at higher frequencies, but both terms are distinct and additive [123]. At very low
frequencies whereħω0 ≪|Ei−E j | it is valid to consider only the parametric contribution,
but it is less obvious when the parametric contribution could be neglected. The second
derivative of Ei in the device ground state could be very small away from anticrossings
or at anticrossings arising from a very strong hybridization between states.

To investigate the crossover between these two regimes, we consider the case of a
DQD near an interdot charge transition, as is probed with resonators in Chapters 3 and
5.This example is mathematically equivalent to the Cooper pair box example considered
in Ref. [123] with the Josephson energy replaced by interdot tunneling and with a single
charge tunneling instead of a Cooper pair. We consider both QDs as having charging
energy EC, with one dot coupled to a resonator via Cg leading to a reduced gate voltage
ng =−x and the other dot’s reduced gate voltage fixed at 1/2. Considering a single charge
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shared between the dots, the Hamiltonian up to a constant offset is

ĤDQD =
(

ECn2
g tc

t∗c EC(1−ng)2

)
(2.20)

where tc is the interdot tunnel coupling. Including a mutual charging energy between
the dots only serves to shift the center of the interdot transition as a function of ng, so we
neglect it here. The energy eigenvalues are

E± = EC(n2
g −ng +0.5)±0.5

√
E 2

C(2ng −1)2 +4|tc|2 (2.21)

which has a minimum excitation energy of 2tc at ng = 0.5. Also, ∂ĤDQD/∂ng is readily cal-
culable, so we plot the thermally averaged frequency shift 〈δω0〉 in Fig. 2.9 for a 6.81 GHz
resonator. We consider parametric and dispersive terms from eq. 2.19, and find that both
substantially contribute to the full frequency shift when 2tc ≲ ω0/2π. When 2tc is rela-
tively close but not equal to ω0/2π, the dispersive terms dominate. Many experiments
in circuit quantum electrodynamics consider only these terms [123], as do we in Chap-
ters 3 and 4. Finally, when ω0 is much smaller than any excitation energy, the paramet-
ric shift dominates the resonator response. We plot the fraction of the total frequency
shift given by the parametric shift in Fig. 2.9(d) for the 6.81 GHz resonator (dashed line)
and a 400 MHz resonator (as measured in Chapter 5, solid), confirming this expectation.
This justifies considering only the parametric impedance of a system when measuring
at very low frequencies, but as excitation energies approach the resonator frequency, vir-
tual photon transitions with the resonator must also be considered.

2.2.2. IMPEDANCE OF QUANTUM CHARGE SYSTEMS
Since our focus is on using resonators as a noninvasive probe of quantum systems, we
hereon focus on the classical regime where the resonance frequency ω0 is small, and its
detuning from the excitation frequencies (Ei −E j )/ħ of the system under investigation
is much larger than the resonator’s characteristic coupling strengths gi j to this system.
In terms of the quantum mechanical theory of Sec. 2.2.1, this corresponds to ω0 ≪ ωi j

and |ω0 −ωi j |≪ gi j for all i and j . The latter condition is that for being in the dispersive
regime where the resonator state is altered due to photon-induced virtual transitions in
the quantum system, dressing the resonator state without introducing driven transitions
in the quantum system. Meanwhile, the condition ω0 ≪ ωi j suppresses even these vir-
tual conditions, meaning that the only effect of the quantum system on the resonator is
its effective impedance associated with the quantum or thermal state of the system. In
this case, the resonator can be treated in terms of how its electromagnetic field couples
into the quantum sytem. Conversely, the quantum system can be treated as a parametric
impedance perturbing the circuit parameters of the resonator. This is the approach we
will take to discuss the modeling of potentially-open quantum systems of charge in the
‘weak-signal’ regime, where the resonator does not cause driving effects in the system.
We focus on the case of the resonator being capacitively coupled to the device, but also
briefly discuss the expected signal for Ohmic coupling to a device lead.
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GATE REFLECTOMETRY

For completeness we begin as generally as possible12: Consider a quantum charge sys-
tem with Hilbert space H described by a density matrix ρ̂ related to the system’s Hamil-
tonian Ĥ . Let Ĥ have eigenstates |ψα〉 indexed by quantum number α. The system may
in general be in a mixed state due to incoherent coupling to thermal reservoirs (phonons)
or charge reservoirs (leads). A small oscillating resonator voltage Vg(t ) =V 0

g +δVg sin(ωt )
weakly capacitively couples via gates with lever arms αi = Cgi /Ci to a set of QDs with
charge operators {Q̂i }i , where Cgi is the gate’s capacitance and Ci is the total capaci-
tance of the QD. The charge 〈Qi 〉 is the charge induced on the capacitor Cgi including
the QD charge −e 〈n̂i 〉. The resonator then becomes sensitive to the system’s effective
impedance, which we will infer from the total gate currents Ig =∑

i d〈Q̂i 〉/dt [125]. Here,
‘weak’ coupling means that the resonator’s energy per photon ħω0 and the amplitude
of its oscillations to the Hamiltonian Ĥ parameters are small compared to other energy
scales of the system. In this case, we may treat the resonator as a classical oscillating elec-
tromagnetic field parametrically affecting Ĥ and its tunnel rates to external reservoirs.
In terms of ρ̂, the effective current seen by the resonator reads Ig =∑

i
d

dt trace
[
ρ̂Q̂i

]
.

To continue, we assume that the charge system is weakly coupled to any charge reser-
voirs and photon or phonon baths. In this case the quantum details of reservoirs and
baths can be traced out, such that their only effect on H is to incoherently couple charge
states of the system via a Markovian master equation. Namely, the dynamics of the sys-
tem are described by a master equation in the Lindblad form which can be solved for ρ̂
[126]. In addition to dynamics described by the von Neumann equation for the reduced
system dρ̂/dt = −(i /ħ)[Ĥ , ρ̂], the Lindblad equation adds ‘jump’ operators to the right
hand side, coupling different states of the system with certain characteristic rates. This
approach is taken in Ref. [124], but solving a Lindblad equation is complex, so we con-
sider a simpler limit of this formalism: that where the jump operators couple one system
eigenstate directly to another. In other words, if the jump operators describe thermal
excitations, they cause excitation between eigenstates of the system. Meanwhile, if they
describe tunneling between the QDs and leads, then this approximation is only valid if
eigenstates of the QD system are charge states. Finally, because {|ψα〉}α is an orthonor-
mal eigenbasis of H we may write ρ̂ = ∑

αPα |ψα〉〈ψα| where Pα is the probability of
occupying state |ψα〉.

Under these conditions, we may calculate
∑

i 〈Qi 〉 =CgeomVg +∑
i αeff,i |e| 〈n̂i 〉 where

αeff,i ̸=αi is an effective lever arm depending on all QD capacitances and Cgeom is a clas-
sical ‘geometrical’ contribution to the QD capacitance unrelated to quantum effects, see
Appendix D for details. Then because the only time dependence of expectation values is
contained within Vg(t ), we may write

Ig =Cgeom
dVg

dt
+∑

i
αeff,i |e|

∑
α

(
〈ψα| n̂i |ψα〉 dPα

dt
+Pα

∂〈ψα| n̂i |ψα〉
∂Vg

dVg

dt

)
. (2.22)

By our above assumptions, Pα can be solved with classical master equations of the form

12A more detailed formulation of the impedance of charge systems can be found in Ref. [124], which also
includes driving effects.
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[127]
dPα
dt

= ∑
β ̸=α

(
Γβ→αPβ−Γα→βPα

)
, (2.23)

where Γα→β is an incoherent tunneling rate between |ψα〉 and |ψβ〉 [13, 125, 128–130].
These rates could represent tunneling of charge into lead reservoirs. For a system with-
out charge reservoirs, though, Γα→β may also represent phonon absorption or emission
from a thermal bath to excite or relax the system [13, 125, 130]. Now we may illustrate
why our above approximation was needed: given a hybridized DQD for example, the
eigenstates may consist of superpositions of charge states. Meanwhile, it could be the
case that incoherent tunneling occurs with lead reservoirs, but these couple one charge
state to another, not different eigenstates. In that case, the aforementioned Lindblad
formalism [124] or other quantum model of open systems must be used [131].

The impedance described in eq. 2.22 can be understood by noticing three types of
terms in the expression. First, there is CgeomdVg/dt — the equation for current through
a capacitor Cgeom. Second, there is the term CqdVg/dt , where

Cq ≡∑
i
αeff,i |e|

∑
α

Pα
∂〈ψα| n̂i |ψα〉

∂Vg
(2.24)

is the quantum capacitance, which we take the time-averaged value of over one res-
onator cycle. For each quantum state occupied with probability Pα, this capacitance
quantifies the smooth change in charge expectation values in that state as a function of
Vg. Notably, these changes are zero if the quantum state is a simple charge state, and
non-zero whenever the state is composed of multiple charge states hybridized together.
It is only present when charge states are coherently hybridized, hence the name. Quan-
tum capacitance can be equivalently formulated in terms of the second derivative of
energy with respect to voltage as in Sec. 2.2.1, since the energy stored on a capacitor C
is CV 2

g /2 [132]. This manifestation of quantum capacitance has been frequently mea-
sured in experiment, from early experiments on Cooper pair boxes [132, 133] to many
experiments on DQDs (See Refs. [117, 134–141] for example).

The third type of terms in eq. 2.22 are those proportional to dPα/dt . Evidently, these
terms relate to changes in the statistical distribution of the system between states in
time. Assuming the only time-dependence in our system arises due to δVg sin(ωt ), the
solution of eq. 2.23 may include terms proportional only to sin(ωt ) or cos(ωt ) — that
is, proportional to Vg or dVg/dt . From Ohm’s law for a resistor, we see that the former
terms contribute dissipation to the circuit while the latter contribute an additional ca-
pacitance. The potential resistive contribution is referred to as Sisyphus admittance [13,
125, 130, 142] because the resonator voltage ‘pushes’ the system higher in energy only
for incoherent relaxation events to dissipate this energy outside the system, depicted in
Fig. 2.10(b) in orange. Meanwhile, the capacitive contribution is called tunneling ca-
pacitance (denoted Ct) because it quantifies how the statistical distribution of charge
changes as the resonator voltage swings due to the Vg dependence of tunneling rates
Γα→β. These two contributions go hand in hand, as the Sisyphus admittance is typically
proportional to Ct [125] (see also Appendix E). Together, we refer to the sum of Ct and Cq

as Cp, the parametric capacitance [130], since it varies with the applied DC voltage V 0
g

and other parameters of the quantum system.
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2tc

Figure 2.10: Parametric capacitance of interdot tunneling in a DQD. (a) Schematic of a DQD tuned close to
an interdot charge transition hybridized with strength tc, with a gate resonator applying an oscillating detun-
ing between the charge states and sensing the system’s parametric capacitance Cp through reflectometry. (b)
Energy spectrum of the DQD. A curved anticrossing at charge resonance of width 2tc is present. Quantum
capacitance results from the smooth variation of charge (blue arrow) as the resonator voltage swings back and
forth. Meanwhile, tunneling capacitance in this case results from the changing statistical charge distribution
due to thermal excitations as the voltage swings (orange arrows). (c) Tunneling (orange), quantum (blue),
and total parametric capacitance (black) near the interdot charge transition, using αeff = 0.18, T = 71mK, and
tc = 5µeV. The former two parameters are chosen from fit results of Chapter 5. We take the limit of maximal Ct
where Γ/ω→∞ and the Γ and ω dependence of Ct disappears.

To exemplify parametric capacitance, we first summarize a minimal example: that
of a DQD with a resonator capacitively coupled to one of the dots’ gates, schematized in
Fig. 2.10(a). This has been calculated in numerous references [13, 125, 130, 134], so we
only restate the result. Given a single electron shared by two QDs 1 and 2 tunnel coupled
with strength tc with their levels detuned by ε = eαeffVg where αeff = αeff,1 −αeff,2, the
parametric capacitance is

Cp = (αeffe)2

4kBT

( ε

∆E

)2 Γ2

ω2 +Γ2 cosh−2
(
∆E

2kBT

)
︸ ︷︷ ︸

Ct

+ 2(αeffe)2|tc|2
(∆E)3 tanh

(
∆E

2kBT

)
︸ ︷︷ ︸

Cq

. (2.25)

Above, ∆E =
√
ε2 +4|tc|2 is the gap between the ground and excited states, and Γ is a

rate characterizing phonon emission and absorption from the DQD causing it to relax or
become excited. We plot the energy spectrum of this system in Fig. 2.10(b). The first term
Ct above represents the tunneling capacitance related to changes of state occupation
probabilities as a function of voltage due to these thermal processes, and is present even
when tc = 0. This process is pictured with orange and gray lines in Fig. 2.10(b). The
second term is the quantum capacitance Cq related to the hybridization of energy levels
as appeared in Sec. 2.2.1, depicted with a blue line. We plot both contributions to Cp

for a small tc = 5µeV in Fig. 2.10(c), where we see the result is a peak at the interdot
charge transition. In particular, at ε= 0 and T = 0 we have Cp = (αeffe)2/4tc. This simple
case illustrates how gate reflectometry can quantifiably measure resonant tunneling: the
maximum parametric capacitance at zero temperature is inversely proportional to the
hybridization strength, and therefore so is the maximum measurable frequency shift of
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Figure 2.11: Gate reflectometry tunneling capacitance of a quantum dot with one normal and one supercon-
ducting lead. (a) Schematic of the system, with a QD at chemical potential µD coupled to a normal lead biased
by chemical potential µN and a grounded superconductor with gap ∆. The superconductor’s density of states
is broadened by a Dynes parameter γ [145]. (b),(c) Tunneling capacitance of the QD as seen from its gate with
γ= 0.03∆ (b) and 0.1∆ (c). We take the limit of very large bare coupling strength Γ0 (see Appendix E) such that
it and the probe frequency ω are irrelevant to Ct. For other parameters, we take ∆ = 200µeV, α = 0.18 as the
resonator lever arm, T = 71mK (based on results of Chapter 5), and take the normal-state density of states in
the superconducting lead ν0

S to be equal to that in the normal lead. (d) Dynes-broadened density of states in
the superconducting lead (red) multiplied by f (µ) (dotted) or 1− f (µ) where f (µ) is the Fermi-Dirac distribu-
tion. The tunneling capacitance contains contributions proportional to this quantity and its derivative. We
also plot f (µ) (dotted) and 1− f (µ) (solid) in orange. For these plots we use the same parameters as (c).

a gate resonator. Notably, Ct is only noticable in the figure due to the relatively small tc

value, and for more substantial tc it becomes negligible compared to Cq. We also remark
that at higher temperatures Cq becomes suppressed since the ground and excited states
become equally occupied and contribute opposite capacitances.

Next, we consider two further examples of parametric capacitance in order to illus-
trate its deviations from the simple result of eq. 2.25. First, we consider a single QD cou-
pled to one normal and one superconducting lead reservoir, then we consider the quan-
tum capacitance of a two-site Kitaev chain device [87, 143, 144]. The former illustrates
how incoherent tunneling with leads and not just phonon exchange leads to a tunneling
capacitance, while the latter shows how higher-order tunneling processes such as elastic
cotunneling and CAR also contribute to quantum capacitance.

Beginning with the QD coupled to a normal and superconducting lead shown in
Fig. 2.11(a), we suppose the QD is coupled to a gate resonator of lever armαwith chemi-
cal potentialµD, and connected via tunnel barriers to a normal lead and a superconduct-
ing lead of gap∆. The superconductor has a finite subgap density of states quantified by
a Cooper pair breaking energy scale γ such that γ = 0 corresponds to a hard gap [145].
Tunneling rates and the resulting Ct are calculated with the two reservoirs using Fermi’s
golden rule, see Appendix E for an analytic calculation of Ct. We plot Ct for a nearly hard
superconducting gap and a soft gap in Figs. 2.11(b) and (c) respectively. Importantly,
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Ct contains terms proportional to the density of states in the leads or their derivatives,
multiplied by factors of f (µ), ∂ f /∂µ, or 1− f (µ) where f (µ) is the Fermi-Dirac distribu-
tion function. This is clearly visible in the simulations, as a tunneling capacitance peak
appears when the QD level is resonant with the normal lead chemical potential. At this
point, the Fermi distribution in this lead transitions from zero to one. Furthermore, as
µD is swept past ±∆ for biases above ±∆, a sharp positive peak in Ct followed by a tail
dipping below zero is visible. This arises from the sharp peak in the density of states of
the superconducting lead, where a negative tunneling capacitance is made possible by
the sharply negative slope in this density of states just past the peak. Lastly, we note that
a faint peak is visible when the QD level is resonant with the Fermi level of the supercon-
ducting lead if it has a softer gap, as in Fig. 2.11(c). This again arises due to the gradual
step in the Fermi distribution, but is made faint since it is multiplied by the small in-gap
density of states of the superconductor, illustrated in Fig. 2.11(d). These results show
that gate sensing of a QD not only reveals characteristics of the dot, but also probes the
density of states of any coupled leads.

As a final example, we simulate the quantum capacitance observable in gate reflec-
tometry of a QD forming one site in a two-site Kitaev chain or Cooper-pair-splitting de-
vice [87, 143, 144]. This device consists of two spin-polarized QDs (QD 1 and QD 2)
separated by a grounded superconducting lead hosting a single discrete subgap state at
energy E0, depicted in Fig. 2.12(a). Here, we conduct a full fermionic simulation of the
system using the model of Appendix F. The resulting charge expectation values 〈N̂1〉 on
QD 1 in the ground state are plotted in Fig. 2.12(b). In the lower left and upper right, we
see that elastic cotunneling across the superconducting subgap state hybridizes states
involving an electron tunneling between the dots. Meanwhile, in the top left and bottom
right, we see that CAR couples states involving one electron from each dot resonantly
tunneling into the superconductor. As is visible in Fig. 2.12(c), both second-order tun-
neling processes are measurable in quantum capacitance of QD 1. Charge transitions
changing the overall parity of the system appear as sharp lines because tunneling with
any normal-metal lead reservoirs is not included in this model. Despite this, we see that
even away from CAR and cotunneling transitions, Cq1 is nonzero near the sharp lead
transitions. This arises due to the QD level hybridizing with the superconductor’s ABS.
We also note that reflectometry of the superconducting lead would be sensitive to CAR
but not cotunneling across the dots, since the latter process doesn’t involve any charge
exchange with the superconductor when the tunnel barriers are symmetric. This prop-
erty could prove useful for parity readout of two-site Kitaev chains [14].

LEAD REFLECTOMETRY

As discussed near the beginning of this section, lead reflectometry where a resonator is
galvanically connected to a lead of the device is useful for fast measurements of conduc-
tance. Additionally, though, lead reflectometry senses dissipative and capacitive effects
even when the device has no DC conductance (such as for a device with one lead). Ac-
cordingly, we summarize here a few key features of lead reflectometry signals.

For tunneling between a QD and the lead, the lead reflectometry signal is similar
to that which would be measured with gate sensing for a lever arm of one. This is be-
cause the chemical potential difference between the dot and lead is directly modulated
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Figure 2.12: Gate reflectometry quantum capacitance of a two-site Kitaev chain device. (a) Schematic of the
device: two spin-polarized QDs separated by a grounded central superconductor hosting a discrete subgap
state at energy E0 with electron- and hole-like coherence factors u and v . (b) Expected charge occupation
in the ground state of QD 1. Simulated using the fermionic model of Appendix F for a nonfloating system by
solving the even- and odd-parity subspaces, and selecting at each point in parameter space the solution which
minimizes the energy. For other parameters, we set both QD charging energies to 5E0, we choose symmetric
spin-conserving tunneling strengths equal to E0, and use spin-flipping tunneling strengths of 0.3E0. Finally,
we apply a Zeeman splitting of 1.5E0 to both QDs and neglect it for the subgap state. In Coulomb-blockaded
regions, the ground state is labeled with the occupation of each dot: ‘0’ charge, a single spinful electron ‘↑’,
or a singlet of charge ‘2’. (c) Thermally averaged (with temperature E0/40) quantum capacitance as seen by a
resonator connected to the QD 1 gate. Transitions not conserving total charge show up as sharp boundaries
because tunneling with lead reservoirs is not included in our model.

by the resonator voltage. Namely, lead reflectometry is sensitive to tunneling capaci-
tance and Sisyphus resistance. For a superconducting lead, it can even be directly sen-
sitive to quantum capacitance [133] [146] Additionally, tunnel barriers separating the
leads from QDs have a capacitance through which a lead resonator is sensitive to a ‘gate
reflectometry’-like signal even when no tunneling is possible between the lead and QD
[134, 147].

In general, any lead or gate reflectometry measurement measures tunneling in two-
level systems or other charge pockets that it has some stray capacitance to [148]. The
fact that all of these signals are superimposed in the measurement can complicate the
interpretation of signals. Finally, we note that resonators may be inductively coupled
to quantum systems as well, such as in the case of radio-frequency superconducting
quantum interference devices (RF SQUIDs) [149]. In this case a different approach using
flux instead of charge variables could be taken for calculating the impedance [123].

2.2.3. DRIVING DUE TO LANDAU-ZENER TRANSITIONS

As the RF power applied to a quantum system is increased, or as the transition energies
of the quantum system decrease, we eventually expect the resonator to drive transitions
in the system, altering or suppressing the reflectometry signal. Understanding this limit
is clearly important, since for example eq. 2.25 leads to a Cq which diverges as 1/kBT at
ε = 0 and tc = 0, but of course in this limit our measurements would yield exactly zero
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signal, not a divergently large one.
The answer to this contradiction comes by including driving effects induced by the

resonator. If the resonator sweeps the detuning across an anticrossing at a fast enough
rate and with a large amplitude, it will cause the system to jump into the excited state
through a Landau-Zener transition (LZT). Indeed, LZTs make all of the parametric ca-

pacitance models we’ve considered inapplicable for small values of |tc| ≲
√

ħαδVg f0,

where δVg is the resonator’s oscillating voltage amplitude, α is its lever arm to the QD,
and f0 is the resonator frequency [150]. There LZTs become frequent, biasing the system
towards equal occupation of the excited and ground charge states where quantum ca-
pacitance is zero [138]. For a DQD with a short decoherence time, and at zero detuning
from the charge transition, the probability of a LZT occurring twice in a resonator cycle

is e−2|tc|2/ħαδVg f0 [150, 151]. Due to the sinusoidal nature of the oscillating voltage, a LZT
occurring twice in a cycle means that the tunneling electron spends an equal amount
of time in the excited DQD state as in the ground state. In other words, the population
of the excited state is equal to the population of the ground state when this probability
is one. Hence, we expect quantum capacitance to be eventually suppressed for small
enough tunnel couplings, since LZTs become more probable as tunnel couplings be-
come smaller for fixed δVg, and the quantum capacitance of ground and excited states
in a DQD cancel each other out. Thermal redistribution then serves to further suppress
the frequency shift for smaller tunnel couplings [125, 130].

2.2.4. OPTIMIZING RESONATOR DESIGN FOR MEASUREMENTS
The response of a resonator probing a small capacitive response of a quantum device is
highly sensitive to the resonator parameters because it is difficult to controllably tune the
quantum device to optimal impedance matching conditions 13 [13]. When measuring a
charge sensor with reflectometry techniques, the resonator parameters are less impor-
tant because the resistance of the sensor can be tuned until the resonator circuit has
impedance matched with the readout line at Z0 = 50Ω. Hence, even though resonators
used in this thesis were not designed specifically for these experiments, we discuss res-
onator optimization here to illustrate where improvements could be made in future ex-
periments.

Unless measurements are so fast that the time for a readout resonator to reach its
steady-state after an RF pulse is applied becomes a significant portion of the measure-
ment time [152], the problem of optimizing readout resonators amounts to maximizing
the change in the reflection coefficient Γ for the expected changes in device parame-
ters. Explicitly, this means maximizing |∆Γ| ≡ |Γ(Z1)−Γ(Z2)| for device impedances Z1

and Z2 corresponding to the two extremes of signals one wants to distinguish [13]. For
low-frequency resonators sensing a capacitive signal ∆C , the resonator line width is of-
ten much larger than the perturbative shift in its frequency due to ∆C . In that case, this
becomes a problem of maximizing the derivative |dΓ(C )/dC | [117].

Of course, other factors outside of the resonator design affect the signal-to-noise ratio
(SNR) of an experiment: most notably the noise temperature of the circuit. The SNR is

13Note that measuring small inductances is even more difficult with off-chip resonators: the small device
inductance forms a low impedance path to ground in parallel with the parasitic capacitance, destroying the
resonance.
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given by

SNR = signal

noise
=

∣∣∣∣ (∆Γ)Vrf

Vnoise

∣∣∣∣ (2.26)

where Vrf is the signal voltage incident on the resonator circuit such that ΓVrf is the re-
flected voltage, and Vnoise is the voltage scale associated with noise. The latter is an in-
creasing function of the noise temperature of the system, determined primarily by the
noise temperature of the earliest amplification stage [116]. In Chapter 3, we demon-
strate an SNR of 15 in 1µs measurement time for distinguishing tunneling in a DQD
from Coulomb blockade, due in large part to the presence of a parametric amplifier lo-
cated at the mixing chamber plate of the fridge [153]. This amplifier was also present for
the experiment of Chapter 4. Again, noise temperatures are limited to around the tem-
perature of the first amplification stage, which without a parametric amplifier is usually
a high-electron-mobility transistor amplifier operating at the 4 K stage. This is the case
for the measurements of Chapter 5, but such amplifiers at 4 K were also used in other
chapters in addition to the parametric amplifier.

For lower frequency reflectometry measurements well outside of the quantum limit
of Sec. 2.2.1, the most typical resonator consists of an off-chip inductor bonded to the de-
vice in question [13], as we use in Chapter 5 [154]. The GHz-frequency coplanar waveg-
uide resonators used in Chapters 3 and 4 were designed by Daan Waardenburg [155]
based on the work of Ref. [156]. Distributed-element resonators are fabricated on the
same chip as the measured quantum device and have more tunable design parameters
by definition [157], though they can be modeled as equivalent RLC circuits for a given
design [158]. We therefore focus on discussing off-chip lumped-element resonators as
a simpler example, also because they can be readily applied in any quantum device re-
gardless of the material platform.

In this case, the capacitance C of the resonator is formed by a parasitic capacitance
of the inductor, device leads, and bond wires to ground: surprisingly consistently in the
range of 0.1 to 1 pF across different experiments and resonator designs [13, 117, 128, 134,
135, 138, 154, 159, 160]. One facet of optimizing the resonator’s performance involves
minimizing this capacitance, since higher resonator frequencies can only be achieved
by lowering L or C , and Qi increases with decreasing C up to an optimum for resonator
circuits with C in parallel with losses [116]. As evidenced by the extensive experimental
references above, it is difficult to reduce the parasitic capacitance below 0.1 pF. With
just an inductor and capacitor (and some intrinsic losses R), there are not many tunable
parameters for maximizing |∆Γ|.

To tune the coupling of the resonator to the reflectometry circuit (Qc) or to include
multiple resonators on the same reflectometry line, the inductor is thus often fabricated
in series with a coupling capacitor Cc. Since the inductor is typically made of a super-
conducting material like Nb [154], NbN [160] or NbTiN14, losses in the resonator mainly
come from capacitive coupling to lossy dielectrics and other lossy conductors, so we
model the resonator losses by an admittance Y in parallel with C . The device impedance
Z is also in parallel with Y and C , pictured in Fig. 2.13(a). When measuring parametric
capacitance of a QD device such that Z = 1/iω∆C , capacitances are typically limited to
less than a femtofarad. We will find that the maximum measured quantum capacitance

14Used in resonators designed by Yining Zhang and Ivan Kulesh, but not employed in this thesis.
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Figure 2.13: Optimization of a series LC resonator for measuring a small capacitive response. (a) Resonator
reflectometry measurement circuit, with the resonator coupled to the readout line by coupling capacitance
Cc, and its resonance given by inductance L, a typical parasitic capacitance C = 0.5pF to ground, and intrinsic
losses Y . A small capacitive shift∆C = 150aF (calculated from the maximum observed≈ 80kHz frequency shift
in Fig. 5.3(d)) perturbs this resonance. (b-g) Response of the resonator to∆C for Y = e2/h (b-d) and 0.1e2/h (e-
g) for different Cc and L. (b),(e) Absolute change in Γ at the bare resonance frequency (numerically calculated
as the frequency at which the resonator circuit impedance has no imaginary component) as∆C goes from 0 to
150 aF. (c),(f ) Resonator resonance frequency. (d),(g) Complex Γ response at the points indicated in (b) and
(e). For low internal losses, Cc mostly only affects Qc in the same way it affects Qi, indicated by the resonator
response remaining strongly overcoupled (Qi ≫Qc).

in Chapter 5 is about∆C ≈ 150aF, for example. Since quantum capacitance increases for
smaller tunnel couplings until thermal excitations, Landau-Zener transitions, or other
incoherent processes set in, these factors determine the maximum ∆C . Given typical
parasitic capacitances of at least 0.1 pF, this places us solidly in the small-signal regime.
As we saw in the previous section, quantum capacitance also scales with the square lever
arm of the resonator to the QD being measured. Naturally, a stronger capacitive coupling
of the gate to the QD leads to a larger signal, but a weaker lever arm can be overcome by
simply increasing the input RF power. If the lever arm is too weak, one does run the risk
of the resonator having substantial unintended couplings (such as to a neighboring dot)
or for driving and heating effects to occur at the RF powers needed to achieve a good
signal.

We begin by considering a series LC circuit, where the inductor is connected di-
rectly to the device, such that the device and parasitic capacitance to ground form in
series with L. In Fig. 2.13(b) and (e), we accordingly plot the achievable signals |∆Γ| ≡
|Γ(∆C )−Γ(0)| for ∆C = 150aF when measured at the resonance frequency ω0 for high
Y = e2/h and low Y = 0.01e2/h, respectively. The higher Y value here is reasonable for
superconducting off-chip resonators (e.g. given the low resonator Q factors observed in
Chapter 5). For higher losses, we see that tuning Cc leads to a signal maximum, but the
signal is not much smaller even when Cc ≫C . For lower losses this maximum isn’t in the
observed parameter range at all, and the maximal signal comes from simply maximizing
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Figure 2.14: Optimization of a parallel LC resonator for measuring a small capacitive response, similar to
Fig. 2.13. (a) The resonator circuit, differing from that of Fig. 2.13 in that the inductor is connected directly
to ground, in parallel with a connection to the device capacitance∆C . (b-g) As in Fig. 2.13: resonator response
to a small capacitance ∆C = 150aF for different L and Cc for Y = e2/h (b-d) and Y = 0.1e2/h (e-g). Unlike in
Fig. 2.13, the labeled (L,Cc) points in (b) and (e) for which the resonator responses are shown in (d) and (g)
are different between the low and high Y cases. This is in order to emphasize that by tuning Cc across a Y -
dependent optimal value, the resonator can be tuned continuously from being overcoupled to undercoupled.

Cc. Note that in this limit the circuit becomes equivalent to the case without the cou-
pling capacitor. Furthermore, from Figs. 2.13(c) and (f) we see that Cc strongly affects
the resonance frequency, since when Y = 0 the device is simply a series LC circuit with
effective capacitance 1/(1/C +1/Cc). As such, the ability of Cc to tune Qc is only present
insofar as Y > 0, so that Cc can be differentiated from C in the circuit. This is clear from
the resonator responses plotted in Figs. 2.13(d) and (g). Counterintuitively, from Fig. 2.13
(d) we see that Qc/Qi increases with increasing Cc, because for Cc <C , the resonance fre-
quency is largely determined by Cc. As Cc decreases further below C , C begins to behave
as a low-impedance shunt to ground at the resonance frequency ω0 ≈ 1/

p
LCc, bypass-

ing the dissipation Y and increasing Qi. The reason to add Cc to the circuit in this case
is mostly just to allow multiple resonators to be connected to the same feedline with
separate bias tees (since Cc prevents them from being shorted).

Though not employed in this thesis, we note that additional tunability of Qc is pos-
sible when the inductor is bonded to ground in parallel with the bond to the device
impedance [117], pictured in Fig. 2.14(a). This is in part because Cc affects the circuit
impedance in a nontrivial way compared to C regardless of the value of Y . We plot anal-
ogous simulations of the resonator response to the series resonator case for this circuit in
Fig. 2.14. In this configuration, we observe that generally larger |∆Γ| are achievable than
for the series case provided Cc can be accurately engineered to a Y -dependent range.
Particularly, from the resonator responses plotted in Figs. 2.14(d) and (g) for different
(L,Cc) values we see that tuning Cc allows one to tune continuously from the resonator
being very undercoupled to being very overcoupled even for substantial internal losses.
We also note that the circuit resonance frequencies are relatively weakly dependent on
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Figure 2.15: Optimization of a parallel and series LC resonator for measuring a large resistive response. (a-c)
and (d-f ) show results for the series and parallel LC resonators discussed above, respectively. (a),(d) Absolute
change in signal for device admittance changing from ∆Y = 0 to ∆Y = 10e2/h with internal resonator losses
Y = 0.1e2/h, and for Y = e2/h in (b),(e). (c),(f ) Resonator responses plotted for the (L,Cc) values indicated in
(a),(b),(d),(e).

Cc, making it simpler to independently engineer Qc andω0. A minor downside of this ap-
proach is that inserting a bias tee between the coupling capacitor and inductor requires
that a large capactor be placed between L and ground to avoid a short.

Finally, we consider the case of measuring a resistive response of a quantum device.
One may want to connect a resonator to a lead of a device to measure RF conductance
more efficiently than one can measure DC conductance. This goal is one of the motiva-
tions of the experiments of Chapter 3. Due to the low carrier density of semiconductors
and high resistances of tunnel barriers, conductance across semiconductor quantum
devices typically ranges from 0 to several conductance quanta e2/h, corresponding to a
few kΩ. Assuming resonator losses on the order of e2/h or smaller, this range of device
conductances corresponds to a large signal. Simply minimizing the resonator’s internal
losses, one finds the resonator response goes from strongly overcoupled to strongly un-
dercoupled for 1/Z ≡∆Y ranging between 0 and, say, several times e2/h. For very small
changes in device resistance on the other hand, the optimal resonator response occurs
near critical coupling [13]. The problem of resonator optimization for resistive readout
is very simple for a series resonator then: Simply choose L to pick the desired measure-
ment frequency, choose Cc ≳C to ensure the resonator frequency is determined mostly
by C , and minimize internal losses Y as much as possible. For both parallel and se-
ries resonators, we plot the signal change |∆Γ| for a change in device admittance from
∆Y = 0 and ∆Y = 10e2/h in Fig. 2.15, with ∆Y taking the place of the device capacitance
in Figs. 2.13 and 2.14. When Y is small, it is possible to achieve responses around the
maximum possible |∆Γ| of 2 (recall the resonator response is at largest a unit circle in
the complex Γ plane). As Y becomes comparable to the admittances to be measured,
the maximum achievable signal quickly diminishes. Additionally, we note that again the
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signal is comparable to its maximum for a series resonator so long as Cc ≳ C , while for
parallel resonators, Cc must be designed to a Y -dependent range. In the resonator re-
sponses plotted in Figs. 2.15(c) and (f), we observe that the optimal signal occurs for
resonators between critical coupling and overcoupling. On the other hand, we see that
strongly overcoupled resonators have a suppressed signal again, because ∆Y can not
introduce enough dissipation to take the resonator out of the Qc ≪Qi limit.

In summary, we found that off-chip resonators with the inductor bonded in parallel
with a quantum device offer greater tunability of Qc than when bonded in series (as was
done for the measurements of Chapter 5). This leads to substantially greater achievable
signals for the parallel case when the resonator measures a small capacitive response.
For readout of typical semiconductor device resistances a few times e2/h or smaller, ei-
ther resonator configuration can achieve a large signal provided internal losses are small
compared to the maximum device admittance. For both capacitive and resistive read-
out, a series-bonded inductor circuit has the advantage that the signal is fairly insensitive
to the precise value of Cc provided Cc ≳C . In all cases, the signal improves as one min-
imizes internal losses. Additionally, the optimal signal generally occurs when the device
is overcoupled or critically coupled, and undercoupled resonators have poor responses.
Finally, we note nanosecond-scale charge sensing experiments have been conducted us-
ing resonators inductively coupled to a feedline, in place of Cc [160].
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On-chip superconducting resonators enable fast characterization and readout of meso-
scopic quantum devices. Finding ways to perform measurements of interest on such de-
vices using exclusively resonators is therefore of great practical relevance. We report the
experimental investigation of an InAs nanowire multi-quantum-dot device by probing
GHz-frequency resonators connected to the device. First, we demonstrate accurate ex-
traction of the DC conductance from measurements of the high-frequency admittance.
Because our technique does not rely on DC calibration, it can potentially obviate the
need for DC measurements in semiconductor qubit devices. Second, we demonstrate
multiplexed gate sensing and the detection of charge tunneling on microsecond time
scales. The microwave detection of dispersive resonator shifts allows rapid acquisition
of charge-stability diagrams, as well as resolving charge tunneling in the device with
a signal-to-noise ratio of up to 15 in one microsecond. Our measurements show that
GHz-frequency resonators may serve as a universal tool for fast tune-up and high-fidelity
readout of semiconductor qubits.

The work in this chapter has been published in Physical Review Applied 16, 014007 (2021). arXiv:2103.03659
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3.1. INTRODUCTION
Microwave resonators in the few-gigahertz range are well known as a powerful means to
increase the speed with which properties of mesoscopic quantum devices can be read
out [12, 13]. In the field of quantum information, resonators in this so-called ‘Super
High Frequency’ (SHF) band have thus enabled the fast and high-fidelity nondemoli-
tion readout of quantum bits (qubits) [4, 161–163], as well as mediating interactions be-
tween qubits [146, 164–166]. SHF resonators are also an attractive tool for the fast char-
acterization of quantum devices, because the required tuneup routines are generally
time-consuming. Additionally, frequency multiplexing using many high-quality-factor
resonators has been established for hardware-efficient mass-characterization of devices
[167, 168].

Efficient characterization is particularly relevant for semiconductor quantum de-
vices where many gate electrodes result in a large parameter space. In recent years there
have been numerous efforts to utilize SHF resonators for this purpose [169–173] as well
as reading out qubit degrees of freedom [141, 169, 174–182]. Despite these successes,
however, experiments are still often supplemented with DC or low-frequency measure-
ments to quantitatively extract the DC conductance [183]. As larger-scale devices are
developed [184, 185], it is interesting to direct focus to readout and tuneup schemes
utilizing SHF resonators only, thus allowing a single framework for all measurements
performed on a device.

Here, we present experiments using multiplexed resonators in the range 3–7 GHz
coupled to a multiple quantum dot (multi-QD) system. Using the resonator response
only, we are able to infer quantitatively the DC conductance of the system, and de-
tect single-electron tunneling with high signal-to-noise ratio (SNR) on submicrosecond
timescales. The remainder of this paper is organized as follows. In Sec. 3.3 we deter-
mine the DC (i.e. zero-frequency) conductance from SHF measurements without any
DC calibration data and find agreement with conductance obtained from a DC trans-
port control measurement. In Sec. 3.4, we demonstrate fast multiplexed dispersive gate
sensing (DGS) at gigahertz frequencies in a double quantum dot (DQD). This local mea-
surement of charge transitions facilitates fast tuneup of multi-QD systems [185]. Finally,
in Sec. 3.5, we attain high SNRs in the detection of charge tunneling in the DQD. State-
dependent charge tunneling is a key mechanism for qubit readout in semiconductor
and topological qubits [10, 11, 186]. Our optimized resonator design [117], combined
with the use of a near-quantum-limited amplifier [153], results in a maximum SNR of 15
in an integration time of 1µs.

3.2. EXPERIMENTAL SETUP
The device comprises an InAs nanowire with a few-gigahertz coplanar waveguide res-
onator [156] coupled to every QD to sense the electronic compressibility of each in-
dividual dot. An additional resonator that is galvanically connected to the source of
the nanowire is used to probe the admittance of the nanowire. Figures 3.1(a) and 3.1
(b) show images of the resonators and the multi-QD device, respectively. An approxi-
mate lumped-element schematic of the device is shown in Fig. 3.1(c). Each resonator is
coupled to a central feedline in a hanger geometry and is individually addressable us-
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Figure 3.1: Experimental setup and resonator response. (a) Schematic of the device layout and (b) False-
colored electron micrograph of the nanowire and the surrounding gates. (c) The RF equivalent circuit diagram
of the device. The five top gates are coupled to resonators as is the source electrode of the nanowire that can
be DC-biased by VB with a bias-tee. The top gates are separated by six tunnel gates such that the nanowire can
be pinched off at various positions and quantum dots can be defined. The charge on the quantum dots can be
controlled by the side gates. (d) Transmission through the feedline without magnetic field and at 1 T applied
parallel to the plane of the resonators. The arrows L (left), R (right), and B (bias) mark the resonators used here.

ing frequency multiplexing (Fig. 3.1(d)). The complex transmission S21 of microwaves
through the feedline contains information about the reflection coefficient of each res-
onator [187]. The obtained SNR is set by the high resonator bandwidth, optimized res-
onator coupling quality factors, and a traveling-wave parametric amplifier (TWPA) [153]
at the base temperature stage of 20 mK of our dilution refrigerator. For further details,
see Appendix B.1.

3.3. HIGH-FREQUENCY CONDUCTANCE MEASUREMENTS

We begin by investigating the SHF response of the resonator coupled to the lead in re-
sponse to changing nanowire conductance [170, 171, 183, 188, 189]. For all RF measure-

ments, we denote the transmitted amplitude of resonator j ∈ {L,R,B} by V j
RF and the in-

put amplitude by V0. By tuning the gate voltage T2 and keeping the other gates at 0 V we
alter the nanowire conductance. This modulates the resonator response, shown in Fig-
ures 3.2(a) and 3.2(b), through changes in its load admittance. The DC conductance can
be extracted from the load admittance either by building up a calibration map of load ad-
mittance and DC conductance, or by quantitatively modeling the resonator circuit [183].
We take the latter approach to maintain independence from DC calibration measure-
ments. To quantify the modulation of the resonator response, we fit the response to a
hanger input-output model [158, 187, 190]. The relevant parameters for extracting load
admittance are the change in the resonance frequency ∆ω0 and the additional photon
decay rate ∆κd with respect to the pinched-off regime, which is reached by decreasing
the gate voltages until κd saturates. Representative fits are plotted in Fig. 3.2(a) and the
extracted κd and ∆ω0 are shown in Fig. 3.2(c). The load admittance, Y, is derived in
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Figure 3.2: Pinchoff measurements. (a), (b) Response of the conductance resonator to the tunnel gate volt-
age T2 and linecuts at the indicated gate voltages in (b) offset for clarity. (c) Frequency shift ∆ω0 and internal
resonator decay κd extracted from individual resonator line traces of (b). (d) Schematic of the nanowire for
the experiment in (b) with the corresponding lumped-element model used to convert between resonator ad-
mittance and conductance GRF. (e) Conductance GDC, measured with standard voltage-biased current mea-
surements, together with the conductance GRF extracted from (c). The inset shows the conductance GRF, as
a function of conductance GDC, for the gate response of all tunnel gate voltages T1 through T6. The dashed
line indicates GDC =GRF. The individual traces are included in Sec. 3.7.4. All measurements in this figure are
taken at VB = 10mV while unused gates are held at 0 V such that only the active tunnel gate can deplete the
nanowire.

Sec. 3.7.1 to be

Y = π

Z0ω0

(
1

2
∆κd − i∆ω0

)
, (3.1)

which holds for a transmission line resonator of characteristic impedance Z0 coupled to
a high impedance load 1/|Y| ≫ Z0. We estimate Z0 = 116Ω from the resonator design.
See Appendix C for more details of the resonator fitting procedure.

Importantly, the load admittance at finite frequency does not directly translate to
the DC conductance of the coupled device (i.e. the nanowire). The nanowire itself has
an inductive component and the gates surrounding the nanowire add additional shunt-
ing capacitive paths to ground, contributing to the load admittance especially for higher
frequencies. Our device design using high-capacitance gates necessitates compensat-
ing for these contributions explicitly, in contrast to the experiments in Refs. [170, 171,
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Figure 3.3: Coulomb blockade diamonds measured in a single quantum dot. (a) Single-frequency response
near the ≈ 4.3GHz resonance of the resonator. (b) GDC measurements obtained with standard lock-in mea-
surements at 37 Hz. (c) Frequency shift ∆ω0 and resonator decay rate κd extracted from frequency traces. (d)
Conductance GRF extracted from the resonator data in (c).

183]. To account for these effects, we model the load admittance Y as in Fig. 3.2(d), de-
scribing an effective transmission line formed by the nanowire split by a tunnel junction.
We denote the series resistance, inductance and parallel capacitance per unit length of
this transmission line by Rnw,Lnw and Cnw and introduce Znw = ℓ(Rnw + iωLnw) with ℓ

the nanowire length. The DC conductance of the nanowire can be calculated from its
intrinsic impedance Znw and the impedance of the tunnel junction ZT.

The relation between ZT and Y depends on the fractional position of the tunnel junc-
tion along the nanowire, which we parameterize by λ ∈ [0,1]. Explicitly, the relation is
given by

ZT=
Znw
γℓ

cosh((1−λ)γℓ)

Y Znw
γℓ sinh(γℓ)−cosh(γℓ)

sinh(λγℓ)− Y Znw
γℓ cosh(λγℓ)

, (3.2)

where γ≡p
(Rnw + iωLnw)iωCnw denotes the complex propagation constant.

The constants Znw and γℓ are determined from two SHF calibration measurements.
For the first calibration measurement, the load impedance Yo is measured when all gates
are open at 0 V, corresponding to the limit that ZT = 0. For the second calibration mea-
surement, the load impedance Yp as |ZT | → ∞ and λ = 1 is measured by tuning the
rightmost gate voltage T6 into pinchoff. Solving the resulting two equations for γℓ and
Znw yields

γℓ= arctanh

(√
Yp

Yo

)
and Znw = γℓ√

YpYo
. (3.3)
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Using Eq. (3.2) and Eq. (3.3), we then extract ZT from the admittance Y . We model the
junction as a resistor RT and capacitor CT in parallel such that Z−1

T ≡ 1/RT + iωCT [191],
and then determine the DC-equivalent conductance as

G−1
RF = Re(Znw)+1/Re(Z−1

T ). (3.4)

See Sections 3.7.2 and 3.7.3 for the derivation of eqs.3.2-3.4 and for details of measur-
ing Yp/o, respectively. To validate our method of inferring the conductance, we com-
pare it with the conductance obtained from a control experiment using conventional
DC-current detection. Fig. 3.2(e) shows the conductance extracted from DC measure-
ments GDC and the DC conductance extracted from the resonator response GRF. Ex-
cellent agreement is observed between GRF and GDC for data from pinchoff traces of T1
through T6, changingλ according to the position of the gate, shown in the inset of Fig. 3.2
(e).

Applications of RF conductance are not limited to measuring the impedance of tun-
nel gates [173, 192–194]. As an example, we probe a quantum dot by tuning T2 and T3
into a tunneling regime and modulating the gate voltage VG, leaving the other gates at
0 V. We show the amplitude response of the lead resonator on resonance in Fig. 3.3(a) as
a function of bias voltage VB and gate voltage VG. Even though the amplitude response is
not translated into DC conductance here, it shows all the qualitative features present in
the control data measured by DC lock-in conductance (Fig. 3.3(b)), including the excited
states of the quantum dot. The amplitude response of Fig. 3.3(a) is part of a full frequency
trace, measured to also allow for a quantitative comparison between the DC results and
the resonator response. From these traces, the frequency shift ∆ω0 and photon decay
∆κd are extracted and shown in Fig. 3.3(c). We use the model defined by Eqs. (3.1 - 3.4)
to obtain GRF, shown in Fig. 3.3(d). This is the same model used for the tunnel junction
scans of Fig. 3.2. Note that we neglect here the finite width occupied by the quantum dot
and its internal structure; nevertheless we observe reasonable agreement between GRF

and GDC.

3.4. RAPID MULTIPLEXED REFLECTOMETRY
We now move on to the capacitively coupled gate resonators and investigate DGS in the
DQD regime [95, 134, 135, 137–141, 159, 174, 195, 196]. To tune the system into a DQD,
the gate voltages T4, T5, and T6 are each decreased into a tunneling regime. Accordingly,
two quantum dots are formed under the rightmost two top gates in the nanowire [191].

A resonator is coupled to both dots to sense the electronic compressibility of the in-
dividual dots [123, 125]. In Fig. 3.4 we show a charge stability diagram (CSD) using VL

and VR to change the electron occupation of the DQD. We perform pulsed readout with
an integration time of 3µs per point, constituting a total data acquisition time of 30 ms
for the entire CSD [172, 197]. The data acquisition is frequency-multiplexed for both
resonators such that the data in Figures 3.4(a) and 3.4(b) are measured simultaneously
[154, 185]. Multiplexing not only reduces the measurement time, but also guarantees
that the measurements in Figures 3.4(a) and 3.4(b) correspond to the exact same physi-
cal regime, regardless of charge jumps and gate hysteresis. To emphasize the correspon-
dence between Figures. 3.4(a) and 3.4(b), the same guides to the eye outlining stable
charge configurations are drawn in both panels.
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Figure 3.4: Charge stability diagram measured using multiplexed gate-based readout in the double dot regime.
(a), (b) Amplitude response of the resonators coupled to the two rightmost quantum dots. Readout power in
the feedline is −105 dBm per multiplexed resonator with an integration time of 3µs. The dimensions of this
dataset are 101× 101 points yielding a total integration time of 30 ms excluding overhead from gate settling
time, set by low-pass filters on the gate wiring. The dashed lines are guides to the eye delineating the different
charge configurations of the double dot and are identical in (a) and (b).

Resonators are only sensitive to charge transitions involving the quantum dots to
which they are coupled. Therefore, both resonators detect the interdot transitions; how-
ever, transitions from the right dot to the right electrode are detected only by the res-
onator connected to the right dot. Here, the resonator connected to the left dot does not
respond to transitions between the left dot and the left electrode. We attribute this to a
mismatched left dot - left electrode tunnel coupling. Hence, multiplexing also enables
spatial correlation of electron tunneling by comparing the DGS signal from each gate’s
resonator, effectively ‘tracking’ the electron through the device.

3.5. SIGNAL TO NOISE
Finally, we investigate the attainable SNR for resolving charge tunneling with DGS by
changing detuning from charge degeneracy in the DQD. This procedure serves as a proxy
for different qubit states in schemes where readout is based on state-dependent tunnel-
ing [10, 11, 138, 141, 189, 198]. Because actual qubit systems have limitations on the
readout power [186], we investigate the SNR both at a fixed ‘low’ excitation voltage in the
resonator, Ve = 5µV, as well as at an optimized excitation voltage, Ve = 0.16mV. These
excitation voltages are calculated from the signal generator output power and line atten-
uation in addition to the resonator frequency and coupling capacitance to the feedline.

We fix the total charge in the system by pinching off gates on either side of the DQD.
The only remaining transitions are interdot transitions occurring through a tunnel cou-
pling denoted by tC. The resonator response as a function of the energy detuning δ from
the interdot transition is shown in Fig. 3.5(a). We determine tC by fitting the resonator
response to an input-output model [175], see Sec. 3.7.5. Linecuts of the fit results and
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Figure 3.5: Readout SNR. (a) Amplitude response as a function of detuning δ of the resonator coupled to the
right dot for the two different tunnel coupling regimes. (b) Linecuts for Coulomb blockade and on resonance
(δ = 0) together with fits to the theoretical model. (c) Histograms of the resonator responses in Coulomb
blockade and charge degeneracy, with pulse length of 1µs. Responses are acquired with a probe frequency
tuned to resonance for the Coulomb blockade case, at approximately 3.826 GHz. (d) Attained SNR on the
right dot’s resonator, defined as ∆/(2σ), as a function of measurement pulse length, optimized with excitation
voltage as a free parameter (upward triangles) and optimized at fixed excitation voltage of 5µV (downward
triangles). The expected square-root dependence for longer tint is shown with dashed and solid lines.

measurement data are shown in Fig. 3.5(b).

We define SNR as the change in signal between charge degeneracy and Coulomb
blockade divided by the noise. To measure it, we perform a series of pulsed measure-
ments of complex-valued V R

RF with a pulse time of tint at both Coulomb blockade and
charge degeneracy, and show the obtained histograms for an integration time of tint =
1µs in Fig. 3.5(c). These histograms are fit with a Gaussian to extract the separation be-
tween the Gaussian peaks ∆ in the complex V R

RF plane as well as their average standard
deviation σ representing the width. The SNR is given by ∆/(2σ). More details are given
in Sec. 3.7.5.

In Fig. 3.5(d) we plot the dependence of SNR on tint, which approaches a square-
root dependence (dashed and solid lines) for longer times. We attribute the discrepancy
between attained SNR and a square-root dependence for pulse times shorter than 1µs
to the finite bandwidth of the resonators. For these pulse lengths, the resonator cannot
reach a steady-state photon population within the integration time, limiting the signal
available for readout.

Next, we compare the observed SNR with expected theoretical limits. The change
in signal at the feedline level ∆f = ∆/Gsys, with Gsys the gain of the amplification chain
in the system, can never exceed the total voltage swing in the feedline Vf. The fit to
the data in Fig. 3.5(a), used to extract tC, also provides a direct measurement of the ra-
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tio ∆ f /Vf = 0.89, close to the absolute maximum. In other words, the resonator is cou-
pled near optimally for this tunnel coupling, such that its external coupling rate is nearly
equal to the dispersive shift. The achievable SNR is then set by ∆f together with noise
temperature, TN, and readout time, tint, as

SNR = ∆f
p

tint

2
√

Z kBTN

, (3.5)

where Z = 50Ω is the impedance of the feedline [116], see Sec. 3.7.6. The SNR ≃ 2.6 found
in Fig. 3.5(c) together with the readout time tint = 1µs and the deduced approximate
voltage swing in the feedline, Vf = 0.15µV corresponds to a noise temperature estimate
of TN = 1K. Without the use of a TWPA, we expect that the noise temperature would
increase to TN ≈ 4K. To improve the SNR, one can increase either the readout time or
readout power in accordance with Eq. (3.5), as shown in Fig. 3.5(d). Practically, limits to
these two parameters will be determined by the specific qubit implementation. In this
case, by optimizing the excitation voltage and tunnel coupling together, a SNR of 15 is
achieved at Ve = 0.16mV.

3.6. CONCLUSIONS
We show the characterization of an InAs nanowire multi-QD system using gigahertz-
frequency sensing. Probing the finite frequency admittance of the nanowire allows us to
infer the low-frequency conductance with good accuracy, even without calibration from
DC measurements. Further, we show high-SNR dispersive sensing on timescales near
the bandwidth limit set by the quality factor of the resonators. Besides the use for qubit
devices, we envision that fast multiplexed readout of quantum devices may be used for
more complex sensing schemes. In particular, conducting multiple rapid local measure-
ments simultaneously could facilitate unique quantum transport experiments because
they provide spatial information about tunneling processes. For example, by probing
two quantum dots at either end of a central charge island, tunneling events into the outer
dots may be correlated [105, 199]. We conclude that multiplexed SHF resonators may
serve as a complete toolset for characterization and readout of semiconductor quan-
tum devices, and present intriguing opportunities for developing high-speed quantum
transport measurement schemes.

Raw data, analysis code, and scripts for plotting the figures in this chapter are avail-
able via the online data repository [200]. We thank D. Bouman and J.D. Mensingh for
nanowire deposition and A. Bargerbos for valuable comments on the manuscript. We
further thank N.P. Alberts, O.W.B. Benningshof, R.N. Schouten, M.J.Tiggelman, and R.F.L.
Vermeulen for valuable technical assistance. This work is supported by the Netherlands
Organization for Scientific Research (NWO) and Microsoft.

3.7. SUPPLEMENTAL MATERIAL

3.7.1. CORRESPONDENCE BETWEEN Y AND RESONATOR RESPONSE
Here we relate the nanowire load admittance to the quality factor and resonance fre-
quency of a resonator connected to its lead. Throughout the following derivations, we
assume that within the small window of frequencies used to fit our resonator’s resonance
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frequency and quality factor, the sample load admittance Y is constant. The resonator is
modeled as a transmission line capacitively coupled to a central feedline and terminated
by a load impedance Y −1 determined by the nanowire. Assuming the feedline coupler to
behave as a lumped element capacitance Cc, the input impedance Zin of the terminated
resonator and coupler is [116]:

Zin = 1

iωCc
+Z0

1+Z0Y tanh(γrℓr)

Z0Y + tanh(γrℓr)
, (3.6)

where Z0 is the line’s characteristic impedance, γr ≡αr + iβr is the complex propagation
constant, and ℓr is the length of the resonator. Note that βr = ω/vp where vp is the
phase velocity in the transmission line, while αr quantifies internal losses. To simplify
the above expression, we first note the trigonometric relation

tanh(αrℓr + iβrℓr) =sinh(αrℓr)cos(βrℓr)+ i cosh(αrℓr)sin(βrℓr)

cosh(αrℓr)cos(βrℓr)+ i sinh(αrℓr)sin(βrℓr)

∼αrℓr cos(βrℓr)+ i sin(βrℓr)

cos(βrℓr)+ iαrℓr sin(βrℓr)

(3.7)

where we have assumed small internal losses in the resonator, αrℓr ≪ 1. Since the load
admittance is assumed to be small, our resonator nearly has an open at one end. Con-
sequently, the effect of Y should be that of a perturbed λ/2 resonator. In this case, for
small detuning δω from the resonance frequency ω0, βrℓr ∼ π+πδω/ω0 [116]. Since Y
is a small perturbation of the load admittance away from zero, it will shift the resonance
frequency only slightly, in which case it is still true that βrℓr ∼ π+ x where x is a small
number. Applying this approximation to Eq. 3.7, we find tanh(γrℓr) ∼ αrℓr + i tan(βrℓr).
Finally, we assume ω is near resonance such that we may apply the limit tan(βrℓr) ≪ 1
by the above argument, which in combination with our assumption of small load admit-
tance Y ≪ Z−1

0 and losses αrℓr ≪ 1 simplifies Eq. 3.6 to:

Zin ∼ 1

iωCc
+ Z0

Z0Y +αrℓr + i tan(βrℓr)
= 1

iωCc
+ Z0

αeffℓr + i
[
tan(βrℓr)+Z0Im(Y )

] (3.8)

to first order in these small parameters. Above, we defined the effective dissipation con-
stant αeffℓr ≡αrℓr +Z0Re(Y ).

Next, we determine the relation between Im(Y ) and the resonance frequency ω0. At
resonance, the imaginary part of Zin disappears, so we solve this condition for ω0:

0 = Im(Zin) =− 1

ω0Cc
−Z0

tan(ω0ℓr/vp)+Z0Im(Y )

(αeffℓr)2 + (tan(ω0ℓr/vp)+Z0Im(Y ))2 . (3.9)

With the foresight that internal quality factors of our resonators will be related to αeffℓr

through αeffℓr = π/(2Qi ), from resonator fits we may estimate that αeffℓr < 0.002 even
when the nanowire is completely open. In our resonator chip, coupling capacitances are
on the order of 40fF, so that at few-GHz frequencies and when Z0 = 116Ω, ωoCcZ0 ≈
0.03 to 0.1 is a small parameter, but still much larger than αeffℓr. Rearranging and ne-
glecting terms above first order in αeffℓr/(Z0ωCc), we obtain the implicit solution:

ω0ℓr

vp
= nπ−arctan(Z0Im(Y )+ω0CcZ0) , n ∈Z (3.10)
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The smallest substantial resonance frequency occurs for n = 1, constituting the GHz-
range resonances of interest. Taylor expanding in the small parameters Z0Im(Y ) and
ω0Cc Z0, we see then that the coupling capacitance serves only to impose a constant
perturbation to the bare resonance frequency, defined as ω∗

0 ≡ ω0|Im(Y )=0 = π(ℓr/vp +
CcZ0)−1:

ω0 =ω∗
0

(
1− Z0Im(Y )

π

)
. (3.11)

At frequencies near resonance such thatω=ω0+δωwith δω≪ω0, Eq. 3.8 is asymptotic
to:

Zin ∼ 1

iωCc
+ Z0

αeffℓr + iπδω/ω0
, δω≪ω0, αeffℓr ≪ Z0ω0Cc ≪ 1, (3.12)

which is the input impedance of a capacitively coupled parallel LRC resonator circuit
near resonance of internal quality factor Qi =π/(2αeffℓr) [116]. The internal quality fac-
tor is related to the photon decay rate by κd ≡ ω0/Qi = 2ω0αeffℓr/π. From the defini-
tions of αeffℓr and ω0, we can thus relate the device admittance to resonator parameters
through:

Y = 1

Z0

(
αeffℓr −αrℓr

)
− i

π

Z0ω0

(
ω0 −ω∗

0

)
≡ π

Z0ω0

(
1

2
∆κd − i∆ω

)
, (3.13)

valid to first order in ∆ω/ω0, where ∆ω ≡ ω0 −ω∗
0 and ∆κd ≡ κd − 2ω0αrℓr/π. In other

words, load conductance is proportional to shifts in the resonator’s internal decay factor,
while its susceptance is proportional to shifts in the resonance frequency.

3.7.2. DERIVATION OF GRF
Since the nanowire device is covered at most points by a capacitively coupled gate layer
of uniform thickness (excluding the small gaps between gates), we model the nanowire
as a highly resistive transmission line, and aim to solve for its admittance Y. As per the
lumped element model of Fig. 3.2(d), we parameterize this with a resistance, inductance,
and capacitance per unit length of Rnw, Lnw, and Cnw, respectively. At a fraction λ along
the wire’s length ℓ, we include a lumped element impedance ZT, modeling a cutter gate
or quantum dot.

As a transmission line, on either side of ZT the nanowire obeys the telegrapher equa-
tions [116]:

dV (x)

dx
=−ZnwI (x)/ℓ and

dI (x)

dx
=−iωCnwV (x), (3.14)

at every point x along the wire’s length, with x = 0 denoting the source lead. Above, we
have assumed phasor solutions of the voltage v with respect to ground and current i
through the wire so that v(x, t ) = V (x)e iωt and i (x, t ) = I (x)e iωt . On either side of the
impedance ZT, these coupled differential equations have the solution:

V (x) =
{

V +
s e−γx +V −

s eγx x <λl
V +

d e−γx +V −
d eγx x >λl

, I (x) =
{

γℓ
Znw

(
V +

s e−γx −V −
s eγx

)
x <λℓ

γℓ
Znw

(
V +

d e−γx −V −
d eγx

)
x >λℓ (3.15)

The nanowire’s input admittance is Y = I (0)/V (0) and is fully determined by the bound-
ary condition of a grounded wire V (ℓ) = 0, current continuity just before and after ZT,



3

52 3. RAPID MICROWAVE-ONLY CHARACTERIZATION AND MULTIPLEXED READOUT

and Ohm’s law across ZT. Combined, these three conditions allow us to solve for all con-
stants V −

s , V −
d , and V +

d in terms of V +
s . In particular:

V −
s =V +

s

 ZTγℓ
Znw

(
e−2γλℓ+e−2γℓ

)−2e−2γℓ

ZTγℓ
Znw

(
1+e−2γ(1−λ)ℓ

)+2

 (3.16)

After substituting Eq. 3.15 into the definition of Y , we arrive at the expression

Y = γℓ

Znw

(
V +

s −V −
s

V +
s +V −

s

)
= γℓ

Znw

cosh(γℓ)+ ZTγℓ
Znw

sinh(γλℓ)cosh(γ(1−λ)ℓ)

sinh(γℓ)+ ZTγℓ
Znw

cosh(γλℓ)cosh(γ(1−λ)ℓ)

 . (3.17)

Finally, this expression may be rearranged to yield Eq. 3.2. Together, Eq. 3.2 and Eq. 3.4
yield an explicit formula for GRF. Substituting the ZT result into Eq. 3.4 we obtain:

GRF = |zλ|cos(arg[zλ]−arg[z1])

Re(Znw)|zλ|cos(arg[zλ]−arg[z1])+|z1|
. (3.18)

Above, the parameters

z1 ≡ sinh(γℓ)Y − (γℓ/Znw)cosh(γℓ), (3.19)

and
zλ ≡ (γℓ/Znw)cosh(γ(1−λ)ℓ)

[
(γℓ/Znw)sinh(γλℓ)−cosh(γλℓ)Y

]
(3.20)

represent singularities of Z−1
T and ZT respectively.

3.7.3. DETERMINATION OF γℓ AND Znw FROM EXPERIMENTAL DATA
As described in Sec. 3.3, the determination of γℓ and Znw requires a measurement of
the admittance in both the conducting and pinched-off regime. Since there are many
measurements of the admittance in both regimes, we here describe the procedure to
fix Yp and Yo. To approach the open and pinched-off regimes as precisely as possible,
the approach is to take the admittances that are furthest removed from the pinched-
off and open regime respectively. In practice, before we determine the admittance in
the pinched-off regime of T6, Yp, we first select any admittance data point where all
gates are open Ỹo. We then find Yp as the point in the T6 pinchoff measurement that
is furthest removed from Ỹo. Subsequently, we determine Yo by finding the admittance
furthest removed from Yp in the aggregated data for all tunnel gates. The aggregate data
is shown in Fig. 3.6(b), with the datasets from the T6 pinchoff measurement highlighted
in blue. The obtained points Ỹo, Yp and Yo are also identified in the figure. We obtain
γℓ= 0.6+0.3i and Znw = (16.7+3.6i )kΩ.

3.7.4. COMPARISON OF GDC AND GRF FOR ALL PINCHOFF CURVES
Here, we provide a more detailed overview of all admittance data obtained and used for
the inset in Fig. 3.2(e) and for Fig. 3.2(c). The calibration frequency trace used for the data
in Fig. 3.2 is shown in Fig. 3.6(a) together with a fit to Eq. (C.1). We find ω0/2π= 4.3GHz,
κext/2π= (18.6−3.4i )MHz and κd/2π= 0.9MHz. The calibration measurement defines



3.7. SUPPLEMENTAL MATERIAL

3

53

Figure 3.6: Supplemental data for pinch-off measurements. (a) Resonator response in the complex plane to-
gether with a fit with Eq. (C.1). The phase delay of the line corresponding to ei (θ0+θ1ω) in Eq. (C.1) is removed
from both the data and the fit. (b) Admittance data for all pinch-off measurements. The data obtained for T6 is
highlighted in blue. (c) to (h) Conductance measured with DC techniques together with the conductance GRF
extracted from the admittance in (b). To show the importance of correcting for the finite frequency effects in
the nanowire, the real part of the admittance is also shown.

the zero-point of ∆ω0 and ∆κi. We also use the calibration to hold all parameters except
for ω0 and κi fixed when fitting the frequency traces for obtaining the pinch-off data,
such as in Fig. 3.2(b). The Root-mean-square error is used to identify points where the
fitting algorithm fails to identify the correct resonator line shape. Using this method, we
have identified and excluded 7 outliers from subsequent analysis and plotting compared
to the 15006 fits used for Fig. 3.2.

Similar to Fig. 3.2(e), we plot a comparison between GDC and GRF for all tunnel gates
in Fig. 3.6c-h. Additionally, we therein show the real part of the admittance, equivalent
by definition to the finite frequency conductance. All traces are taken at VB = 10mV and
every gate that is not being swept is kept at 0 V. This ensures the nanowire can only be
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depleted close to the swept tunnel gate. The further the tunnel gate is from the source of
the nanowire, the more important the correction for finite frequency effects is to obtain
the correct GRF. This is expected since a larger portion of the shunting capacitance is
available as an alternative path to ground which becomes more dominant the closer the
nanowire is to pinch-off.

3.7.5. SNR MEASUREMENT

Figure 3.7: Supplemental data for SNR measurements. Histograms of the resonator response in the complex
plane with a pulse length of tint = 1µs, corresponding to the two regimes in Fig. 3.5. Both histograms contain
measurements for Coulomb blockade (square marker) and on charge degeneracy (circle marker). (a) His-
togram for tC = 4.5GHz and Ve = 5µV. (b) Histogram for tC = 13GHz and Ve = 0.16mV.

Herein we describe how SNR and tunnel coupling was extracted from the data of
Fig. 3.5. For fitting the dispersive shift as a function of detuning δ, we add the con-
tribution of the DQD to Eq. (C.1). This contribution is accounted for by substituting
κd → κd − 2i gχ in Eq. (C.1) caused by coupling to the susceptibility of the DQD [175]
with

gχ= 4g 2
0 t 2

C/Ω2

ω0 −Ω+ iγ/2
, (3.21)

where g is the effective coupling strength and χ the susceptibility of the DQD. Further-

more, g0 is the Jaynes-Cummings coupling, Ω =
√

4t 2
C +δ2 is the DQD energy splitting,

tC is the tunnel coupling between the dots and γ is the decoherence rate.

The SNR is measured by acquiring a histogram of resonator responses with pulse
length tint in both Coulomb blockade and on charge degeneracy. The resulting his-
tograms in the complex plane are shown in Fig. 3.7. We denote the average response
in Coulomb blockade and charge degeneracy by µb and µr respectively. To calculate the
SNR from the histogram, the data is rotated in the complex plane by an angle Arg(µr−µb).
After the rotation, there is no relevant information in the complex part of the data. There-
fore we project to data onto the real axis, the result of which is shown in Fig. 3.5(c). We
fit a Gaussian to the projected data for Coulomb blockade and charge degeneracy sep-
arately yielding the standard deviation σb and σr respectively. Finally, the SNR is given
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by

SNR =
∣∣µb −µr

∣∣
σb +σr

. (3.22)

3.7.6. RELATION BETWEEN SNR AND AMPLIFIER NOISE TEMPERATURE
To calculate the relation between SNR and the equivalent noise temperature of the am-
plifier, we assume that the noise level of the input signal is negligible. The equivalent
noise temperature TN is defined as

TN = Nin

kBB
, (3.23)

where B denotes the measurement bandwidth and Nin the equivalent noise input power
to the amplifier [116]. Since the integration time, tint is longer than any other timescale
in the system, the bandwidth is given by B = 1/tint.

The voltage fluctuations corresponding to this noise power are v = p
NinZ , where

Z is the characteristic impedance of the feedline. Using Gsys to denote the gain of the
amplification in the system, the SNR is defined as the ratio between signal ∆ = Gsys∆f

and the noise 2Gsysv . As such, we find the following equation for the SNR

SNR = Gsys∆f

2Gsysv
= ∆f

p
tint

2
√

Z kBTN

, (3.24)

assuming the SNR is limited by the noise introduced by the finite noise temperature of
the amplifiers in the system.
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SYSTEMS

D. de Jong†, C. G. Prosko†, L. Han, F. K. Malinowski, Y. Liu, L. P. Kouwenhoven, W. Pfaff

Cooper pair splitters hold utility as a platform for investigating the entanglement of elec-
trons in Cooper pairs, but probing splitters with voltage-biased Ohmic contacts pre-
vents the retention of electrons from split pairs since they can escape to the drain reser-
voirs. We report the ability to controllably split and retain single Cooper pairs in a multi-
quantum-dot device isolated from lead reservoirs, and separately demonstrate a tech-
nique for detecting the electrons emerging from a split pair. First, we identify a coherent
Cooper pair splitting charge transition using dispersive gate sensing at GHz frequencies.
Second, we utilize a double quantum dot as an electron parity sensor to detect parity
changes resulting from electrons emerging from a superconducting island.

4.1. INTRODUCTION
Cooper pairs—bound electron pairs of correlated spin and momentum—are founda-
tional to superconductivity. Interestingly, coherently splitting a Cooper pair produces
two entangled electrons forming a Bell state [201]. It is possible to force a pair to split
using Coulomb repulsion in a pair of quantum dots (QDs) [96]. Accordingly, Cooper pair
splitting (CPS) has been demonstrated in various material systems [97–99, 101–107, 109],
and the resulting electrons’ spin was probed through current correlation measurements
exploiting spin-polarized QDs [100, 101]. In order to confirm and utilize entanglement
of the electrons from a split pair however, it is important to retain them, for example by
removing drain contacts from the QDs. In this manner, retention of electrons from split

The work in this chapter has been published in Physical Review Letters 131, 157001 (2023). arXiv:2208.05154
†These authors contributed equally.
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Cooper pairs was observed using charge sensing of metallic islands [202], though split-
ting occurred stochastically at sub-Hz rates. Dispersive gate sensing (DGS) provides dis-
tinct information from charge sensing, since it is sensitive to the hybridization between
charge states [134, 135, 137–141, 159, 160, 174, 195, 196, 203–205], including between
states with a split or recombined Cooper pair.

Probed with DGS, we present the coherent splitting of a single Cooper pair by vary-
ing voltages on a device’s gate electrodes. Separately, we demonstrate the detection of an
unpaired electron emerging from a superconducting island (SCI). This is accomplished
within a hybrid system comprising a SCI with normal QDs on either side, decoupled
from leads. Multiplexed DGS of resonators coupled to the device’s gate electrodes al-
lows us to distinguish charge transitions in the system, and thus label relative charge
states. Strikingly, one transition corresponds to two charges from the SCI being loaded
into neighboring QDs, imparting a 1 MHz frequency shift on the probed few-GHz fre-
quency resonator. This transition likely corresponds to CPS arising due to crossed An-
dreev reflection (CAR), supported by fitting the DGS signal across the transition to an
input-output theory model for an effective low-energy Hamiltonian. Next, we show how
DGS detects changes in the charge parity of a double quantum dot (DQD) system. Con-
sequently, DGS can replace charge sensing in our CPS scheme while retaining electrons
tunneling to the DQD, since no external charge reservoirs couple to the system. Com-
bined with spin manipulation and readout techniques [23, 206], these demonstrated ca-
pabilities could be used to perform a Bell test on electrons constituting Cooper pairs
[207–210].

4.2. EXPERIMENTAL DESIGN & SETUP

The devices measured (labeled A and B), shown in Figs. 4.1(a) and 4.1(b), consist of an
InAs nanowire with an epitaxial Al shell. For both devices, lithographically patterned
gates define five QDs in the wire, though the Al covers only the centermost QD (labeled
M) such that only this QD has a superconducting pairing interaction. The semiconduct-
ing QDs (labeled L, R, and P ) have a length of 0.44µm in both devices, while island M
has a length of 1.2 and 0.44µm in devices A and B, respectively. Every QD is capaci-
tively coupled via top gates to a coplanar waveguide resonator with a common feedline
for multiplexed DGS of each QD [154, 156, 185, 204], depicted in Fig. 4.1(c). Separate
gates control the QDs’ chemical potentials and tunnel barriers. For additional fabrica-
tion details, see Ref. [204]. We infer the charging energy of the semiconducting QDs from
Coulomb diamond measurements to be E N

C ≈ 250µeV (Supplemental Sec. 4.7.2). From
the charge stability diagrams (CSDs) shown in Fig. 4.1(f), we extract the charging en-
ergy of the SCI for device A E S

C ≈ 100µeV and its lowest-energy odd-parity state at zero

magnetic field E0 ≈ 130µeV. Similarly, for device B, we obtain E S
C ≈ 350 and E0 ≈ 50µeV.

The differing values of E0 signify the presence of distinct subgap states, and are gener-
ally dependent on gate voltages. With devices A and B we thus compare the regimes of
E S

C < E0 and E S
C > E0 respectively, verified by a doubling of charge transitions in device A

as magnetic field is increased (Supplemental Fig. 4.9). The former case exhibits a transi-
tion corresponding to splitting a Cooper pair, while in the latter it is suppressed in favor
of single-electron tunneling.
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Figure 4.1: Experimental setup and CSDs in the floating TQD regime. (a),(b) False-colored SEM images of
devices nominally identical to those measured. Device A and B are highlighted in the floating triple and
quadruple QD regimes, respectively. Gates are shaded with the assigned colors of their coupled resonators.
(c) Schematic of the on-chip resonators. We measure transmission through a feedline capacitively coupled
to λ/2 resonators connected to device gates. (d) Shell of the cubic color map for the resonator responses in
(e). For each pair of responding resonators, the corresponding tunneling process is depicted. (e) Simulated
resonator responses using energies given in the main text. (f ) Measured CSDs of the floating TQD systems.
Individual resonator measurements are shown in Supplemental Fig. 4.5. States are labeled with the relative
number of electrons in dots L, M, and R, respectively, with 0 charge on island M corresponding to an even
charge.

Measurements are conducted in a dilution refrigerator at a base temperature of ap-
proximately 20 mK. Low-power signals are amplified by a traveling-wave parametric am-
plifier [153] and a high-electron-mobility transistor. See Appendix B.1 for more details of
the measurement circuit.

4.3. TRIPLE DOT CHARGE STABILITY DIAGRAM
We begin by investigating a floating triple quantum dot (TQD) configuration. By mea-
suring a CSD, we obtain the island parity and relative charge occupation for different
gate voltages, and thereby infer which charge states hybridize. Both devices are tuned
into a TQD by lowering barrier voltages T3 and T4 into weak tunneling regimes. Subse-
quently, barriers T2 and T5 are set to strongly negative voltages to prevent electrons from
tunneling to the leads. In this “floating” regime total charge is conserved, leaving only
two charge degrees of freedom. It is therefore sufficient to vary two gate voltages (e.g., VL
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and VR) to reach any available charge state or transition.

To probe the system’s charge stability we employ DGS, measuring complex trans-
mission responses Ai for i ∈ {L,M,R} of each of the corresponding top gates’ resonators
simultaneously with frequency multiplexing. The responses are projected and normal-
ized to produce real-valued quantities A′

i (Supplemental Sec. 4.7.1), then superimposed
in a single CSD to emphasize correlations. The resulting three-dimensional color map
and CSDs are shown in Fig. 4.1(d) and Fig. 4.1(f). We observe white Coulomb-blockaded
regions separated by charge transitions where electrons hybridize between QDs. As DGS
reflects resonant tunneling, the resonators connected to all involved QDs show a re-
sponse. For the transition between island M and QDL for example, a response is ex-
pected in A′

M and A′
L, appearing blue in the CSD. Similarly, the transition between island

M and QDR appears red. These transitions are most prominent since they are first-order
tunneling processes. Meanwhile, an electron tunneling from QDL to QDR corresponds
to a cotunneling transition via island M [111, 211]. These transitions appear green, but
are much weaker than the first-order transitions in this configuration.

Comparing the CSDs of Fig. 4.1(f), there is a stark difference between device A and
B: the former exhibits rectangular regions of stable charge when the SCI has odd par-
ity, while the latter shows only hexagonal Coulomb-blockaded regions. To understand
this difference, we compare with charge-state simulations of the QD system combined
with an input-output theory calculation of a representative resonator response, shown
in Fig. 4.1(e) [119, 182, 204, 212]. For these, we use the inferred values of E S

C, E N
C , and

E0, and resonator parameters from Ref. [204]. Extracting the lowest-energy states of the
system with a capacitance model allows for calculating a theoretical resonator response
[64, 182, 191] (Supplemental Sec. 4.7.3). States are labeled with the relative number of
electrons in dots L, M , and R, respectively, with 0 charge on island M corresponding
to an even charge. As expected, transitions separating two charge states show response
only from resonators coupled to the involved QDs. The different structure between the
two CSDs is controlled by the conditions E S

C < E0 (device A) or E S
C > E0 (device B). Cru-

cially, in device A, a transition between (020) and (101) can be observed, corresponding
to a Cooper pair leaving the SCI while QDL and QDR each gain an electron. Conversely,
device B only exhibits transitions involving the exchange of single electrons.

4.4. GATE-INDUCED SINGLE COOPER PAIR SPLITTING

Next, we examine this (020)-(101) transition—only reachable if E S
C < E0 as for device

A—in more detail in Fig. 4.2. The frequency response of the island M resonator is mea-
sured at each gate voltage then fitted to a complex transmission model [158, 187, 190]. In
Fig. 4.2(a), the obtained resonance frequency shifts from the value in Coulomb blockade
∆ω0 and photon decay rates κd are shown. The resonator responds strongly for single-
electron transitions with ∆ω0 > 2π×2.5MHz.

We isolate the (020)-(101) transition by measuring along the arrow labeled ζ, de-
fined as VL +VR up to an offset, in Fig. 4.2(a). This is approximately equivalent to chang-
ing island M ’s gate voltage in the opposite direction. Figs. 4.2(b) and 4.2(d) show the
response across the transition, where a significant dispersive shift ∆ω0 > 2π×1MHz is
observed. There, the underlying tunneling process is likely CPS dominated by coherent
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Figure 4.2: Middle resonator response in the floating TQD regime of device A. (a) The resonance frequency
shift ∆ω0 and (b) linewidth κd of the middle resonator. (c),(d) Phase and amplitude response of resonator M
along the ζ axis defined in (b). (e),(f ) Fits of the response to a low-energy CAR model.

CAR [64], since other processes are suppressed by large energy costs of breaking a Cooper
pair 2E0 or by E N

C . Additionally, a lesser cost E0 −E S
C suppresses (020)-(101) transitions

involving intermediate (110) or (011) states with a quasiparticle on the SCI. Including
single-electron tunnel couplings however, these states may be weakly occupied as the
least energetically unfavorable states mediating a CPS process, namely CAR [96, 178].
CAR mediated by the Al shell is suppressed by the length of the SCI, L = 1.2µm over the
superconducting coherence length, ξ, as exp(−L/πξ) [213], but can also be mediated by
extended bound states in the proximitized InAs [101, 113]. Given a ξ of 260 nm reported
in similar nanowires [60], we conclude CAR-dominated CPS is likely.

To corroborate this conclusion, we use a low-energy Hamiltonian describing CAR
mediated by an arbitrary number of degenerate quasiparticle states and fit the resonator
response to its corresponding input-output model [111, 112, 119, 134, 182, 204, 214]
(Supplemental Sec. 4.7.4). From the fit, we extract the effective electron- and holelike
tunnel couplings teff,e/h leading to coupling between the (020) and (101) states [215].
Resonator parameters are fixed by fits from Fig. 4.2(a), while the ζ lever arm is estimated
from Coulomb diamond measurements. This leaves teff,e/h , the total dephasing and de-
cay rateγ, and the resonator coupling to the (020)-(101) transition gc as free parameters.
The fit is plotted in Figs. 4.2(c) and 4.2(e), showing excellent agreement with the data for
coherent tunneling amplitudes of teff,h = teff,e /1.1 = 2π× 24GHz, γ/2π of 1.1 GHz, and
gc/2π of 0.23 GHz. Notably, teff,e/h is substantially smaller than the 2E0 or E N

C costs of
non-CAR-related tunneling processes, and the dephasing rate is more than an order of
magnitude smaller than the single-electron tunneling amplitudes. This relation of pa-
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Figure 4.3: Parity measurement using a DQD in Device B. (a) Chemical potential schematic of the quadruple
dot. (b) Multiplexed CSDs in the floating quadruple dot regime at fixed δ= 0mV on the top and 32mV on the
bottom, with the color map shown above. Charge plateaus are labeled to represent the relative occupancy of
the dots where the rightmost number represents the combined occupation of QDR and QDP. The individual
resonator responses are shown in Supplemental Fig. 4.6. (c) Linecuts of the resonator P response as a function
of δ, measured at voltages indicated by the square and circle markers in (b). The solid and dashed curves show
fits to a periodic Lorentzian. At zero detuning between the dots, resonator P shows a response for one parity
value, but is blockaded for the other. The insets show cartoons of the sensor DQD levels in both cases.

rameters indicates that the (020)−(101) transition corresponds to the coherent splitting
of a Cooper pair by crossing a single resonant charge transition.

Future experiments may increase the size in gate space of the CPS transition by in-
creasing E0/E S

C, or increase the CAR amplitude by reducing the SCI length relative to ξ.

Concurrently, the presence of this transition requires that E S
C ≤ E0, necessitating a large

total capacitance of the SCI. These conditions may be simultaneously met using meth-
ods presented in Ref. [216] to extend the SCI perpendicular to the nanowire, or to replace
it with a grounded superconductor as demonstrated in Ref. [101]. Conversely, a finite E S

C
or ungrounded superconductor protects the SCI from quasiparticle poisoning [217], re-
ducing the probability of independent quasiparticles entering the QDs instead of a split
pair.

4.5. PARITY SENSING IN A QUADRUPLE QUANTUM DOT
Having observed a CPS transition in a floating system, we next demonstrate how a split
pair’s electrons may be detected without external charge sensors in this experimental
geometry. In particular, to detect a single charge tunneling into a QD it suffices to mea-
sure changes in the dot’s parity, which we show is achievable using a DQD probed with
DGS. For an isolated DQD where the total charge is fixed, interdot transitions are spaced
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in chemical potential by the sum of the dots’ charging energies [64]. An electron tunnel-
ing into the DQD flips the charge parity and shifts one QD’s chemical potential by E N

C ,
offsetting these transitions by half their spacing and potentially shifting the system from
Coulomb blockade to charge degeneracy or vice versa. It has been shown that blockade
and charge degeneracy can be distinguished rapidly with DGS [134, 135, 137–141, 159,
160, 174, 195, 196, 203, 204], hence DGS is sensitive to parity changes in a coupled DQD.
Furthermore, the readout signal persists for most interdot detunings δ = VR −VP if the
dots are strongly hybridized, illustrated by a sweep of δ in Fig. 4.3(c). Notably, if the dot
orbitals are also spin polarized, Pauli spin blockade renders this sensing principle a spin
measurement via spin-to-charge conversion [131, 206].

We implement this method in a floating quadruple dot configuration in device B,
shown in Fig. 4.1(b), since the performance of device A deteriorated after multiple ther-
mal cycles. We stress, however, that the parity sensor signal is independent of the origin
of electrons flipping its parity and the properties of the coupled SCI. Hence, this tech-
nique is equally applicable to devices with a CPS transition or other Coulomb-blockaded
systems. In the quadruple dot regime, we aim to observe parity changes in the DQD
formed by QDR and QDP. To reach this configuration, T5 is tuned to a strong tunnel-
ing regime such that these dots form a DQD while effectively sharing a single charging
energy [191]. Additionally, T2 and T6 are pinched-off to prevent tunneling to the leads,
effectively removing one charge degree of freedom. We use as voltage coordinates VL

together with the detuning between the rightmost two dots δ and the voltages’ average
ϵ= (VR +VL)/2, both defined up to an offset, see Fig. 4.3(a).

The data acquisition method for this measurement is identical to the procedure out-
lined for Fig. 4.1(f). Here, three-dimensional CSDs are measured: sweeping δ, ϵ, and
VL. Slices are shown in Fig. 4.3(b) for δ values chosen such that the sensor DQD is on
charge degeneracy for even or odd parity. The yellow regions signify that an electron is
hybridizing between QDR and a QD whose resonator is unrepresented in the color map
(cf. Fig. 4.3(c)), which is QDP by exclusion. Notably, the charge plateaus for which res-
onator R responds are opposite between the two δ values, and opposite whenever the
sensor changes parity.

Next, we show in Fig. 4.3(c) the response of resonator P as a function of δmeasured at
the circle and square markers in Fig. 4.3(b). We phenomenologically fit the Coulomb os-
cillations with a periodic Lorentzian and observe that Coulomb resonance for the solid
line occurs exactly when the dashed line shows Coulomb blockade. Fixing the peak spac-
ing, we repeat this fitting procedure for all voltages shown in the CSD. Importantly, the
detuning offset δr of the pattern quantifies the position of charge degeneracy in the win-
dow −14mV < δ< 43mV, allowing inference of the DQD’s relative parity.

To demonstrate this correspondence, we plotδr in Fig. 4.4. Clear regions correspond-
ing to the two sensor DQD parities are visible, consistent with the histogram of δr values
shown on the right. The stark splitting of δr values demonstrates that readout of parity
changes can be accomplished by fixing δ to a value maximizing contrast, such as δ= 0 in
this case. This may be extended to single-shot readout provided electrons reside on the
sensor DQD longer than the readout time. Placing one DQD sensor on either side of a
superconducting reservoir or island would then enable time-resolved detection of both
electrons from a split Cooper pair.
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Figure 4.4: Distinguishment of parity in the floating quadruple dot regime for Device B. The detuning for which
the sensor DQD is on resonance, −14mV < δr < 43mV, is shown. On the right, a histogram of δr value occur-
rences defines the color map of the stability diagram.

4.6. CONCLUSIONS & OUTLOOK
We have realized a normal-superconducting-normal QD system in an InAs nanowire.
Multiplexed DGS shows different resonators responding depending on the spatial distri-
bution of tunneling electrons, enabling us to infer the QDs’ relative charge states [185,
204]. With DGS we observe a coherent CPS transition, repelling two electrons from the
SCI to the surrounding QDs. Crossing this transition splits a single Cooper pair con-
trollably and retains the resulting individual electrons on the outer dots. Importantly,
this transition cannot occur concurrently to interdot cotunneling except for the fine-
tuned parameters E S

C = E0 in a floating TQD, constraining applications to quasiparticle-
poisoning-protected Kitaev chains [10, 11, 143]. Furthermore, we have shown that DGS
of a DQD is sensitive to its parity and can be used to detect electrons ejected from a
neighboring SCI. Lastly, we note the demonstrated sensing method becomes a spin mea-
surement of electrons entering the DQD when its levels are spin-polarized [131, 137,
139–141, 159]. Two such detectors on either side of a superconductor, combined with
spin manipulation techniques [218–222], would enable performing a Bell test verifying
the spin-singlet entanglement of electrons in Cooper pairs [206–210]. This is possible
through comparison with the Clauser-Horne-Shimony-Holt inequality for the two spin
qubits formed by the detectors, initialized to entangled states by pulsing gate voltages
across the CPS transition [110, 223].

Raw data, analysis code, and scripts for plotting the figures in this chapter are avail-
able from Zenodo [224]. We are thankful to P. Krogstrup, D. Bouman and J.D. Mensingh
for their contributions to device materials. We also acknowledge valuable technical as-
sistance from N.P. Alberts, O.W.B. Benningshof, R.N. Schouten, M.J.Tiggelman, and R.F.L.
Vermeulen, and helpful discussions with J.V. Koski. Lastly, we thank C.-X. Liu and B.M.
Varbanov for input regarding the CAR model. This work has been supported by the
Netherlands Organization for Scientific Research (NWO) and Microsoft.
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4.7. SUPPLEMENTAL INFORMATION

4.7.1. PROJECTION AND NORMALIZATION OF RESONATOR DATA

Here we describe the process by which the resonator response is normalized in detail.
First, in Fig. 4.5 and Fig. 4.6, we show the raw data for the Charge Stability Diagrams
(CSDs) shown in Fig. 1 and Fig. 3 of the main text, respectively. The goal of normal-
izing the resonator response data is to reduce the dimensionality of the data while ac-
centuating the difference between Coulomb blockade and charge degeneracy. First, the
complex-valued response is projected onto a line. Then, the data is normalized such that
Coulomb blockade is mapped to 0 while charge degeneracy is mapped to 1. By following
the same procedure for all CSDs, similar charge transitions show up with the same colors
in the different figures.

As an example, we outline the procedure in Fig. 4.7 showing the response of res-
onator M corresponding to Fig. 4.5(b). To project the complex-valued data onto a line,
we first estimate the resonator response A0 in Coulomb blockade as the most occurring
response in the CSD after binning the dataset into a two-dimensional histogram. Sec-
ondly, we find the average response, A1 to estimate the vector along which the resonator
responds on average. Both points are marked in Fig. 4.7 and show that the resonator re-
sponse indeed roughly falls along the vector A1−A0. The data is subsequently projected
onto the line defined by A0 and A1 and normalized to range from 0 to 1. This proce-
dure is repeated for every resonator individually before they are combined into the same
colormap.

4.7.2. DEVICE PROPERTIES

To extract charging energies and lowest lying subgap state energies in device A and B, we
first show a Coulomb diamond measurement from which the charging energy of quan-
tum dot (QD) P is inferred in Fig. 4.8. Assuming the other normal QDs have the same
charging energy since they have the same gate design and fabrication procedure, this
allows us to convert the voltage axes in Fig. 4.5 to energy, and thereby obtain values
for E S

C and E0. Next, as an independent confirmation that device A is superconduct-

ing with E0 > E S
C, we show a transition from 2-electron periodic Coulomb resonances

to 1-electron periodic resonances in Fig. 4.9 for device A as the in-plane magnetic field
increases. We emphasize that the presence or absence of the Cooper pair splitting tran-
sition does not depend on the precise values of charging energies, provided that E0 > E S

C.
Finally, as noted in the main text, E0 may vary substantially as the chemical potential in
island M is varied. For the measurements of all figures in the main manuscript however,
the plunger gate of island M (unlabeled gate in between VL and VR in Figs. 4.1(a) and 4.1
(b) is fixed to 0 V for Device A and to −2.4 V for Device B.

4.7.3. SIMULATION OF CHARGE STABILITY DIAGRAMS

In this section we describe the method by which CSDs, including their corresponding
resonator response, were simulated for Fig. 1e. We employ a general formalism for sim-
ulating charge stability in multi-quantum-dot and island systems which are floating, that
is, without any leads.
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a

b

Figure 4.5: The individual resonator responses corresponding the CSD of (a) device A and (b) device B shown in
Fig. 4.1(f). Here, |Ai | andφi = arg(Ai ) denote the amplitude and phase response of resonator i for i ∈ {L, M ,R}.
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Figure 4.6: The individual resonator responses for device B corresponding to the CSDs shown in Fig. 3b, in-
cluding slices of the data (a) at δ= 0mV and (b) at δ= 32mV. Here, |Ai | andφi = arg(Ai ) denote the amplitude
and phase response of resonator i . Even though the response of resonator P is not included in the colormap
(see Fig. 4.3), it is added here for completeness.
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Figure 4.7: Histogram of the IQ response of the middle resonator, corresponding to the middle panel in Fig. 4.5
(b). The square marker denotes the most occurring IQ response A0 which we associate with Coulomb blockade
while the circle marker denotes the average IQ response A1. These markers define the dashed line which is
used to project the complex-valued data.

The system initially considered is a system of N quantum dots (QDs) with a corre-
sponding matrix of charging energies EC defined by matrix elements {EC}i , j = e2/Ci , j

where Ci ,i is the total capacitance of dot i , and Ci , j for i ̸= j is the capacitance between
dots i and j . Every dot has an energy cost E i

0 associated with containing an odd number
of electrons, where E i

0 = 0 for non-superconducting QDs. Operating in the charge basis
{|n〉} where n denotes a vector of integers ni specifying the charge state of each QD, the
‘on-site’ Hamiltonian Ĥ0 of the system in the absence of any inter-dot tunneling is

Ĥ0 =
∑
|n〉

[
(n−ng )TEC(n−ng )+∑

i

1− (−1)ni

2
E i

0

]
|n〉〈n| (4.1)

where ng is the vector of reduced gate voltages on each quantum dot, including cross-
capacitive couplings from all gate voltages [191]. Finally, allowing for quantum mechan-
ical single-electron tunneling amplitudes ti j between dots, the full Hamiltonian of the
multi-dot system is

Ĥ = Ĥ0 + 1

2

∑
|n〉

∑
i ̸= j

(
ti j |n+ei 〉〈n−e j |+h.c.

)
(4.2)

where ei is the elementary basis vector on dot site i . From this Hamiltonian, a suitable
range of charge states can be selected and the Hamiltonian can be numerically diago-
nalized for different ng values to obtain a full CSD. We denote the resulting eigenstates
by {|ψk〉}k . In this manuscript’s simulations of devices A and B tuned into the floating
regime, we use charging energies and E0 values given in the main text, and for simplicity
we neglect cross capacitances between dots. On the other hand, cross-capacitances be-
tween gates and other dots are included and chosen to best match with the data. Tunnel
couplings are chosen such that every transition appears sharply in the CSD, including a
direct tunnel coupling between the outer quantum dots to make the cotunneling transi-
tion clearly visible.
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4EN
C

Figure 4.8: Coulomb diamonds measured in current from source to drain for QD P in device B. From the bias
axis, we infer EN

C = 250µeV.

Figure 4.9: Fitted resonance frequency of the superconducting island M’s gate resonator in device A as a func-
tion of in-plane magnetic field. With increasing field, the transitions split and alternate in separation with a
periodicity of two transitions, finally becoming 1-electron periodic at higher fields. The resonance frequency
for each magnetic field value is shifted by the median resonance frequency ω̃0 for that particular field such
that the shift is with respect to the resonance frequency in Coulomb blockade.

Next, we use an input output theory model to convert the eigenstates and eigenener-
gies of the charge stability simulations into a predicted resonator signal [119], following
the model of Ref. [182, 212] to calculate the electric susceptibility χk,l of each charge
transition |ψk〉 → |ψl 〉. Importantly, the electric susceptibilities depend on the matrix
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elements 〈ψk | Ĥc |ψl 〉 of the Hamiltonian Ĥc coupling the charge system to the mea-
sured resonator. Assuming the resonator capacitively couples only to a single quan-
tum dot with lever arm α, say dot i with charge operator n̂i , this Hamiltonian is sim-
ply Ĥc = g0n̂i (â† + â) where â† is the photon creation operator of the resonator [182].
In calculating the matrix element, we take the average value of â† + â, proportional to
the voltage swing in the resonator. We use the same resonator coupling and dephasing
as in Ref. [204], since an identical resonator design and nearly identical device design is
used here. Finally, the frequency shift g0

∑
k,l 〈ψk | Ĥc |ψl 〉χk,l can be substituted into a

complex transmission model for a hanger-type resonator circuit and normalized to find
simulated values of A′

i [158, 204]. To obtain a representative indication of what a gate
sensor signal appears as without clouding the results by subtle resonator differences,
we use the same resonator parameters from Ref. [204] using a resonance frequency of
f0 = 5GHz and a probe frequency of 5.005 GHz for all three resonators.

4.7.4. MODEL AND FITS OF THE COOPER PAIR SPLITTING TRANSITION

MODEL AND LOW-ENERGY LIMIT

In order to estimate properties of the Cooper Pair Splitting (CPS) discussed in the main
text and Fig. 2, we derive an effective three-state model across this transition and fit it to
an input-output theory formula. Along the ζ axis defined in the main text and near the
(0,2,0) to (1,0,1) charge transition, we model the system with the relevant states:

|i 〉 ≡ |0〉⊗ |1〉⊗ |0〉 , Ei = E N
C

(
nL

g

)2 +E S
C

(
2−nM

g

)2 +E N
C

(
nR

g

)2

| f 〉 ≡ |1〉⊗ |0〉⊗ |1〉 , E f = E N
C

(
1−nL

g

)2 +E S
C

(
nM

g

)2 +E N
C

(
1−nR

g

)2

|v j
L〉 ≡ |1〉⊗ γ̂†

j |0〉⊗ |0〉 , EL = E N
C

(
1−nL

g

)2 +E S
C

(
1−nM

g

)2 +E N
C

(
nR

g

)2 +E j

|v j
R〉 ≡ |0〉⊗ γ̂†

j |0〉⊗ |1〉 , ER = E N
C

(
nL

g

)2 +E S
C

(
1−nM

g

)2 +E N
C

(
1−nR

g

)2 +E j

(4.3)

where the left and right kets denote the charge occupation on the outer dots and the
central ket denotes the number of Cooper pairs in the superconducting condensate of
the central superconducting island, all relative to some arbitrary offset. Additionally, ni

g

denotes the reduced gate voltage along dot i . The creation operator γ̂†
j creates a Bogoli-

ubon in a quasiparticle state in the island with energy E j ≥ E0. We index the quasiparticle
states by j ∈ {1, ..., N } for some N representing all energetically relevant excitations.

For simplicity, we neglect spin effects, which at zero field are known to suppress
quantum capacitance for a given tunnel coupling due to the additional degeneracy [64,
131, 205]. These spin effects manifest at zero field as alternating patterns in the strength
of single-electron inter-dot transitions in Fig. 1 depending on the parity of dots involved
in the transition, an effect which was not obviously present. Along the ζ axis defined in
the main text, we have nL

g = nR
g ≡ ng and choose without loss of generality nM

g = 1. Lastly,
we note that both for a hard superconducting gap (N ≫ 1) or for a single discrete sub-
gap state (N = 1), coupling between |i 〉 and | f 〉 mediated by quasiparticle states will be
dominated by the lowest energy states. Hence, we set all E j = E0. Shifting all energies by
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(Ei +E f )/2, we may write the Hamiltonian along the ζ axis as:

ĤCPS =−λ
2
|i 〉〈i |+ λ

2
| f 〉〈 f |+η∑

j ,α
|v j
α〉〈v j

α|+
∑
j ,α

(
tα,h |v j

α〉〈i |+ tα,e |v j
α〉〈 f |+h.c.

)
(4.4)

in the basis
{|i 〉 , | f 〉 , |vL〉 , |vR〉

}
, where we have included potentially asymmetric tunnel-

ing elements tασ with α ∈ {L,R} and σ ∈ {e,h} denoting electron-like or hole-like tunnel-
ing. This implicitly assumes that all γ̂ j operators have the same electron- and hole-like
components. Since charging effects on the superconductor force it to distinguish be-
tween gaining a quasiparticle by gaining an electron, or gaining a quasiparticle by losing
an electron, the coupling matrix elements are also modulated by electron-like and hole-
like coherence factors of the γ̂ j excitations [215]. Because we only wish to demonstrate
that these quasiparticle states coherently couple |i 〉 and | f 〉, we model the system with
symmetric tunnel barriers, setting all tα,σ = tσ for some te and th to simplify calcula-
tions. Allowing asymmetric barriers, however, still leads to a Hamiltonian of the form in
Eq. 4.11 provided all tα,σ ≪ η [111], but suppresses crossed Andreev reflection (CAR) to
be limited by whichever tunnel barrier is weaker. We have defined λ ≡ 2E N

C (1−2ng) as

the detuning from the Ei = E f degeneracy along ζ and η≡ E0 −E S
C.

Immediately, we identify that there are 2N −1 degenerate eigenstates of the form

|p j
α〉 ≡

1p
2

(|v1
L〉− |v j

α〉), Ep = η (4.5)

for α ∈ {L,R} and any j ∈ {1, ..., N } unless α = L in which case j > 1. Second, when λ = 0
we observe that the states

|φe〉 ≡ 1√
1+|te /th |2

(
t∗e
t∗h

|i 〉− | f 〉
)

, Ee = 0

|φ±〉 ≡ 1√
A±

[p
2N

E±

(
th |i 〉+ te | f 〉

)+|o〉
]

, E± = η

2
± 1

2

√
η2 +8N |th |2 +8N |te |2

(4.6)

are the remaining three eigenstates of the system, where we defined |o〉 ≡ 1p
2N

∑
j ,α |v j

α〉,
and A± are appropriately chosen normalization factors. Importantly, these states are

spanned by the basis {|i 〉 , | f 〉 , |o〉} and orthogonal to all |p j
α〉 states. The remaining three

eigenstates of the full Hamiltonian when λ ̸= 0 are thus also spanned by this basis. Given

the 2N −1 known eigenstates |p j
α〉, to fully diagonalize ĤCPS, we need only diagonalize

the 3×3 block

Ĥ 3×3
CPS ≡

 −λ2 0 teff,h

0 λ
2 teff,e

t∗eff,h t∗eff,e η

≡ Ĥ0 + V̂ (4.7)

written in the {|i 〉 , | f 〉 , |o〉} basis, where Ĥ0 is defined to contain the diagonal part of the
Hamiltonian and V̂ contains the tunneling matrix elements, and we defined the effective
single-electron tunneling amplitudes teff,σ ≡ teff,σ. Eq. 4.7 is the Hamiltonian we fit to an
input-output theory model to extract tunnel couplings and the dephasing rate.
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From the results of our input-output theory fit to Eq. 4.7, we extract tσ of the same
order of magnitude as η, rendering any cotunneling approximation tσ ≪ η invalid here.
Nonetheless, to demonstrate that this Hamiltonian results in CAR – the coherent cou-
pling of |i 〉 and | f 〉 via tunneling through quasiparticle states – we consider the limit
of tσ ≪ η and project the system onto its low-energy subspace following the approach
described in Sec. 2.1.5. To proceed, we apply a Schrieffer-Wolff transformation to per-
turbatively expand the system to second order in teff,σ/η [112]. Hence, we seek a trans-

formation e Ŝ Ĥ 3×3
CPS e−Ŝ which is diagonal to first order in teff,σ/η. By choosing Ŝ such that

[Ŝ, Ĥ0] =−V̂ , it can be shown that e Ŝ Ĥ 3×3
CPS e−Ŝ = Ĥ0 + [Ŝ,V̂ ]/2 to second order in teff,σ/η.

Near the transition, we further assume λ≪ η. In this limit it may be verified that

Ŝ =


0 0 − teff,h

η

0 0 − teff,e
η

t∗eff,h
η

t∗eff,e
η 0

 (4.8)

satisfies this condition. This leads to the transformed Hamiltonian

e Ŝ Ĥ 3×3
CPS e−Ŝ ∼ Ĥ0 + 1

2
[Ŝ,V̂ ] =


−λ2 − |teff,h |2

η − teff,h t∗eff,e
η 0

− t∗eff,h teff,e
η

λ
2 − |teff,e |2

η 0

0 0 η+ |teff,h |2 +|teff,e |2
η


(4.9)

valid to second order in tσ/η and λ/η. The transformed Hamiltonian is in the basis of
dressed states

|i ′〉 ≡ e Ŝ |i 〉 ∼ |i 〉+
t∗eff,h

η
|o〉

| f ′〉 ≡ e Ŝ | f 〉 ∼ | f 〉+
t∗eff,e

η
|o〉

|o′〉 ≡ e Ŝ |o〉 ∼ |o〉− 1

η

(
teff,h |i 〉+ teff,e | f 〉

)
(4.10)

The eigenstates of the original Hamiltonian |p j
α〉 and the eigenstate |o′〉 in the trans-

formed basis have energies of at least η while the {|i ′〉 , | f ′〉} Hamiltonian block only has
elements of order λ/η and t 2

σ/η. Finally then, at low energies we can neglect all states
except |i ′〉 and | f ′〉 and are left with the Hamiltonian

Ĥeff =
 −λ′

2 tCAR

t∗CAR
λ′
2

 (4.11)

in this basis. We shifted the Hamiltonian by (|teff,h |2 + |teff,e |2)/2η and defined λ′ ≡ λ+
(|teff,h |2 − |teff,e |2)/η and tCAR ≡ −teff,h t∗eff,e /η. In the following fits we will find that tσ is
comparable in magnitude to η, violating the assumption tσ ≪ η. As this is continuously
connected to the above tσ ≪ η limit by strengthening tσ and therefore the strength of
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|vjα〉

|f〉|i〉

Figure 4.10: The energy spectrum of ĤCPS (eq. 4.4) for three values of te = 1.1× th . We plot the spectrum for
the uncoupled system where t = 0 (gray), for the experimentally fit teff,h /2π = 24GHz (dark green), and for a
much smaller teff,h /2π= 6GHz (the light green). From this last case, we see how coupling between even parity
states on island M (|i 〉 and | f 〉) and odd parity states detuned in energy by η opens an effective anticrossing
between |i 〉 and | f 〉, mediating CAR. Because for N degenerate quasiparticles γ̂ j there are 2N degenerate states
of energy η, the spectrum appears the same independent of N , though the effective single-electron tunneling
amplitude is scaled by

p
N . For this plot, we used the experimentally extracted parameters η= E0−ES

C = 30µeV

and λ/hζ = −2THzV−1. In blue, we show the ground state energy shifted up by the resonator M frequency,
making it clear that for these teff,e/h values, no crossings are expected between the dot states and the resonator
cavity states.

CAR, the above argument demonstrates that coherent CAR can occur at a high rate in
our floating island system. This model is compared with the more accurate spectrum of
ĤCPS in Fig. 4.10 by considering fit values of te and th as well as smalller values.

INPUT-OUTPUT THEORY FITS

We focus on studying the signal measured by the island M resonator, since it exhibits
sensitivity to the CPS transition in experiment. This is unsurprising, since dispersive gate
sensing measures a coupling of system eigenstates via the charge on dot M [182]. The
middle island exchanges two electrons with the outer quantum dots, while the quantum
dots each only see a change of one electron in their average charge. Hence, we anticipate
that at maximum, a dispersive shift which is twice as large may be imparted on the island
M resonator compared to that imparted on the quantum dots’ resonators, provided all
resonator and coupling parameters are equal.

To study the CPS transition in experiment, we fit the frequency response of resonator
M along the ζ axis to the input-output model described in Sec. 4.7.3 with the effective
Hamiltonian of Eq. 4.7 to extract th and te as well as the dephasing rate. Note that we
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need not consider the eigenstates |p j
α〉 of the full ĤCPS Hamiltonian since they are or-

thogonal to any superposition of the {|i 〉 , | f 〉 , |o〉} states spanning Ĥ 3×3
CPS and are raised in

energy from the system ground state by at least η.
Specifically, we apply the following dispersive shift model for a realistic hanger-style

resonator [134, 182, 204]

AM = 1+ 1

2

κext

i (ω−ω0)− κext+κd
2 − i geffχ

(4.12)

which we then multiply by phase and amplitude slopes and offsets to model a realistic
resonator [158, 187, 190]. The fitting model and procedure is identical to that in Ap-
pendix C but with the addition of the resonator’s dispersive shift geffχ given by

geffχ=∑
k

g 2
c | 〈ψk | n̂M |ψGS〉 |2

ω+ iγk,GS − (Ek −EGS)
, (4.13)

where |ψGS〉 and |ψk〉 represent the system’s ground and excited states respectively, EGS

and Ek are their corresponding energies, γk,GS = γdeph +γrel/2 is the sum of the system’s
dephasing and relaxation rates [182] for the |ψGS〉 to |ψk〉 transition, and gc is the bare
resonator coupling to the system. The bare resonator parameters include the resonator’s
internal photon dissipation rateκd, its resonance frequencyω0, and the photon coupling
rate between the resonator and the transmission line κext. This rate is treated as complex
to account for asymmetry in the resonator lineshape [158, 187, 190]. The coupling ele-
ment 〈ψk | n̂M |ψ0〉 with the charge n̂M on island M quantifies the gate dependence of the
island-resonator coupling. Above, we assumed that thermal population of excited states
is negligible, since they are separated from the ground state by a gap of at least η. Again,

because the states |p j
α〉 are orthogonal to {|i 〉 , | f 〉 , |o〉} and the ground state is a superpo-

sition of these three states, we know that 〈p j
α| n̂M |ψGS〉 = 0. Furthermore, we compared

fits including only the transition between the ground state to the first excited state to fits
including transitions to the second excited state as well and found negligible difference.
This is likely because of an additional energy difference of at least η separating it from
E0. Hence, to fit the dispersive shift corresponding to the full ĤCPS Hamiltonian, it is suf-
ficient to consider only the two lowest energy eigenstates which may be extracted from
Ĥ 3×3

CPS . Consequently, our fit model includes only a single dephasing parameter γ.
Before conducting the dispersive fit, all resonator parameters including κext, κd, and

ω0 are fixed to the same calibrated values used for the fits of Fig. 2a. To convert from our
ζ voltage axis to λ in units of frequency, we fix a conversion factor equal to −2 THzV−1.
We calculate this factor from Coulomb diamond measurements of QDL and QDR, from
which we estimated lever arms of αL ≈ 0.7% and αR ≈ 0.9%. Hence, up to a detuning
offset, we have

λ

h
=− 2e/h

1/αL +1/αR
ζ+offset ≈−(2THzV−1)ζ+offset (4.14)

Our ζ axis was chosen such that ζ= 0 corresponds to the center of the CPS transition, so
we fix this detuning offset in the conversion from ζ to λ to zero.

Finally, all parameters are fixed except for gc, teff,σ, and γ. We summarize tests of the
robustness of our fit in Fig. 4.11, where we see that gc, γ, and te /th are stable to changes
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in teff,h and the energy conversion multiplier |λ′/ζ|. Effectively, we fit γ and electron-
hole tunneling asymmetry te /th by hand, varying them between different fixed values
and observing that a clear minimum fit error occurs at γ/2π = 1.1GHz and te /th = 1.1
(see Fig. 4.11(d)), where we extract teff,h = 24GHz and gc/2π= 0.23GHz. We also observe
from Fig. 4.11(e-h) that fixing teff,h leads to very poor fits when teff,h/2π is smaller than
the resonator frequency. Also, allowing the ζ offset to vary led to a slightly larger opti-
mized te /th and smaller absolute teff,h , but did not reduce fit error substantially. Hence,
fixing this offset to zero is justified to avoid overfitting.
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Figure 4.11: (a) The root mean square fit residual, (b) extracted hole-like tunneling amplitude teff,h assuming
symmetric tunnel barriers to the left and right QDs, and (c) extracted gc of the dispersive shift fit of the CPS
transition for different fixed electron-hole tunneling asymmetries te /th and dephasing rate of the two lowest
system states γ. We fix |λ′/2πζ| = −2THzV−1 and all resonator parameters, but allow teff,h , gc , and a ζ offset to
vary. A clear minima in the fit residual is seen at all values of te /th , plotted in black in (a). (d) Root mean square
fit residual at the te /th value which minimizes fit residual. A global minimum of fit error occurs at te /th ≈ 1.1
and γ ≈ 1.1GHz. Hence, we take these fixed values of te /th and γ as their fit values in the main text. (e) The
root mean square fit residual, (f ) extracted γ, (g) extracted gc, and (h) extracted tunneling asymmetry te /th
of the dispersive shift fit of the CPS transition for different fixed teff,h and ζ-axis energy conversion multipliers

|λ/2πζ|. We consider |λ/2πζ| fixed within 10 % of its experimentally extracted value of 2 THzV−1. A clear
minima in the fit residual is seen at all values of |λ/2πζ|, plotted in white in (e). This results in error-minimizing
teff,h /2π between 22.0 GHz and 25.7 GHz across the range of considered |λ/2πζ| values.
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F. K. Malinowski

Quantum interference of electron tunneling occurs in any system where multiple tun-
neling paths connect states. This unavoidably arises in two-dimensional semiconduct-
ing qubit arrays, and must be controlled as a prerequisite for the manipulation and read-
out of hybrid topological and parity qubits. By studying a loop formed by two quantum
dots, we demonstrate a magnetic-flux-tunable hybridization between two electronic lev-
els, an irreducibly simple system where quantum interference is expected to occur. Us-
ing radio-frequency reflectometry of the dots’ gate electrodes we extract an interdot cou-
pling of the double quantum dot exhibiting oscillations with a periodicity of one flux
quantum. In different tunneling regimes we benchmark the oscillations’ contrast, and
find their amplitude varies with the charge state of the quantum dots. These results es-
tablish the feasibility and limitations of parity readout of qubits with tunnel couplings
tuned by flux.

5.1. INTRODUCTION
Magnetic fields impart a phase on electron wave functions, leading to constructive or
destructive interference between different electron trajectories. This manifests in com-
monly observed phenomena such as the Aharonov-Bohm (AB) effect and weak localiza-
tion [6]. Similarly, confined quantum systems where only a few states are coupled to
each other can exhibit interference [225–229], for example due to interference of phases

The work in this chapter is under review as an article in an academic journal. Preprint available at
arXiv:2303.04144.
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imparted by magnetic fields on the couplings [230]. To date however, the phase of tun-
nel couplings between discrete fermionic levels has never been directly measured. This
is particularly relevant for several kinds of semiconductor and hybrid semiconducting-
superconducting qubits formed with quantum dots (QDs). QDs are a fundamental com-
ponent of topological qubits based on Majorana bound states [10, 11, 87, 88, 231] as well
as spin qubits [232]. They are also naturally suited for quantum simulation [233]. Since
toplogical qubits are typically composed of multiple QDs connected in a loop, their hy-
bridization is sensitive to the magnetic flux through the loop because it modulates the
tunnel couplings’ phases, causing interference [230]. This flux-dependent tunneling is a
prerequisite for maximizing the readout sensitivity of topological qubits and for tests of
Majorana fusion rules [10, 11, 14, 198, 231]. Meanwhile, tunneling may depend on flux in
two-dimensional QD arrays for quantum processors [234, 235] or quantum simulation
[108, 228, 236], since coherent tunneling can occur across chains of QDs [111]. This high-
lights the importance of understanding and accounting for this effect. Additionally, it has
been proposed that new types of semiconducting qubits could exploit flux-tunable cou-
plings to implement gate operations and noise-protected readout schemes [237–239].
Currently, coupling between dots is typically controlled solely electrostatically with gate
voltages [23, 240], and an understanding of how magnetic flux affects tunneling ampli-
tudes is lacking.

Motivated by this, we probe quantum interference in the irreducibly simple case of
tunneling between two electronic levels in a loop formed by two QDs. Radio-frequency
(RF) gate reflectometry is sensitive to tunnel couplings between QDs [125, 130, 131, 135,
136, 138, 174, 204, 241, 242], and is a candidate for scalable readout of semiconductor
and topological qubits [10, 11, 13, 198, 231]. We therefore employ it to quantify the inter-
dot coupling as a function of magnetic flux, and demonstrate a flux-tuned hybridization
between electron levels. The specific charge and therefore quantum state of the QD sys-
tem strongly affects the tunnel coupling and the oscillation amplitude. Importantly for
gate reflectometry, the relation between tunnel couplings and measured signal is nonlin-
ear [138]. Therefore, contrary to expectation [198], we find that readout fidelity of qubits
with their state information encoded in a flux-tuned tunnel coupling may be optimal for
weak coupling between the involved QDs.

This manuscript is organized as follows: In Sec. 5.2, we describe the device fabri-
cation procedure as well as its configurability into an open loop, a quantum ring, or a
double quantum dot (DQD). Phase-coherence of electron transport through the device
is then established in Sec. 5.3 in two ways. First, we measure the AB effect manifesting in
both DC conductance and RF reflectometry of the open loop. Second, we tune the de-
vice into a large loop-shaped QD, and measure h/e-periodic oscillations of its addition
energy with flux [243, 244]. This QD exhibits a consistently finite excitation energy de-
spite having an approximate circumference of 1.4µm. The main result of the manuscript
is then presented in Sec. 5.4, where we demonstrate a flux-tunable tunnel coupling be-
tween the levels of two quantum dots arranged in a loop and assess limitations of this
tunability in Sec. 5.5. Lastly, in Sec. 5.6 we consider implications of these results for fu-
ture applications to semiconducting and hybrid superconducting qubits.
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5.2. DEVICE OVERVIEW
To fabricate a device capable of forming a ring-shaped DQD, we use a InSb0.86As0.14

ternary two-dimensional ternary electron gas (2DEG) [245]. The device (Fig. 5.1(a)) con-
sists of three Ti / Pd gate layers patterned on the 2DEG, each separated by 20 nm of de-
posited Al2O3 dielectric. Charge is confined to an annular ring geometry by applying
voltages to deplete carriers below the outer and inner depletion gates (red). The voltage
on the inner depletion gate VC also serves to tune the chemical potential of the entire
ring. Voltages VBS, VBD, VBT, and VBB on the barrier gates (yellow) define a large curved
QD and a smaller QD (denoted QDL and QDR, respectively), while voltages VL and VR

on the plunger gates (blue) control their chemical potentials. Specifically, VBS and VBD

form tunnel barriers between the QDs and lead reservoirs, while VBT and VBD tune the
individual interdot couplings between the QDs via each arm of the loop. Two additional
unlabeled accumulation gates (gray) control charge density in the exposed 2DEG be-
tween the QDs and Al contacts. Additional details of the fabrication may be found in
Appendix A.

By appropriately tuning gate voltages, the device can be continuously tuned betwen
an open loop, a loop-shaped QD, or into a DQD (Fig. 5.1(b)). Measurements on the for-
mer two configurations enable us to verify that electron transport is phase-coherent over
the ring circumference, and that the ring as a whole supports a single extended electron
state. The DQD configuration represents a minimal system in which interference of tun-
neling between two electron states can occur, as we will demonstrate.

Both plunger gates controlling QDL and QDR are bonded to resonators formed by
NbTiN spiral inductors with 420 nH and 730 nH inductance and their parasitic capac-
itances, leading to resonance frequencies of approximately 400 MHz and 315 MHz, re-
spectively [154]. We measure V L

RF and V R
RF, the signal reflected from the resonator con-

nected to gate L or R upon applying a voltage excitation near their resonance frequen-
cies. This complex amplitude depends on the capacitance associated with resonant tun-
neling and losses from dissipative transport. The former results in a frequency shift of
the resonator ∆ f L

0 or ∆ f R
0 , while the latter reduces its quality factor [13, 125, 131]. The

low-power signals reflected by the device are amplified by a high-electron-mobility tran-
sistor at 4 K and measured with a vector network analyzer or ultra-high-frequency lock-
in amplifier to produce V L

RF and V R
RF, see Fig. 5.1(a). Using frequency multiplexing [154],

both quantities can be measured simultaneously. Measurements are performed at the
approximately 20 mK base temperature of a dilution refrigerator. For more details of
the measurement circuit, see Appendix B.2. Additionally, there may be a large cross-
capacitance between gates coupled to resonators and the device depletion gates due to
their substantial overlap. To prevent this capacitance from lowering the resonator qual-
ity factors and frequencies, large resistors were patterned on the depletion gates serving
as low-pass filters. See Appendix A.1 for more details.

In each of the three measurement configurations displayed in Fig. 5.1(b), proper-
ties of the device are readily measured using RF reflectometry of resonators connected
to gates L or R. The reflectometry signal is sensitive to the RF admittance of the device
[13]. In the case of an open loop, the resonator on gate R probes the RF conductance
of the loop in series with its gate capacitance, depicted in Fig. 5.1(c). The device ad-
mittance is dominated by high frequency conductance of electrons traveling around the
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Figure 5.1: Experimental design and device configurations. (a) False-color electron micrograph of a nominally
equivalent device to the one measured, and a schematic of the resonator circuit. The device may be tuned by
depletion (red) and barrier (yellow, labeled) gate electrodes into an open AB loop, a ring-shaped QD, or a DQD
with QDL and QDR chemical potentials tuned by plunger gate voltages VL and VR (blue, labeled), schematized
in (b). Outer and inner depletion gates have −2 V and VC = −3V applied respectively to form a conducting
loop unless otherwise specified, illustrated by a dashed line. (c) Coupling of the resonator voltages to electron
tunneling and transport for the three configurations depicted in (b). The investigated transport mechanisms
which couple to the oscillating resonator voltage (blue) are described with orange text and arrows. For the
single and double QD configurations, we use a chemical potential illustration to show the oscillating resonator
voltage coupling to tunneling events (orange arrows). For the open loop, its RF conductance dominates the
resonator signal. For single and double QDs, incoherent tunneling with the leads has capacitive contributions
from tunneling capacitance and dissipative contributions from charge relaxation. In addition, interdot tun-
neling in a DQD quantifiably translates into a quantum capacitance loading the resonator.

loop and into the leads in this case (orange arrows), such that the resonator signal pri-
marily changes due to changes in the resonator’s internal quality factor. When tuned
into a single loop-shaped QD, both gates L and R tune its chemical potential. Hence,
their coupled resonators are sensitive to tunneling effects between the QD ring and the
leads. A chemical potential diagram of this coupling is shown in Fig. 5.1(c). Relaxation
events in the form of electrons tunneling between the QD and the leads out of phase with
the oscillating gate voltage loads the resonator reactively with tunneling capacitance and
dissipatively with Sisyphus resistance [13, 128, 129, 142]. Through these signal contri-
butions, Coulomb resonances of the QD are measurable since they lower both the res-
onator frequency and its quality factor. Finally, when tuned into a loop-shaped DQD, the
gate resonators’ signals are sensitive to interdot tunneling, depicted in Fig. 5.1(c). In par-
ticular, a substantial interdot tunnel coupling manifests in a purely reactive admittance
arising from quantum capacitance [13, 125, 130], which can be used to directly measure
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the tunnel coupling [138]. Hence, the measurement signal arises almost entirely from a
frequency shift of the resonator due to the additional quantum capacitance.

5.3. PHASE-COHERENT LOOP AND QUANTUM RING
We begin by verifying the electron phase coherence in our device manifested by the AB
effect. To form an open loop without QDs, we set all accumulation, plunger, and bar-
rier gates to positive voltages to remove potential barriers. Fig. 5.2(a) presents the four-
terminal conductance G and response of the right gate R resonator as a function of the
out-of-plane field B⊥. Oscillations of conductance in flux with a periodicity of h/ne for
integer n are expected, depending on how many times an electron can travel around the
loop while maintaining a coherent phase [6]. The resonator is sensitive to dissipative
transport in the loop despite being capacitively coupled, manifesting as a reduction of
the resonator’s quality factor. Matching AB oscillations and higher harmonics are promi-
nent in both G and the depth of the minimum in the reflection coefficient of the gate R
resonator on resonance [246]. We observe a varying φ0 ≡ h/e and h/2e flux periodic-
ity consistent with the expected bounds on area based on the lithographically defined
180 nm and 360 nm inner and outer radii of the loop. Here, h/e is the single-electron flux
quantum. This suggests a phase coherence length on the order of a micron, based on
the inferred circumference of the loop.

To investigate if the entire ring can support an extended electronic state, we continue
by tuning the open loop into a large ring-shaped QD. The electron eigenstates of a suffi-
ciently thin ring are angular momentum states with energies quadratic in flux, centered
at integer multiples of h/e. By virtue of the Pauli exclusion principle, the highest unoc-
cupied electron state is expected to exhibit a zig-zag like pattern in energy with an h/e
flux periodicity, illustrated in Fig. 5.2(d). When the quantum ring forms a QD coupled
to leads, this results in analogous kinked oscillations of the dot’s addition energy—its
spacing between Coulomb resonances—as a function of chemical potential [243, 247].

To form such a quantum ring, we lower VBS and VBD to form tunnel barriers (Fig. 5.1
(b,c), middle), and tune the QD’s chemical potential with VC. Both gate L and gate R’s
resonators are sensitive to tunneling between the dot and surrounding leads, since VL

and VR tune the ring’s chemical potential. To project each complex resonator signal into
a single real quantity, we calculate the absolute distance of it from the Coulomb blockade
signal, denoted Ṽ L

RF or Ṽ R
RF (see Supplemental Sec. 5.7.1). Since both resonators are mea-

sured simultaneously in this case, we normalize the resulting magnitudes and sum them
for measurements of this QD. In this regime, the large QD exhibits a finite level spacing
as demonstrated by the gapped excitation lines visible in Coulomb diamond measure-
ments shown in Fig. 5.2(b). Moreover, we observe h/e-periodic oscillations of the addi-
tion energy as the magnetic flux is swept with zero applied bias in Fig. 5.2(c), consistent
with expectations for a quantum ring [243, 244]. Though the oscillations are highly ir-
regular, the peak positions and signal strengths’ average Fourier transform shows a clear
peak at an h/e period of 27 mT, shown in the inset. Deviations from a regular zig-zag
pattern in the addition energy may arise when the ring is not perfectly one-dimensional,
such that radial degrees of freedom contribute to its wave function. Potential irregulari-
ties along the ring’s perimeter and effects of spin-orbit coupling also can cause the more
complex oscillations in its addition energy [248].
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Figure 5.2: Phase-coherent transport and extended electron states. (a) AB oscillations in the open loop con-
figuration depicted in the inset. Measurements are at zero bias voltage, of 4-terminal lock-in conductance
(black) and of the absolute reflected signal (gray) from the resonator coupled to the VR electrode. Here, |V R

RF| is
taken at the field-dependent resonance amplitude minimum (right). On the right, example frequency sweeps
from which the minimum signal is calculated are shown. h/e and h/2e-periodic oscillations are visible in both
the conductance and in the RF signal. (b) Single-particle energies for a thin ring ∝ (eφ/h + l )2 for l ∈ Z. The
tenth lowest energy state is highlighted, showing that energies for fixed electron number oscillate in a zig-zag
fashion. (c) Coulomb diamonds with the device configured into a ring-shaped QD depicted in the inset at
B⊥ = 950mT. The sum of normalized signals from both gate resonators is plotted, centered about the signal
in Coulomb blockade. A consistently finite excitation energy is visible. (d) Zero-bias Coulomb resonances as a
function of B⊥,with measurement frequencies adjusted to be near resonance at each B⊥ value. Inset: Normal-
ized absolute Fourier transform of the resonance VC position (black) and signal height (gray) averaged across
all Coulomb resonances. Both have clear peaks at an h/e periodicity of 27 mT.
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5.4. FLUX-TUNABLE INTERDOT COUPLING
Having established phase coherence of the 2DEG loop, we next consider the case of a
loop comprising two quantum dots threaded by a magnetic flux, illustrated in Fig. 5.3
(a). For this system, we expect magnetic flux to tune the effective interdot tunnel cou-
pling. This is in contrast to studies embedding QDs into semiconducting rings where
one trajectory involving tunneling through a QD could interfere with trajectories involv-
ing the other loop arm, potentially containing a second QD [249–258]. Assuming that at
each interdot charge transition both QDs are described by a single fermionic level, the
DQD can be represented as a two-level system with an effective coupling matrix element
teff ≡ tT+tB. Here, we define tT and tB as the interdot coupling due to the top and bottom
arms, respectively. Under the Peierls substitution, a magnetic fluxφ(B⊥) imparts a phase
on each coupling [230]. Using an appropriate choice of gauge, we then have

|teff| =
√
|tT|2 +|tB|2 +2|tTtB|cos(2πφ/φ0), (5.1)

assuming tT and tB had equal phases at zero field. Via quantum capacitance, teff(φ)
imparts a frequency shift on QDL’s gate resonator with a maximal value in the ground
state ∝ 1/|teff|. Consequently, we expect the frequency shift to oscillate periodically with
φ. In Figs. 5.3(b,c), we plot the expected dependence of the resulting frequency shift on
flux [125, 130].

Experimentally, we realize this system as a loop-shaped DQD with chemical poten-
tials tuned by voltages VL and VR. To focus on interdot transitions where the signal con-
tains information about the interdot tunnel coupling teff, we lower VBS and VBD until
tunneling rates to the leads are undetectably small. Meanwhile, we form the DQD by
lowering VBT and VBB into a regime of moderate tunneling, such that interdot transitions
exhibit a substantial quantum capacitance signal. The barriers are tuned to be approx-
imately equal based on DC current measurements (Supplemental Sec. 5.7.2).Coulomb
diamond measurements demonstrate a varying but finite level spacing above 70µeV in
both QDs (Supplemental Sec. 5.7.3) [20], such that the DQD is well-described by two
coupled fermionic levels [33]1. Maintaining a finite excitation energy on both QDs de-
spite their large lithographic size is achievable due to the low effective mass of roughly
0.016me in the 2DEG [245], which favors confinement.

Selecting a single interdot transition in this regime, we measure gate and frequency
dependent traces of the gate L resonator’s response V L

RF as a function of B⊥, aiming to
extract |teff|. At each point in the gate space, we fit the results to an asymmetric resonator
model to extract the resonance frequency shift ∆ f L

0 (see Appendix C and Refs. [158, 187,
190]). As no resonator losses were measured over this interdot transition, the resonator
response may be described as a quantum capacitance Cq loading the bare capacitance C
and inductance L of the resonance frequency as f0 = 1/2π

√
L(C +Cq). Accordingly, we

fit the VL dependence of∆ f L
0 (Cq) to a thermal quantum capacitance model described by

Cq = 2(eαL)2 |teff|2
(∆E)3 tanh

(
∆E

2kBT

)
, (5.2)

1As we will see in the subsequent section, the specific levels probed in Figs. 5.3 and 5.4 also exhibit signs of
spin degeneracy, indicating further that they are fermionic states rather than some other many-body charge
level.
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Figure 5.3: Tuning DQD hybridization with flux. (a) Diagram of a DQD ring threaded by a magnetic fluxφ(B⊥).
(b,c) Schematic mapping of |teff| as a function of magnetic flux φ (c) into a final resonator frequency shift
∆ f0(φ) at charge resonance (b), shown for tT = 1.5tB (solid) and 2tB (dashed). For sizable |teff| the frequency
shift is ∝ 1/|teff| [125, 130]. (d) Fit |teff| values from the frequency response of the gate L resonator as a function
of B⊥ for a single interdot transition. The tunnel coupling oscillates periodically with varying contrast and
amplitude. The inset defines the charge stability diagram (CSD) color scale and plots the approximately ∝
1/|teff| correspondence between the fit |teff| and maximum observed∆ f L

0 for each B⊥ in (d). (e-g) Select CSDs

at the B⊥ values labeled in (d) showing the lineshape of∆ f L
0 across the interdot transitions for different tunnel

couplings.

to extract |teff|, where

∆E ≡
√
α2

L(VL +V off
L )2 +4|teff|2 (5.3)

is the energy splitting between the two dot levels involved in tunneling [125, 130]. The
lever arm αL = 0.18 and electron temperature T = 71mK are optimized simultaneously
for all field values to produce the minimal fit error (Supplemental Sec. 5.7.4). Subse-
quently they are fixed, with the only other free parameters being the center offset V off

L of
the transition and f0 in the Coulomb blockade.

The resulting values of |teff| are plotted in Fig. 5.3(d), where oscillations of |teff| are
clearly visible. In Figs. 5.3(e-g), we show examples of frequency shifts of the gate L res-
onator for several values of B⊥, where we see that for smaller tunnel couplings the tran-
sition appears to be more narrow, but with a stronger frequency shift. In particular, the
tunnel coupling in general does not reach zero at its minima, suggesting that tT and tB

are not precisely equal, as exemplified in Fig. 5.3(c). The average value of |teff| between
oscillations also varies unpredictably, indicating that the wave functions of the involved
states change over the range of multiple flux periods. Nevertheless, with this measure-
ment we explicitly demonstrate control of the hybridization between two fermionic lev-
els with magnetic flux.
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Figure 5.4: Flux-tunable hybridization of the DQD across multiple dot levels. (a) CSD with no applied field
showing the window of 16 interdot transitions probed over a sweep of B⊥. Dashed lines show the approximate
boundaries of stable charge regions, because weak coupling of the QDs to the leads makes only interdot transi-
tions visible in the gate L resonator’s signal. Several charge regions are labeled with their relative charge states
up to an offset (NL, NR) for a reference even charge NL and NR on QDL and QDR, respectively. (b) Peak signal
deviation from Coulomb blockade Ṽ L

RF of the four numeral-labeled transitions as a function of B⊥, offset by
0.18 arb.units. (c) Peak positions of interdot transitions in VR coordinates relative to the lowest peak, averaged
across all four columns of transitions shown in (a), and offset by 2.32 mV. The offset voltages vary linearly
with the addition energies of QDR, so that anticrossings in the positions correspond to anticrossings between
electron states of QDR. The black arrows show example points where a correlation can be observed between
the oscillation amplitude of Ṽ L

RF and anticrossings of QDR states. (d) Schematic describing the kinks in (c) and
sudden changes in the |teff| oscillations of (b). If a state |ψb〉 overtakes another state |ψa〉 as the ground state
of QDR, and the former has a different tunnel coupling to the ground state of QDL, then a sudden change in
|teff| and its oscillation amplitude may occur at this crossing.

5.5. LIMITS OF FLUX-TUNED TUNNEL COUPLING READOUT

For applications to topological qubits using QDs potentially containing many electrons,
one must choose a particular dot level to optimize tunnel coupling readout. Therefore,
in the same DQD regime as in Sec. 5.4, we proceed to study the variance of the oscillation
amplitude in a broader field range and for multiple transitions, focusing on the 16 tran-
sitions shown in Fig. 5.4(a). There, similar to measurements of the ring-shaped QD, we
plot the absolute deviation of the complex reflection signal of QDL’s resonator from its
average value in Coulomb blockade: Ṽ L

RF. The complex signal is a one-to-one function
of the frequency shift of QDL’s resonator and is inversely proportional to |teff| for sub-
stantial |teff| [259]. An even-odd alternation in the transition spacing both along the VL

and VR axes suggests that both QDs have spin degenerate levels with a finite level spac-
ing in this window. We sweep B⊥, measuring new CSDs of the 16 transitions at a single
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measurement frequency adjusted to remain close to resonance. From these CSDs, we
extract the maximum Ṽ L

RF signal and the approximate peak position in the gate space for
all transitions.

We plot in Fig. 5.4(b) the peak signal height—proportional to 1/|teff| except when |teff|
is very small—for the column of transitions enumerated in Fig. 5.4(a). For all four transi-
tions, h/e-periodic oscillations of the peak height are clearly seen in some ranges of B⊥.
There, we identify four distinct features. First, some regions in Fig. 5.4(b) present visible
oscillations in an otherwise small signal. One such region is appears at B⊥ ≳ 400mT for
Transition iii. As schematically depicted in Fig. 5.3(b,c), this corresponds to large aver-
age |teff| and asymmetric barriers. Large tunnel couplings lead to a small frequency shift
while asymmetry reduces the amplitude of the oscillations. Second, for smaller mean
values of |teff| the signal variation with flux is much greater since |d∆ f L

0 /d|teff|| is larger,
as seen for transition iv in the range 280 mT to 400 mT. Third, Transition iv at low fields
exhibits a substantial peak height, indicating a small tunnel coupling, but a very weak
oscillation contrast. This suggests that the tunnel barriers are tuned by B⊥ to be sub-
stantially asymmetric in this field range. Finally, a sudden drop of the peak height to
near zero appears near the oscillation maximum for some transitions. We expect this
to be a result of |teff| being small enough near the maximum peak height that thermal
excitations and Landau-Zener transitions populate the excited DQD state, suppressing
quantum capacitance (see Sec. 2.2.3 for a more detailed argument) [150, 151]. Impor-
tantly, this also suggests that tB ≈ tT in those cases.

Differences between these scenarios are known to have consequences when sensing
tunnel coupling to manipulate or measure qubits [138, 141, 175]. Probing the tunnel
coupling with gate sensing in the regime of very weak tunneling gives a sharp change in
the resonator signal for small changes in |teff|, allowing one to couple QDs weakly to the
qubit of interest. Conversely, the signal is also sensitive to small changes in flux in this
case. Certain topological qubit proposals also rely on a substantial tunneling magnitude
for their operation [87].

To better understand Fig. 5.4(b), we now consider the influence of the specific elec-
tronic levels involved on the amplitude of the tunnel coupling oscillations. To this end,
we plot the relative position VR of interdot transitions averaged across all four columns
in Fig. 5.4(c) and offset by their charging energy. This position is proportional to the
excitation energies of the different QDR levels [22, 32], and we observe that they are
nearly spin-degenerate at zero field. Kinks can be seen in the peak positions, indicating
(anti)crossings between levels of QDR, depicted schematically in Fig. 5.4(d). At several
fields, with examples highlighted by black arrows in Fig. 5.4(b,c), sudden changes in the
average peak height and oscillation contrast of a transition appear correlated with anti-
crossings of QDR levels. We hypothesize that variation in wavefunction overlap of differ-
ent levels with field, as well as the particular levels involved, can have a drastic effect on
tT/B. As the cartoon in Fig. 5.4(d) illustrates, it may be the case that two different states
of QDR have different wave-function overlaps with the ground state of QDL, and vice-
versa. In particular, transitions between states of opposing spin have teff determined by
spin-orbit coupling strength [23, 205, 260], while transitions between states of the same
spin do not. Given the large out-of-plane g -factor of these 2DEGs [245], it was difficult to
independently study spin and flux effects. Additionally, some changes in the mean peak
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Figure 5.5: Contrast of DQD Tunnel Coupling Variation in Different Regimes. (a-c) Bars showing maximal
peak height variation on a single interdot transition spanning the distance between the smallest and largest
observed Ṽ L

RF peak height, binned within one h/e period of 23.5 mT and plotted for three different regimes of
tunnel barrier tuning. Of the 16 interdot transitions tracked in each dataset, only the bar for the transition with
the largest signal variation for each period is shown. (a) summarizes a B⊥ sweep in a regime of weak interdot
tunneling with more negative barrier voltages, while (c) shows data for strong tunneling and less negative
barrier voltages. (b) corresponds to the intermediate tunnel barrier data from Fig. 5.4. The largest contrast in
the signal generally occurs within the weak coupling regime. (d) Absolute Fourier transforms in each regime
averaged across all 16 transitions. Orange represents a sweep of the in-plane field for the same transitions and
tuning as the intermediate regime. A vertical line shows the peak at 23.5 mT.

height and oscillation contrast have no obvious correlation with QDR excitation ener-
gies, but we note that changes in the ground state of QDL as a function of field also affect
teff. Hence, for any application requiring hybridization readout between QD levels, the
specific levels used must be optimized for a given magnetic field range.

Lastly, we compare the differences in tunnel coupling readout contrast for regimes
of different VT/B and thus average tT/B values. From Eq. 5.1 we expect that for nearly
equal tB and tT, large tunnel couplings should produce the best oscillation contrast,
since the tunnel coupling ranges from |tT| + |tB| to nearly zero. We therefore conduct
measurements analogous to those in the intermediate coupling regime of Fig. 5.4 for
other coupling regimes, with results summarized in Fig. 5.5 and shown in more detail in
Supplemental Sec. 5.7.5. Namely, we first bin the peak heights for a given regime into
windows equal to the h/e periodicity extracted from their average Fourier transform
(Fig. 5.5(d)). Next, we plot bars spanning the minimum Ṽ L

RF peak height to the maxi-
mum for whichever of the 16 transitions maximizes this difference in a given field bin.
In addition to the dataset from Fig. 5.4, datasets for more negative (closed) and less neg-
ative (open) barrier gate voltages are shown in blue and green, respectively. As a control,
in orange we show the data for an in-plane field sweep over the same transitions con-
sidered in Fig. 5.4, where no oscillations are seen. Compared to the red ‘intermediate’
coupling regime, the more closed-off regime shows on average a larger variation in peak
height across a single h/e period, due to the increased slope of∆ f L

0 with flux as described
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above. The open regime shows very weak oscillation contrast despite the tunnel barriers
exhibiting similar resistances (Supplemental Sec. 5.7.2), suggesting that larger coupling
regimes are more sensitive to slight asymmetries between tT and tB. If the percent differ-
ence betweeen |tT| and |tB| is non-negligible, then the maximum flux-tuned difference
in quantum capacitance signals (proportional to 1/(|tT| − |tB|)−1/(|tT| + |tB|)) becomes
smaller for larger average tunnel couplings. Consequently, for flux-tuned qubit readout
and manipulation schemes where the state is encoded in the sum or difference of two
tunnel couplings [10, 11, 231], the optimal readout fidelity may occur for weak overall
couplings.

5.6. CONCLUSIONS & OUTLOOK

Herein we measured a tunable hybridization between two electronic levels threaded by
a magnetic flux for the first time. Using gate-based RF reflectometry implemented in
a phase-coherent InSb0.86As0.14 2DEG, we measured h/e-periodic oscillations of tunnel
coupling between the levels of two QDs arranged in a loop. Even for nearly symmetri-
cally tuned interdot tunnel barriers, the coupling was not generically suppressed at its
minima, exhibiting a high degree of variability in magnitude and contrast of the tunnel
coupling oscillations. We inferred that this variability is in part dependent on the specific
QD levels involved. Finally, we found that, given the inherent difficulty of symmetrically
tuning two tunnel barriers in parallel, the best signal contrast across an oscillation pe-
riod occurs for relatively weak average interdot tunnel couplings [138]. On the other
hand, tuning a tunnel barrier strength as a function of flux while probing the gate re-
flectometry signal at an interdot charge resonance serves in itself as a method for tuning
|tT| and |tB| to be equal. In this approach, one would target the barrier strength where
Landau-Zener transitions suddenly suppress the signal near its maximum as a function
of flux, as described in Sec. 2.2.3. This work establishes a prerequisite for the readout of
qubits formed in topological nanowires and Kitaev chains [10, 11, 14, 231, 261]. It also
demonstrates a new mechanism by which the effective coupling between localized elec-
tronic states can be tuned and illustrates its limitations, applicable to semiconducting
spin and charge qubits [237–239]. Even when undesirable, flux-tuned tunnel couplings
may arise in two-dimensional QD arrays [228], as direct tunneling or cotunneling be-
tween QDs can occur via more than one trajectory in this case.

Raw data, analysis code, and scripts for plotting the figures in this publication are
available from Zenodo [262].
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5.7. SUPPLEMENTAL INFORMATION

5.7.1. CALCULATING RF SIGNAL DEVIATION FROM COULOMB BLOCKADE

Figure 5.6: Histogram of the measured complex V L
RF values from the dataset of Fig. 5.4. The extracted value of

V L0
RF for this dataset is plotted in red, and is roughly centered over the clustering of points corresponding to the

Coulomb blockade signal. Ṽ L
RF is calculated as the absolute deviation of the signal from this point.

The scattering parameters V L
RF and V R

RF measured in the reflectometry circuit are
complex and at Coulomb resonance the signal information is stored in both their real
and imaginary components. To illustrate this, we plot the histogram of measured V L

RF
values using the dataset of Fig. 5.4(a) in Fig. 5.6. A large concentration of points is cen-
tered around the Coulomb blockade signal (denoted V L0

RF ) away from V L
RF = 0, while

an elongated distribution of points corresponds to the signal around a Coulomb reso-
nance. The vector between these two groupings of measured values, illustrated with an
arrow for an arbitrary V L

RF on Coulomb resonance, contains most of the signal informa-
tion. Hence, to plot a real quantity representing the RF signal while excluding the min-
imum possible amount of information, we plot the magnitude of this vector, denoted
Ṽ L

RF ≡ |V L
RF −V L0

RF |. We note that a second elongated distribution of points appears in
Fig. 5.6 oriented horizontally. This arises from a stray charge resonance unrelated to the
QDs but sensed by resonator L [148], appearing as a vertical resonance along the right
side of Fig. 5.4(a).

To estimate V L0
RF , we use two different methods. For data shown in Fig. 5.2, we take

the mean V L
RF over a rectangular window observed to correspond to Coulomb block-

ade from an initial inspection of |V L
RF| as V L0

RF . This technique is robust provided that
charge jumps do not move Coulomb resonances into the window. For the data shown
in Figs 5.4, 5.5 and 5.10, however, we use a modified median of the data since it can be
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automatically calculated without specifying a window corresponding to Coulomb block-
ade. Namely, we first extract the lowest 50 % of VL rows in the dataset in terms of their
V L

RF standard deviation. This is because rows with high standard deviation are expected
to contain Coulomb resonances since the signal varies more from its Coulomb block-
ade value. From this subset of points, we take the median as V L0

RF . To illustrate this, we
plot the V L0

RF value extracted with this method in Fig. 5.6 in red. We see that it is roughly
centered over the clustering of points corresponding to Coulomb blockade. Note that
the same steps are used for V R

RF data as used in Figs. 5.2(b) and (c). A different Coulomb
blockade value is taken at each magnetic field value in the case of a field sweep, since the
field affects the resonator’s lineshape and resonance frequency.

5.7.2. TUNING SYMMETRIC PARALLEL TUNNEL BARRIERS
To tune the bare tunneling strengths tT and tB to be approximately equal, we select volt-
ages on their corresponding barrier gates such that each admits the same instantaneous
conductance when the other barrier is completely closed off. This procedure is summa-
rized in Fig. 5.7. For this method to be valid, we must assume that the barrier gates have a
negligible capacitive cross coupling, as evidenced by the approximate rectangular shape
of their two-dimensional pinch-off map shown in Fig. 5.7(a).

Intermediate

Closed

a b

Open

Figure 5.7: Pinch-off scans for approximately symmetric barrier tuning. (a) Current through the device at 3 mV
applied bias voltage as a function of VBT and VBB, tuned into an otherwise open loop. The roughly rectangular
shape of the zero-current region implies a weak cross-coupling between gates BT and BB. Linecuts where BT or
BB are closed (white lines) can thus be used to select barrier voltages for roughly equal resistance. (b) Linecuts
from the current map of (a). To tune for the intermediate coupling regime of Fig. 5.4 (red), or the more closed
off (blue) and open (green) regimes described in Fig. 5.5, VBT and VBB voltages are chosen such that when the
opposite barrier is pinched off, they both admit roughly the same current. The relatively large bias reduces the
influence of QD states under the barriers on the measurement.

5.7.3. COULOMB DIAMONDS
Coulomb diamonds of QDL and QDR are shown in Fig. 5.8, from which we observe that
both exhibit a consistently finite excitation energy between electronic levels.
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Figure 5.8: Coulomb diamonds of QDL (a) and QDR (b). The single QDs are tuned such that both the relevant
lead barrier as well as VBT and VBB are in a weak tunneling regime. Magnitude of the reflectometry signal
near the resonance frequency of their respective plunger gates’ resonators is plotted. A varying but finite level
energy spacing is visible for both QDs larger than the linewidth.

5.7.4. FITTING PROCEDURE FOR TUNNEL COUPLING EXTRACTION
Herein we detail the procedure used to extract the effective tunnel coupling magnitude
of a DQD (|teff| in the main text), given a CSD spanning an interdot charge transition with
a frequency-dependent response measured at each point for a resonator coupled to one
of the QD’s gates. The parametric capacitance for a gate at voltage Vg primarily coupled
to a single charge island or QD (indexed by i ) out of multiple potentially coupled islands
is

Cp = α̃i |e|d〈n̂i 〉
dVg

, (5.4)

where 〈n̂i 〉 is the expectation value of charge on QD i and α̃i is a lever arm of the gate’s
coupling to the quantum modified by mutual capacitances of this QD to other charge
islands in the system, see Appendix D for further details. In essence, the large interdot
capacitance of the system when tuned into the DQD regime (as can be inferred from
the interdot transition width in gate space relative to the spacing between transitions in
Fig. 5.4(a) [22]) lowers the effective lever arm of the gate to the sensed QD. Consequently,
we must fit for α̃i independently, since it is not expected to agree with the lever arms
extractable from the Coulomb diamond measurements of Fig. 5.8. This parametric ca-
pacitance can be calculated from the fitted resonator frequency f0 as Cp = 1/4π2L f 2

0 −C
where L and C are the resonator’s bare inductance and capacitance, respectively. In prac-
tice, we approximate L at zero magnetic field as its simulated value for the resonator’s in-
ductor coil. We calculate C from the resonance frequency in Coulomb blockade, where
Cp is assumed zero. At each value of the out-of-plane magnetic field B⊥, we assume that
in Coulomb blockade the only shift in the resonator frequency is due to changes in L,
such that from frequency fits at each field we can extract L(B⊥) assuming C (B⊥) is fixed.
Thus, the parameters L and C are fixed by measurements and not varied in the subse-
quent fits described below.

As an explicit model for parametric capacitance, we consider the model of Refs. [125,
130] for a DQD coupled to a phonon bath. Near an interdot transition, this model con-
siders two charge states with an excess electron residing either on a discrete fermionic
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Figure 5.9: Optimization of tunnel coupling fits. (a) The mean absolute residual difference between the fit Cp
lineshape of the interdot charge transition as a function of VL and the Cp values extracted from fit frequency
shifts of QDL’s resonator. The black line shows the fixed αL value minimizing the residual error for each fixed
T . (b) The mean residual error with αL fixed at its optimal value shown in (a) for each fixed value of T . A clear
minimum is found at T = 71mK and αL = 0.18. (c) The extracted |teff| for zero tunneling capacitance (γ = 0)
and maximal tunneling capacitance, which saturates as γ→∞. The presence of tunneling capacitance has a
negligible effect on |teff| except at very small |teff|. (d) Fit |teff| with αL fixed to the value minimizing fit error
for each value of fixed temperature.

mode of the sensed QD, or a mode of a second QD. These two modes are coupled by
tunnel coupling teff, and the detuning between their energies is given by ε= α̃i (Vg−V off

g )

where the offset V off
g determines the transition position in gate space. In this model, the

parametric capacitance is found to be

Cp = 2(eα̃i )2 |teff|2
(∆E)3 tanh

(
∆E

2kB T

)
︸ ︷︷ ︸

≡Cq(ε)

+ (eα̃i )2

4kB T

( ε

∆E

)2 γ2

ω2 +γ2 cosh−2
(
∆E

2kB T

)
,

(5.5)

where ∆E ≡
√
ε2 +4|teff|2 is the energy splitting of the charge qubit and ω is the angular

resonator measurement frequency. The first term above corresponds to quantum capac-
itance while the second corresponds to so-called tunneling capacitance. The parameter
γ quantifies incoherent tunneling due to phonon absorption and emission, and in prin-
ciple is another parameter we must include in our fit of Cp to extract |teff|.

A resistive contribution to the effective impedance of the sample known as Sisyphus
conductance arises, however, whenever there is substantial tunneling capacitance [125,
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130], which would lower the resonator internal quality factor near the transition. In our
fits of the frequency-dependent CSDs, the change in resonator quality factor was not
discernible at the interdot transition, indicating that Sisyphus resistance and likely tun-
neling capacitance can be neglected in our fits. This also indicates that all information
about interdot tunneling is contained in the frequency shift∆ f0, such that we may solely
fit∆ f0(Vg) to extract |teff|, rather than simultaneously fitting the frequency shift and qual-
ity factor. Regardless, in Fig. 5.9(c) we show that maximizing the contribution of tunnel-
ing capacitance leads to a negligible change to the extracted |teff| except for very small
tunnel couplings. Hence, we neglect tunneling capacitance for the fits of Fig. 5.3(d).

Under these constraints, we extract a fitted Cp(Vg) from fitted∆ f L
0 and our knowledge

of L and C described above, and fit the result to

Cp =Cq(αL(Vg −V off
g ))+Coff (5.6)

with Cq as defined above and where we denoted α̃i →αL as the effective QDL lever arm.
In fact, we select five rows of the gate voltage near the center of the transition and fit
them simultaneously with the same |teff|, αL, and T , but allow for a different Coff and
V off

g for each row. In other words, we fit multiple traces for values of the other QD’s gate
voltage near the center of the charge transition in the charge stability diagram. The off-
set Coff accounts for errors in converting from ∆ f0 to Cp. These parameters are fitted
independently for each row.

Since T and αL should be roughly the same at all fields, we sweep different fixed val-
ues of these parameters iteratively and choose the values which lead to a minimum total
residual across all magnetic field values. We found a global optimum of T = 71mK and
αL = 0.18 which minimized the mean absolute fit residual error, see Fig. 5.9(a,b). This
temperature is larger than the roughly 20 mK temperature of the dilution refrigerator
used, which is not unexpected since electron temperature may be raised by connection
to higher temperature cables and electronics [20]. Lastly, in Fig. 5.9(d), we observe that
the oscillation amplitude of |teff| does vary with increasing temperature used in the fits
(with αL fixed at the optimum shown in Fig. 5.9(a)), but the oscillations of |teff| are con-
sistently present with a period of one flux quantum.

5.7.5. FIELD-DEPENDENCE OF PEAK HEIGHTS IN DIFFERENT COUPLING

REGIMES
In this section the full datasets from which Fig. 5.5 was constructed are shown in Fig. 5.10,
including the dataset used in Fig. 5.4. The four datasets are measured in three different
regimes of interdot barrier gate voltage strengths, denoted the ‘closed’, ‘intermediate’,
and ‘open’ regimes ordered from the strongest to the weakest barrier gate voltages sepa-
rating QDL and QDR. Though not shown in the figure, in the closed regime at fixed field
values, some transitions occasionally exhibited a jitter from row to row in VL-space. This
may be due to very weak coupling from the DQD to the leads resulting in electrons tun-
neling on to the DQD stochastically as the gate is swept, and may result in unphysical
additional suppression of the peak height for some fields. Nonetheless, the prominent
peak of the Fourier transform of this data at a periodicity of one flux quantum (shown in
Fig. 5.5) indicates that the sharp dips in the data truly correspond to a suppression of the
signal periodically as a function of flux.
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Figure 5.10: Field-dependence of interdot charge transitions in different regimes of tunnel coupling. (a) Mea-
surement frequency used at each out-of-plane field value B⊥ for the three regimes of tunneling strength in-
vestigated and for an in-plane field B∥ sweep for the same transitions of the intermediate regime. (b-d) Field-
dependence data for the closed (b), intermediate (c), and open (d) tunnel coupling regimes. These correspond
to voltages (VBT,VBB) = (−2.1,−1.65)V, (−1.9,−1.49)V, and (−1.82,−1.34)V respectively. VBS and VBD were
tuned to a very weak tunneling regime of VBS =−2.05V and VBD =−2.75V, except in the closed regime where
VBS = −2.5V. Left: CSDs measured at zero magnetic field, plotting Ṽ L

RF. Right: Field-dependence of the peak
deviation from Coulomb blockade for the interdot transitions shown in the CSDs, offset by 0.3 (b), 0.17 (c), and
0.09 arb.units (d). Peak heights in (c) for the B∥ sweep are plotted in orange. In (d), a stray resonance appeared
which occluded some interdot transitions in a wide window. This resonance interfered with extraction of the
peak signal height, and so appears as a gap. Red markers denote points at which charge jumps appeared in the
search window used to extract the peak signal height.
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FLUX-TUNABLE JOSEPHSON EFFECT IN A

FOUR-TERMINAL JUNCTION

C. G. Prosko, W. D. Huisman, I. Kulesh, D. Xiao, C. Thomas, M. J. Manfra, S. Goswami

We study a phase-tunable four-terminal Josephson junction formed in an InSbAs two-
dimensional electron gas proximitized by aluminum. By embedding the two pairs of
junction terminals in asymmetric DC SQUIDs we can control the superconducting phase
difference across each pair, thereby gaining information about their current-phase rela-
tion. Using a current-bias line to locally control the magnetic flux through one SQUID,
we measure a nonlocal Josephson effect, whereby the current-phase relation across two
terminals in the junction is strongly dependent on the superconducting phase differ-
ence across two completely different terminals. In particular, each pair behaves as a
φ0-junction with a phase offset tuned by the phase difference across the other junction
terminals. Lastly, we demonstrate that the behavior of an array of two-terminal junc-
tions replicates most features of the current-phase relation of different multiterminal
junctions. This highlights that these signatures alone are not sufficient evidence of true
multiterminal Josephson effects arising from hybridization of Andreev bound states in
the junction.

6.1. INTRODUCTION
Multiterminal Josephson junctions (JJs) with more than two terminals have current-
phase relations (CPRs) determined by the superconducting phases of all terminals [263].
The Andreev bound state (ABS) spectrum of multiterminal junctions can manifest topo-
logical phases containing Majorana bound states [264] or protected Weyl nodes in their
band structure [15, 265–268], with the superconducting phases of the terminals behav-
ing as momentum degrees of freedom [15]. To form Weyl nodes in the absence of a flux
through the junction [269] at least four terminals are required, because an n-terminal

The work in this chapter is under review as an article in an academic journal. Preprint available at
arXiv:2311.17158.
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junction manifests topology in n −1 dimensions. Additionally, four-terminal JJs (4TJJs)
are expected to exhibit non-trivial CPRs of the supercurrent through the junction [270–
274], and can form a superconducting phase qubit bypassing some constraints of con-
ventional flux qubits [275]. In particular, the phase difference across two terminals is
expected to induce a phase difference and supercurrent across the other two terminals,
giving them applicability as switching elements for superconducting electronics [274].

Previous work on multiterminal JJs observed multiterminal DC and AC Josephson ef-
fects [276–284], signatures of supercurrent mediated by Cooper quartets [285–288], and
strong diode behavior [284, 289, 290]. Many signatures of quartet supercurrents can also
be explained solely with two-terminal junction physics however [291], though tunneling
spectroscopy measurements of the multiterminal JJ may reveal spectra of the prerequi-
site extended ABS [292]. For three-terminal JJs, signatures of Andreev molecules [293,
294] and more complicated subgap state spectra affected by spin-orbit coupling have
been observed [295]. Meanwhile, despite numerous experiments on 4TJJs [277–279, 287,
288], the CPR of any four-terminal junction has yet to be probed with control over two
or more phase degrees of freedom.

We thus consider a four-terminal JJ (4TJJ) embedded in two asymmetric DC SQUIDs
penetrated by independently controllable magnetic fluxes. This allows us to control two
phase differences across pairs of terminals in the junction. Accordingly, we can mea-
sure SQUID oscillations containing information about the CPR across their correspond-
ing 4TJJ terminals in the form of a current-flux relation (CFR). Furthermore, with four
instead of three terminals we are able to measure a Josephson effect which is fully ‘non-
local’ in that the CPR between two superconducting terminals is modified by a phase
difference across a completely independent pair of terminals [272, 273]. Correspond-
ingly, two terminals of the 4TJJ form a tunableφ0-junction with a phase offset tunable in
a range larger than 0.2Φ0 where Φ0 = h/2e is the superconducting flux quantum [296].
For this experiment and others in three-terminal JJs [297, 298], we model the junction
as an array of two-terminal junctions and find that this φ0-junction effect can exist even
in the absence of a hybridized ABS spectrum in the junction, necessitating other experi-
mental signatures for ABS hybridization.

6.2. DEVICE DESIGN & CHARACTERIZATION
The devices (denoted A and B) are formed in an InSb0.86As0.14 two-dimensional elec-
tron gas (2DEG) proximitized by epitaxial aluminum. Selective etching of the Al defines
the multiterminal DC SQUID [245], see Figs. 6.1(a-c). A schematic depiction of the cir-
cuit is given in Fig. 6.1(d). The SQUIDs are designed such that two pairs of terminals in
the 4TJJ each form one junction of a DC SQUID (labeled L or R). For each SQUID, the
other roughly 3µm-wide reference junction (labeled JJL or JJR) is much larger and there-
fore has a much higher critical current I ref

c,L or I ref
c,R. In this DC SQUID configuration with

asymmetric critical currents, the CPR of each pair of the 4TJJ terminals can be directly
measured if the SQUID loop inductance is negligible [299, 300].

Two Ti/Pd layers of gate electrodes were then patterned, separated by a 20 nm thick
AlOx dielectric from the 2DEG and from each other. These include top gates over the
reference junctions JJL and JJR of each SQUID applying voltages VL,ref and VR,ref respec-
tively. These allow us to pinch off conductance through these junctions and remove the
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Figure 6.1: Experimental Setup. (a) False-color optical image of measured Device A, highlighting the 4TJJ’s
depletion gate and reference junction gates (red), the flux-bias line (blue), exposed portions of the 2DEG mesa
(green), and the Al forming the SQUID circuits (yellow). (b) False-color scanning electron micrograph of Device
A near its central 4TJJ. Unused misaligned gates in the second layer and unused normal-metal tunnel probe
leads are shown in gray, while the designed pattern of the Al 4TJJ is superimposed in black on the image. (c)
As in (b) but before any gates were deposited. Overetching of the Al caused the 4TJJ junction dimensions to
be slightly larger than the design shown in (b). Residues are visible surrounding the designed pattern, arising
during an Al etching step. (d) Schematic of the device consisting of SQUIDs labeled L and R penetrated by
fluxes ΦL/R. (e) Schematic of the 4TJJ itself, with the superconducting terminals numbered, and their wave
function phases and phase differences labeled.

corresponding SQUID’s flux-dependent behavior. Second, a large depletion gate in the
first layer surrounding the 4TJJ (red in Fig. 6.1(b)) allows us to apply a voltage VD de-
pleting carriers surrounding it and eventually within the junction itself. This gate is kept
grounded for all measurements except those in Supplemental Sec. 6.6.1 where we inves-
tigate its behavior. All other gates (gray in Figs. 6.1(a,b)) are kept grounded unless other-
wise specified, since an unintentional misalignment with respect to the superconduct-
ing terminals limited their functionality 1. Metallic Ti/Pd probe contacts near the 4TJJ
are kept electrically floating or grounded to not interfere with measurements 2. Lastly,
a NbTiN flux bias line (blue in Figs. 6.1(a,d)) was sputtered around SQUID R to locally
bias the magnetic fluxΦR penetrating it without significantly tuning the fluxΦL through
SQUID L. This line is biased by a current IF which generates a magnetic field penetrating
SQUID R, and has a critical current of 1.05 mA. Combined with a global magnetic field

1The unused gates consisted of three barrier gates alternated with two wider gates. The former, in conjunction
with the depletion gate, were intended to confine carriers underneath two two-terminal Josephson junctions
formed between terminal pairs (1,2) and (3,4), while the latter could tune the carrier density within each
junction. This in principle would enable forming Josephson junctions with transport mediated by a single
ABS in each, while the middle barrier voltage could tune the wave-function overlap of the ABSs, thus tuning
the four-terminal Josephson effects. The outer barriers would also have enabled using the normal metal
leads to perform tunneling spectroscopy separately on each junction. Due to their misalignment, they are
kept grounded to simplify interpretation of the experimental results.

2The probes are floating for all measurements except those of Figs. 6.2(d), 6.3(c), and 6.5, where one is
grounded. As switching current measurements, these measurements are unaffected by the grounded probes,
since current favors traveling through the superconducting circuit until the current bias is large enough that
the circuit switches into a resistive state.
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with an almost fully out-of-plane component B⊥ (calibrated in Supplemental Sec. 6.6.2),
this allows for independent control of the magnetic flux through both SQUIDs. For ad-
ditional fabrication details see Appendix A, and for details of the measurement setup
supporting high currents on the flux bias line see Appendix B.4. Measurements are con-
ducted at the 20-70 mK base temperature of a dilution refrigerator.

Before proceeding to measurements, we remark that the supercurrent across any two
terminals i , j ∈ {1,2,3,4} (labeled in Fig. 6.1(e)) of the 4TJJ is aΦ0-periodic function of all
phase differencesφi ′ j ′ ≡φi′−φj′ of their superconducting wave functions [263]. Because
only the relative phase differences determine the junction’s behavior, there are only n−1
phase degrees of freedom for any n-terminal JJ. As we embed the 4TJJ in two DC SQUIDs,
we have control of only φ12 and φ34, meaning that a third independent phase difference
(e.g. φ13) is not directly controlled by experimentally tunable parameters.

To probe any uniquely multiterminal Josephson effects in this 4TJJ, we deduce phase
shifts in its CPR through SQUID oscillation measurements, that is, measurements of the
CFR. For two-terminal JJs, an established technique for measuring their CPR is to embed
the JJ in a DC SQUID containing another ‘reference’ JJ and measure the SQUID’s critical
current as a function of flux. When the reference JJ’s critical current is much higher than
that of the probed junction the CFR of the SQUID becomes equivalent to the CPR of the
probed junction [299–301]. It is important to note however that in the presence of a small
but finite loop inductance, this is not strictly true. Nonetheless, we show that the CFR
possesses key properties of the true CPR: its periodicity in flux, and shifts in its phase
offset (see Supplemental Sec. 6.6.3).

We begin by characterizing each SQUID individually, with results summarized in
Fig. 6.2. For these measurements, one SQUID is probed while the other’s leads are kept
floating, see Fig. 6.2(a). To exclude effects from the opposing SQUID, we set VL,ref =−1V
or VR,ref =−1.2V to eliminate conductance through the opposite SQUID’s reference junc-
tion. This prevents applied fields from tuning the phase across the opposite SQUID’s 4TJJ
terminals. The junctions in these devices have large enough self-capacitances that they
are underdamped, potentially from capacitances to the nearby floating 4TJJ terminals.
This is signified by their switching currents Isw,L and Isw,R varying stochastically between
values less than or equal to their critical currents Ic,L/R [19, 302]. Here, we define the
switching current as the applied current at which the voltage across the SQUID circuit
jumps from zero to a finite value. Voltages VL or VR across the contacts of SQUID L or
R are measured in a current sweep upwards from IL or IR = 0A to ensure the switching
current and not retrapping current is measured, where IL/R is the current applied across
the SQUID with the other SQUID’s contacts floating. An example CFR measurement is
in Fig. 6.2(b), where we show switching current oscillations of SQUID L measured with
a single current trace upwards from IL = 0 for each B⊥ value. At several B⊥ values Isw,L

appears much lower than the overall nearly-sinusoidal trend. We observe that SQUID L
exhibits aΦ0 periodicity of 8.4µT as a function of B⊥, expected to be roughly the same for
SQUID R as they have identical lithographically-defined loop areas. Since Isw,L/R ≤ IC,L/R

and Isw,L/R varies randomly between each trace, we focus on the maximum observed
Isw,L/R across repeated sweeps.

The resulting CFR measurements of SQUIDs L and R as a function of IF are plotted in
Figs. 6.2(c) and 6.2(d). SQUID R has a periodicity of roughly one flux quantum per 85µA
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Figure 6.2: Characterization of individual SQUIDs. (a) Measurement circuit configurations for CFR measure-
ments of the individual SQUIDs L (b,c),and R (d), taken with the opposite SQUID’s reference junction pinched-
off by setting VL/R,ref to a strongly negative voltage, and with current applied across one SQUID’s leads with the
other’s floating. (b) A SQUID oscillation measurement with a single current trace per B⊥ value for SQUID L.
Current is swept positively from 0 A. (c) Maximum switching current max[Isw,R] (black) extracted as the largest
Isw,R measured across multiple current traces of SQUID R as a function of the flux line current. Variation of the
switching current across the repeated traces is shown in gray. (d) Analogous measurements of SQUID L as a
function of flux line current, where we observe a very weak cross-coupling of the flux line to this SQUID. All B⊥
scans are offset by B0

⊥ ≡−7.5mT determined as the B⊥ value at which JJL and JJR showed a maximum critical

current in Fraunhofer measurements. The field is fixed to B⊥ = B0
⊥ when not being varied. Switching current

offsets between (b) and (d) result from shifts in the effective zero-field point over time due to hysteresis in the
system.

change in IF while SQUID L has a periodicity of 1.3 mA, indicating that the flux-bias line
almost exclusively tunesΦR.

6.3. FLUX-TUNABLE NONLOCAL JOSEPHSON EFFECT
We proceed by conducting measurements involving both SQUIDs, aiming to probe non-
local effects of the phase difference across two terminals of the 4TJJ on the CPR through
the other two. To do so, we float the leads of SQUID R but keep JJR conducting unless
otherwise specified, measuring the voltage VL across SQUID L as a function of B⊥ and
IF. Recall that B⊥ roughly equally tunes ΦL and ΦR while IF almost exclusively tunes ΦR

(see Figs. 6.2(c,d)). This means we can fully navigate the space of phase differences φ12

and φ34 by sweeping these two parameters. Our results are summarized in Fig. 6.3.

In Figs. 6.3(a,b) we fix IL = 1.1µA to a value near the SQUID L critical current and
measure VL. The SQUID voltage in its resistive state is a function of its critical current,
and so must have the same periodicity and phase offset [19]. Hence, from the positions
of extrema in VL we can extract the relative value of the φ0 offset∆φ12 across terminals 1
and 2. When JJR is closed as in Fig. 6.3(a) so that φ34 is not tuned by B⊥ or IF, only local
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VR,ref=-1.2 V VR,ref=0 V

Figure 6.3: Flux-Tunable Josephson effect in Device A SQUID L. (a,b) Voltage measured with the junction in a
resistive state after applying a IL = 1.1µA current across SQUID L with SQUID R leads floating (inset) and (a)
JJR pinched-off or (b) with it at 0 V. Extracted VL maxima are plotted in faint white, and show a zig-zag like
variation with a periodicity equal to SQUID R’s h/2e-periodicity in flux line current. (c) Extracted maximum
switching current (black) along the green line in (b), calculated from 10 current traces swept upwards from zero
current. Variation across the repeated current traces is shown in gray. Maxima in Isw,L correspond to maxima
in the measured voltage of (b). Cross coupling of the flux-line field to SQUID L is negligible in this flux-current
range, so the observed oscillations in the CPR are purely due to the nonlocal superconducting phase difference
across terminals 3 and 4. (d) Phase offsets of SQUID L’s local CPR (gray) for the four flux periods visible in (b),
and their mean (black), calculated from (b) up to a constant offset. We observe a φ0 tunability in a range
greater than 0.2 flux quanta.

SQUID oscillations as a function of B⊥ are visible, tilted upwards due to the small cross
coupling of IF into ΦL. Remarkably however, when VR,ref = 0V as in Fig. 6.3(b), lobes of
SQUID oscillation maxima appear in a zig-zag pattern. The lines of maximum VL (high-
lighted in gray) are oriented diagonally along the B⊥ and IF axes in a different direction
than the maxima lines in Fig. 6.3(a). This feature thus arises due to a variation in ΦR

changing φ34. In other words, the supercurrent through terminals 1 and 2 of the 4TJJ
is tuned by the phase difference across two completely different terminals of the junc-
tion, manifesting a a flux-tunableφ0-junction. Three-terminal circuits of two JJs sharing
a common lead have enabled observations of similar nonlocal Josephson effects [297,
298, 303] as well as one controlled by excess spins in the junction [304]. In these experi-
ments, nonlocal coupling between junctions was claimed to arise due to the direct wave
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function overlap of ABSs in either junction. While these experiments have no obvious
analog in four-terminal circuits, the effect observed here may be described as the limit
of ABS wave functions in two JJs completely merging together [293]. We compare these
experiments with theory further in Sec. 6.4.

To make this observation concrete, in Fig. 6.3(c) we measure repeated current traces
of SQUID L along the green line highlighted in Fig. 6.3(b). The maximum observed
switching current across all traces is shown as a black line while the variation of Isw,L

is shown in gray. Large ≳0.1µA oscillations in the switching currents are visible as a
function of IF with the periodicity of SQUID oscillations in SQUID R. Since a change of
over 1 mA in IF is required to tune ΦL by one flux quantum due to direct cross coupling,
these SQUID oscillations are purely due to coupling ofφ34 to the CPR between terminals
1 and 2. Additionally, we quantify the degree to which the φ0 offset between terminals
1 and 2 can be tuned in Fig. 6.3(d). From the positions of successive SQUID oscillation
maxima plotted in Fig. 6.3(b) in white, we extract the relative change ∆φ12 of each peak
as a function of IF. Since we can only extract the relative apparent φ12 offset of the junc-
tion, we arbitrarily define ∆φ12 = 0 as the maximum position at IF = 0. A linear offset is
also subtracted from each maximum to remove the effect of cross coupling between IF

and ΦL, and the result is converted into units of flux quanta from the B⊥-periodicity of
SQUID L oscillations. The average∆φ12 across all maxima is plotted in black, while indi-
vidual peak oscillations are in gray. We see that the φ0-junction formed across terminals
1 and 2 can have its phase offset tuned continuously in a range of over 0.2Φ0. Behav-
ior consistent with this is observed for analogous measurements of SQUID R, shown in
Supplemental Sec. 6.6.4, and similar effects are also seen in measurements of device B
which has an identical design in Supplemental Sec. 6.6.5.

Importantly, the Φ0-periodic circulating current in SQUID R could couple trivially
to the flux through SQUID L via the loops’ mutual inductance in the absence of any
four-terminal junction effects. Due to the device design maximizing the spatial sepa-
ration between SQUID loops however (Fig. 6.1(a)), such a coupling could not cause the
observed strength of oscillations in∆φ12: the magnetic field produced by such loops car-
rying currents of less than 2µA produces less than 1 % of a flux quantum in the opposing
loop.

6.4. MULTITERMINAL JUNCTIONS AS TWO-TERMINAL JUNC-
TION ARRAYS

In multiterminal JJs and Andreev molecule devices, tunable φ0-junctions are often con-
sidered a signature of behavior distinct to hybridized ABSs [305, 306] or of an ABS spec-
trum distinctly associated with multiterminal JJs [272]. In this section, we demonstrate
that modeling these systems with networks of two-terminal JJs produces a tunable φ0-
junction behavior which may be difficult to distinguish from the case where bound states
in these junctions are truly hybridized into a multiterminal JJ or an Andreev molecule.
Namely, while several superconducting terminals connected to a semiconducting re-
gion smaller than the superconducting coherence length ξ is naturally described by a
hybridized ABS spectrum [263], similar nontrivial behavior in the CPR is also expected
for a network of two-terminal JJs connecting each terminal. Notably, when a network of
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Figure 6.4: Simulations of multiterminal JJs as networks of two-terminal JJs. (a-c) Two-terminal JJ models
of the 4TJJ in this article (a), and of the Andreev molecule device geometries of Ref. [297] (b) and Ref. [298]
(c). We model the 4TJJ (green) as four two-terminal JJs between each neighboring terminal. For the Andreev
molecule devices we model two nearby JJs (labeled A and B with phase differences φA and φB) as well as an
incidental JJ (gray, with phase difference φNL) shunting the two JJs through the same semiconducting region
(green). Large crosses indicate reference JJs with critical currents much larger than those of the JJs in the green
regions. (d) Close-up schematic of the layout of leads (gray) in the green regions of (c) and (d) patterned
over a semiconducting 2DEG (green). (e) Simulated critical current Ic of SQUID L with SQUID R floating as a
function of B⊥ and IF in units of flux quanta, modeling the 4TJJ–SQUID circuit with the circuit model in (a). We
use Ic,12 = Ic,34 = 100nA and Ic,13 = Ic,24 = 80nA. Critical current maxima qualitatively reproduce the zig-zag
pattern observed in Fig. 6.3(b). (f,g) Simulated critical current of the circuits in (b) and (c) as a function of the
fluxes Φ1 and Φ2 threading the loops. We use Ic,A/B = 450nA (f ) and Ic,A/B = 200nA (g) as in Refs. [297] and
[298], respectively. Additionally, we choose Ic,NL = 180nA (e) and Ic,NL = 70nA. In all plots, Ic is offset by the
reference junction’s critical current.

JJs contains multiple loops sharing branches with Josephson junctions, the phase differ-
ences across the junctions become interdependent [307]. As a minimal model, we con-
sider circuits of JJs neglecting linear inductances and capacitive effects, and approximate
each junction as possessing a sinusoidal CPR. As examples, we consider a two-terminal
JJ network designed to emulate the results measured in Fig. 6.3(b) and others to repro-
duce results of recent experiments observing CPRs consistent with Andreev molecule
effects [297, 298].

Beginning with the 4TJJ embedded in two asymmetric DC SQUIDs as in this exper-
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iment, we model the 4TJJ as four two-terminal JJs of critical current Ic,i j coupling each
neighboring superconducting terminal i , j ∈ {1,2,3,4}, see Fig. 6.4(a). From switching
current measurements of SQUID L with its reference junction pinched off, we estimate
the equivalent critical current between terminals 1 and 2 as Ic,12 = Ic,34 = 100nA, approx-
imating the same between terminals 3 and 4 by symmetry in the device design. Since the
distance between terminals 1 and 3 or 2 and 4 is larger, we select Ic,13 = Ic,24 = 80nA to
approximate the qualitative behavior of the CFR maxima seen in Fig. 6.3(b). By applying
Kirchhoff’s current law and flux quantization while assuming the flux threading the 4TJJ
(green in Fig. 6.4(a)) is negligible, we can calculate the critical current across SQUID L
[307]. Results are shown in Fig. 6.4(e). While the functional dependence of VL measured
at fixed current in the resistive state is not expected to precisely match the CPR, it is
expected to have the same periodicity and phase offset [19]. The simulated critical cur-
rent exhibits a similar zig-zag pattern in the positions of maximum critical current. This
indicates that a tunable φ0-junction alone is not unique to multiterminal JJ behavior.
Namely, this demonstrates that while the lithographic design of the devices measured
here contain a 4TJJ, the φ0-junction could appear even if the ABSs formed between each
pair of terminals were not hybridized with any other ABSs.

As further examples, we model devices expected to host ABSs hybridized into An-
dreev molecules [305, 306]. These devices consist of two two-terminal JJs of critical
current Ic,A/B and phase difference φA/B sharing a common superconducting lead and
separated by a distance on the order of ξ, depicted in Fig. 6.4(d). Due to wave function
overlap between the ABS in each junction, an Andreev molecular state is expected to
form. A stark signature of this state is a phase offset in one junction tunable by the phase
difference across the other junction [305, 306]. In practice however, measured CPRs of
Andreev molecule devices have formed the two JJs from a common region of semicon-
ducting material [297, 298]. Since their separation is less than ξ, supercurrent could pass
between the outer terminals in the absence of any hybridization of the ABSs in the in-
tended junctions.

We thus model the device geometries of Refs. [297] and [298] with the circuits shown
in Figs. 6.4(b) and 6.4(c) respectively. Nonlocal effects are modeled by a JJ directly cou-
pling the outer leads with phase difference φNL and critical current Ic,NL < Ic,A/B. Since
each pair of leads is expected to support supercurrent in the absence of the remain-
ing lead, this is roughly equivalent to considering the three-terminal junction with hy-
bridization of the ABSs formed in each junction neglected. Specific values of Ic,A/B are
extracted directly from Refs. [297, 298], while Ic,NL values are chosen to best match their
measurements. The resulting simulations are shown in Figs. 6.4(f) and 6.4(g). They
bear remarkable similarity with the measurements, in particular producing similar φ0-
junction tunability to these experiments in the absence of any ABS hybridization. For
more details of these calculations, see Supplemental Sec. 6.6.6.

As these junctions are defined in a region smaller than ξ, hybridization between the
ABSs within is expected to contribute to the measured CPRs [308]. The above model-
ing shows, however, that the level of ABS hybridization in existing experiments does not
yield CPRs easily distinguishable from the case of a non-interacting three-terminal junc-
tion. To exclude this trivial coupling between leads in Andreev molecule devices, mea-
suring similar devices designed with no direct path through the semiconductor between
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the outer superconducting leads rules out this shunting effect. For example, each junc-
tion could be formed from different semiconducting nanowires [303, 309]. Importantly,
tunneling spectroscopy measurements of the semiconducting region could also reveal
an ABS spectrum exhibiting anticrossings indicative of hybridization between the ABSs
[293, 295, 305].

6.5. CONCLUSIONS & OUTLOOK

We have studied a 4TJJ by embedding it in two asymmetric DC SQUIDs, observing non-
trivial properties of the CPR of a 4TJJ. Namely, we were able to measure SQUID oscilla-
tions of two pairs of terminals forming the junction and independently tune two of the
three independent phase differences controlling it. From these measurements, we ob-
served a nonlocal Josephson effect: two terminals of the 4TJJ behaved as a φ0-junction
with a phase offset tunable by the nonlocal flux biasing the phase difference across two
independent junction terminals. This tunability had a range exceeding 0.2Φ0, and al-
lows the 4TJJ to serve as a superconducting current switch [274]. Modeling multitermi-
nal junctions as two-terminal JJ arrays, we also found that φ0-junction effects alone are
not sufficient evidence of hybridization between extended ABSs in the junction.

Future devices with a barrier gate separating the lead pairs could demonstrate for the
first time tunable direct wave function overlap between phase-tunable ABSs. Coupling
between relatively distant ABSs mediated by supercurrents or photons in a macroscopic
circuit has been observed [310, 311], but demonstrating a tunable ocal coupling would
enable the formation of Andreev molecule-based quasiparticle charge qubits [305, 312],
or densely-spaced conventional Andreev qubits. Andreev molecule devices where ABSs
are coupled with a superconducting lead in between have exhibited hybridization effects
[293, 294], but their coupling is fixed by the superconducting lead dimensions [305, 308].
A tunable wave function overlap with directly tunnel-coupled ABSs in JJs provides an
alternate mechanism for realizing qubits based on ABSs or Kitaev chains [88], allowing
for readout via inductive coupling of resonators to the phase-biased loops containing
each JJ [313, 314]. Last and most notably, with control over one more phase difference in
the 4TJJ, Weyl singularities in this system’s subgap state spectrum could be probed [15,
268, 315].

Raw data and scripts for plotting the figures in this publication are available from
Zenodo [316].
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Figure 6.5: Depletion Gate Dependence of nonlocal SQUID L oscillations in Device A. As the depletion gate VD
is swept, five current traces at each IF are measured and used to extract max[Isw,L]. Traces are offset from each
other by 50 nA for clarity.

6.6. SUPPLEMENTAL INFORMATION

6.6.1. GATE PERFORMANCE

In Fig. 6.5 we plot a characterization of SQUID L oscillations as a function of the non-
local flux ΦR tuned by IF in Device A as the central device depletion gate voltage (red
in Fig. 6.1(b)) VD is swept down from 0 V. Repeating multiple current traces at each IF

value, we plot the maximum observed switching current as it is closest to the SQUID
critical current. As the gate depletes carriers in the 4TJJ, the amplitude of oscillations
decreases until none are observed by VD = −0.75V. When VD = 0, the SQUID oscilla-
tions are slightly skewed to the left, and this skewness also appears to reduce, leaving
the oscillations more sinusoidal at intermediate VD values. A detailed investigation of
the influence of patterned gates on the 4TJJ characteristics was made impossible by the
misalignment of gates in the second layer (gray in Fig. 6.1). These gates were designed
to tune the chemical potential selectively between pairs of terminals, enable tunneling
spectroscopy with the normal metal probes, and tunably isolate SQUID L from SQUID
R.

6.6.2. FIELD DIRECTION CALIBRATION

For all measurements in the main text of this manuscript, the external magnetic field
used Bx (as opposed to the field generated by the flux current IF) was along a three-axis
magnet’s ‘x’ direction, mostly out-of-plane of the chip, see Fig. 6.6(a). To calculate the
out-of-plane component B⊥ as labeled in both figures, we calibrate the field direction
with measurements on Device B, summarized in Fig. 6.6. Measuring SQUID oscillations
of SQUID L in its resistive state, akin to the measurements of Figs. 6.3(a) and 6.3(b), we
extract the periodicity of oscillations along each of the magnets three axes. From these
measurements, we infer that the angles θ j for j ∈ {x,y,z} of field B j with respect to the
out-of-plane vector are θx = 8.3◦, θy = 82◦, and θz = 86◦. This implies that the h/2e pe-
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Figure 6.6: Field direction calibration in Device B. (a) Diagram schematically depicting how the applied field
in the Bx direction translates to an out-of-plane component B⊥ as well as small components By and Bz in the
y- and z-directions respectively. The angle θx is exaggerated for clarity. (b) Measurement configuration for
field orientation calibration. (c),(d) SQUID L oscillations as a function of Bx and By (c) and Bz (d) with a fixed
current IL = IR = 1.45µA applied by independent sources across both SQUIDs, though these measurements
are only used to infer the oscillation periodicity of SQUID L in each field direction. For these measurements,
VD =−0.15V while each second-layer gate except the rightmost one (gray gates in Fig. 6.1(b)) has 0.8 V applied.
From these scans, we infer a mean peak spacing of oscillations along each axis of approximately ∆Bx = 8.5µT,
∆By = 64µT, and ∆Bz = 0.14mT. Measurements are with respect to an approximate zero-field point along the

Bx direction of B0
⊥ =−7.15mT calculated from Fraunhofer pattern measurements of the reference junctions.

riodicity of SQUID L with respect to B⊥ is approximately 8.4µT in Device B, consistent
with the devices’ loop areas (see Fig. 6.1(a)).

As Device A may have been loaded in a different direction with respect to the magnet
compared to Device B, these angles are not the same for Device A. Despite this, because
Device A has the same lithographical design as Device B, its SQUIDs’ oscillation period-
icities are expected to be the same. Hence, from the Bx periodicity of SQUID L extracted
from the data of Fig. 6.3(a) before converting the Bx axis to B⊥, we infer θx = 14◦ for De-
vice A. This enables us to calculate B⊥ from the applied field.

6.6.3. CURRENT-PHASE RELATIONS OF FOUR-TERMINAL JUNCTIONS EM-
BEDDED IN ASYMMETRIC SQUIDS

On its own, it is impossible to measure the CPR of the 4TJJ because the phase differences
φi j across its terminals {1,2,3,4} cannot be controlled. Embedding each pair of termi-
nals (namely {1,2} and {3,4}) from the 4TJJ into a DC SQUID penetrated by magnetic
fluxes ΦL and ΦR allows control of φ12 and φ34, respectively, through tuning of these
fluxes. Reference junctions JJL and JJR must also be embedded in each SQUID loop to
prevent the SQUID’s critical current from being too large to practically measure. In that
case, the supercurrent across SQUID L when the other SQUID’s leads are floating is

I = I ref
c,L fL(φL)+ Ic,M f12(φ12,φ34,φ13) (6.1)

where φL/R is the phase difference across reference junction L/R with critical current
I ref

c,L/R, Ic,M is the critical current of the 4TJJ, and fL and f12 are some Φ0-periodic func-
tions such that | fL|, | f12| ≤ 1 [317]. In other words, IcM fi j is the current phase relation of
the 4TJJ between leads i and j , which depends on all phase differences across it.
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We assume the other SQUID’s leads are floating so that current into the 4TJJ is con-
served. By flux quantization, we have that

φ12 −φL = 2π(ΦL +LL JL)

Φ0
mod (2π) (6.2)

where LL/R and JL/R are the self-inductance and the circulating current around SQUID
L/R. Note that JL/R must itself beΦ0 periodic in flux. Because we have that I ref

c,L/R ≫ Ic,M,
the phase difference φL will adjust itself to whichever value φmax

L maximizes the current
flowing through JJL, since this in turn maximizes the SQUID’s critical current. As the 4TJJ
by comparison has a negligible effect on the SQUID supercurrent, the phase difference
φ12 adjusts to the value allowing the flux quantization condition to be satisfied: φ12 =
2π(ΦL +LL JL)/Φ0 +φmax

L . Meanwhile, the opposite SQUID has no current bias applied
directly across it, and before the circuit critical current is reached, cannot have more
than Ic,M circulating through it. Because Ic,R ≫ Ic,M, this means φR must be at a value
corresponding to a near zero fraction of its critical current, namely φR ≈ 0. The critical
current of the entire SQUID is then:

Ic,L = I ref
c,L + Ic,M f12

(
2π(ΦL +LL JL)

Φ0
+φmax

L ,
2π(ΦR +LR JR)

Φ0
,φ13

)
. (6.3)

When the loop inductances LL/R are negligible, note that φ12 and φ34 are linear in the
applied flux, so we can directly control the phase difference across each pair of the 4TJJ’s
leads by tuning ΦL/R. Hence, the critical current of the SQUID is equal to the CPR of
the 4TJJ across two terminals shifted by the critical current of the reference junction and
skewed by non-zero loop inductances LL and LR.

Summarily, we have thatφ12/34 = 2π(ΦL/R+LL/R JL/R)/Φ0 plus a constant offset. Con-
servatively estimating that the individual SQUIDs have inductances of LL/R < 100pH and
circulating currents bounded by JL/R ≤ (I ref

c,L/R + Ic,M)/2 ≈ 0.7µA, circulating currents per-
turb φ12/34 by less than 0.09 radians. Without knowing LL/R precisely, the CFR still pos-
sesses key properties of the true CPR due to the periodicity of JL/R: its periodicity in flux,
and shifts in its phase offset.

6.6.4. NONLOCAL FLUX DEPENDENCE IN SQUID R
For comparison with Fig. 6.3, we measure the nonlocal coupling ofΦL into the SQUID R
oscillations containing the junction formed across terminals 3 and 4, with results sum-
marized in Fig. 6.7. The manifestation or strength of nonlocal effects is distorted in this
case because the parameter tuning the nonlocal fluxΦL is B⊥, which nearly equally tunes
ΦR. Conversely, in this case the parameter IF tuning the local fluxΦR has a negligible ef-
fect on the nonlocal flux. As in Fig. 6.3(b), we first fix the current IR across SQUID R near
Ic,R and measure voltage VR in Fig. 6.7(a).

Despite B⊥ tuning both ΦL and ΦR, nonlocal features are still visible in Fig. 6.7(a).
Namely, in addition to the expected diagonal VR oscillations associated with local SQUID
R oscillations, the intensity of the voltage oscillations changes periodically with SQUID
L’s B⊥ periodicity. To emphasize this, we plot the positions of SQUID L oscillation max-
ima extracted from Fig. 6.3(b) in white, where it aligns with the local maxima in VR along
the diagonal. Additionally, a minor zig-zag perturbation of the SQUID R oscillations from
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VL,ref=-1 VVL,ref=0 V

Figure 6.7: Nonlocal Josephson Effect SQUID R on Device A. (a) Voltage VR measurements at a fixed current
IR = 1.25µA across SQUID R with SQUID L leads floating (inset). Because B⊥ tunes both the nonlocal flux ΦL
and local flux ΦR, SQUID L oscillations appear perpendicular to the diagonal. Nonlocal effects from SQUID
L perturb the path of local SQUID oscillations in a zig-zag fashion, and cause oscillations along the diagonal
of the voltage measured. In white, positions of SQUID L oscillation maxima from Fig. 6.3(b) are plotted to
emphasize these correlations. (b) Current-voltage traces of SQUID R oscillations at IF = 0 with the SQUID L
reference junction open, where strongly non-sinusoidal effects are observable, in addition to apparent minima
lobes in Ic,R spaced by half the flux periodicity. Each full B⊥ and current sweep is repeated 25 times and
averaged. (c) As in (b), but with the SQUID L reference junction closed off VL,ref =−1V and averaged 15 times.
SQUID oscillations are still highly non-sinusoidal, but distinctly lack the additional lobes present in (b). (d)
Averaged linecuts at fixed current taken along the vertical lines in (b) and (c). The positions of maxima and
minima in these linecuts align with extrema in the full current sweep measurements, but the resistive voltage
lacks the additional (Φ0/2)-periodic oscillation component and appears sinusoidal. As in the main text, B0

⊥ =
−7.5mT for Device A.

a simple diagonal path is visible, but because of the strong dependence of ΦR on both
B⊥ and IF, it is difficult to quantify the degree to which ΦL tunes this junction into a
φ0-junction.

To investigate the degree to which four-terminal Josephson effects are present across
terminals 3 and 4, we plot full current traces with JJL open (Fig. 6.7(b)) and closed off
(Fig. 6.7(c)). Each plot is averaged over many IR and B⊥ measurements to alleviate ef-
fects from instability of the SQUIDs as a function of B⊥. Remarkably, when JJL has a finite
critical current, lobes in the SQUID oscillations are visible spaced by half the SQUID L B⊥
periodicity. Conversely, when JJL is closed, these higher harmonic lobes vanish, though
the oscillations remain significantly non-sinusoidal. In Fig. 6.7(a) only Φ0-periodic os-
cillations are visible along both axes, however. Based on existing theories of 4TJJs [272,
273], this behavior is actually expected, and can be thought of as two flux quanta being
threaded into the SQUIDs per Φ0 period of B⊥. For such junctions, there are regions of
(φ12,φ34)-space where phase slips of the JJ occur due to the appearance of vortex states
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Figure 6.8: Fixed-Current SQUID Oscillations in Device B. (a),(b) SQUID oscillation measurement circuit for
(c) and (d), respectively. (c),(d) Fixed-current CPR Measurements in the resistive state of SQUID L (c) with IL =
1.45µA and SQUID R (d) with IR = 1.45µA, with the opposite SQUID’s leads floating. The magnetic field was
swept near an approximate zero-field point B0

⊥ = 7.15mT determined from Fraunhofer pattern measurements
of the reference Josephson junctions.

inside the junction, producing additional local extrema in the CPR along lines of equal
φ12 and φ34.

Interestingly, these additional extrema in the critical current are not reflected in the
voltage measured in the resistive state, emphasized by linecuts in Fig. 6.7(d). A nearly
sinusoidal resistive-state voltage is observed even when VL,ref = 0, indicating that cer-
tain features of the CPR are not noticeably reflected in VR. From the perspective of a
resistively and capacitively shunted junction (RCSJ) model [19], for example, this is pos-
sible for an underdamped junction possessing a substantial self-capacitance. Due to
the stochastically varying switching current observed in current traces (see the averaged
traces of Fig. 6.2 for example), it is clear that the 4TJJ is underdamped. Nonetheless,
we emphasize that the periodicity and phase offset of the fixed-current measurements
accurately reflect that of the CPR.

6.6.5. SUPPORTING DATA ON A SECOND DEVICE

Here we present a second set of nonlocal SQUID oscillation measurements akin to those
in Fig. 6.3(b) and Fig. 6.7(a) on another device (Device B), with results shown in Fig. 6.8.
This device has an identical design to Device A and was fabricated on the same chip.
Measurements for both SQUID L and SQUID R are presented in Figs. 6.8(c) and 6.8(d),
respectively. The corresponding measurement circuits are shown in Figs. 6.8(a,b). In
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these measurements, with the opposite SQUID’s leads floating, we observe Φ0-periodic
oscillations in VL primarily as a function of B⊥ and in VR both as a function of B⊥ and IF,
consistent with the flux-bias line almost exclusively affecting ΦR by design. In addition
to the small direct cross coupling of IF toΦL giving the SQUID L oscillations a slight tilt in
Fig. 6.8(c), periodic oscillations in the peak height are observed as a function of IF. The
oscillations also exhibit a slight zig-zag pattern comparable to those of Device A seen in
Fig. 6.3, but due to the significant jitter visible in the measurements, extracting a φ0 shift
of the junction is difficult. The measurements of SQUID R are also qualitatively similar
to those of Device A.

6.6.6. TWO-TERMINAL ARRAY MODELS OF MULTITERMINAL JUNCTIONS
Herein we derive expressions for the critical current of the four- and three-terminal JJ
circuits shown in Fig. 6.4(a-c) by maximizing the supercurrent carried through the ter-
minal labeled with an input current I . In both cases, we assume that the flux threading
the multi-terminal JJ is negligible. We also assume that the reference junction critical
currents are much larger than the critical currents of all two-terminal JJs describing the
multiterminal JJ. For simplicity we neglect capacitances and linear inductances, and as-
sume all junctions have CPRs of the form Ic sin(φ) whereφ is the phase difference across
the junction.

We begin with the Andreev molecule device of Fig. 6.4(b), which is designed to con-
tain two JJs sharing a common superconducting terminal and separated by a distance on
the order of the superconducting coherence length ξ, see Fig. 6.4(d). To separately con-
trol the phase differences φA/B across each junction, the two junctions are embedded in
loops threaded by fluxesΦ1 andΦ2 (in units of 2π/Φ0). Lastly, in one of the loops a refer-
ence junction of large critical current I ref

c,1 is embedded to measure one of the JJ’s CPRs. As
these devices in previous experiments have been formed by connecting three supercon-
ducting contacts to a continuous region of conducting semiconducting material smaller
than the coherence length [297, 298], it is feasible that supercurrent can directly travel
between the two outermost terminals even in the absence of a central terminal. Con-
sequently, we model the nonlocal coupling between the two JJs as a third JJ connecting
the two outer terminals while bypassing the central one (gray in Fig. 6.4(d). Notably, this
model does not include wave function overlap between ABSs from different individual
junctions.

Given the phase differences across the junctions as defined in Fig. 6.4(b), by flux
quantization we have that φA =Φ2 modulo 2π (we consider the modulus as implied for
all further mentioned flux quantization conditions) [307]. Next, since the critical current
of the reference junction is very large compared to all others, its phase difference will ad-
just to whichever value maximizes the supercurrent through it, in this case π/2. Finally,
by flux quantization we then have that π/2−φNL =Φ1 and φNL −φB −φA = 0. The signs
of the phase differences are determined by an arbitrary but consistent definition of the
current direction through each circuit branch [307], with fluxes defined as being associ-
ated with a clockwise current through a given loop. Accordingly, the critical current of
the circuit is

Ic = I ref
c,1 + Ic,B cos(Φ1 +Φ2)+ Ic,NL cos(Φ1). (6.4)

Notably, the decision to approximate the fluxΦ1 producing a phase difference across
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the shunting junction as opposed to directly tuning φA/B was somewhat arbitrary. Mod-
eling the circuit as the shunting junction existing out-of-plane such that Φ1 tunes φA/B

produces the same result as in eq. 6.4 except shifted by π along theΦ1 axis.
Proceeding to the circuit of Fig. 6.4(c) representing the device geometry of Ref. [298],

we conduct similar calculations using flux quantization rules. In this case, there are ref-
erence junctions of critical currents I ref

c,1 and I ref
c,2 in the Φ1- and Φ2-threaded loops, re-

spectively. With current I being passed into the top left port and the others grounded,
maximizing the supercurrent requires maximizing the current through reference junc-
tion 1, since we assume the reference junctions have arbitrarily large critical current.
Hence, its phase will tend to π/2. For the other reference junction, it is connected to
grounded terminals on both sides and so is not a bottleneck for the device’s critical cur-
rent. We can thus take the limit of infinite critical current such that no phase drop oc-
curs across this junction, and we have φB =Φ2. This is evident from the fact that a large
wire containing no Josephson junction, where no phase drop is expected to occur, can
equally-well be considered as a Josephson junction with an arbitrarily large critical cur-
rent.

Other flux quantization loops yieldΦA =π/2−Φ1 and φNL =φA−φB =π/2−Φ1−Φ2.
Hence, by calculating the current through each circuit branch connecting to the I input,
we find the device critical current to be

Ic = I ref
c,1 + Ic,A cos(Φ1)+ Ic,NL cos(Φ1 +Φ2). (6.5)

Lastly, we consider the 4TJJ circuit of Fig. 6.4(a). Again, there are reference junctions
of large critical currents I ref

c,L and I ref
c,R in the loops threaded by ΦL and ΦR. The current I

flows through the branches containing reference junction L, the junction between ter-
minals 1 and 2, and the junction between terminals 1 and 3. Since I ref

c,L is assumed very
large, its phase infinitesimally below the critical current by the same reasoning as before
is roughly π/2. Again, as in the previous case we can take I ref

c,R →∞ since it is not a bottle-
neck for the critical current. More precisely, given that all supercurrent passing between
the JJs with phase difference φ13 and φ42 can either pass through this reference junction
or the JJ with phase difference φ34, the latter two junctions’ phases are only constrained
by flux quantization of their loop threaded by ΦR. In the absence of other constraints,
the system will tend to a state which minimizes its energy, here given by the Joseph-
son energy of both junctions. This energy is proportional to −I ref

cR cos(φR)− Ic,34 cos(φ34)

[19], where φR is the phase difference across reference junction R. Since I ref
cR ≫ Ic,34, this

energy is minimized when φR ≈ 0. Whatever current must pass through these paral-
lel arms can pass through the reference junction with only a negligible correction to
its phase difference due to its large critical current, while φ34 can adjust to satisfy flux
quantization without substantially increasing the total energy. From flux quantization,
we then obtain φ12 = ΦL +π/2, φ34 = −ΦR, and φ13 +φ34 +φ42 −φ12 = 0. To obtain
enough equations to solve for all phases, we note that by Kirchhoff’s current law we
have Ic,13 sin(φ13) = Ic,42 sin(φ42). Solving the last flux quantization condition for φ42

and substituting the result into the current conservation equation, we obtain

Ic,13 sin(φ13) = Ic,42 cos(ΦL +ΦR −φ13). (6.6)

This is a transcendental equation and has multiple solutions between φ13 ∈ [0,2π). The
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critical current of the circuit is by definition the maximum possible supercurrent it can
sustain, so for every (ΦL,ΦR) value we choose the (ΦL,ΦR)-dependent solution φmax

13 to
eq. 6.6 which maximizes I . The critical current of the circuit is then the sum of the cur-
rent through the three paths branching from the input current I , given as

Ic = I ref
c,L + Ic,12 cos(ΦL)+ Ic,13 sin(φmax

13 ). (6.7)

For the calculated results in Fig. 6.4(e), we plot them as a function of the flux generated
by IF and B⊥, considering cross coupling of IF into SQUID L determined from the os-
cillation periodicities of Fig. 6.2. The IF axis is converted into units of Φ0 by defining
1×Φ0 as a single flux quantum threading SQUID R due to IF as well as the resulting cross
coupling to SQUID L. For B⊥, 1×Φ0 is defined as a single flux quantum threading both
SQUIDs.
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"A picnic. Picture a forest, a country road, a meadow. A car drives off the country road
into the meadow, a group of young people get out of the car carrying bottles, baskets of
food, transistor radios, and cameras. They light fires, pitch tents, turn on the music. In

the morning they leave. The animals, birds, and insects that watched in horror through
the long night creep out from their hiding places. And what do they see? Gas and oil

spilled on the grass. Old spark plugs and old filters strewn around. Rags, burnt-out bulbs,
and a monkey wrench left behind. Oil slicks on the pond. And of course, the usual mess –

apple cores, candy wrappers, charred remains of the campfire, cans, bottles, somebody’s
handkerchief, somebody’s penknife, torn newspapers, coins, faded flowers picked in

another meadow."
"I see. A roadside picnic."

Arkady & Boris Strugatsky, in Roadside Picnic

This thesis explored two largely overlapping themes: localized states in hybrid semi-
conducting and superconducting systems, and exploiting microwave measurements in
such systems over conventional DC measurements. Both topics are motivated by the
potential to explore topological systems in condensed matter, or to leverage hybrid sys-
tems to form new types of protected qubits. Despite this, no qubits were characterized,
and the described experiments didn’t seek topological phases. This chapter therefore
aims to discuss how these experiments can be built upon to probe bulk properties of
hybrid devices with RF measurements (Sec. 7.2), characterize limitations on future hy-
brid qubits (Sec. 7.3), and to form Kitaev chains and qubits with more complete isolation
from the environment (Sec. 7.4). We begin, however, by summarizing the key results of
our experiments.

7.1. CONCLUSIONS
In Chapter 3 we showed semiconducting quantum devices can be completely character-
ized using microwave reflectometry without supporting DC measurements, which are
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generally much slower. This enables more efficient and complete exploration of param-
eter space in hybrid devices [189, 318] and allows measurement setups to be optimized
with more stringent filtering for microwave-focused measurements. Microwave reflec-
tometry also offers the opportunity to probe device characteristics not easily discernible
from DC measurements, which require a finite conductance across the device. For ex-
ample, in Chapter 3 we utilized the fact that dispersive gate sensing (DGS) is sensitive
to the hybridization between charge states in systems of quantum dots (QDs) to resolve
electron tunneling with an SNR of 15 in a 1µs measurement. Measurement based topo-
logical qubits require such tunneling measurements for the readout and manipulation
of their parity states [10, 11, 231]. Meanwhile, in Chapter 5, this sensitivity of DGS to tun-
neling was exploited to measure a flux-dependent hybridization between two fermionic
states for the first time. This flux dependence was granted by forming a loop out of two
QDs threaded by magnetic flux, and is required for guaranteeing readout sensitivity in
parity and topological qubits.

Another unique application of DGS is as a local probe of tunneling. Though not
unique to this dissertation [185], we demonstrated in Chapter 4 that DGS serves as such.
Probing each QD in a floating triple or quadruple QD coupled to a superconducting is-
land with their own gate resonator, we uniquely distinguished which pairs of dots were
involved in any measured tunneling process. Notably, this allowed us to identify a charge
transition corresponding to the coherent resonant splitting and recombination of a sin-
gle Cooper pair, and characterize the corresponding crossed Andreev reflection (CAR)
hybridization strength.

Finally, in Chapter 6 we attempted to measure tunneling between nearby Andreev
bound states (ABS): a superconducting analog of QDs [313]. We attempted this by plac-
ing the Josephson junctions (JJs) of two DC SQUIDs within the superconducting coher-
ence length of each other. This could be exploited to hybridize superconducting spin
qubits [305] or study the evolution from conventional to multiterminal Josephson ef-
fects. Unfortunately this original goal was made impossible due to gate electrodes not
functioning as designed in the measured devices. Nonetheless, we had the opportu-
nity to explore current-flux relations of a four-terminal junction, with control over two
of the three independent superconducting phase differences determining the junction’s
behavior. Accordingly, we showed that one pair of leads in the junction behaves as a
ϕ0-junction, with a superconducting phase offset tuned by the phase difference across
the other completely independent pair of leads. On the other hand, we also showed that
this and other multiterminal junctions can reproduce this behavior if they behave as an
array of two-terminal junctions—that is, without any hybridization of the subgap states
in the junctions.

7.2. NONLOCAL RF MEASUREMENTS OF HYBRID DEVICES
As previously described, RF measurements serve as a fast probe of two-terminal con-
ductance and as local probes of charge tunneling. Nonlocal conductance, however, has
become a frequently used tool in experiments on hybrid systems since it encodes in-
formation about the bulk state of a hybrid region [320, 321], and not only information
about the local density of states near tunnel barriers or gates. It involves applying volt-
ages at one lead in a multiterminal system and measuring current through another lead.
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Figure 7.1: Nonlocal RF measurements of a three-terminal hybrid device. (a) Schematic of a nonlocal measure-
ment setup. Bottom: A three-terminal device consisting of a semiconducting nanowire (green) proximitized by
a grounded aluminum shell (blue) is connected to leads on either side, as well as some gates for tuning tunnel
barriers and chemical potentials in the wire (gray). Drive lines for nonlocal RF transmission measurements are
coupled to their respective leads with capacitances Cd,L/R as well as trivially to ground via unintended para-
sitic capacitances Cp,L/R. Top: A readout resonator chip consisting of two inductors forming angular resonance
frequencies ωL and ωR in combination with their parasitic capacitances to ground Cr,L/R. The resonators are
coupled to a common reflectometry readout line via coupling capacitors, as well as resistive bias tees for ap-
plying DC voltages to the leads they are bonded to. (b) Two-port circuit model of nonlocal measurements
from lead L to resonator R, assuming that the resonator coupled to the lead being driven completely filters the
drive tone, so that it can only travel across the device via parasitic capacitance Cp or nonlocal conductance
G to the opposite resonator. (c-e) Nonlocal transmission response of a resonator using the circuit model of
(b). The resonator circuit parameters Lr = 420nH and Cr = 0.38pF are extracted from a resonator measured
in Chapter 5, giving it a resonance at ωR/2π= 400MHz. For the drive line capacitance and parasitic coupling
across the device, we use Cd = 10pF and Cp = 1pF. We show the frequency response for G = 0 (dashed) and
G = 0.003×G0 (solid) in (c) based on typical values measured in previous experimental work [319]. In (d), we
plot the response for different nonlocal conductances on resonance, and in (e) we plot the signal difference
between a small and large conductance on resonance for different parasitic capacitances.

A schematic of a typical three-terminal hybrid device used to probe proximitized super-
conducting nanowires is shown in Fig. 7.1(a) [318, 319, 322–324], consisting of a semi-
conducting nanowire (green) with a grounded superconducting shell (blue), in addition
to metallic contacts and gates (gray).

As the name suggests, the reflectometry technique used in this dissertation measures
the ratio of reflected to incident radiation on some device impedance, an inherently lo-
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cal probe. This is typically accomplished by sending the input radio waves through the
used resonator chip and measuring the returning demodulated voltage. It is also pos-
sible, however, to send the RF drive in via a separate line and measure whatever comes
out of the resonator circuit in a transmission measurement [13]. Unfortunately, while
DC voltage sources and multimeters can be reconfigured outside a dilution refrigerator
at room temperature, the resonators used for RF measurements are bonded directly to
the device under test or are on the same chip and cannot be rewired to different leads
of the device in situ. The other obstacle to implementing nonlocal RF measurements
is thus that resonators will serve as a filter excluding frequencies away from their reso-
nance frequency. If we could selectively drive one lead of the device with a tone at the
frequency of the opposite side’s resonator, the output voltage of this resonator would
contain information about the device’s nonlocal conductance.

In order to overcome these obstacles, we propose employing RF drive lines weakly
coupled to the device leads with capacitances Cd,L/R, with an example setup shown in
Fig. 7.1(a). In that example, one can apply a drive tone VL at the frequency of the right
lead’s resonator ωR to the left drive line, and read the voltage output from the resonator
chip. Because the left resonator filters radio frequencies far from its resonance ωL, the
drive tone is routed into the device. Much of the signal will then leak through parasitic
capacitances Cp,L/R across the device or to the grounded superconductor, but this merely
imposes a constant change to the background of the signal. The remainder of the signal
will pass through the nanowire itself and through the right resonator to the reflectome-
try circuit’s output, containing information about the device’s nonlocal conductance. Of
course, the reverse principle can be used to probe nonlocal conductance from the right
to the left. Meanwhile, applying probe tones to the resonator chip allows ordinary lo-
cal reflectometry of either lead. The reason this can in principle work is as follows: the
drive line is only weakly capacitively coupled to the leads, so local reflectometry signals
do not substantially leak through it to ground. On the other hand, when one seeks to do
nonlocal transmission measurements, one can apply such a powerful drive tone to the
drive line that it overcomes this weak capacitance and enters the lead. A constraint on
this setup is that the capacitances of the resonators Cr,L/R together with the other capac-
itances satisfy the constraints:

Cp,L/R ≪Cd,L/R ≪Cr,L/R (7.1)

If the leftmost constraint isn’t satisfied, the drive line will not selectively couple to its
lead, but will broadcast the probe tone across the entire device. If the right-hand con-
straint isn’t satisfied, the drive line will drastically lower the resonator frequency and its
internal quality factor. Since for off-chip resonators one typically has Cr,L/R ≈ 0.1−1pF
[13], it may be difficult to satisfy the right constraint without violating the other.

To demonstrate this measurement principle’s functionality we present in Figs. 7.1(c-
e) transmission simulations (say, from lead L to resonator R) of a lumped circuit model
shown in Fig. 7.1(b). We assume that resonator L is well-separated in frequency from
resonator R such that the left drive line probe tone is perfectly filtered by resonator L.
As is particularly visible in Fig. 7.1(c), a very small nonlocal conductance may produce
a measurable shift in the transmission measurement, provided a large enough power
can be used for the drive without heating or otherwise perturbing the device. For these
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simulations, a small drive line capacitance of Cd = 10pF was used, which for a square
parallel plate capacitor separated by 20 nm of Al2O3 dielectric would correspond to a
side length of roughly 160 nm. Clearly, capacitances in this range or smaller are exper-
imentally achievable, by simply not having the drive line overlap directly with the lead
for example. Meanwhile, the parasitic capacitance across the device can be minimized
by coupling the drive line to its lead at a position far away from the device’s nanowire or
superconducting shell. Nonetheless, whether or not this technique can be feasibly im-
plemented in such a way that it still enables measurements faster than conventional DC
techniques remains to be seen.

7.3. QUASIPARTICLE POISONING OF PARITY QUBITS
Quasiparticle poisoning broadly refers to any instance where quasiparticle tunneling,
excitation, or relaxation alters or destroys a coherent quantum state involving a super-
conductor. Within the realm of superconducting qubits, quasiparticles are known to
cause relaxation, dephasing, and excitation to leakage states, depending on the specific
type of qubit. Many other mechanisms significantly affect coherence of superconduct-
ing qubits, however [2]. For topological and hybrid parity qubits on the other hand, poi-
soning is one of few mechanisms expected to determine their coherence [85, 231, 325,
326]. As these qubits are formed in hybrid semiconducting-superconducting systems,
this has motivated numerous studies of quasiparticle poisoning in hybrid material plat-
forms that are candidates for such qubits [59, 61, 72, 217, 327–329] and in non-hybrid
superconducting islands [95, 330].

Given that quasiparticles injected from lead reservoirs may be the dominant source
of quasiparticle poisoning for ABSs in open systems and superconducting islands [85],
it is worth considering if qubits could be optimized by removing the leads entirely. We
explore this possibility further in Sec. 7.4. This principle motivated designs for Majorana-
based qubits involving embedding the entire qubit in a Coulomb blockaded island [10,
11], but even in Coulomb blockade quasiparticles may still enter an island from the
leads. Moreover, there has yet to be any measurement of poisoning rates in QDs coupled
to subgap states, namely Majorana bound states in quantum-dot-based Kitaev chains
[231].

To emphasize that quasiparticle poisoning rates are not yet well understood for hy-
brid systems, we consider measurements of a hybrid triple QD (Device A in Chapter 4).
A schematic of the device is shown in Fig. 7.2(a). In the first cooldown of this device, the
microwave measurement circuit had not yet been optimized and contained no filtering.
It consisted only of an input line with attenuation at each stage of the dilution refrigera-
tor, and an output line with no added attenuation and a high-electron-mobility transis-
tor (HEMT) amplifier at the 4 K stage. Notably, no circulators were present in the circuit,
meaning for example that reflections and noise from the 4 K amplifier could reach the
device with little attenuation.

Despite this setup being far from optimized to reduce quasiparticle poisoning in the
sample, signs of superconductivity were observed in Coulomb diamond measurements
of the superconducting island. These measurements are shown in Fig. 7.2(d), where the
Coulomb resonances are seen to be spaced by twice the distance in gate voltage VM at
low bias voltages as they are for higher bias. This is indicative of the island charging
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G

Figure 7.2: Effect of filtering on a floating superconducting island. (a) Diagram of the measured device (Device
A from Chapter 4), consisting of a superconducting QD (blue) surrounded by two semiconducting QDs (green),
and leads (gray). Each QD can have its chemical potential tuned by plunger gate voltages VL, VM and VR. (b)
A charge stability diagram (CSD) of the device tuned into a floating triple QD with the leads completely cut
off such that its total charge is conserved. Measurements are the normalized reflected amplitude |V M

RF| near
the resonance frequency of the gate resonator coupled to the superconducting island. These measurements
were taken before filtering was added to the microwave measurement setup in the dilution refrigerator. Stable
charge regions are all the same hexagonal shape even though the superconductor alternates between even par-
ity and odd parity, and boundaries between regions are highly broadened. (c) As in (b), but in a later cooldown
of the same device after filtering was added to the microwave measurement circuit. As described in Chapter
4, stable charge regions alternate in size between large and small depending on the superconductor’s parity,
since an odd parity superconductor has an additional free energy cost of E0. (d) Coulomb diamonds of the
superconducting island before filtering was added to the measurement setup with the semiconducting QDs
not tuned up. Conductance is calculated using a Savitzky-Golay filter from measurements of current. Spacing
between Coulomb peaks halves for biases larger than E0, indicating E0 is larger than the island’s charging en-
ergy.

energy being smaller than its lowest quasiparticle excitation energy, such that each reso-
nance corresponds to the transfer of two electrons into the island. Moreover, the absence
of even faint additional Coulomb resonances at low bias spaced by half this distance in-
dicates that the island is on average not in a poisoned state, defined here as quasiparticle
states being occupied [61]. Curiously, when we tune the system into a floating triple QD
with the island surrounded by two semiconducting QDs and the leads completely cut off
(as in the measurements of Fig. 4.1(f) and Fig.4.2), all signs of superconductivity vanish.
These measurements are shown in Fig. 7.2(b), where we measure the absolute reflected
signal |V M

RF| near resonance of a resonator coupled to the island gate as a function of the
two QDs’ gate voltages. In contrast to the measurements of Chapter 4, no alternation in
the size of stable charge regions is observable, even though the parity of the supercon-
ducting island must be changing as VL and VR increase. We may therefore infer that the
superconducting island has a finite density of quasiparticles on average, such that the
system does not distinguish between the island containing an odd number of charges
(where there must be a quasiparticle) and an even number (where no quasiparticles ex-
ist in the ground state). The refrigerator was then opened to improve the measurement
circuit: we added circulators before and after the sample, infrared and low-pass filters,
and a parametric amplifier to the circuit. See Appendix B for details. Measuring a floating
triple QD in the same device upon cooling it back down to millikelvin temperatures in
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Fig. 7.2(c), we then observed signs of superconductivity. There were small stable charge
regions where the superconductor has an odd parity and larger regions where it has even
parity, indicating that the island on average does not contain quasiparticles when its par-
ity is even.

Several things can be concluded from these measurements. First, the density of
quasiparticles in a superconducting island may be completely different when it is cou-
pled to leads compared to when it is floating. Before adding filtering to the setup, this de-
vice showed negligible population of quasiparticle states when tuned into an island cou-
pled to leads, but was on average poisoned in the floating triple QD configuration. This
is consistent with previous work which observed that normal metal reservoirs and gap-
less semiconductors serve as quasiparticle traps, lowering the quasiparticle density of
coupled superconductors [327, 331, 332]. Second, in the floating regime we hypothesize
that coupling of radiation and noise in the microwave measurement lines to the island
created a steady-state population of quasiparticles which could not escape to lead reser-
voirs. These quasiparticles could only be removed through recombination into Cooper
pairs. Lastly, measurements using the improved microwave measurement setup indi-
cate that sufficient filtering could take the floating system from having a finite steady-
state population of quasiparticles to containing quasiparticles an immeasurably small
fraction of the time.

Despite an attempt at indirectly quantifying quasiparticle poisoning in floating is-
lands [95], it remains to be seen how fast Cooper pair breaking and recombination rates
are in hybrid floating systems. If quasiparticles were present a substantial fraction of the
time in a system like that measured in Fig. 7.2, one would expect a faint signal not only at
the ground state positions of Coulomb resonances as in Fig. 7.2(c), but also at the reso-
nances in the poisoned state like those seen in Fig. 7.2(b) [61]. No such resonances were
observed in this and similar devices however [333], indicating a negligible average occu-
pation of quasiparticle states. This measurement says little about Cooper pair breaking
and recombination rates, however. Recombination rates may be much higher than pair
breaking rates [85], in which case poisoning may still be very important despite a low
average population of quasiparticle states.

Crucially, neither these experiments nor those referenced above measure the poison-
ing rate of a specific subgap state in a superconductor. Instead, they probed the overall
density of quasiparticles in hybrid superconducting systems, measured the parity life-
time of an entire superconducting island, or indirectly measured bounds for the parity
lifetime of a finite energy quasiparticle state [59]. More relevantly, poisoning rates of
bound states in Andreev spin and charge qubits have been probed [314, 329, 334], but
these states had non-zero energy and were not protected from poisoning by a charging
energy. The poisoning rate which limits the lifetime of Majorana-based qubits is the rate
at which the joint parity of two Majorana states flips. For example, a quasiparticle tun-
neling into a Majorana box qubit will not effect the qubit state if it does not relax into a
Majorana bound state. Hence, only a direct measurement of the bound state’s poisoning
rate will give information about the coherence time of a qubit based on an ABS’ par-
ity. Additionally, it is expected that the presence of a Majorana bound state in a hybrid
system itself alters the density of quasiparticles in the material [85]. In other words, the
most pertinent measure of quasiparticle poisoning relevant to Majorana- and ABS-based
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qubits is to actually form the qubit and measure its parity.

7.4. FLOATING KITAEV CHAINS & HYBRID QUBITS
The competition between superconducting pairing and Coulomb repulsion in hybrid
systems offers unique opportunities for quantum computation, from Majorana-based
qubits [10, 11, 231] and variations on Andreev spin qubits [335] to fermionic quantum
computation [336]. All qubits exploiting partially superconducting systems can have
their quantum coherence destroyed by quasiparticle poisoning, however, and there are
not yet any proposals for implementing Majorana bound states in Kitaev chains pro-
tected by charging energies from quasiparticle poisoning. Scaling up to longer Kitaev
chains or systems consisting of multiple topological qubits, it also becomes increasingly
difficult to fit Ohmic contacts for each qubit or QD in the system. Hence, we employ
a minimal theoretical model to argue that a Kitaev chain can be formed in a charge-
conserving system provided it can be coupled to another floating system which can co-
herently change its parity (such as another floating Kitaev chain). We then briefly sum-
marize proposals for a category of qubits exploiting the competition between charging
energies and superconducting pairing: qubits based on Yu-Shiba-Rusinov (YSR) states.

KITAEV CHAINS IN COULOMB BLOCKADE

Since forming a Kitaev chain in Coulomb blockade requires being able to form one in a
system with conserved total charge, for simplicity we consider a floating system without
leads here. Accordingly, we demonstrate in this section that a floating QD system can be
tuned to have a Hamiltonian equivalent to that of a two-site Kitaev chain [87]. We thus
consider a system of two QDs separated by a central hybrid superconducting island iso-
lated from all leads such that the total charge is fixed. ‘Poor man’s Majorana’ sweet spots
were found in Ref. [337] in a related system formed in a triple QD, but calculations were
done in a formalism not conserving total particle number and requiring coupling to a su-
perconducting lead, making it incompatible with placing the entire system in Coulomb
blockade.

To begin, we define the system under consideration. We consider two semiconduct-
ing QDs denoted L and R with charging energies E L

C and E R
C coupled to a central hybrid

superconducting island ‘M’ of charging energy E M
C and with lowest subgap state excita-

tion energy E0 and having electron- and hole-like coherence factors u and v , depicted in
Fig. 7.3(a). The energies E L/R

C are assumed the largest energy scales of the system. Since
the existence of CAR transitions in this system is a prerequisite for the formation of a
minimal Kitaev chain [337], we know from the results of Chapter 4 we must restrict our-
selves to the regime E M

C < E0. We consider each QD as having a single spinful fermionic
mode and an arbitrary manifold of quasiparticle states on island M with excitation en-

ergies ≥ E0. Each QD has a Zeeman splitting E j
Z for j ∈ {L,R} favoring a spin-down state,

but we neglect Zeeman splitting in island M as in Ref. [231]. Given a total charge of N

in the system, the QDs have a charging energy of E j
C(n̂ j −ng j )2 where n̂ j is the electron

number operator on QD j ∈ {L,R} and ng j is the reduced gate voltage on the dot [22].
By charge conservation, the charging energy of island M is E S

C(N − n̂L − n̂R −ngM)2 and
any state with odd charge on the island has a free energy cost of E0 at minimum since a
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quasiparticle state must be occupied [64].
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Figure 7.3: Simulations of a two-site Kitaev chain in a floating triple quantum dot. (a) Diagram of a triple QD
system of two semiconducting dots (green) separated by an island (green) proximitized by a superconducting
shell (blue). With normal reservoirs and a ground connection on the superconductor, this becomes a standard
QD-based two-site Kitaev chain device [143, 144]. Otherwise, it is a floating triple QD. (b) Superimposed CSDs
of the floating triple QD neglecting tunneling showing the ground charge state for total fixed charge N = 2 (blue
lines and labels) and N = 1 (red). Charge states are labeled as (〈n̂L〉 ,〈n̂M〉 ,〈n̂R〉) up to an arbitrary even offset
on the superconducting island. Energy scales determining the sizes of different transitions in parameter space
are also labeled. A black dot indicates the position in parameter space described by eq. 7.2. (c),(d) Thermally
averaged quantum capacitance C M

q as would be probed by a resonator connected to the gate of island M for

total charge N = 2 (c) and N = 1 (d). Parameters used in the simulations were EL
C = ER

C = 5E0, EM
C = 0.4E0,

EL
Z = ER

Z = 1.5E0, EM
Z = 0, tL = tR = 0.5E0, t so

L = t so
R = 0.2tL, temperature T = E0/40, u = 1/

p
2, and v = i /

p
2,

except in (b) where tunnel couplings were neglected. A phase of π/2 was added to v to prevent accidental
cancellations of the effective CAR amplitude. Seven outlier points due to discontinuities at fine-tuned points
in the data were excluded from the simulations for clarity.
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Finally, with the system defined, we argue that near the parameter regime n0
gL/R =

(1−E L/R
Z /E L/R

C )/2 and ngM = 1, the system may form a two-site Kitaev chain across the
Hilbert spaces of total charge N = 1 and N = 2. Near this operating point, the poten-
tial ground states are those where the QDs contain zero charge |0〉 or a spin-up electron
|↑〉, and the states {|−1 j 〉 , |0〉 , |1 j 〉 , |2〉} on island M containing up to a single quasiparticle
of energy ≥ E0. The CSD without tunnel couplings for N = 2 and N = 1 are superim-
posed in Fig. 7.3(b). There, we see that the center of the CAR transition coupling |0,2,0〉
to |↑,0,↑〉 exactly coincides with the odd-parity sector’s transition between |↑,0,0〉 and
|0,0,↑〉. For the island states, the integer denotes the island’s charge up to some even
offset, and the subscript j denotes the quantum number of the occupied quasiparti-
cle state. In particular, it may be verified that for N = 2, either |0,2,0〉 or |↑,0,↑〉 are
the ground state while |↑,1 j ,0〉 and |0,1 j ,↑〉 are the closest excited states. Meanwhile,
for N = 1 the ground state is either |↑,0,0〉 or |0,0,↑〉 and the nearest excited states are
|0,1 j ,0〉 and |↑,−1 j ,↑〉. In the N = 2 and N = 1 cases, the two ground states are effectively
coupled by second-order tunneling through the closest excited states by an effective CAR
amplitude tCAR and elastic cotunneling (ECT) amplitude tECT, respectively, as argued in
Sec. 2.1.5. Experimental evidence of nonzero tCAR and tECT can also be seen in the sta-
bility diagrams of Fig. 4.1, indicated by a dispersive shift of the gate resonators probed
across cotunneling and Cooper pair splitting transitions. Near the operating point, such
that ngL/R = n0

gL/R +δngL/R for some δngL,δngR ≪ 1, the low energy Hamiltonian can be
calculated to be:

Ĥ =


0 0 0 tCAR

0 εL tECT 0
0 t∗ECT εR 0

t∗CAR 0 0 εL +εR

 (7.2)

up to a constant, in the basis {|0,2,0〉 , |1,0,0〉 , |0,0,1〉 , |1,0,1〉} dressed by perturbative oc-
cupation of states containing a quasiparticle1. This small odd occupation is exactly what
makes tCAR and tECT nonzero (see Sec. 2.1.5). Above, we defined εL/R ≡−2E L/R

C δngL/R. Ig-
noring the state of the superconductor, which has a constant state up to a change in the
number of Cooper pairs in the superconducting condensate, this is precisely the Hamil-
tonian of a two-site Kitaev chain, and forms Majorana bound states when tCAR = tECT

[87].
While |0,2,0〉 and |↑,0,↑〉 are degenerate in the absence of tunneling at this operat-

ing point, we should note that charge noise in ngM away from 1 breaks this degeneracy.
As a floating system, however, decreasing ngM is equivalent to increasing ngL = ngR by
a proportional amount, except that ngM noise is local to the superconducting island.
This susceptibility to local noise may be detrimental to the coherence of qubits based
on Kitaev chains where the central superconductor has a charging energy. It could be
diminished by lowering E M

C , which would not increase quasiparticle poisoning rates if it
is a truly floating system.

Next, we consider how the state of a floating two-site Kitaev chain might be mea-
sured. Either the left or right QD is both sensitive to ECT and CAR and the gate sensor en-
ables measurement of the CSD, though a resonator must couple to both QDs to be sensi-

1The same is true for dot-based Kitaev chains in open systems: the charge states coupled by CAR and ECT are
dressed by some occupation of the ‘virtual’ states mediating these couplings.
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tive to the Majorana bound state parity [14]. In a grounded Kitaev chain, parity readout
could also be accomplished with a resonator coupled to the superconducting lead, since
the lead resonantly loses and gains charge in the even parity subspace where CAR occurs.
On the other hand, it is relatively insensitive to ECT in the odd-parity subspace because
electron wave functions only weakly occupy the superconductor for resonant ECT. The
same readout principle applies for a floating Kitaev chain, so we plot quantum capaci-
tance C M

q of the superconducting island in Figs. 7.3(c) and 7.3(d), respectively. Quantum
capacitances are calculated with thermal averaging according to eq. 2.24, from results of
a full fermionic simulation of the system described in Appendix F. Simulation parame-
ters are chosen to be similar to Ref. [337] and are given in the Fig. 7.3 caption, but with a
finite charging energy on the island to emphasize how this alters the CSD. As expected,
we find that C M

q is substantial at charge transitions coupled via CAR, but relatively small
at ECT transitions. Additionally, the shape and strength of the CAR and ECT transitions
differs between the N = 2 and N = 1 cases. This is because CAR can occur without any
spin-flipping processes in the odd-parity case.

Hence, we have found that a two-site Kitaev chain can be implemented in a floating
system. Furthermore, we found that a resonator coupled to the floating superconductor
can distinguish between the even and odd parity subspaces. This is only one schema by
which a floating Kitaev chain could be implemented, however—forming them by cou-
pling superconducting islands directly may be possible [338], rather than coupling QDs
via a superconductor.

QUBITS BASED ON YU-SHIBA-RUSINOV STATES
Outside of topologically protected qubits and qubits formed from Josephson junction
ABSs, other hybrid qubit schemes have favorable characteristics such as protection from
noise. YSR states can form as subgap states in superconductors coupled with semicon-
ducting QDs, screening the spin and charge of a spinful QD in an effective singlet state.
For example, one may tune the TQD system discussed above to a sweet spot where the
superconducting island equally favorably wants to screen an unpaired spin on either of
the outer dots [79]. At this operating point, any superposition of the two lowest-energy
states have equal expected charge on each of the three QDs and are insensitive almost
to third-order in charge fluctuations. This suppression of charge dispersion is caused by
the superconductor screening any electron-hole asymmetry in the QDs, and makes this
system interesting to study as a qubit. Turning the system inside out—it has also been
proposed to form a qubit based on YSR states in a TQD system of two superconducting
islands separated by a semiconducting QD [25]. In this case, states where a YSR singlet is
formed between the left or right superconducting island can hybridize, forming a YSR-
analog to a DQD charge qubit [41, 42] with some charge noise protection. Qubits based
on a similar principle could also be constructed from a pair of impurities or a DQD cou-
pled to a superconducting reservoir [339, 340].
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FABRICATION DETAILS

A.1. RF-COMPATIBLE DEVICES IN TWO-DIMENSIONAL ELEC-
TRON GASES

The sensitivity of a resonator to a small capacitance (such as the quantum capacitance
of a multi-quantum-dot system) increases as this capacitance becomes a larger fraction
of the total resonator capacitance [13]. Such a resonator, be it an off-chip inductor or
on-chip resonator, must eventually connect to the device through a gate electrode ex-
tending onto the active device region. For a device formed in a two-dimensional elec-
tron gas (2DEG) material platform, this means the gate lead must extend over the 2DEG
mesa (see Sec. A.2), possibly separated by one or more other layers of gates or dielectric.
The InSbAs platform used for Chapters 5 and 6 has a conducting surface 2DEG when no
voltage is applied to any coupled gates, so we must pattern depletion gates in order to
define a conducting region with the desired shape of the device. Due to limitations in
our fabrication recipe the 2DEG mesa can only be coarsely patterned, meaning that this
overlap region of the resonator gate lead with gates in other layers and the 2DEG is nec-
essarily substantial. Evidently, this proximity of the lead to other conducting materials
contributes a capacitance which must be minimized to optimize the resonator’s sensi-
tivity to the capacitance of interest. Moreover, unintended capacitances to a resistive
2DEG or filtered DC lines of the measurement setup introduce losses to the resonator,
lowering its internal quality factor. Typical low-pass filter resistances of several kΩ can
drastically lower the resonator quality factor depending on capacitances to these lines.
Ultimately, this can result in a quality factor and resonator frequency too low to be usable
for sub-GHz reflectometry measurements.

Two clear options for alleviating this issue are to reduce the capacitance between res-
onator leads and DC gate leads, or to apply filtering around the resonator’s frequency on
the latter. The latter works because any unintended capacitance is the same as no capac-
itance at all if it is in series with a high impedance such as that of a filter. Note that other
lines coupled to RF resonators are not as much of a concern provided their resonators
have narrow enough linewidth: in this case the resonator itself serves as a band-pass fil-
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ter which excludes the frequency of the resonator we are discussing here. We can reduce
the unintended capacitances by applying thicker dielectric material between gate layers
or between gate layers and the 2DEG, but this would proportionately decrease the capac-
itor of the resonator lead to the device region of interest. Hence, it is not a viable solution.
Some additional reduction of this capacitance can also be attained by simply designing
the device such that other gates in the same layer as the resonator gate are separated
from it by as large of a distance as possible. For example, it is a good practice to have
gate leads ’fan out’ from the central device region rather than running close together in
parallel. Unfortunately, this does not affect the expected dominant contribution to the
stray capacitance: that to the 2DEG or underlying depletion gate layers.

Thus, the remaining option is adding additional filtering to DC lines. This filtering
should be on the device chip, such that it is ’seen’ by the capacitively-coupled resonator
line before the resonator sees the standard DC line filtering. Inductors serve as natural
filters, given that they have an impedance increasing linearly with frequency [341]. For
a sub-GHz resonator frequency, achieving a filtering impedance much larger than the
few-kΩDC line resistance would require an inductance on the order of tens or hundreds
of µH! This requires an infeasibly large footprint for an on-chip geometric or kinetic
inductor [154, 342]. Instead, our solution is to use a high-resistance material to pattern
resistors on the depletion gate lines of well over 100 kΩ. Though resistors are lossy, a large
enough resistor actually serves to decrease loss in the resonator, as it approaches the
limit of this DC line appearing as an open circuit to the resonator. Further details on the
fabrication of these resistors are given below, but they are made from Ti/Pd nanowires
thin enough and narrow enough to have a very large resistance. These materials were
chosen primarily due to their availability in the deposition machines available at the
time of device fabrication. Other materials with much larger resistances per square exist,
but if the length of the resistor is too short, then there will be a significant capacitance
between the two resistor leads allowing RF signals to bypass it.

A.2. FABRICATION PROCEDURE
Here, we list the fabrication recipes used for fabricating the samples based in InSbAs
ternary two-dimensional electron gas heterostructures in Chapters 5 and 6 in Table A.1.
Please note that the multi-gate-layer fabrication recipe was developed primarily by Ivan
Kulesh as preliminary test devices for Chapter 5 were fabricated, and the final four-
terminal junction devices measured in Chapter 6 were fabricated by Wietze D. Huisman.
The measured device of Chapter 5 was fabricated by the author. Samples measured in
chapters 3 and 4 were fabricated by Damaz de Jong, so details of the corresponding fab-
rication procedure may be found in Ref. [37].

First, we describe more broadly the design considerations in fabricating the mea-
sured device of Chapter 5. For a precise list of the fabrication steps employed, please see
Table A.1. below. For the devices measured in Chapter 6, the same fabrication procedure
was used but with two instead of three gate layers, and with additional aluminum etch-
ing steps to produce the fine Josephson junction structures. A device equivalent in de-
sign to the one measured in Chapter 5 from the same chip is shown in Fig. A.1(a). Initially,
the chip is covered with a <10 nm epitaxial layer of Al which was selectively etched away
everywhere except in a region to the left and right of the pictured device to form leads,
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a

b

Figure A.1: Device design and layer stack. (a) False-color scanning electron micrograph for a device nominally
equivalent to the one measured in Chapter 5 from the same chip. The colors are encoded by gate layer, of which
there are three, instead of by the gates’ purpose as was done in Fig. 1a of the main text. (b) Cross-sections ap-
proximately depicting the layer stack of the device along the solid and dashed lines shown in (a). Thicknesses
of the dielectric and Ti/Pd gate layers are relatively to scale, but the widths are not, and the topography is only
schematically depicted.

exposing the InSb0.86As0.14 2DEG heterostructure [245]. Next, the 2DEG was etched away
except in a region close to the active device and along a roughly 140µm path connect-
ing it to the Al leads, forming a mesa. We then alternated between using atomic layer
deposition to deposit roughly 20 nm Al2O3 dielectric layers then evaporating Ti/Pd gate
layers to form three electrically isolated gate layers. Each layer also contains coarse gate
leads (not shown), required to facilitate climbing the mesa. The 2DEG mesa on which
the device was fabricated conducts, so forming a loop required application of negative
voltages both along the outer perimeter of the loop, as well as in the hole in the center.
Fabricating a double quantum dot (DQD) in this loop further necessitated plunger gates
to tune the chemical potential of the quantum dots (QDs) and gates to form barriers
between them and to the contacts. One option to satisfy these requirements is to pat-
tern depletion gates in a layer above the plunger gates needed to tune the QDs, however
in this case the leads of the lower layer gates were found in previous devices to screen
the depletion gate voltage and prevent forming a stable loop. Hence, it was topologi-
cally required to fabricate three gate layers in order to both have an outer depletion gate
underneath the plunger and barrier gates, as well as a central depletion gate which can
cross over the plunger gates to deplete the center of the loop. The corresponding layer
stack is schematized in Fig. A.1(b). A third gate layer had the added advantage that tun-
nel barriers could be made effectively more narrow, since barrier gates in the third layer
may overlap with plunger gates in the second layer.
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Step Description
Details

DQD Ring Devices (Ch. 5) 4TJJ Devices (Ch. 6)
Chip Cleaning Strip protective resist layer in room temp. acetone overnight, then rinse in acetone & IPA
Coarse Al & Mesa
Etch

Spin-coat AR300.80 resist adhesion promoter at 4000 rpm. Bake in room temperature vacuum
oven at least 1 h.
Spin-coat PMMA A4 950 resist at 4000 rpm. Bake in room temperature vacuum oven for at least
2 h.
Electron-beam patterning: Expose pattern in shape of desired 2DEG mesa, using no proximity ef-
fect correction for coarse features with dose of 790µCcm−2. For finer features (close to where
device mesa will be) use proximity effect correction and a dose of 900µCcm−2.
Develop resist 50 s in MIBK:IPA mixed in a 1:3 ratio, then 10 s in IPA.
Bake resist again for at least 40 min, and clean with oxygen plasma again before or afterwards.
Etch in Transene-D at 48.2 ◦C1.

Strip resist in AR600.71 resist stripper, optionally
sonicate, then rinse in acetone followed by IPA.

Etch 2DEG mesa for 70 s using remaining coarse aluminum pattern as a mask, in a solution of
560 mL water, 4 mL phosphoric acid, 5 mL hydrogen peroxide, and 9.6 g citric acid using a stirring
bar.

Strip resist in AR600.71 resist stripper, optionally
sonicate, then rinse in acetone followed by IPA.

Rinse again in IPA.

Fine Alignment
Marker Deposition

Spin-coat PMMA A4 950 resist at 4000 rpm. Bake in room temperature vacuum oven for at least
2 h.
Electron-beam patterning: Expose fine marker pattern using proximity error correction and a dose
of 900µCcm−2.
Develop resist 50 s in MIBK:IPA mixed in a 1:3 ratio, then 10 s in IPA.

1For Al etching with Transene-D, the etching was followed immediately by a brief dip in a water beaker at the same temperature as the Transene-D, another brief dip
in a room temperature water beaker, followed by a longer rinse in another room temperature water beaker. The reason for this is to remove the Transene-D as quickly
as possible to prevent overetching. The etch time for Transene-D varies from wafer to wafer, and must be precisely calibrated based on the thickness of the aluminum
layer. Typical etch times are less than 10 s.
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Deposition: Evaporate 5 nm titanium followed by 60 nm gold.
Also deposit 5 nm palladium.

Liftoff in AR600.71 resist stripper, sonicate, then rinse in acetone followed by IPA.
Fine Al Etch #1 Spin-coat AR300.80 resist adhesion promoter at 4000 rpm. Bake in room temperature vacuum

oven at least 1 h.
Spin-coat PMMA A4 950 resist at 4000 rpm. Bake in room temperature vacuum oven for at least
2 h.

(Al contacts) (Josephson junction outlines)
Electron-beam patterning: Expose pattern using proximity error correction and a dose of:

950µCcm−2 970µCcm−2

Develop resist 50 s in MIBK:IPA mixed in a 1:3 ratio, then 10 s in IPA.
Bake again in vacuum oven overnight.

Etch Al in Transene-D at 38.2 ◦C.
Strip resist in AR600.71 resist stripper, optionally sonicate, then rinse in acetone followed by IPA.

Fine Al Etch #2 Procedure is the same for this aluminum etching
step as for Fine Al Etch #1, where the thin ‘slits‘
dividing Josephson junction terminals are
patterned, except that a dose of 900µCcm−2 is
used during electron beam exposure.

Bondpad Deposition Spin resist at 4000 rpm, then bake in room temperature vacuum oven at least 2 h, using resist:
PMMA 950 A4 PMMA 950 A6

Electron-beam patterning: Expose bondpad pattern with a dose of:
1400µCcm−2 1200µCcm−2

Develop resist 50 s in MIBK:IPA mixed in a 1:3 ratio, then 10 s in IPA.
Etching & Deposition: Briefly etch with argon
plasma, then in-situ sputter a thick layer of MoRe
as a bondpad ‘foundation’.

Deposition: Evaporate 50 nm titanium, followed
by 50 nm chromium, and finally 5 nm palladium.
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Liftoff in AR600.71 resist stripper, sonicate, then rinse in acetone followed by IPA.
Metal Contacts
(unused in Ch. 6)

Spin-coat PMMA A4 950 resist at 4000 rpm. Bake
in room temperature vacuum oven for at least
2 h.
Electron-beam patterning: Expose metal contact
pattern using proximity error correction with a
dose of 950µCcm−2.
Develop resist 50 s in MIBK:IPA mixed in a 1:3
ratio, then 10 s in IPA.
Etching & Deposition: Mill with argon plasma for
20 s, then in-situ evaporate 3 nm titanium
followed by 10 nm palladium.
Liftoff in AR600.71 resist stripper, sonicate, then
rinse in acetone followed by IPA.

Dielectric Layer #1 Deposition: Deposit 20 nm Al2O3 with room-temperature atomic layer deposition (200 cycles) after
preconditioning the chamber without the sample for 5-10 cycles.

Resistor Deposition
(see Sec. A.1)

Spin-coat PMMA A4 950 resist at 4000 rpm. Bake
in room temperature vacuum oven for at least
2 h.
Electron-beam patterning: Expose resistor pat-
tern using proximity error correction, a 18 nm
beam spot size, and a dose of 1000µCcm−2.
Develop resist 50 s in MIBK:IPA mixed in a 1:3 ra-
tio, then 10 s in IPA.
Deposition: Evaporate 12 nm titanium followed
by 4 nm palladium.
Liftoff in AR600.71 resist stripper, sonicate, then
rinse in acetone followed by IPA.

Gate Layer #1, Fine
Gates

Spin-coat ARP6200.04 resist at 4000 rpm. Bake in 40 ◦C vacuum oven for at least 2 h.
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Electron-beam patterning: Expose fine gate pattern with a dose of:
320µCcm−2 310µCcm−2

Develop resist 60 s in pentylacetate, then 5 s in Xylene, then 30 s in IPA.
Deposition: Evaporate:

6 nm titanium followed by 4 nm palladium. 3 nm titanium followed by 11 nm palladium
Liftoff in AR600.71 resist stripper, sonicate, then rinse in acetone followed by IPA.

Dielectric Etching #1
(for easier
wire-bonding)

Spin-coat AR300.80 resist adhesion promoter at
4000 rpm. Bake in room temperature vacuum
oven at least 1 h.
Spin-coat ARP6200.04 resist at 4000 rpm. Bake in
40 ◦C vacuum oven for at least 2 h.
Electron-beam patterning: Expose region over
MoRe bondpads with a dose of 320µCcm−2.
Develop resist 60 s in pentylacetate, then 5 s in
Xylene, then 30 s in IPA.
Etching: Use chlorine reactive ion etching to re-
move dielectric in exposed area.
Strip resist in AR600.71 resist stripper, optionally
sonicate, then rinse in acetone followed by IPA.

Gate Layer #1,
Coarse Gates

Spin resist at 4000 rpm, then bake in room temperature vacuum oven at least 2 h, using resist:

PMMA 950 A4 PMMA 495 A6
Spin-coat PMMA A3 950 resist at 4000 rpm. Bake
in room temperature vacuum for at least 2 h.

Electron-beam patterning: Expose coarse gate pattern with a dose of:
1400µCcm−2 950µCcm−2 for gate leads and with 750µCcm−2

over bondpads.
Develop resist 50 s in MIBK:IPA mixed in a 1:3 ratio, then 10 s in IPA.
Deposition: Evaporate:
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10 nm, 75 nm gold, then 10 nm palladium. 5 nm titanium, 80 nm gold, then 5 nm palladium.
Liftoff in AR600.71 resist stripper, sonicate, then rinse in acetone followed by IPA.

Dielectric Layer #2 Identical to procedure for Dielectric Layer #1.
Gate Layer #2, Fine
Gates

Spin-coat ARP6200.04 resist at 4000 rpm. Bake in 40 ◦C vacuum oven for at least 2 h.

Electron-beam patterning: Expose fine gate pattern with a dose of:
350µCcm−2 330µCcm−2

Develop resist 60 s in pentylacetate, then 5 s in Xylene, then 30 s in IPA.
Deposition: Evaporate 3 nm titanium followed by:

15 nm palladium 16 nm palladium
Liftoff in AR600.71 resist stripper, sonicate, then rinse in acetone followed by IPA.

Dielectric Etching #2
(for easier
wire-bonding)

Spin-coat AR300.80 resist adhesion promoter at
4000 rpm. Bake in room temperature vacuum
oven at least 1 h.
Spin-coat ARP6200.04 resist at 4000 rpm. Bake in
40 ◦C vacuum oven for at least 2 h.
Electron-beam patterning: Expose the region
over bondpads with a dose of 320µCcm−2.
Develop resist 60 s in pentylacetate, then 5 s in
Xylene, then 30 s in IPA.
Etching: Use chlorine reactive ion etching to
remove dielectric in exposed area. Using roughly
double the time as Dielectric Etching #1 to etch
through two layers of dielectric.
Liftoff in AR600.71 resist stripper, sonicate, then
rinse in acetone followed by IPA.

Gate Layer #2,
Coarse Gates

Identical to Gate Layer #1 Coarse gates, but with
thicknesses of 10 nm titanium, 95 nm gold, and
15 nm palladium.

Spin-coat PMMA A6 495 at 4000 rpm. Bake in
room temperature vacuum oven for at least 2 h.
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Spin-coat PMMA A3 950 resist at 4000 rpm. Bake
in room temperature vacuum for at least 2 h.
Electron-beam patterning: Expose coarse gate
pattern and bondpads with doses of
1050µCcm−2 and 900µCcm−2, respectively.
Develop resist 50 s in MIBK:IPA mixed in a 1:3
ratio, then 10 s in IPA.
Deposition: Evaporate 5 nm titanium followed by
100 nm gold.
Liftoff in AR600.71 resist stripper, sonicate, then
rinse in acetone followed by IPA.

Flux-bias Lines Spin-coat PMMA A6 495 at 4000 rpm. Bake in
room temperature vacuum oven for at least 2 h.
Electron-beam patterning: Expose flux-bias line
pattern with a dose of 1350µCcm−2.
Develop resist 50 s in MIBK:IPA mixed in a 1:3
ratio, then 10 s in IPA.
Deposition: Sputter roughly 100 nm NbTiN.
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Liftoff in AR600.71 resist stripper, sonicate, then
rinse in acetone followed by IPA.

Dielectric Layer #3 Identical to procedure for Dielectric Layer #1.
Gate Layer #3, Fine
Gates

Identical to procedure for Gate Layer #2 fine gates
but with thicknesses of 3 nm titanium and 22 nm
palladium.

Dielectric Etching #3 Identical to Dielectric Etching #1 but with
roughly double the etching time in order to re-
move two layers of dielectric.

Gate Layer #3,
Coarse Gates

Identical to Gate Layer #1 Coarse gates, but with
thicknesses of 10 nm titanium and 105 nm gold
with no palladium.

Table A.1: Fabrication procedure for both types of InSb0.86As0.14 devices measured in this dissertation, fabricated on 2DEG heterostructures provided by the research
group of Michael J. Manfra [245]. Chips are assumed to already have an epitaxial layer of aluminum coating the entire chip covered in a protective resist layer, and
to have coarse alignment markers deposited. While not listed in the table, resist residuals were cleaned from the chips in a gentle oxygen plasma after each resist
development step, and chips were generally cleaned in a more aggressive oxygen plasma after each lithography or etching step.
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MEASUREMENT SETUPS

In this appendix we describe the measurement setups used throughout this dissertation
(Sections B.1, B.2, and B.4), as well as a new microwave measurement setup designed
and built during the course of this thesis research in Sec. B.3. This latter setup was de-
signed to be capable of both sub-GHz reflectometry and circuit quantum electrodynam-
ics experiments at few-GHz frequencies.

As general considerations, we note that connections between the mixing chamber
stage and higher stages in the microwave setups had to be via superconducting coaxial
cables to prevent a thermal connection. Similarly, connections between higher stages
used coaxial cables which, while not superconducting, had low thermal conductance.
In general, the RF input line has to have attenuators thermally contacted to each plate
of the fridge in order to reduce the effective noise temperature of photons entering the
circuit1. Attenuators inside dilution refrigerators are especially designed for cryogenic
purposes such that their attenuation meets specifications at low temperature and such
that they thermalize properly with their connected fridge plates. Photons output from
measurement electronics may also be much ‘hotter’ than room temperature, such that
an attenuator is often placed at the output port of electronics as well. Until one reaches
limits determined by the maximum power output of measurement electronics, one can
always add more attenuation at each temperature stage with diminishing returns on the
lowering noise temperature. Hence, this must be balanced with considerations relating
to the possible output powers of measurement electronics and the cooling power of each
temperature stage. Typically, the largest attenuation is placed at the 4 K stage since it is
the closest temperature stage to the mixing chamber with a very large cooling power, but
some attenuation should be placed at higher stages as well. Lower temperature stages
should also contain some attenuation in order to reach mK level photon noise tempera-
tures.

Other passive components in the measurement setup are often not designed specif-
ically for cryogenic purposes. Directional couplers designed for sub-GHz bandwidths

1See the blog post by Matthew Sarsby for a guide to the subject at https://blog.qutech.nl/2020/02/20/cooling-
a-hot-photon-wind-part-1/.
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are sometimes designed with magnetic components and do not function at cryogenic
temperatures. Couplers, filters, and circulators not designed for cryogenic applications
are also often made with a stainless steel casing that has very low thermal conductivity
at cryogenic temperatures compared to other materials like copper. The K&L tubular
filters used in the setups measured have stainless steel casings, but are used simply be-
cause they are known to function properly at mK temperatures. Even worse, stripline
directional couplers are often made of aluminum which superconducts at sub-1 K tem-
peratures, making its thermal conductivity even lower. Aside from utilizing cryogenic
microwave components (a newly emerging market at the time of this dissertation’s writ-
ing), all one can do is provide these components with the best possible thermal contact
to the refrigerator. Ideally, this is in the form of a rigid bracket made of a high thermal-
conductance metal like copper. For round or suspended components like the filters in
Fig. B.1, tightly wrapping copper ribbon around the component can be used as a last
resort, but this provides less thermal contact.

B.1. MICROWAVE TRANSMISSION MEASUREMENT SETUP

The experimental setup employed for microwave transmission measurements of copla-
nar waveguide resonators in Chapters 3 and 4 is schematically shown in Fig. B.1(a). This
setup was contained in a Bluefors bottom-loaded dry dilution refrigerator, where most of
the microwave electronics are mounted on the fridge plates rather than in the inserted
sample probe. On-chip superconducting CPW resonators are fabricated from a 20 nm
NbTiN layer using reactive ion etching, similar to Ref. [156] ensuring magnetic field com-
patibility. Since each resonator is terminated by a device gate or the semiconducting
nanowire itself, either of which forms an impedance much larger than the waveguide
characteristic impedance, these waveguides form half-wavelength resonances. The res-
onator design is a hanger-style geometry with each resonator coupled to a central feed-
line via a coupling capacitor, with further details given in Refs. [155, 204] based on de-
sign considerations introduced in Ref. [156]. These capacitors are tuned to be suitable
for DGS measurements with an external photon coupling rate around κext ≃ 10MHz.
The reflection coefficient of each resonator can be simultaneously probed by measur-
ing transmission through the feedline, since transmitted RF signals contain information
about the reflection coefficient of the resonators ‘hanging’ off of it [187]. To minimize
the noise temperature in our measurements we use a traveling-wave parametric ampli-
fier (TWPA) [153] on the base temperature stage of a dilution refrigerator operating at
20 mK. Additionally, a high-electron-mobility transistor amplifier at 4 K is used to fur-
ther amplify the signal.

One disadvantage of transmission-style setups is that, when measuring transmission
through a feedline with hanger-style resonators capacitively coupled to it, half of the
signal reflected from the resonator is directed back to the input port [187]. As a result,
roughly half of the measurement signal is lost. This can be mitigated by placing a weak
capacitor on the input side of the feedline and simply applying more input power to
overcome the capacitance [335]. In this case, photons emerging from a resonator will
be mostly reflected from the input capacitor’s large impedance and directed towards the
output port, though we do not implement such a capacitor in our feedline.
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1

2

Low Noise Factory 
LNF-LNC4_8C (4-8 GHz)

(1) Circulator: Quinstar
QCY-G0400801AU (4-8 GHz)

(2)

Lincoln Labs TWPA
(roughly 4-8 GHz)

(3) Directional Coupler:
Krytar 120420 (4-12.4 GHz)

(4)

10 GHz LP Filter: 
K&L 6L250-10000

(5) Eccosorb Infrared Filter:
In-House (1.6 dB/GHz) 

(6)

3 4

Figure B.1: RF circuit of the dilution refrigerator used in Chapters 3 and 4. An RF signal generated by a
vector network analyzer, Quantum Machines OPX pulse generator, or custom multiplexing circuit read by an
Alazar ADC card is attenuated at each stage of the refrigerator on its way to the device under test (DUT) at base
temperature. The signal is amplified on the way out of the fridge first by a TWPA at base temperature, driven by
a GHz-frequency pump tone, and then by a 4 to 8 GHz bandwidth high-electron-mobility transistor (HEMT)
amplifier at the 4 K plate. The TWPA is enclosed in a mu-metal shield protecting it from applied magnetic
fields. In front of and behind the TWPA are circulators and a directional coupler designed to reduce back-
action of the TWPA on the DUT and attenuate any noise traveling down the output and pump tone lines. Low
pass filters are also present to reduce noise above the measurement bandwidth. Any component not directly
connected to a fridge plate was contacted by a copper bracket or ribbon to thermally connect it to the nearest
plate. For the measurements of Figs. 7.2(a) and 7.2(b), only the attenuators and 4 K amplifier were present with
no filtering, circulators, or parametric amplifier.

B.2. SUB-GHz REFLECTOMETRY MEASUREMENT SETUP

The microwave measurement setup utilized in Chapter 5 is shown in Fig. B.2(a). We had
no involvement in the design of this circuit, and so only briefly summarize the details.
This dilution refrigerator is a dry Leiden Cryogenics fridge with a narrow top-loaded
probe, which contains all measurement electronics lines and so had to be compactly
designed. Stripline directional couplers operating below 1 GHz are not compact enough
to fit inside the probe of this dilution refrigerator so a transformer-based coupler had to
be used instead. These couplers are compact and the used model is known to operate
at mK-temperatures, but generally have an upper frequency limit of 1 to 2 GHz. Con-
sequently, this measurement setup is tailored to sub-GHz reflectometry. Measurements
were conducted with a Rohde & Schwarz vector network analyzer or a Zurich Instru-
ments Ultra High Frequency Lock-in Amplifier.
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Cosmic Microwave Tech. 
CITLF2 (0.01-1.5 GHz)

(1)

Cosmic Microwave Tech. 
CITLF3 (0.01-5 GHz)

(2)

Inner-only DC Block (3)

Mini Circuits ZEDC-15-2B 
(1-1000 MHz)

(4)

Low-Pass Filter: K&L
6L250-4896/T14400-O/O 

(5)

Copper 50 Ω Termination: 
XMA 2001-7010C-CRY0

(6)

Coupler: Mini Circuits 
ZUDC20-83-S+ (0.3-8 GHz)

(7)

Infrared Filter: 
Quantum Microwave 
QMC-CRYOIRF-002 
(0.75 dB/GHz)

(8)

1 2

Figure B.2: Reflectometry measurement circuits. (a) Sub-GHz reflectometry circuit used for Chapter 5 in
a Leiden Cryogenics dry cryostat. (b) Wideband reflectometry circuit designed and assembled in an Oxford
Triton cryostat during this dissertation’s research, but not measured in any chapter. The amplifier (2) and 50Ω
termination (6) are connected to the 4 K and mixing chamber plates, respectively, by flexible copper brackets.
The directional coupler (7) is rigidly connected by a copper bracket to the mixing chamber plate. All parts
shown as touching fridge plates are directly connected to them, and all other suspended components have
copper ribbon wrapped around them and connected to the mixing chamber plate.

B.3. WIDEBAND REFLECTOMETRY SETUP
During the course of this dissertation’s research, a microwave measurement setup oper-
able from 0.3 to 5 GHz was designed for and assembled in an Oxford Triton dry dilution
refrigerator. Herein we describe the design considerations leading to the final circuit de-
picted in Fig. B.2(b). The overall goal was to design a measurement circuit capable of
reflectometry measurements at sub-GHz frequencies as well as at higher frequencies in
the few-GHz range approaching energy scales of quantum systems of interest. This is
because the former band is the practical limit for measurements using off-chip inductor
coils, possessing resonance frequencies limited to below 1 GHz due to their unavoidable
parasitic capacitance to ground defining the resonance [13]. Meanwhile, the latter band
is of relevance for faster measurements of qubits or circuit quantum electrodynamics ex-
periments where the measurement frequencies approach the energy scales of the system
[5].

The main components preventing the creation of such a wide bandwidth microwave
measurement setup are cryogenic amplifiers, directional couplers, and circulators. Most
circulators have very narrow bandwidths if they exist at all at low frequencies—the most
typical circulators used in cryogenic setups have bandwidths beginning at a few GHz (see
e.g. Fig. B.1). Without circulators, there is no obvious method to protect the device from
backaction and reflections from the amplifier, but this is unavoidable for low-frequency
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reflectometry setups because of the limitation mentioned above. Stripline directional
couplers actually are available in fairly wide bandwidths reaching to sub-GHz frequen-
cies, but they are over 10 cm in length, like the 15.2 cm long one used in this setup. Hence,
a wide bandwidth coupler can only be employed in larger dilution refrigerators where
the electronics are statically mounted on the fridge plates and not on a sample probe.
Lastly, the amplifier used here was the cryogenic amplifier which at the time had the
highest upper band limit while also reaching down to a few hundred MHz in operating
range. This amplifier ultimately sets the upper limit of our bandwidth to 5 GHz.

The cutoff frequency of the low-pass filters used was chosen according to this upper
frequency limit. Additionally, infrared filtering (and shielding of the sample) is expected
to be important for reducing noise at frequencies well above the bandwidth of the sys-
tem [343]. We employed the only (at the time) commercially available cryogenic infrared
filter, though due to its extremely weak 0.75 dBGHz−1 attenuation, a more strongly at-
tenuating filter would have been desirable2. Only one of each filter is needed if placed at
the device side of the directional coupler, but due to spatial constraints we were forced
to instead place the two K&L filters at the other ports of the coupler.

Regarding thermalization of the components, attenuators were chosen according to
the considerations described at the beginning of this appendix. Different combinations
of attenuators were checked to see which did not introduce too much dissipation onto
the mixing chamber plate which has less cooling power, while still ensuring that the
final expected noise temperature is comparable to the mixing chamber temperature3.
Wideband directional couplers were only available in superconducting aluminum cas-
ings, so to alleviate thermalization issues, a rigid copper bracket was designed which
has strong thermal contact across a large surface area of one of the coupler’s rectangular
faces. When operating the coupler, the power transfered from the RF-input to the de-
vice side is attenuated by 20 dB, while the remaining ≈ 99% of the signal is dissipated
in the 50Ω terminated port. This power dissipation may drastically heat up the already
poorly thermally conducting coupler, so the stock termination was replaced by a cop-
per cryogenic 50Ω termination from XMA. This termination was then connected with a
copper clamp to copper ribbon thermalized to the mixing chamber plate. Other filters
were wrapped tightly with copper ribbon connected to the mixing chamber plate as a
makeshift substitute for more rigid clamps.

B.4. DC SETUP WITH HIGH-CURRENT LINES
For the experiments of Chapter 6, a Leiden Cryogenics wet dilution refrigerator contain-
ing only DC lines was used. Conventionally, DC lines in a dilution refrigerator are con-
nected to low-pass filters at a low-temperature stage. In order to control the flux-bias
current line in the sample measured in Ch. 6, however, currents on the order of 1 mA had
to be passed through it to generate sufficient fields through the nearby SQUID. Typically,
for DC lines a stringent RC -style filtering is used, and the associated resistances would
lead to too much heat dissipation on low-temperature stages of the fridge relative to its
cooling power. In the case of the fridge used for this experiment, the filters were placed

2Infrared filters can be made by injecting Eccosorb into a barrel connection or other filter. Infrared filters are
also commercially available from XMA now.

3See the Python notebook available at https://github.com/cprosko/photon_thermalization.

https://github.com/cprosko/photon_thermalization
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at the mixing chamber stage at tens of mK where the cooling power is very small in order
to minimize Johnson-Nyquist noise. Passing 1 mA current through such a few-kΩ line
would lead to heat dissipation on the order of milliwatts and the fridge would not be
able to stay cold.

As a result, some of the filtering must be sacrificed for high-current lines. We thus
repurposed a DC line to bypass the low-temperature RC filters. Using a low-thermal-
conductance wire with less than 50Ω room-temperature resistance, we routed a con-
nection from the sample circuit board to an RC filter at the 1 K temperature stage where
cooling power was much larger4. This filter also had a lower resistance on the order of
a few-hundred Ohms. For measurements, the drain of the flux-bias line was then con-
nected to the cold ground of the fridge itself. Notably, this meant that the sample probe
could no longer be floating, and the fridge had to be defined as the ground for the en-
tire setup. In this case however, the fridge had additional Ohmic connections, such as
one to the helium recovery pipes. This introduced ground loops which may have led to
additional noise in the measurements of Ch. 6.

4This line was designed and built by Ivan Kulesh with assistance from Christian Prosko, Olaf Benningshof and
Jason Mensingh.



C
RESONATOR RESPONSE FITTING

In this appendix we describe the fitting procedure for resonator responses measured in
Chapters 3, 4, and 5. The model used for fitting the transmission S21 through a direc-
tional coupler reflectometry circuit, or through a feedline with a ‘hanger-’ or ‘notch-style’
resonator or reflected directly from a resonator is given by [158, 187, 190, 344, 345]

S21 = e i (θ0+θ1ω)s0

(
1+ s1

ω−ω0

ω0

)(
1−λ iκext

i (Re[κext]+κd)/2−ω+ω0

)
, (C.1)

where the probe frequency is denoted by ω and the resonator frequency by ω0, and
where λ= 1 for a reflectometry circuit (as in Chapter 5) and 1/2 for a hanger-style trans-
mission circuit (as in Chapters 3 and 4). Intuitively, this factor accounts for the fact that
half the reflected signal from a resonator coupled to a feedline is lost to the input of the
feedline [37]. To account for the line delay—the time required for photons to propagate
through the measurement circuit—θ0 and θ1 add a linear offset in phase. Essentially,
the number of wavelengths of light which ‘fit’ in the circuit determine an additional
frequency-dependent phase offset photons will have upon reaching readout electron-
ics. Similarly, we account for a linear amplitude offset by s0 and s1 caused by frequency-
dependent gain or loss in the measurement circuit components. Namely, a value of s0

other than 1 indicates a net attenuation or gain in the measurement circuit. Meanwhile a
nonzero s1 offset can arise due to other complications in the circuit, like impedance mis-
matches at amplifier inputs creating resonant cavities in the circuit for example [259], or
a frequency-dependent gain response of the amplifier or attenuation response from fil-
ters. Photon losses to outside the system are represented by a decay rate κd, and the ex-
ternal coupling rate κext describes photon coupling between the resonator and readout
circuit. The latter parameter is complex to account for impedance mismatches along
the feedline [37, 190, 345] or with the earliest amplification stage [259], or mutual in-
ductance between the resonator and feedline [158]. This complex phase added to κext

can substantially change the resonator lineshape, most noticeably giving it an asym-
metric amplitude response about its resonance frequency. Impedance mismatches are
expected to be the cause of this asymmetry in our experiments, and can be thought of
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Figure C.1: Lineshape of S21 for a hanger-style resonator coupled to a feedline. (a) The raw resonator cir-
cuit transmission, which appears highly complicated due to the rotating phase arising from nonzero θ1. (b)
Resonator circuit transmission after dividing out eiθ1ω. The phase offset θ0 can be inferred as the angle be-
tween the far off resonance S21 value of the resonator lineshape if s1 were zero (gray dashed circle), Soff

21 , and

the real axis. (c) Resonator circuit transmission after dividing out ei (θ0+θ1ω). From this plot, more parameters
of the resonator can be estimated as highlighted. For these plots, the parameters for the lead resonator mea-
sured in Chapter 3 are used: ω0/2π= 4.298GHz, κd = 6.269MHz, κext = (116.926−21.104i )MHz, θ0 =−1.228,
θ1 = 92.19ns, and s0 = 0.12681. One exception is that we have increased s1 to s1 = 10 to make its skewing effect
on the lineshape more clear.

as causing additional resonant cavities along the measurement circuit. Though one may
expect to see κext +κd in the denominator, we instead have κext → Re[κext] since this is
equivalent up to a change to an (arguably more correct [158]) definition of ω0. We will
see below that this definition leads to a more intuitive geometric correspondence be-
tween Arg[κext],ω0, and the lineshape of the resonator. We visually summarize the effect
of these resonator parameters on a resonator’s response in Fig. C.1.

With eight fitting parameters one might suppose the model is overfitted, allowing
one to easily fit any resonator response. In reality, the opposite is often true: real res-
onators can have even more complexities such as nonlinear amplitude offsets which
make it very difficult to automatically fit the resonator response in a single iteration
[259]. Hence, it is crucial to provide good initial guesses to the fitting algorithm, and
furthermore to fix any parameters which are experimental constants after calibration.
Namely, the parameters θ0, θ1, s0, and s1 should be constant as long as the experimental
setup is not modified, but θ1, s0, and s1 may vary depending on which resonator is to
be fitted. For s0 and s1, this is because the approximation of a linear amplitude offset
breaks down in a larger frequency band. Meanwhile, θ0, s0, or s1 can all be perturbed by
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unintended resonant cavities distorting the measurement circuit’s phase and amplitude
response locally in frequency space. Because automatically fitting resonator lineshapes
with so many fit parameters can be difficult, we summarize a systematic procedure for
manually fitting the resonator below. In practice, one can follow these steps until enough
parameters are fixed that the automatic fitting algorithm produces a good convergent fit
result using the manually fit parameters as initial guesses.

Manual Resonator Response Fitting Guidelines:

1. Fit θ1 by fitting Arg[S21] over a wide frequency range to a linear slope, or by man-
ually calibrating it out directly in the measurement equipment1. This parameter
can be subsequently fixed even for the final automatic fitting.

2. Note that the resonator response would fall on a circle if s1 were zero. Estimating
the shape of this circle (gray in Figs. C.1(b) and C.1(c)), take Soff

21 (the expected far
off-resonance response of the resonator when s1 = 0 and ω→±∞) as the point on
this circle diametrically opposed to the on-resonance point S21(ω0). Adjust θ0 until
Soff

21 falls upon the Re[S21] axis. As ω0 has not yet been fitted for, one may instead
adjust θ0 until the ‘open ends’ of the resonator response are equally spaced about
the Re[S21] axis. This second technique will be more inaccurate the larger |s1| is.

3. Adjust s1 (using a reasonable estimate for ω0 given the center of the resonance
dip in |S21| or position of maximum phase slope in Arg[S21]) until the two open
ends of the resonator response fall on the circumference of the idealized circle
mentioned in Step 2. When s1 is set incorrectly, one open end will point away from
the mostly-circular resonator lineshape, and one end will point inward within the
circle’s perimeter, as highlighted by red arrows in Fig. C.1(c).

4. Extrapolating the open ends of the resonator lineshape to see the point Soff
21 where

the now-circular resonator lineshape would intersect with the Re[S21] axis, adjust
s0 until this point is at Soff

21 = 1, i.e. take s0 = Soff
21 .

5. Given Soff
21 as one point on the resonator response circle from the previous step,

ω0 is the frequency corresponding to the point S21(ω0) which is diametrically op-
posed to Soff

21 on the circle.

6. Estimate Arg[κext] as the angle between the vector S21(ω0)−Soff
21 and the negative

Re[S21] axis [158].

7. The diameter of the resonator circle at the previous step should be |κext|/κd, while
one can get an order-of-magnitude estimation of κd from the full-width-at-half-
maximum of the resonator’s amplitude response. The resulting estimates for κd

and |κext| will likely be highly inaccurate, and should only serve as initial guesses
for a fitting algorithm.

The method of estimatingω0 in step 5 is the practical reason for our usage of Re[κext]
in the denominator of eq. C.1: using κext instead would correspond to an ω0 definition
for which this method cannot be applied. Note also that all of these steps also apply for

1For vector network analyzers, this parameter is sometimes called ‘electrical delay’ or ‘phase delay’.
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a resonator in a reflectometry circuit (λ= 1), except that the radius of the circle after step
4 should be 1 instead of 1/2 when |κext|≫ κd.

Lastly, we discuss a substantial weakness of typical resonator fitting methods. Be-
cause on the circular resonator lineshape (after calibrating out θ1 and s1) we have that
S21 → Soff

21 as ω→ 0 or ω→ ∞, this means that in a wide sweep of linearly spaced fre-
quency points, the points will be at a higher density the farther fromω0 they are. Hence,
if we try to fit a resonance in a fairly wide frequency window, there will be many more
points far-off-resonance contributing to the fit than there are near-on-resonance points.
Accounting for the importance of the handful of points near resonance can be accom-
plished by adding a fitting weight which is larger near resonance or for points which
conform more to the expected circular resonator lineshape [344]. While not employed
in this thesis, through experiments with fitting in this way we found it had little obvi-
ous advantage over fitting without weighting, except when stray resonances perturb the
resonator to be fitted away from the resonance frequency. Given noise in experiment,
it may instead be beneficial to measure in an unevenly spaced frequency sweep: taking
more points close to the resonator frequency and less farther away. In practice, however,
the situations in experiments where resonator response fitting is required are generally
situations in which a frequency shift of the resonance is to be measured, in which case
the center of this varying points distribution would have to adjust along with the reso-
nance frequency. Regardless, what is always important is to have a high enough sweep
resolution to resolve the full depth of the resonator ‘dip’ in amplitude or the slope of the
resonator ‘step’ in phase without any aliasing effects.



D
QUANTUM CAPACITANCE FORMULA

INCLUDING MUTUAL CAPACITANCES

In order to determine the degree to which mutual capacitances between QDs suppress
parametric capacitance, we follow the approach of Refs. [125, 130] to derive an expres-
sion for parametric capacitance, additionally considering mutual capacitance effects to
second order. We consider the case of N charge islands coupled capacitively to a single
gate voltage Vg via capacitances Cgi for i ∈ {1,2, ..., N }, with mutual capacitances between
the islands of Ci j for i ̸= j , and other capacitive couplings to ground encompassed by an
environmental capacitance Cei . The latter includes any capacitances to lead reservoirs,
for example. We refer to the total capacitance of each island as Ci ≡Cgi +Cei +∑

j ̸=i Ci j .
Note that by definition, we have Ci j =C j i . The total differential capacitance Cdiff as seen
by Vg can then be written as the sum over differential capacitance contributions of each
island

Cdiff =
N∑

i=1

d〈Qi 〉
dVg

= d
∑N

i=1 〈Qi 〉
dVg

(D.1)

where Qi is the total effective charge on the capacitor Cgi as seen by Vg and the angu-
lar brackets denote the statistical average of the charge. In general, this average must
include thermodynamic, quantum mechanical, and driving effects.

To solve this expression, we write 〈Qi 〉 in terms of known capacitances and the ex-
pectation values 〈n̂i 〉 of electron number on each island with charge number operator
n̂i . First, by definition of the gate capacitances we may write 〈Qi 〉 =Cgi (Vg−Vi ) where Vi

is the electrostatic potential on island i . On average, we can write the charge expectation
value on island i as a sum over all of the voltage induced charges from each capacitor

−|e| 〈n̂i 〉 =Cgi (Vi −Vg)+ ∑
j ̸=i

Ci j (Vi −V j )+Cei Vi (D.2)

with e being the electron charge [22]. Solving for Vi and recalling the definition of Ci , we
find

Vi = 1

Ci

(
Cgi Vg +

∑
j ̸=i

Ci j V j −|e| 〈n̂i 〉
)

. (D.3)
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By substituting this result for each V j into the original expression for Vi , we may recur-
sively generate expressions for Vi to higher and higher orders in the mutual capacitance
lever arms Ci j /Ci . Doing so twice, substituting the result into the definition of 〈Qi 〉, and
using the resulting expression to calculate Cdiff, we find

Cdiff =Cgeom +Cp +O (C 3
i j /C 3

i ) (D.4)

with contributions from a constant geometric capacitance

Cgeom ≡
N∑

i=1
αi

[
Ci −Cgi −

∑
j ̸=i

(
α j Ci j +

∑
k ̸= j

Ci j C j k

C j
αk

)]
(D.5)

and a 〈n̂i 〉-dependent parametric capacitance:

Cp ≡
N∑

i=1

[
αi +

∑
j ̸=i

(
α j

Ci j

C j
+ ∑

k ̸= j
αk

Ci j C j k

Ci Ck

)]
|e|d〈n̂i 〉

dVg
(D.6)

where we have defined the bare lever arms αi ≡Cgi /Ci .
Hence, in addition to large mutual capacitances renormalizing a coupled island’s

lever arm by increasing Ci , there is an additional renormalization factor due to mutual
capacitances increasing the effective lever arm. The lowest-order of the latter correc-
tions are multiplied by the cross-capacitive lever arms α j ≪ 1, however. Note addition-
ally that as Vg tunes the islands near an inter-dot charge transition between islands i
and j , the transfer of an electron by this tuning implies d〈n̂i 〉/dVg ≈ −d〈n̂ j 〉/dVg so
that cross-capacitances Cg j between the gate voltage and islands other than the island
it is designed to sense suppresses the parametric capacitance signal at these transitions
[125, 130]. From the slope of successive triple points across multiple inter-dot transi-
tions, these cross capacitances are estimated to be negligible in the measured regimes
of this experiment. In this limit, where Vg primarily couples to a single island i , but the
island itself has relatively larger mutual capacitances to the other islands, we discard
terms of the order Ci jα j /C j for j ̸= i but preserve terms to second order in Ci j /C j when
multiplied by αi ≫α j , leading to

Cp ∼
(

1+ ∑
j ̸=i

C 2
i j

C 2
i

)
αi |e|d〈n̂i 〉

dVg
=

1+∑
j ̸=i C 2

i j /C 2
i

Cei +Cgi +∑
j ̸=i Ci j

Cgi |e|d〈n̂i 〉
dVg

Ci j /Ci ,α j ≪ 1
α j ≪Ci j /Ci

(D.7)
for all j ̸= i .



E
CAPACITANCE OF A DOT WITH NORMAL

AND SUPERCONDUCTING LEADS

Gonzalez-Zalba et al showed that a gate resonator coupled to a quantum dot with an
electron resonantly tunneling to a normal lead experiences a measurable tunneling ca-
pacitance [129]. Since this capacitance depends on the density of states in the reservoir,
the signal observed when the normal lead is replaced by a hard-gapped superconduct-
ing one is not trivial. Hence, we are motivated to investigate the analogous tunneling
capacitance for a dot coupled to a superconducting lead in addition to a normal one,
as the resonator signal contains information about the superconductor, particularly its
density of states.

THE MODEL
We follow Ref. [129] in applying a master equation approach to calculate electron tun-
neling dynamics between a single-orbital quantum dot with one normal and one super-
conducting contact, neglecting spin physics. The superconducting contact in our case
is assumed to have a gap ∆ softened by a phenomenological Cooper pair breaking rate
γ [145]. We further treat the dot-lead tunnel magnitudes as constant with respect to en-
ergy.

To calculate tunneling capacitance, we need to know the tunneling rates for elec-
trons from the dot to each lead and vice versa. For weak tunneling amplitude tc between
individual states the dynamics follow Fermi’s Golden Rule, written here as in Ref. [346]
for tunneling between two sets of states A and B :

ΓA→B = 2π

ħ
∫ +∞

−∞
|tc|2νA(E −µA)νB(E −µB) f (E −µA)

[
1− f (E −µB)

]
dE (E.1)

where νA/B (E) and µA/B are the density of states and chemical potentials of state man-
ifolds A and B , respectively, while f (x) = [1+ ex/kB T ]−1 is the Fermi-Dirac distribution.
The presence of the Fermi distribution implies the subsystem in question is thermally
coupled to a reservoir of electrons which can occupy states depending on chemical po-
tential and temperature. For a quantum dot with level spacing much larger than kBT ,
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we may assume that the level is always full when considering tunneling off the dot, and
always empty for the opposite process. This is justified because in the limit of large level
spacings, the only electrons energetically available to fill the dot orbital come from the
secondary subsystem for which tunneling rates are being calculated. Hence, we either
remove the first or second Fermi factor in eq. E.1 depending on if the dot represents sys-
tem A or B respectively1.

For the superconducting reservoir’s density of states, we use the phenomenologically
broadened Dynes formula:

νS(E) = ν0
S

∣∣∣∣∣Re

[
E + iγ√

(E + iγ)2 −∆2

]∣∣∣∣∣≡ ν0
Sν̂SC (E) (E.2)

which includes an imaginary energy scale γ related to pair breaking rates in the super-
conductor [145]. Not only is this relation more realistic than the ideal BCS density of
states (obtained when γ→ 0), it is useful for our calculations since it removes the singu-
larity at E = ±∆. Note also that in the limit ∆→ 0 and γ→ 0 this density approaches a
constant, as is assumed in Ref. [129]. For a quantum dot with a single (possibly degen-
erate) orbital of energy ε, the density of states is simply a δ-function:

νD(E) = ν0
Dδ(E −ε) (E.3)

The prefactor ν0
D accounts for any degeneracy of the dot orbital due to e.g. spin. Mean-

while, for the normal contact we assume a constant density of states νN. Inserting these
expressions into eq. E.1 and removing the Fermi factors for the quantum dot, we find the
rates:

ΓSC→D = Γ0 f (ε−µS)ν̂SC (ε−µS) (E.4)

ΓD→SC = Γ0
[
1− f (ε−µS)

]
ν̂SC (ε−µS) (E.5)

ΓN→D = Γ0λ f (ε−µN) (E.6)

ΓD→N = Γ0λ
[
1− f (ε−µN)

]
(E.7)

Above, we defined the relative tunneling factor λ ≡ |t N
c /t S

c |2(ν0
N/ν0

S) for brevity, where

t N
c (t SC

c ) is the constant tunneling matrix element between the dot and the normal (su-
perconducting) contact. We also defined the bare superconductor tunneling strength
Γ0 ≡ 2π|t S

c |2ν0
Sν

0
D/ħ.

Because of the quantum dot’s charging energy EC , which we assume is much larger
than all other energy scales in the system (except perhaps∆), we can safely consider only
a single electron tunneling in and out of the dot orbital. Parametric capacitance of elec-
tron tunneling depends on the change of average charge which under this assumption is
equal to the change in the topmost orbital’s occupation probability dP1/dVg. The time
dependent parametric capacitance is given by [129, 130]:

Ct(t ) = eα
dP1

dVg(t )
=−(eα)2 dP1

dε(t )
=−

(
(eα)2

εRFωcos(ωt )

)
Ṗ1 (E.8)

1Note that this precise assumption is also used in the analogous calculation in [129].
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Above, we have assumed that the dot gate voltage Vg oscillates at frequency ω as Vg(t ) =
V 0

g +V RF
g sin(ωt ) such that ε(t ) = ε0 + εRF sin(ωt ). We further used the relation εRF =

−eαV RF
g , valid for small voltage oscillations on a quantum dot.

To calculate P1, we use a master equation approach, and solve the phenomenological
differential equations:

Ṗ1 = ΓSC→D [1−P1]−ΓD→SC P1 +ΓN→D [1−P1]−ΓD→N P1

= Γin(t )−Γtot(t )P1 (E.9)

where above we applied conservation of probability P0 +P1 = 1 and defined

Γin ≡ ΓSC→D +ΓN→D = Γ0
[
ν̂SC (ε−µS) f (ε−µS)+λ f (ε−µN)

]
(E.10)

Γtot(t ) ≡ ΓSC→D +ΓD→SC +ΓN→D +ΓD→N = Γ0
[
ν̂SC (ε−µS)+λ]

(E.11)

Since we are using a master equation approach, the parametric capacitance will only
include contributions from tunneling (and not quantum) capacitance (hence why we
labelled it Ct), and Ct(t ) will have to be time-averaged to calculate the effective capaci-
tance: Ct ≡ 〈Ct(t )〉.

EXACT SOLUTION FOR Ct
To calculate tunneling capacitance, we must first solve eq. E.9. Motivated by the solu-
tion in Ref. [129] where Γtot was a constant (as is the case here when ∆,γ→ 0), we seek
solutions of the form

P1(t ) = f (t )e−
∫ t

0 Γtotdt ′ . (E.12)

Substituting this ansatz into eq. E.9 yields ḟ (t ) = Γine
∫ t

0 Γtotdt ′ which can be directly inte-
grated to obtain the solution

P1(t ) = e−
∫ t

0 Γtot(t1)dt1

∫ t

0
Γin(t2)e

∫ t2
0 Γtot(t1)dt1 dt2 =

∫ t

0
Γin(t2)e−

∫ t
t2
Γtot(t1)dt1 dt2, (E.13)

neglecting integration constants from initial conditions because they can only lead to
transient terms, which we discard in favour of the longer term behaviour.

In order to calculate Ct, we now aim to simplify Ṗ1(t ). Differentiating the above solu-
tion yields

Ṗ1(t ) = Γin(t )−Γtot(t )
∫ t

0
Γin(t2)e−

∫ t
t2
Γtot(t1)dt1 dt2 (E.14)

We may now write down an exact form of the tunneling capacitance using eq. E.8 and
averaging over one resonator cycle 2π/ω:

Ct = eα

2πV RF
g

∫ 2π/ω

0

Γin(t )−Γtot(t )
∫ t

0 Γin(t2)e−
∫ t

t2
Γtot(t1)dt1 dt2

cos(ωt )
dt (E.15)
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APPROXIMATE ANALYTICAL SOLUTION

In order to find an analytical solution to eq. E.15, we make the approximation that volt-
age oscillations are very small: valid at low enough RF powers. This is equivalent to
assuming that εRF is the smallest energy scale of the system. Hence, we will Taylor ex-
pand eq. E.13 to first order in εRF. Firstly, we write expansions of the two main rates in
our problem as

Γin ∼ Γ0
in +Γ0′

inεRF sin(ωt ), Γtot ∼ Γ0
tot +Γ0′

totεRF sin(ωt ), εRF sin(ωt ) ≪∆,kB T, (E.16)

noting that in fact Γin and Γtot are only dependent on time through ε(t ), and where for
brevity we defined g 0 ≡ f (x0) and g 0′ ≡ (dg /dx)|x=x0 for any function g . We calculate the
derivatives of these rates to be

Γ0′
in = Γ0

{
−sign[ν̂SC (ε−µS)]∆2Re

[(
(ε0 −µS + iγ)2 −∆2)−3/2

]
f (ε0 −µS)

+ ν̂SC (ε0 −µS) f ′(ε0 −µS)+λ f ′(ε0 −µN)
}

, (E.17)

Γ0′
tot =−sign[ν̂SC (ε−µS)]∆2Γ0Re

[(
(ε0 −µS + iγ)2 −∆2)−3/2

]
, (E.18)

where f ′(E) = −eE/kB T /[kB T (1+ eE/kB T )2] is the derivative of the Fermi-Dirac distribu-
tion. Substituting this expression into eq. E.13, we find to first order in εRF

P1(t ) ∼ e−Γ
0
tott

∫ t

0
eΓ

0
tott ′

{
Γ0

in

[
1+ Γ

0′
totεRF

ω

(
cos(ωt )−cos(ωt ′)

)]+Γ0′
inεRF sin(ωt ′)

}
dt ′.

(E.19)

The above integrals can be analytically evaluated by writing all trigonometric functions
in terms of exponential functions. The result is

P1(t ) ∼
(
Γ0

tot sin(ωt )−ωcos(ωt )
)
Γ0′

inεRF −
(
Γ0

tot cos(ωt )+ωsin(ωt )
)
Γ0

inΓ
0′
totεRF/ω(

Γ0
tot

)2 +ω2

+ Γ0
in

Γ0
tot

(
1+ Γ

0′
totεRF

ω
cos(ωt )

)
t →∞. (E.20)

Since we only care about long term behaviour independent of initial conditions, we dis-

carded all transient e−Γ
0
tott terms. To calculate the time averaged tunneling capacitance

from the above result, we insert it into eq. E.8 and average over time. In this calculation
we used the fact that the average of any trigonometric function or its reciprocal over one
period is zero. Finally, this leads to the result

Ct ≡ 〈Ct(t )〉 = (eα)2 Γ
0
inΓ

0′
tot −Γ0

totΓ
0′
in(

Γ0
tot

)2 +ω2
(E.21)

with rates and their derivatives given by eqs. E.10, E.11, E.17, and E.18.
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SISYPHUS RESISTANCE
To obtain an equivalent parallel resistance describing dissipation from the gate into the
dot-lead system, we follow the more general theory of Esterli et al [125]. As we neglect
any cross capacitance between the dot and lead, the current through the gate Ig may be
written as (see equation 3 of [125])

Ig =Cgeom
dVg

dt
− (eα)

dP1

dt
, (E.22)

where Cgeom represents the classical ‘geometric’ capacitance of the gate. Since we wish to
calculate the equivalent impedance of our circuit, we would like to write the right hand
side of the above expressions as a sum of terms proportional to Vg (representing a parallel
resistance) and terms proportional to dVg/dt (representing a parallel capacitance).

To this end, we begin by differentiating P1(t ):

dP1

dt
=

ω2
(
Γ0′

inΓ
0
tot −Γ0

inΓ
0′
tot

)
Γ0

tot

((
Γ0

tot

)2 +ω2
)

εRF sin(ωt )+
[
Γ0

totΓ
0′
in −Γ0

inΓ
0′
tot(

Γ0
tot

)2 +ω2

]
ωεRF cos(ωt ). (E.23)

Recalling that for small changes in voltage V RF
g , we have eαV RF

g = εRF, we can identify
the first term above as being proportional to the gate voltage up to a constant since
εRF sin(ωt ) ∼ eα(Vg(t )−V 0

g ). Similarly, we have that eαdVg/dt =ωεRF cos(ωt ) so

Ig =Cgeom
dVg

dt
+(eα)2

[
Γ0

inΓ
0′
tot −Γ0

totΓ
0′
in(

Γ0
tot

)2 +ω2

]
︸ ︷︷ ︸

Ct

dVg

dt
+(eα)2

ω2
(
Γ0

inΓ
0′
tot −Γ0

totΓ
0′
in

)
Γ0

tot

((
Γ0

tot

)2 +ω2
)


︸ ︷︷ ︸

≡1/Rsis

Vg. (E.24)

Hence, we see that our dot’s impedance as seen from the gate contains three contribu-
tions in parallel. The classical geometric capacitance Cgeom the semi-classical tunneling
capacitance Ct, and the Sisyphus resistance Rsis

Rsis =
Γ0

tot

(eαω)2

( (
Γ0

tot

)2 +ω2

Γ0
inΓ

0′
tot −Γ0

totΓ
0′
in

)
. (E.25)

Notably, 1/Rsis is simply Ct multiplied by ω2/Γ0
tot.





F
FERMIONIC SIMULATION OF A FLOATING

HYBRID TRIPLE QUANTUM DOT

In this appendix, we justify a Hamiltonian employed to describe a floating system of two
quantum dots coupled via a central hybrid superconducting island. For simplicity, we
consider a single spinful orbital of annihilation operator ĉασ on each quantum dot and
island, labeled with spin σ ∈ {↓,↑} and with α ∈ {L,M,R} for the left QD, middle island, or
right QD respectively, as in Fig. 7.3(a). The hybrid island consists both of a QD level ĉMσ

and the floating piece of superconducting material proximitizing it. This superconduc-
tor causes the dot level to form an ABS γ̂ at energy E0 such that ĉMσ = u∗γ̂σ+σv γ̂†

σ
for

some coherence factors u and v such that
√

|u|2 +|v |2 = 1 [60]. Here we defineσ=↑≡+1
and similarly σ =↓≡ −1. Additionally, the superconducting shell’s Cooper pairs con-
tribute to the total island charging energy. As the system has conserved charge, the fixed
charge constraint on this island may be written as n̂M = N − n̂L − n̂R where N is the total
system charge and n̂α ≡ ∑

σ n̂ασ = ∑
σ ĉ†

ασĉασ are the fermions’ charge operators. No-
tably, this constraint equation for n̂M does not involve ĉMσ at all on the right hand side.
To fully apply the constraint of fixed total charge, then, we must further project the sys-
tem onto states for which the ABS’ parity matches the overall island parity [73, 74]. We
do so by applying the projection operator

P̂ = 1

4

[
(−1)n̂M + (−1)N−n̂L−n̂R

]2
(F.1)

to the full system Hamiltonian

Ĥ = ∑
α=L,R

Eα
C (n̂α−ngα)2 +E M

C

(
N − n̂L − n̂R −ngM

)2 +E0
∑
σ
γ̂†
σγ̂σ

+∑
α

Eα
Z n̂α↓+

∑
σ,α

(
tαĉ†

ασĉMσ+h.c.
)
+∑

α

[
t so
α

(
ĉ†
α↑ĉM↓− ĉ†

α↓ĉM↑
)
+h.c.

]
.

(F.2)

This Hamiltonian is similar to that of Ref. [337], but with our charge constraint included,
and where we presuppose the existence of an ABS with some electron- and hole-like co-
herence factors [60, 113], rather than modeling the ABS as a QD orbital proximitized by
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a pairing potential. Above, Eα
C are the charging energies of each QD, ngα are the reduced

gate charges [22], Eα
Z are Zeeman splittings of each level, tα is the spin-conserving tun-

neling amplitude between QDα and QD M, and t so
α is the spin-flipping tunneling arising

due to spin-orbit coupling [347].
To numerically diagonalize the Hamiltonian, we write the fermionic operators in ma-

trix form as
ĉ†

Lσ = f̂ †
σ ⊗ Λ̂⊗ Λ̂, γ̂†

σ = Î ⊗ f̂ †
σ ⊗ Λ̂, ĉ†

Rσ = Î ⊗ Î ⊗ f̂ †
σ (F.3)

where Î denotes the identity matrix for a single α state subspace, and the other matrices
are given by

f̂ †
↑ =


0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

 , f̂ †
↓ =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 −1 0

 , Λ̂=


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 (F.4)

in the basis
{
|0〉 , f̂ †

↓ |0〉 , f̂ †
↑ |0〉 , f̂ †

↑ f̂ †
↓ |0〉

}
. The matrix Λ̂ and minus signs in the definition of

f̂↓ are included to ensure all operators satisfy the fermionic anticommutation relations.
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90. Pavešić, L., Bauernfeind, D. & Žitko, R. Subgap states in superconducting islands.
Physical Review B 104. ISSN: 2469-9969. doi:10.1103/physrevb.104.l241409
(Dec. 2021).

https://doi.org/10.1103/physrevb.97.161401
https://doi.org/10.1103/physrevresearch.2.043228
https://arxiv.org/abs/2303.14410
https://arxiv.org/abs/2303.14410
https://doi.org/10.1103/physrev.175.537
https://doi.org/10.1103/physrevlett.104.040502
https://doi.org/10.1103/physrevb.81.125318
https://doi.org/10.1103/physrevx.8.031041
https://doi.org/10.1070/1063-7869/44/10s/s29
https://doi.org/10.1103/physrevlett.126.057702
https://doi.org/10.1038/ncomms1966
https://doi.org/10.1038/ncomms1966
https://doi.org/10.1103/PhysRevB.86.134528
https://doi.org/10.1103/PhysRevB.86.134528
https://doi.org/10.1088/1367-2630/15/4/045020
https://doi.org/10.1088/1367-2630/15/4/045020
https://doi.org/10.1103/physrevb.104.l241409


162 BIBLIOGRAPHY

91. Anderson, P. Theory of dirty superconductors. Journal of Physics and Chemistry of
Solids 11, 26–30. doi:10.1016/0022-3697(59)90036-8 (Sept. 1959).

92. Vlaic, S., Pons, S., Zhang, T., Assouline, A., Zimmers, A., David, C., Rodary, G., Gi-
rard, J.-C., Roditchev, D. & Aubin, H. Superconducting parity effect across the An-
derson limit. Nature Communications 8. doi:10.1038/ncomms14549 (Feb. 2017).

93. Nazarov, Y. V. & Blanter, Y. M. Quantum Transport doi:10 . 1017 /
cbo9780511626906 (Cambridge University Press, May 2009).

94. Averin, D. V., Korotkov, A. N., Manninen, A. J. & Pekola, J. P. Resonant Tunnel-
ing through a Macroscopic Charge State in a Superconducting Single Electron
Transistor. Physical Review Letters 78, 4821–4824. ISSN: 1079-7114. doi:10.1103/
physrevlett.78.4821 (June 1997).

95. Esmail, A. A., Ferguson, A. J. & Lambert, N. J. Cooper pair tunnelling and quasi-
particle poisoning in a galvanically isolated superconducting double dot. Applied
Physics Letters 111, 252602. doi:10.1063/1.5009079 (2017).

96. Recher, P., Sukhorukov, E. V. & Loss, D. Andreev tunneling, Coulomb blockade, and
resonant transport of nonlocal spin-entangled electrons. Physical Review B 63,
165314. doi:10.1103/physrevb.63.165314 (Apr. 2001).

97. Hofstetter, L., Csonka, S., Nygård, J. & Schönenberger, C. Cooper pair splitter re-
alized in a two-quantum-dot Y-junction. Nature 461, 960–963. ISSN: 1476-4687.
doi:10.1038/nature08432 (Oct. 2009).

98. Das, A., Ronen, Y., Heiblum, M., Mahalu, D., Kretinin, A. V. & Shtrikman, H. High-
efficiency Cooper pair splitting demonstrated by two-particle conductance res-
onance and positive noise cross-correlation. Nature Communications 3, 1165.
doi:10.1038/ncomms2169 (Jan. 2012).

99. Baba, S, Jünger, C, Matsuo, S, Baumgartner, A, Sato, Y, Kamata, H, Li, K, Jeppesen,
S, Samuelson, L, Xu, H. Q., Schönenberger, C & Tarucha, S. Cooper-pair splitting
in two parallel InAs nanowires. New Journal of Physics 20, 063021. doi:10.1088/
1367-2630/aac74e (June 2018).

100. Bordoloi, A., Zannier, V., Sorba, L., Schönenberger, C. & Baumgartner, A. Spin
cross-correlation experiments in an electron entangler. Nature 612, 454–458.
doi:10.1038/s41586-022-05436-z (Nov. 2022).

101. Wang, G., Dvir, T., Mazur, G. P., Liu, C.-X., van Loo, N., ten Haaf, S. L. D., Bordin,
A., Gazibegovic, S., Badawy, G., Bakkers, E. P. A. M., Wimmer, M. & Kouwenhoven,
L. P. Singlet and triplet Cooper pair splitting in hybrid superconducting nanowires.
Nature 612, 448–453. doi:10.1038/s41586-022-05352-2 (Nov. 2022).

102. Herrmann, L. G., Portier, F., Roche, P., Levy Yeyati, A., Kontos, T. & Strunk, C. Car-
bon nanotubes as Cooper-pair beam splitters. Physical review letters 104, 026801
(2010).

103. Schindele, J., Baumgartner, A. & Schönenberger, C. Near-Unity Cooper Pair Split-
ting Efficiency. Physical Review Letters 109, 157002. doi:10.1103/physrevlett.
109.157002 (Oct. 2012).

https://doi.org/10.1016/0022-3697(59)90036-8
https://doi.org/10.1038/ncomms14549
https://doi.org/10.1017/cbo9780511626906
https://doi.org/10.1017/cbo9780511626906
https://doi.org/10.1103/physrevlett.78.4821
https://doi.org/10.1103/physrevlett.78.4821
https://doi.org/10.1063/1.5009079
https://doi.org/10.1103/physrevb.63.165314
https://doi.org/10.1038/nature08432
https://doi.org/10.1038/ncomms2169
https://doi.org/10.1088/1367-2630/aac74e
https://doi.org/10.1088/1367-2630/aac74e
https://doi.org/10.1038/s41586-022-05436-z
https://doi.org/10.1038/s41586-022-05352-2
https://doi.org/10.1103/physrevlett.109.157002
https://doi.org/10.1103/physrevlett.109.157002


BIBLIOGRAPHY 163

104. Kürtössy, O., Scherübl, Z., Fülöp, G., Lukács, I. E., Kanne, T., Nygård, J., Makk, P.
& Csonka, S. Parallel InAs nanowires for Cooper pair splitters with Coulomb re-
pulsion. npj Quantum Materials 7. doi:10.1038/s41535-022-00497-9 (Sept.
2022).

105. Tan, Z., Cox, D., Nieminen, T., Lähteenmäki, P., Golubev, D., Lesovik, G. & Hako-
nen, P. Cooper Pair Splitting by Means of Graphene Quantum Dots. Physical Re-
view Letters 114, 096602. doi:10.1103/physrevlett.114.096602 (Mar. 2015).

106. Borzenets, I. V., Shimazaki, Y., Jones, G. F., Craciun, M. F., Russo, S., Yamamoto,
M. & Tarucha, S. High Efficiency CVD Graphene-lead (Pb) Cooper Pair Splitter.
Scientific Reports 6, 23051. doi:10.1038/srep23051 (Mar. 2016).

107. Pandey, P., Danneau, R. & Beckmann, D. Ballistic Graphene Cooper Pair Splitter.
Phys. Rev. Lett. 126, 147701. doi:10.1103/PhysRevLett.126.147701 (14 Apr.
2021).

108. Wang, Q., ten Haaf, S. L. D., Kulesh, I., Xiao, D., Thomas, C., Manfra, M. J.
& Goswami, S. Triplet correlations in Cooper pair splitters realized in a two-
dimensional electron gas. Nature Communications 14. ISSN: 2041-1723. doi:10.
1038/s41467-023-40551-z (Aug. 2023).

109. Deacon, R. S., Oiwa, A., Sailer, J., Baba, S., Kanai, Y., Shibata, K., Hirakawa, K. &
Tarucha, S. Cooper pair splitting in parallel quantum dot Josephson junctions.
Nature communications 6, 7446. https : / / www . nature . com / articles /
ncomms8446 (2015).

110. Dehollain, Juan P. and Simmons, Stephanie and Muhonen, Juha T. and Kalra,
Rachpon and Laucht, Arne and Hudson, Fay and Itoh, Kohei M. and Jamieson,
David N. and McCallum, Jeffrey C. and Dzurak, Andrew S. and Morello, Andrea.
Bell’s inequality violation with spins in silicon. Nature Nanotechnology 11, 242–
246. ISSN: 1748-3395. doi:10.1038/nnano.2015.262 (Mar. 2016).

111. Braakman, F. R., Barthelemy, P., Reichl, C., Wegscheider, W. & Vandersypen,
L. M. K. Long-distance coherent coupling in a quantum dot array. Nature Nan-
otechnology 8, 432–437. doi:10.1038/nnano.2013.67 (Apr. 2013).

112. Schrieffer, J. R. & Wolff, P. A. Relation between the Anderson and Kondo Hamil-
tonians. Physical Review 149, 491–492. doi:10.1103/physrev.149.491 (Sept.
1966).

113. Liu, C.-X., Wang, G., Dvir, T. & Wimmer, M. Tunable Superconducting Coupling
of Quantum Dots via Andreev Bound States in Semiconductor-Superconductor
Nanowires. Physical Review Letters 129. doi:10 . 1103 / physrevlett . 129 .
267701 (Dec. 2022).

114. Bordin, A., Wang, G., Liu, C.-X., ten Haaf, S. L., van Loo, N., Mazur, G. P., Xu, D.,
van Driel, D., Zatelli, F., Gazibegovic, S., Badawy, G., Bakkers, E. P., Wimmer, M.,
Kouwenhoven, L. P. & Dvir, T. Tunable Crossed Andreev Reflection and Elastic Co-
tunneling in Hybrid Nanowires. Physical Review X 13. ISSN: 2160-3308. doi:10.
1103/physrevx.13.031031 (Sept. 2023).

https://doi.org/10.1038/s41535-022-00497-9
https://doi.org/10.1103/physrevlett.114.096602
https://doi.org/10.1038/srep23051
https://doi.org/10.1103/PhysRevLett.126.147701
https://doi.org/10.1038/s41467-023-40551-z
https://doi.org/10.1038/s41467-023-40551-z
https://www.nature.com/articles/ncomms8446
https://www.nature.com/articles/ncomms8446
https://doi.org/10.1038/nnano.2015.262
https://doi.org/10.1038/nnano.2013.67
https://doi.org/10.1103/physrev.149.491
https://doi.org/10.1103/physrevlett.129.267701
https://doi.org/10.1103/physrevlett.129.267701
https://doi.org/10.1103/physrevx.13.031031
https://doi.org/10.1103/physrevx.13.031031


164 BIBLIOGRAPHY

115. Liu, C.-X., Bozkurt, A. M., Zatelli, F., ten Haaf, S. L. D., Dvir, T. & Wimmer, M.
Enhancing the excitation gap of a quantum-dot-based Kitaev chain 2023. arXiv:
2310.09106.

116. Pozar, D. Microwave Engineering, 4th Edition ISBN: 9781118213636. https : / /
books.google.nl/books?id=JegbAAAAQBAJ (Wiley, Hoboken, NJ, 2011).

117. Ahmed, I., Haigh, J. A., Schaal, S., Barraud, S., Zhu, Y., Lee, C., Amado, M., Robin-
son, J. W. A., Rossi, A., Morton, J. J. L. & Gonzalez-Zalba, M. F. Radio-Frequency Ca-
pacitive Gate-Based Sensing. Physical Review Applied 10, 014018. doi:10.1103/
physrevapplied.10.014018 (July 2018).

118. Horowitz, P. & Hill, W. The Art of Electronics ISBN: 9780521809269 (Cambridge Uni-
versity Press, 2015).

119. Collett, M. J. & Gardiner, C. W. Squeezing of intracavity and traveling-wave light
fields produced in parametric amplification. Physical Review A 30, 1386–1391.
doi:10.1103/physreva.30.1386 (Sept. 1984).

120. Gardiner, C. W. & Collett, M. J. Input and output in damped quantum systems:
Quantum stochastic differential equations and the master equation. Physical Re-
view A 31, 3761–3774. doi:10.1103/physreva.31.3761 (June 1985).

121. Schuster, D. I., Wallraff, A., Blais, A., Frunzio, L., Huang, R.-S., Majer, J., Girvin,
S. M. & Schoelkopf, R. J. ac Stark Shift and Dephasing of a Superconducting Qubit
Strongly Coupled to a Cavity Field. Physical Review Letters 94. doi:10 . 1103 /
physrevlett.94.123602 (Mar. 2005).

122. Burkard, G., Gullans, M. J., Mi, X. & Petta, J. R. Superconductor–semiconductor
hybrid-circuit quantum electrodynamics. Nature Reviews Physics 2, 129–140.
doi:10.1038/s42254-019-0135-2 (Jan. 2020).

123. Park, S., Metzger, C., Tosi, L., Goffman, M., Urbina, C., Pothier, H. & Yeyati, A. L.
From Adiabatic to Dispersive Readout of Quantum Circuits. Physical Review Let-
ters 125. doi:10.1103/physrevlett.125.077701 (Aug. 2020).

124. Peri, L., Benito, M., Ford, C. J. B. & Gonzalez-Zalba, M. F. Unified linear response
theory of quantum dot circuits 2023. arXiv: 2310.17399.

125. Esterli, M., Otxoa, R. M. & Gonzalez-Zalba, M. F. Small-signal equivalent circuit
for double quantum dots at low-frequencies. Applied Physics Letters 114, 253505.
doi:10.1063/1.5098889 (June 2019).

126. Manzano, D. A short introduction to the Lindblad master equation. AIP Advances
10. doi:10.1063/1.5115323 (Feb. 2020).

127. Nazarov, Y. & Danon, J. Advanced Quantum Mechanics: A Practical Guide ISBN:
9781139619028. https://books.google.nl/books?id=w20gAwAAQBAJ (Cam-
bridge University Press, 2013).

128. Ciccarelli, C & Ferguson, A. J. Impedance of the single-electron transistor at radio-
frequencies. New Journal of Physics 13, 093015. doi:10.1088/1367-2630/13/9/
093015 (Sept. 2011).

https://arxiv.org/abs/2310.09106
https://books.google.nl/books?id=JegbAAAAQBAJ
https://books.google.nl/books?id=JegbAAAAQBAJ
https://doi.org/10.1103/physrevapplied.10.014018
https://doi.org/10.1103/physrevapplied.10.014018
https://doi.org/10.1103/physreva.30.1386
https://doi.org/10.1103/physreva.31.3761
https://doi.org/10.1103/physrevlett.94.123602
https://doi.org/10.1103/physrevlett.94.123602
https://doi.org/10.1038/s42254-019-0135-2
https://doi.org/10.1103/physrevlett.125.077701
https://arxiv.org/abs/2310.17399
https://doi.org/10.1063/1.5098889
https://doi.org/10.1063/1.5115323
https://books.google.nl/books?id=w20gAwAAQBAJ
https://doi.org/10.1088/1367-2630/13/9/093015
https://doi.org/10.1088/1367-2630/13/9/093015


BIBLIOGRAPHY 165

129. Gonzalez-Zalba, M. F., Barraud, S., Ferguson, A. J. & Betz, A. C. Probing the limits
of gate-based charge sensing. Nature communications 6, 6084 (2015).

130. Mizuta, R., Otxoa, R. M., Betz, A. C. & Gonzalez-Zalba, M. F. Quantum and tunnel-
ing capacitance in charge and spin qubits. Physical Review B 95. doi:10.1103/
physrevb.95.045414 (Jan. 2017).

131. Cottet, A., Mora, C. & Kontos, T. Mesoscopic admittance of a double quantum dot.
Physical Review B 83. doi:10.1103/physrevb.83.121311 (Mar. 2011).

132. Sillanpää, M. A., Lehtinen, T., Paila, A., Makhlin, Y., Roschier, L. & Hakonen, P. J.
Direct Observation of Josephson Capacitance. Physical Review Letters 95. ISSN:
1079-7114. doi:10.1103/physrevlett.95.206806 (Nov. 2005).

133. Duty, T., Johansson, G., Bladh, K., Gunnarsson, D., Wilson, C. & Delsing, P. Ob-
servation of Quantum Capacitance in the Cooper-Pair Transistor. Physical Review
Letters 95, 206807. doi:10.1103/physrevlett.95.206807 (Nov. 2005).

134. Petersson, K. D., Smith, C. G., Anderson, D., Atkinson, P., Jones, G. A. C. & Ritchie,
D. A. Charge and Spin State Readout of a Double Quantum Dot Coupled to a Res-
onator. Nano Letters 10, 2789–2793. doi:10.1021/nl100663w (Aug. 2010).

135. Colless, J. I., Mahoney, A. C., Hornibrook, J. M., Doherty, A. C., Lu, H., Gossard, A. C.
& Reilly, D. J. Dispersive Readout of a Few-Electron Double Quantum Dot with Fast
rf Gate Sensors. Physical Review Letters 110, 046805. doi:10.1103/physrevlett.
110.046805 (Jan. 2013).

136. Urdampilleta, M., Chatterjee, A., Lo, C. C., Kobayashi, T., Mansir, J., Barraud, S.,
Betz, A. C., Rogge, S., Gonzalez-Zalba, M. F. & Morton, J. J. Charge Dynamics and
Spin Blockade in a Hybrid Double Quantum Dot in Silicon. Physical Review X 5.
doi:10.1103/physrevx.5.031024 (Aug. 2015).

137. Pakkiam, P., Timofeev, A. V., House, M. G., Hogg, M. R., Kobayashi, T., Koch, M.,
Rogge, S. & Simmons, M. Y. Single-Shot Single-Gate rf Spin Readout in Silicon.
Physical Review X 8, 041032. doi:10.1103/physrevx.8.041032 (Nov. 2018).

138. De Jong, D., van Veen, J., Binci, L., Singh, A., Krogstrup, P., Kouwenhoven, L. P.,
Pfaff, W. & Watson, J. D. Rapid Detection of Coherent Tunneling in an InAs
Nanowire Quantum Dot through Dispersive Gate Sensing. Physical Review Ap-
plied 11, 044061. doi:10.1103/physrevapplied.11.044061 (Apr. 2019).

139. Urdampilleta, M. et al. Gate-based high fidelity spin readout in a CMOS device.
Nature Nanotechnology 14, 737–741. doi:10.1038/s41565-019-0443-9 (May
2019).

140. West, A., Hensen, B., Jouan, A., Tanttu, T., Yang, C.-H., Rossi, A., Gonzalez-Zalba,
M. F., Hudson, F., Morello, A., Reilly, D. J. & Dzurak, A. S. Gate-based single-shot
readout of spins in silicon. Nature Nanotechnology 14, 437–441. doi:10.1038/
s41565-019-0400-7 (Mar. 2019).

141. Zheng, G., Samkharadze, N., Noordam, M. L., Kalhor, N., Brousse, D., Sammak, A.,
Scappucci, G. & Vandersypen, L. M. K. Rapid gate-based spin read-out in silicon
using an on-chip resonator. Nature Nanotechnology 14, 742–746. doi:10.1038/
s41565-019-0488-9 (July 2019).

https://doi.org/10.1103/physrevb.95.045414
https://doi.org/10.1103/physrevb.95.045414
https://doi.org/10.1103/physrevb.83.121311
https://doi.org/10.1103/physrevlett.95.206806
https://doi.org/10.1103/physrevlett.95.206807
https://doi.org/10.1021/nl100663w
https://doi.org/10.1103/physrevlett.110.046805
https://doi.org/10.1103/physrevlett.110.046805
https://doi.org/10.1103/physrevx.5.031024
https://doi.org/10.1103/physrevx.8.041032
https://doi.org/10.1103/physrevapplied.11.044061
https://doi.org/10.1038/s41565-019-0443-9
https://doi.org/10.1038/s41565-019-0400-7
https://doi.org/10.1038/s41565-019-0400-7
https://doi.org/10.1038/s41565-019-0488-9
https://doi.org/10.1038/s41565-019-0488-9


166 BIBLIOGRAPHY

142. Persson, F., Wilson, C. M., Sandberg, M., Johansson, G. & Delsing, P. Excess Dissi-
pation in a Single-Electron Box: The Sisyphus Resistance. Nano Letters 10. PMID:
20155965, 953–957. doi:10.1021/nl903887x (2010).

143. Dvir, T. et al. Realization of a minimal Kitaev chain in coupled quantum dots. Na-
ture 614, 445–450. doi:10.1038/s41586-022-05585-1 (Feb. 2023).

144. Ten Haaf, S. L. D., Wang, Q., Bozkurt, A. M., Liu, C.-X., Kulesh, I., Kim, P., Xiao,
D., Thomas, C., Manfra, M. J., Dvir, T., Wimmer, M. & Goswami, S. Engineering
Majorana bound states in coupled quantum dots in a two-dimensional electron
gas 2023. arXiv: 2311.03208 [cond-mat.mes-hall].

145. Herman, F. & Hlubina, R. Microscopic interpretation of the Dynes formula for the
tunneling density of states. Physical Review B 94. ISSN: 2469-9969. doi:10.1103/
physrevb.94.144508 (Oct. 2016).

146. Sillanpää, M. A., Park, J. I. & Simmonds, R. W. Coherent quantum state storage
and transfer between two phase qubits via a resonant cavity. Nature 449, 438–
442. doi:10.1038/nature06124 (Sept. 2007).

147. House, M. G., Kobayashi, T., Weber, B., Hile, S. J., Watson, T. F., van der Heijden, J.,
Rogge, S. & Simmons, M. Y. Radio frequency measurements of tunnel couplings
and singlet-triplet spin states in Si:P quantum dots. Nature Communications 6.
ISSN: 2041-1723. doi:10.1038/ncomms9848 (Nov. 2015).

148. Croot, X., Pauka, S., Jarratt, M., Lu, H., Gossard, A., Watson, J., Gardner, G., Fallahi,
S., Manfra, M. & Reilly, D. Gate-Sensing Charge Pockets in the Semiconductor-
Qubit Environment. Physical Review Applied 11. ISSN: 2331-7019. doi:10.1103/
physrevapplied.11.064027 (June 2019).

149. The SQUID Handbook (eds Clarke, J. & Braginski, A. I.) doi:10 . 1002 /
9783527609956 (Wiley, Aug. 2006).

150. Ivakhnenko, O. V., Shevchenko, S. N. & Nori, F. Nonadiabatic Lan-
dau–Zener–Stückelberg–Majorana transitions, dynamics, and interference.
Physics Reports 995, 1–89. doi:10.1016/j.physrep.2022.10.002 (Jan. 2023).

151. Gonzalez-Zalba, M. F., Shevchenko, S. N., Barraud, S., Johansson, J. R., Fergu-
son, A. J., Nori, F. & Betz, A. C. Gate-Sensing Coherent Charge Oscillations in a
Silicon Field-Effect Transistor. Nano Letters 16, 1614–1619. doi:10.1021/acs.
nanolett.5b04356 (Feb. 2016).

152. Didier, N., Bourassa, J. & Blais, A. Fast Quantum Nondemolition Readout by Para-
metric Modulation of Longitudinal Qubit-Oscillator Interaction. Physical Review
Letters 115. doi:10.1103/physrevlett.115.203601 (Nov. 2015).

153. Macklin, C., O’Brien, K., Hover, D., Schwartz, M. E., Bolkhovsky, V., Zhang, X.,
Oliver, W. D. & Siddiqi, I. A near-quantum-limited Josephson traveling-wave para-
metric amplifier. Science 350, 307–310. doi:10.1126/science.aaa8525 (Oct.
2015).

154. Hornibrook, J. M., Colless, J. I., Mahoney, A. C., Croot, X. G., Blanvillain, S., Lu, H.,
Gossard, A. C. & Reilly, D. J. Frequency multiplexing for readout of spin qubits.
Applied Physics Letters 104, 103108. doi:10.1063/1.4868107 (Mar. 2014).

https://doi.org/10.1021/nl903887x
https://doi.org/10.1038/s41586-022-05585-1
https://arxiv.org/abs/2311.03208
https://doi.org/10.1103/physrevb.94.144508
https://doi.org/10.1103/physrevb.94.144508
https://doi.org/10.1038/nature06124
https://doi.org/10.1038/ncomms9848
https://doi.org/10.1103/physrevapplied.11.064027
https://doi.org/10.1103/physrevapplied.11.064027
https://doi.org/10.1002/9783527609956
https://doi.org/10.1002/9783527609956
https://doi.org/10.1016/j.physrep.2022.10.002
https://doi.org/10.1021/acs.nanolett.5b04356
https://doi.org/10.1021/acs.nanolett.5b04356
https://doi.org/10.1103/physrevlett.115.203601
https://doi.org/10.1126/science.aaa8525
https://doi.org/10.1063/1.4868107


BIBLIOGRAPHY 167

155. Waardenburg, D. On-chip circuit design for capacitive gate based readout MSc
Thesis (Delft University of Technology, 2019).

156. Kroll, J., Borsoi, F., van der Enden, K., Uilhoorn, W., de Jong, D., Quintero-
Pérez, M., van Woerkom, D., Bruno, A., Plissard, S., Car, D., Bakkers, E., Cas-
sidy, M. & Kouwenhoven, L. Magnetic-Field-Resilient Superconducting Coplanar-
Waveguide Resonators for Hybrid Circuit Quantum Electrodynamics Experi-
ments. Physical Review Applied 11, 064053. doi:10.1103/physrevapplied.11.
064053 (June 2019).

157. Göppl, M., Fragner, A., Baur, M., Bianchetti, R., Filipp, S., Fink, J. M., Leek, P. J.,
Puebla, G., Steffen, L. & Wallraff, A. Coplanar waveguide resonators for circuit
quantum electrodynamics. Journal of Applied Physics 104, 113904. doi:10.1063/
1.3010859 (Dec. 2008).

158. Khalil, M. S., Stoutimore, M. J. A., Wellstood, F. C. & Osborn, K. D. An analysis
method for asymmetric resonator transmission applied to superconducting de-
vices. Journal of Applied Physics 111, 054510. doi:10 . 1063 / 1 . 3692073 (Mar.
2012).

159. Crippa, A., Ezzouch, R., Aprá, A., Amisse, A., Laviéville, R., Hutin, L., Bertrand,
B., Vinet, M., Urdampilleta, M., Meunier, T., Sanquer, M., Jehl, X., Maurand, R. &
Franceschi, S. D. Gate-reflectometry dispersive readout and coherent control of a
spin qubit in silicon. Nature Communications 10, 2776. doi:10.1038/s41467-
019-10848-z (July 2019).

160. Ibberson, D. J., Lundberg, T., Haigh, J. A., Hutin, L., Bertrand, B., Barraud, S., Lee,
C.-M., Stelmashenko, N. A., Oakes, G. A., Cochrane, L., Robinson, J. W., Vinet, M.,
Gonzalez-Zalba, M. F. & Ibberson, L. A. Large Dispersive Interaction between a
CMOS Double Quantum Dot and Microwave Photons. PRX Quantum 2, 020315.
doi:10.1103/prxquantum.2.020315 (May 2021).

161. Wallraff, A., Schuster, D. I., Blais, A., Frunzio, L., Majer, J., Devoret, M. H., Girvin,
S. M. & Schoelkopf, R. J. Approaching Unit Visibility for Control of a Superconduct-
ing Qubit with Dispersive Readout. Physical Review Letters 95, 060501. doi:10.
1103/physrevlett.95.060501 (Aug. 2005).

162. Vijay, R., Slichter, D. H. & Siddiqi, I. Observation of Quantum Jumps in a Super-
conducting Artificial Atom. Physical Review Letters 106, 110502. doi:10.1103/
physrevlett.106.110502 (Mar. 2011).

163. Walter, T., Kurpiers, P., Gasparinetti, S., Magnard, P., Potočnik, A., Salathé, Y.,
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