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Abstract
Image reconstruction from neural activation data
is a field that has been growing in popularity
with developments such as neuralink in the brain-
machine interface space. To make better decisions
when collecting data for this purpose, it is impor-
tant to know what qualities to optimize for. The
present paper investigates the relation between par-
ticipant variation and visual stimulus reconstruc-
tion performance from functional magnetic reso-
nance imaging (fMRI) data, which can guide de-
cisions on whether resources should be spent col-
lecting more data from fewer individuals or vice
versa. We conducted performance evaluation on
the Self-Supervised Image Reconstruction machine
learning architecture proposed by Gaziv et al. us-
ing three pixel-wise and two structural image sim-
ilarity measures. Our results show that reconstruc-
tions from one subject’s fMRI data consistently
performed best across all five performance metrics.
However, statistically significant variance in recon-
struction performance across subjects was found
for only the feature-based similarity index. While
the present paper found statistically significant re-
sults, we recommend future research to further in-
vestigate this notion by employing similar evalua-
tion on other models.

1 Introduction
The field concerning reconstruction of visual stimuli from
neural activity has made great leaps in recent years with the
advent of highly performant machine learning (ML) algo-
rithms and improvements in functional magnetic resonance
imaging (fMRI) data acquisition techniques. The goal of this
discipline is to reconstruct images shown to a human subject
as accurately as possible based on blood oxygen levels across
their brain as measured using fMRI scans, which serve as a
proxy for the subject’s neural firing patterns that result from
viewing the visual stimulus [1].

Data sets with more samples at higher resolutions and
novel machine learning architectures are continuing to bring
improved results in both semantic and visual reconstruction
[2] [3]. However, certain contingencies between the data
used, and the performance of resulting reconstruction models
are yet to be investigated. One of said contingencies is that
of a given participant’s data quality on reconstruction perfor-
mance. In our context, data quality can depend on multiple
factors, including noise occurring from the scanning device
[4], the participant’s head motion, or even their heart beat [5].

The present paper investigates the question: ”What is the
predictive ability of participant selection on image recon-
struction from fMRI signals using machine learning?”. In
order to answer this, we ask the following sub-questions:

1. Does any one participant’s fMRI data consistently result
in better reconstruction performance?

2. Is there a significant difference in reconstruction perfor-
mance between participants?

3. What pros and cons do differing image similarity metrics
bring to the table?

It has been shown that no two individuals have the same
brain anatomy [6]. Our research can indicate the generaliz-
ability of machine learning models to the neural firing pat-
terns of differing individuals. It is thus relevant for future re-
search regarding machine learning models operating on brain
imaging data, as well as brain-machine interfaces such as
Neuralink.

2 Methodology
The following section goes into detail on the methodology
used in the present paper. We explain the reconstruction
method used, as well as how data was acquired. In addition,
we elaborate on the methods employed for reconstruction per-
formance evaluation, and finally discuss how statistical anal-
ysis was conducted.

2.1 Reconstruction Method
For the investigative purposes of this paper, the Self-
Supervised Image Reconstruction machine learning architec-
ture proposed by Gaziv et al. was used. This approach makes
use of a neural-network based encoder decoder architecture,
where an encoder E is trained to predict the fMRI responses
to a visual stimulus, with a decoder D being trained to re-
construct the original stimulus from said responses [7]. An
example of reconstructions achieved using this method can
be seen in Figure 1.

Figure 1: Visual reconstructions achieved using Gaziv et al.’s
self-supervised method [7]

The amount of publicly available ”paired images” (images
with corresponding fMRI responses) is in the thousands. This
represents a quite limited amount of data when compared to
the hundreds of millions that computer vision or image gen-
eration algorithms are trained on [8] [9]. The self-supervised
approach proposed by Gaziv et al. attempts to mitigate the is-
sue of data scarcity using the encoder decoder model, allow-
ing for derivation of synthetic fMRI signals from ”unpaired
images” (images with no corresponing fMRI response) using
the encoder. From this, the decoder attempts to reconstruct
the original image. This enables both artificial expansion of
the data set, and the use of an unsupervised approach to train-
ing of the reconstruction model.
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The paper, website1, and repository2 for the self-supervised
reconstruction model showcase only a subset of reconstruc-
tions that have been achieved with the data set. In order to
gain access to a sample size that is as large as possible, the
training process for the model was re-run on a local machine.
This yielded 250 image reconstructions in total, being 50 im-
age reconstructions for each of the five subjects in the Generic
Object Decoding (GOD) data set.

2.2 Data Acquisition
The self-supervised reconstruction approach by Gaziv is
trained using the Generic Object Decoding data set, consist-
ing of 1250 paired images from ImageNet [10] with their cor-
responding fMRI responses across five subjects [11]. In ad-
dition, unsupervised training is conducted using 49 thousand
images, also taken from courtesy of ImageNet. 1200 paired
images of the GOD data set were used to train the model,
while the remaining 50 were used for reconstruction of im-
ages and performance evaluation of the model after training.

2.3 Performance Evaluation
The accuracy of image reconstructions was evaluated using
the ”image similarity measures” python library [12]. More
specifically, evaluations were made using the Root Mean
Square Error (RMSE), Peak Signal to Noise Ratio (PSNR),
Signal to Reconstruction Error ratio (SRE), Structural Sim-
ilarity Index Measure (SSIM), as well as the Feature-based
Similarity Index (FSIM). These are explained in further de-
tail in the Evaluation Metrics section.

2.4 Statistical Analysis
Performance evaluations analyzed by aggregating results us-
ing mean, standard deviation, maximum and minimum val-
ues, as well as the amount of best performances evaluation by
subject out of the 50 images. For further details and interpre-
tation we ask the reader to refer to the Results and Discussion
section respectively.

To answer our first research question ”is there a signifi-
cant difference in reconstruction performance between par-
ticipants?”, we made use of Analysis Of Variance (ANOVA).
ANOVA is a method in statistical analysis used to gauge
whether the means of subsets in a sample demonstrate a sig-
nificant variance between said subsets [13]. In the case of the
present paper, a full sample can be the reconstruction accu-
racies as measured by RMSE across all participants, while a
subset of this sample is given by the RMSE accuracies for
only the first subject.

3 Evaluation Metrics
In the following section, we explain the five image similarity
metrics used for performance evaluation and how our chosen
model performed on each. We will first discuss the root mean
squared error and the peak signal to noise ratio. Then, we
elaborate on the signal reconstruction error ratio, as well as
the feature based similarity index. Finally, we take a closer
look at the structural similarity index.

1https://www.wisdom.weizmann.ac.il/ vision/SSReconstnClass/
2https://github.com/WeizmannVision/SelfSuperReconst

3.1 Root Mean Squared Error
The Root Mean Squared Error (RMSE) is a metric that is
widely used in machine learning to judge error of the model’s
predicted value to the ground truth during training. It is cal-
culated by first taking the Mean Squared Error (MSE), given
by

MSE =

∑
M,N [I1(m,n)− I2(m,n)]2

M ∗N
for a picture of M x N pixels, where I1(m,n) and I2(m,n),
are the respective ground truth and reconstruction RGB val-
ues for the pixel at row m and column n

The RMSE is given by the root of the MSE. Thus we have

RMSE =
√
MSE

with higher values indicating worse reconstruction quality.
Due to the fact that error values are squared in the MSE,

the RMSE is always non-negative, and greater error values
are penalized more. Taking the root of the summed value
yields error in units of the response variable (as opposed to
squared units), for more intuitive interpretation of results.

While the RMSE is an objective measure that is fast and in-
tuitive to calculate - it shows disadvantages when it is used in
the context of image similarity. The vector proximity of color
values does show how similar two pictures are based on indi-
vidual pixels. However, the measure does not capture higher
similarity in the sense of higher level shapes and structures
depicted in the image.

3.2 Peak Signal to Noise Ratio
The peak signal to noise ratio (PSNR) indicates the ratio be-
tween the peak signal of the ground truth image and the cor-
rupting noise in the reconstructed image. It is commonly used
to assess effects of compression on image quality. The PSNR
is expressed in decibels (dB), with higher values indicating
higher reconstruction quality.

Calculating the PSNR is done by the following formula:

PSN = 10 ∗ log10(
R2

MSE
)

where R is the highest possible value that a pixel can take
[14]. For a single color channel in 8-bit space, this is 255.

Similarly to the RMSE, the PSNR is a pixel-wise compar-
ison technique that provides a quantitative measure of accu-
racy of colors in the reconstructed image, while not taking
into account the structural components of the overall image.

3.3 Signal to Reconstruction Error ratio
The Signal-to-Reconstruction Error ratio (SRE) is another
pixel-wise comparison metric. It is compared to the PSNR
in the literature, with a the key difference being that the SRE
measures reconstruction error in relation to the mean inten-
sity of the original image, which is variable, rather than its
peak possible intensity, which is constant. This makes the
SRE preferrable when comparing errors between pictures of
varying brightness [15].

The SRE is calculated by:

SRE = 10 ∗ log10
µ2
x

(x̂− x)2/n
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with the average intensity of the picture x being denoted as
µx, the reconstruction as x̂, and n being the number of pixels
in x. As with the PSNR, SRE values are given dB, with higher
values indicating better reconstruction performance.

3.4 Structural Similarity Index Measure
The Structural Similarity Index Measure (SSIM) assesses the
similarity between two images by their luminance (intensity),
contrast, and structural patterns. Its values can range between
-1 and 1, with higher values indicating higher similarity, and
1 expressing an exact match.

We calculate the SSIM for two pictures x and y by:

SSIM(x, y) =
(2µxµy + c1)(2σxy + x2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)

where µx and µy are the average values of x and y respec-
tively, σx σy are their variances, and σxy is the covariance
between x and y. c1 and c2 are given by c1 = (k1 ∗ L)2 and
c1 = (k1 ∗ L)2, with L being the highest possible value for a
pixel (255 for 8-bit color space), and k1 = 0.01, k2 = 0.03
as default values [16].

The SSIM is commonly employed in image processing,
and image quality assessment to evaluate compression, de-
noising, and enhancement algorithm performance. It pro-
vides a comprehensive measure of image similarity that goes
beyond simple pixel-wise comparison by taking into account
the interdependence of pixels that are in close spacial prox-
imity [17]. Despite this, the SSIM has been shown to yield
non-intuitive, and undefined results at times [18].

3.5 Feature-based Similarity Index
The Feature-based Similarity Index (FSIM) measures simi-
larity between two images based on their phase congruency
and gradient magnitude. Here, phase congruency gives mea-
sure of the significance of local structures, while the gradient
magnitude factors visual contrast into the evaluation [19].

Computation of the FSIM is done in a two-stage process,
first evaluating a local similatity map, then aggregating said
map into a single score. The mathematical details of the
FSIM are long winded and thus out of scope for the present
paper. For an exact explanation we ask readers to refer to the
original paper.

FSIM is meant as an alternative to the SSIM and is gener-
ally applied in the same use cases. Values of the measure can
range from 0 to 1 with higher scores indicating greater simi-
larity between pictures, and 1 indicating a perfect match.

4 Contribution
The present work contributes to the field of reconstruction of
visual stimuli from neural imaging data using machine learn-
ing by investigating the predictive ability of participant se-
lection on reconstruction performance. Results of this study
can give researchers guidance deciding on making trade-offs
between inviting more participants while taking fewer fMRI
scans to increase chances of finding well suited participants,
or vice versa to gain more participant specific data to train
models on. Reconstruction performance was assessed us-
ing five objective image similarity measures (RMSE, PSNR,

SSIM, FSIM, SRE), in an effort to give a more holistic view
on the topic. The performance metrics give a quantitative
measure on the fidelity of reconstructions, providing a basis
to compare further reconstruction techniques.

5 Experimental Setup
Model training and image reconstruction was conducted on
a Windows 11 PC running Windows Subsystem for Linux,
equipped with an RTX 3080 GPU, Ryzen 7 3700X CPU, and
64GB of DDR4 RAM. The code for training can be found
in the the Self-Supervised RGBD Reconstruction From Brain
Activity repository. 3

Reconstruction performance evaluation was conducted on
a base model 14” MacBook Pro 2021 (M1 Pro, 16GB RAM)
running macOS Ventura 13.4. Code for this purpose was run
in Python 3.9.17 using the split image library to separate re-
construction images from their original, the ”image similar-
ity measures” library to evaluate reconstruction performance,
pandas for data manipulation, as well as matplotlib for visu-
alization purposes.

6 Results
The following section shows the results from statistical aggre-
gation of performance evaluations of the reconstructions that
were achieved. We present the mean, standard deviation, as
well as the minimum and maximum score achieved by subject
for each measure rounded to five decimals. We also list the
number of times that a given subject’s image reconstruction
was rated best for each metric (out of the 50 reconstructed
images). For further detail on performance evaluation, please
refer to the Evaluation Metrics section.

To determine whether there is a significant difference in re-
construction performance when varying between participants,
we conducted Analysis Of Variance (ANOVA) with the sub-
ject as the independent variable, and reconstruction perfor-
mance as the dependent variable. We employed a signifi-
cance level of p < 0.05, our null hypothesis being that there is
no difference in image reconstruction performance resulting
from differing participants, while the alternative hypothesis is
that there is indeed such a difference present.

6.1 Root Mean Squared Error
Aggregated statistics for RMSE evaluation are shown in Ta-
ble 1. Lower values indicate higher reconstruction quality.
RMSE scores range from 0.009 to 0.044 between subjects.
Mean values by subject range from 0.019 for subject 3 to
0.020 for subject 4, with standard deviation ranging from
0.005 to 0.007. With 18 lowest RMSE scores by picture, sub-
ject 3 is significantly ahead of subject 2 with 12 best perfor-
mances, while the remaining subjects scored best 7 or fewer
times.

3https://github.com/WeizmannVision/SelfSuperReconst
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Table 1: RMSE Aggregations by Subject

sub mean std min max # best

sub1 0.0202 0.0059 0.0090 0.0373 7
sub2 0.0197 0.0059 0.0091 0.0353 12
sub3 0.0187 0.0055 0.0075 0.0324 18
sub4 0.0205 0.0069 0.0096 0.0437 7
sub5 0.0199 0.0045 0.0105 0.0304 6

Observing the boxplot for RMSE shown in Figure ?? shows
that there are one or more outliers for four out of five subjects
towards the high (worse performing) end.

Figure 2: SSIM boxplots grouped by subject

6.2 Peak Signal to Noise Ratio
Evaluation aggregations using the PSNR are listed in Table
2, with higher values indicating higher reconstruction qual-
ity. The highest peak signal achieved in our reconstruction is
42.238 dB, with the lowest one being 27.191 dB. Subject 3
achieved the highest mean PSNR at 34.882 dB, while subject
4 has the lowest with 34.165 dB. PSNR variance by subject
ranges between 2.053 dB to 2.769 dB.
The PSNR yields the same amount of highest PSNR scores
by picture per participant as the RMSE, subject 3 is signifi-
cantly ahead of subject 2 with 18 and 12 best performances
respectively, and remaining subjects scoring best 7 or fewer
times.

Table 2: PSNR Aggregations by Subject

sub mean std min max # best

sub1 34.1764 2.5043 28.5723 39.9585 7
sub2 34.3978 2.6221 29.0467 40.7438 12
sub3 34.8819 2.6194 29.7855 42.2375 18
sub4 34.1649 2.7694 27.1911 40.2398 7
sub5 34.1855 2.0530 30.1917 39.5482 6

Looking to the boxplot in Figure 3, the reconstruction
performance as measured by the PSNR shows statistical
outliers for four out of five subjects, although fewer than

there are with the RMSE, with outliers being present on both
the low and high end.

Figure 3: PSNR boxplots grouped by subject

6.3 Signal to Reconstruction Error ratio

Table 3 shows aggregated SRE values from our evaluation.
Higher values indicate higher reconstruction quality. In our
sample, the highest SRE was 51.905 dB with the lowest at
32.100 dB. Mean values range between 42.056 dB for sub-
ject 1 and 42.399 dB for subject 3. The standard deviation
ranges between 3.554 dB to 3.885 dB. As with the PSNR,
reconstructions from fMRI signals of subject 3 as evaluated
by SRE score best by a significant amount of the time, with
18 times, while the remaining subjects performed best 10 or
fewer times.

Table 3: SRE Aggregations by Subject

sub mean std min max # best

sub1 42.0562 3.8313 32.2476 50.9959 8
sub2 42.1409 3.7663 33.5379 51.9050 10
sub3 42.3985 3.8109 33.4778 50.6304 18
sub4 42.0798 3.8849 32.0999 50.0271 8
sub5 42.0801 3.5543 34.7736 49.6416 6

When shown as a boxplot as seen in Figure 4, we can see that
the mean SRE between subjects is relatively close, with some
outliers on the low and high end for three out of five subjects.

6.4 Structural Similarity Index Measure

SSIM scores aggregated by subject are listed in Table 4, with
larger values indicating better reconstruction performance.
Scores for our reconstructions ranged between 0.329 to 0.957,
with mean scores by subject ranging from 0.741 to 0.772.
Standard deviation by subject was found to be between 0.100
to 0.114. As for the number of best reconstructions, subject 3
is again in the lead with 18 best scores, with remaining sub-
jects performing best 9 or fewer times.

Table 4: SSIM Aggregations by Subject
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Figure 4: SRE boxplots grouped by subject

sub mean std min max # best

sub1 0.7546 0.1110 0.3930 0.9362 9
sub2 0.7553 0.1075 0.3932 0.9555 9
sub3 0.7721 0.1000 0.4117 0.9571 18
sub4 0.7493 0.1149 0.3295 0.9366 7
sub5 0.7413 0.1004 0.4717 0.9309 7

The

boxplot in Figure 5 for SSIM scores by subject shows means
that are quite close to each other, with outliers mostly on the
worse performing end.

Figure 5: SSIM boxplots grouped by subject

6.5 Feature-based Similarity Index
Aggregated FSIM scores by subject are shown in Table 5.
Higher values indicate better reconstruction performance.
The lowest and highest scores are 0.273, and 0.471 respec-
tively. Overall reconstruction scores were found to be be-
tween 0.273 to 0.471. Mean scores by subject are between
0.345 and 0.363, with standard deviation ranging from 0.024

to 0.034. Subject 3 performed best on 21 out of the 50 pic-
tures, while subject 4 did this 14 times.

Table 5: FSIM Aggregations by Subject

sub mean std min max # best

sub1 0.34703 0.02990 0.27298 0.42097 7
sub2 0.34867 0.02716 0.30908 0.44404 4
sub3 0.36255 0.02694 0.28770 0.44948 21
sub4 0.35757 0.03425 0.28244 0.47116 14
sub5 0.34534 0.02392 0.30092 0.42178 4

When visualized as a boxplot as in Figure 6, the FSIM shows
comparatively little variance in reconstruction performance
by subject for the bulk of the data. However, there are many
more outliars when compared to the other performance
evaluation metrics employed in the present paper.

Figure 6: FSIM boxplots grouped by subject

6.6 Analysis Of Variance
ANOVA statistics by performance measure are listed in Table
6. With our selected p-value of p < 0.05, ANOVA analysis
yields that variation in image reconstruction performance be-
tween subjects is non-significant for the RMSE, PSNR, SRE,
and SSIM. This is with the exception of the Feature-based
Similarity Index, where a p-value of p = 0.010 was found.

Table 6: ANOVA statistics by performance measure

metric F-value p-value

RMSE 0.66159 0.61924
PSNR 0.73673 0.56770
SRE 0.07071 0.99084
SSIM 0.55854 0.69298
FSIM 3.38634 0.01017

7 Responsible Research
Our research is conducted using the Generic Object Decoding
(GOD) data set [11]. The GOD is a collection of functional
magnetic resonance imaging (fMRI) responses to visual stim-
uli depicting natural scenes across five human subjects. All

5



data in the data set is de-identified in order to protect the par-
ticipants’ identities and further sensitive information. When
requesting access to the data set, individuals must pledge to
not attempt to retrieve protected health information (PHI) of
the study’s participants and to inform their principal investi-
gator if this should happen accidentally. This includes infor-
mation such as names, addresses, phone numbers, physical or
mental health condition, or similar.
Despite these pre-cautions in place, there are ethical ques-
tions that arise in the context of our research. Technology
that allows for the reconstruction of visual stimuli based on
an individual’s brain activity can potentially be misused by
malicious parties to extract information from non-consenting
subjects. Current methods require extensive participant pre-
screening and data pre-processing, as well as bulky expen-
sive machinery which needs to be run under the supervision
of experts. However, future developments may bring about
miniaturized devices which allow for acquisition of neural ac-
tivity data in an open setting, or even from afar. This brings
about the question what potential misuses or misunderstand-
ings these development can bring about.
Privacy of thoughts is a major concern in connection with
any research in the area of decoding brain signals. While
the domain of one’s own thoughts are currently regarded as
something that is untouchable by other parties, this kind of
technology at a mature stage would lead to unprecedented
scenarios, many that we cannot imagine at this stage.
The technology can be used for both good and bad. In jus-
tice enforcement, it can enable eye witnesses to give account
by recalling visual stimuli such as the face of a criminal, or
the scene of a crime. However, it can also be misused by
malicious parties attempting to gain information from an in-
dividual’s brain activity patterns without their consent.
Another potential risk of this technology lies in its use before
maturity. Misreadings can lead to misinterpretation of an in-
dividual’s thoughts. In domains such as justice enforcement,
this can lead to mis-attribution of fines all the way to con-
viction of innocent people. It is thus of utmost importance
to set precautions in place to avoid the interpretation of brain
signals in stark consequence scenarios before the technology
has been shown to be highly reliable.

8 Discussion
Looking at our results, it is interesting to note that the RMSE
and PSNR evaluations yield the same outcome when it comes
to finding the best scoring participant. This can be explained
by the fact that by definition, both the RMSE and PSNR are
fixed proportional functions of the MSE, which in our con-
text is a pixel wise color space distance measure. Since lower
RMSE scores indicate better performance, while the oppo-
site is true for the PSNR they can loosely be interpreted as
inverses of each other.
We can see that the SRE follows the same sentiment as the
RMSE and PSNR evaluating best performance, though with
not exactly the same results. Both PSNR and SRE evaluate
the preserved signal from the original image source. How-
ever, a possible explanation for the small deviance in results
is that the SRE is calculated with a dynamic ceiling value

which varies by image, rather than the static ceiling of the
PSNR, resulting in favoring different pictures for certain re-
constructions.
The number of best performances for the RMSE, PSNR, and
SRE by particpant are relatively consistent with the best mean
values for subjects 2 and 3. However, for all three measures,
subject 5 scores higher on average than subjects 1 and 4,
though with fewer best performances than either. This may
be due to subject 5 giving better reconstruction on average
for pictures where subject 2 and 3 performed best, but not on
others.
Subject 3 has been found to perform best a significant amount
of the time on all five of our chosen metrics, leading in num-
ber of best performances by least 50% in every case. This
points towards participant selection as a relevant factor for
performance when reconstructing visual stimuli from fMRI
data using machine learning.
However, when conducting ANOVA analysis, no significant
differences are found in the mean values of performance eval-
uation for the RMSE, PSNR, SRE, and SSIM. Only the FSIM
is shown to have a significant variation in performances be-
tween subjects, with a p-value of 0.01. This points to the
FSIM being able to distinguish details in image reconstruc-
tions that the remaining measures do not. As the sample size
of our reconstructions is limited (5 participants with 50 recon-
structions each), this finding is not definitive. It does however
point the way for future research to further validate it.

9 Conclusions and Future Work
Our results found that one of the participants, namely sub-
ject 3, in the Generic Object Decoding data set to consis-
tently perform best in terms of image reconstruction perfor-
mance across all five employed measures (RMSE, PSNR,
SER, SSIM, FSIM). However, analysis of variance using
p < 0.05 yielded statistically significant results for only the
FSIM at p = 0.01.
This points to FSIM being a more discriminate performance
metric, being more sensitive to changes from the original im-
age than the remaining four. However, as our sample size
for reconstructions is small, we recommend future research
to investigate further to strengthen this finding.
The MSE, PSNR, and SER were found to rank participants
similarly, as evaluation metrics that compare images by the
pixel, with the SER’s ranking deviating only slightly from
the other two. These pixel-wise evaluation metrics are fast
and intuitive to calculate, but have been shown to not repre-
sent similarity as perceived by the human visual system well.
In contrast, the SSIM and FSIM are comparison methods that
model the structural retainment of a reconstructed image to
its original, by taking into account factors such as luminance,
contrast, and structural patterns. These measures showed dif-
fering rankings of subjects by reconstruction performance,
though subject 3 was still ranked highest.
The present paper investigated the effect of participant vari-
ation on the reconstruction performance on the model pro-
posed by Gaziv et al. However, differing models may fa-
vor differing brain anatomies or have varying susceptibility
to noise. Future research should thus examine weather the re-
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sults found in this paper apply to other reconstruction models
as well, in order to allow for a more comprehensive under-
standing of predictive effect of participant selection on recon-
struction performance.
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