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Abstract

In this thesis, the problem of calibrating time-inhomogeneous exponential Lévy models with
finite jump activity based on market prices of plain vanilla options is studied. Belomestny
and Reiß [7] introduced an estimation procedure for calibration in the homogeneous case
with one maturity. The open-ended question that will be addressed is if we can extend this
model to use all listed plain vanilla options with multiple maturities. This opens a way to use
all available data to create a time-inhomogeneous model with time-dependent Lévy triplets
between subsequent intervals based on the maturities.

We establish via an adapted Lévy-Khintchine representation an estimation procedure on
the explicit inversion of the option price formulas in the spectral domain with a cut-off
scheme for the regularisation of high frequencies. The estimation procedure will be shown
to be well-defined and the parameters to be normally distributed asymptotically.

Practical implications imply that using the asymptotic variances of the normal distri-
butions leads to insufficient confidence intervals for non-asymptotical cases. We, therefore,
construct confidence intervals using an approximated finite sample variance.

Monte Carlo simulations are implemented in the computational software R to evaluate
the stability and accuracy of the estimation procedure. Furthermore, the finite sample con-
fidence intervals are assessed with coverage probabilities. The estimations and confidence
intervals are sufficient concerning coverage probabilities when the underlying error magni-
tudes are estimated by a penalized least squares method. Otherwise, undersmoothing must
be employed to counteract the bias term.

In the end, the estimation procedure is evaluated by calibrating to market data of plain
vanilla S&P500 options, which contain numerous maturities. The estimated parameters
with confidence intervals between maturities support time-dependency and the constructed
time-inhomogeneous exponential Lévy models appear favorable in contrast to the time-
homogeneous model.
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Introduction

Model calibration is essential to the pricing and hedging of financial products. A key question
when calibrating a model based on prices of European call and put options is how all the
information contained in the option prices can be merged into one model. On the one hand,
the model needs to be large enough to allow for sufficient flexibility and to be able to
integrate all the available information. On the other hand, the model needs to be identifiable
from the options traded on the market. The frequently observed volatility smile or skew
is an indication that the Black–Scholes model is not flexible enough to account for the
prices of options with different strike prices. Exponential Lévy models are flexible enough to
model the volatility smile or skew and can therefore incorporate the information of options
with different strike prices. However, empirical evidence shows that calibrating exponential
Lévy models by options with different maturities leads to conflicting information, see Cont
and Tankov [17], Belomestny and Reiß [9] or Söhl and Trabs [43]. In other words, the
stationarity implicitly assumed in the exponential Lévy model is not satisfied. We propose
an identifiable time-inhomogeneous Lévy model that does not assume stationarity and that
can be calibrated based on option prices from different maturities and different strike prices
without leading to conflicting information.

We model an asset price (St) by

St = Sert+Xt for t ≥ 0, (0.1)

where r is the riskless interest rate and (Xt) is a time-inhomogeneous Lévy process in the
sense that on each interval between two consecutive maturities Tj−1 and Tj , the process
(Xt) follows a Lévy process which may be different from interval to interval. We focus on
the nonparametric calibration of the model to reduce the risk of model misspecification. We
model small fluctuations through the volatility and restrict ourselves to Lévy processes of
finite jump intensity.

Our estimation is based on European call and put options on the asset St, which are
traded at time t = 0 with maturities T1, . . . , Tn and different strike prices. In the considered
asymptotics the maturities T1, . . . , Tn are fixed, while for each maturity the range of the
strike prices grows and the mesh size of the strike prices decreases. This reflects that options
are traded typically only for a few maturities but with many different strike prices for each
maturity. Since we base our inference on option prices, the calibration is for the risk-neutral
price process.

In the time-inhomogeneous Lévy model, we derive the convergence rates and show con-
fidence intervals for the estimators of the volatility, the drift, the intensity, and the Lévy
density. Previously, confidence intervals have been constructed for time-homogeneous Lévy
models in an idealized Gaussian white noise model by Söhl [42]. In the idealized Gaussian
white noise model, it is assumed that the observations are Gaussian and given continu-
ously across the strike prices. This simplifies the analysis significantly. Here we construct
the confidence intervals in a discrete observation setting for time-inhomogeneous Lévy mod-
els and the only assumption on the errors is that they are sub-Gaussian, in particular, all
bounded errors with arbitrary distributions are covered. Our additional results on the con-
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2 Introduction

vergence rates extend the paper by Belomestny and Reiß [8] from time-homogeneous to
time-inhomogeneous Lévy models.

Three strands of literature are relevant to the thesis at hand. The first strand covers
exponential Lévy models. They were first introduced by Merton [32] and have been stud-
ied in a variety of pricing and optimization problems in finance, see e.g. Boyarchenko and
Levendorskĭı [12], Cont and Voltchkova [20], Emmer and Klüppelberg [22], Kallsen [28],
Mordecki [34], Tankov [45] and the references therein. Pricing and hedging in time-
inhomogeneous Lévy models have been treated in Cont and Voltchkova [19] and Zheng
and Kwok [52].

The second strand studies the nonparametric estimation of Lévy processes. Nonpara-
metric confidence sets have been studied for Lévy processes observed at high-frequency
by Figueroa-López [23] and by Kato and Kurisu [29]. The difference in our work is twofold.
Instead of observing the Lévy process directly, we base our inference on option prices. Fur-
thermore, even if compared to the direct observation setting, our observation scheme with
fixed maturities corresponds to observations at low frequency and not at high frequency.
Estimation of Lévy processes from low-frequency observations has been studied from a fre-
quentist perspective, e.g. by Neumann and Reiß [35], Gugushvili [26], Nickl and Reiß [36]
and Coca [15]. From a Bayesian perspective, Lévy processes were studied by Gugushvili et
al. [27], Belomestny et al. [5], and Nickl and Söhl [37].

The third strand is closest to the paper at hand and treats the nonparametric calibra-
tion of exponential Lévy models based on option prices. It comprises the works Cont and
Tankov [18], Belomestny [3], Belomestny and Reiß [11] and Trabs [48, 49]. These works have
in common that they assume homogeneity in time and a fixed maturity. Qin and Todorov [38]
and Todorov [47] consider a maturity tending to zero in an Itô semimartingale model and
study the estimation of the Lévy density at time zero and the spot volatility, respectively.

The thesis at hand is a continuation of the work by Tendijck [46]. The theoretical results of
Tendijck [46] have been heavily revised, clarified, and reworked. Next to the revisions, the em-
phasis of this work has been on confidence intervals, simulations, and empirical results. This
work therefore additionally provides a thorough simulation study and brings the method into
practice by addressing all the issues needed for the calibration of time-inhomogeneous Lévy
models to market data. The computer code is made in the computational software R and
can be found publicly at the GitHub page: https://github.com/Loek44/Spectral-Calibration-
of-Time-Inhomogeneous-Levy-processes.

This thesis can be decomposed into six themed chapters. Chapter 1 provides an overview
of the required underlying theory that is required for the subsequent chapters. Section 1.1
elucidates the established results of (homogeneous) Lévy processes. Then, in Section 1.2,
additive processes are introduced by dropping the stationary assumption of Section 1.1. The
time-inhomogeneous Lévy process will be defined as a discrete additive process based on the
observation of option prices with a finite number of maturities.

Chapter 2 is devoted to the statistical estimation procedure. Section 2.1 introduces the
risk-neutral setting of the price process and the plain-vanilla options used for calibration.
A regression model is made in Section 2.2 to account for the noise in the option prices.
Section 2.3 then shows how the characteristic function of the process can be linked via a
Fourier transform to the observed noised option prices. Finally, Section 2.4 elucidates how
the underlying parameters of the process can be estimated non-parametrically via a cut-off
regularisation procedure from the characteristic function.

In Chapter 3 the main theoretical results of the estimators will be derived. First, in Section
3.1 the underlying assumptions prior to the results will be introduced. Section 3.2 establishes
when the estimation procedure is well-defined, this happens whenever the estimator of the
characteristic function can be bounded from below. Then, in Section 3.3 and Section 3.4, we
show via an error decomposition and the Lyapunov central limit theorem that the estimators
asymptotically tend to a normal distribution. We provide a summary of all the results and
conditions in a main theorem in Section 3.5. Finally, Section 3.6 and Section 3.7 respectively
inspect the difficulty of the calibration procedure based on this main theorem and establishes
optimal convergence rates.
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The derived asymptotic standard deviation of the normal distribution in Chapter 3 is
not generally sufficient for confidence intervals in finite sample cases. Chapter 4, therefore,
establishes confidence intervals for the case of a non-asymptotic/discrete observation scheme.
The different sections in this chapter treat the different estimators one by one.

Chapter 5 tests the stability and accuracy of the estimation procedure via simulations.
Section 5.1 first answers to open-ended questions about how the to-be-calibrated model
should be built and how the cut-off scheme should be chosen. The calibration results of the
estimators are inspected using multiple Monte-Carlo simulations in Section 5.2. Furthermore,
the confidence intervals will be assessed with coverage probabilities.

In the final Chapter, Chapter 6, we employ calibration to empirical data of the S&P500
index. Section 6.1 addresses the underlying data set and the assumptions that differ from
the simulations in Chapter 5. Then, Section 6.2 shows the results of calibration in a similar
setting as the simulations for comparison. Finally, Section 6.3 shows the results if the cal-
ibration has been done on all options prices with numerous maturities and we discuss the
favorability of the inhomogeneous model to the homogeneous model.





Chapter 1

Theory

Recalling that random walks — sums of independent identically distributed random vari-
ables — provide the simplest examples of stochastic processes in discrete time. A natural
question that arises is if for continuous times we can also make processes with independent
stationary increments. These continuous-time relatives to random walks are called Lévy
processes – in honor of the French mathematician Paul Lévy. These Lévy processes provide
important examples of stochastic processes in continuous time and provide ingredients for
building continuous-time stochastic models. Fundamental examples of Lévy processes are
the Brownian motion (or equivalently Wiener process) and the Poisson process. It can even
be shown, e.g. Cont and Tankov [16, Chapter 3], that Brownian motion and the Poisson
process can be thought of as building blocks for Lévy processes because every Lévy process
can be written as a superposition of a Brownian motion and a (may be infinite) number of
independent Poisson processes.

In this chapter, the main facts about Lévy processes and more general stochastic pro-
cesses needed for the statistical analysis will be reviewed. The theory displayed here will be
fundamental for the subsequent statistical analysis and the reader is advised to pay close
attention. Especially the second subsection, where the time-inhomogeneous Lévy process is
defined, is not considered omnipresent theory, while it is essential for the rest of the thesis.

1.1 Time-Homogeneous Lévy Processes

The Lévy process must be defined as a continuous counterpart to the discrete random walks
that keeps the properties of stationary and independent increments. The exact assumptions
and imposed properties underlying Lévy processes are given below in Definition 1.1.

Definition 1.1 An R-valued process X = (Xt)t≥0 defined on a filtered probability space
(Ω,F , (F)t≥0,P) is called a Lévy process if it is (Ft)-adapted and if it has the following
properties

(i) X is continuous in probability, i.e., for fixed s ≥ 0, P(|Xt−Xs| > ε) → 0 holds as t→ s
for all ε > 0.

(ii) P(X0 = 0) = 1.
(iii) For 0 ≤ s ≤ t,Xt −Xs is equal in distribution to Xt−s.
(iv) For 0 ≤ s ≤ t,Xt −Xs is independent of Fs.

As a remark, notice that all Lévy processes have a càdlàg modification. Without loss of
generality, we will assume that all sample paths of Lévy processes are càdlàg.

In Definition 1.1 condition (ii) makes sure that the process starts at 0, condition (iii)
makes sure of the stationary increments, and condition (iv) makes sure of the independent
increments. Condition (i) is called Stochastic Continuity and it does not imply that the
sample paths are continuous. The main reason for stochastic continuity is to exclude jumps
at nonrandom (fixed) times that can be regarded as scheduled events and are not interesting
for our purpose.

5



6 1 Theory

The generalization of Brownian motion to Lévy processes mostly lies in the fact that
in Lévy processes, as with Poisson processes, a jump component is present. This jump
component for all Lévy processes can be described by the Lévy measure and is defined in
Definition 1.2.

Definition 1.2 A Lévy measure on R is a σ-finite measure ν on R such that ν({0}) = 0
and ∫

R
(1 ∧ |x|2)dν(x) <∞.

The Lévy measure ν(A) can be interpreted as the expected number, per unit time, of jumps
whose size belong to A. Having this in mind, the Lévy measure ν will also be called and
referred to as the jump measure.

Lévy processes X are generally easy to work with because the characteristic function φt
can be found in closed form. This important result is called the Lévy-Khintchine represen-
tation and is given in Theorem 1.1.

Theorem 1.1 (Lévy-Khintchine representation) Let X be a Lévy process taking values in
R. Then for each t ≥ 0 the characteristic function φt of Xt satisfies

φt(v) := E
[
eivXt

]
= etξ(v), v ∈ R,

with characteristic exponent ξ(v) given by

ξ(v) = −σ
2v2

2
+ iγv +

∫
R
(eivx − 1− ivx1|x|≤1)dν(x),

where γ ∈ R, σ ∈ R+ and ν is a Lévy measure on R.

We can find a proof of the Theorem above in [16]. The quantity (σ2, γ, ν) is called the
characteristic triplet of the Lévy process X. This characteristic triplet characterizes the
complete Lévy process because it completely determines the characteristic function φt(v).

In this thesis, we shall restrict ourselves to Lévy processes X with a jump component of
finite activity and absolutely continuous jump measure. With some abuse of notation, the
jump density will also be denoted as ν(x) ∈ L1(R). The characteristic function of Xt can
then be given by the Lévy-Khintchine representation

φt(v) = exp

(
t

(
−σ

2v2

2
+ iγv +

∫
R
(eivx − 1)ν(x)dx

))
. (1.1)

The parameter σ ∈ R+ is called the volatility, γ ∈ R is called the drift, and λ := ||ν||L1(R) <
∞ is called the intensity.

The volatility σ can be thought of as the measure of change over time of the process. For
example, when thinking of a financial process, volatility quantifies a stock’s lack of stability
or the tendency of its prices to move up and down. The drift γ is the tendency of the process
to move up or down in the long run and the intensity λ is the expected amount of jumps
the process exhibits in a unit of time.

As mentioned earlier, the statistical analysis has already been done for ordinary Lévy
processes [16, 7]. In this thesis, a more complex model build-up from multiple Lévy processes
will be inspected. The theory around this more complex model is given in the next section.

1.2 Additive Processes and Time-Inhomogeneous Lévy Processes

Although Lévy processes supply nice features in terms of analytical tractability, the as-
sumptions of stationary and independent increments prove to be rather restrictive. Cont
and Tankov [16, Chapter 7] show that the stationarity of increments of Lévy processes leads
to rigid scaling properties for the marginal distributions, which are not observed in empirical
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time series of returns. Furthermore, Cont and Tankov [16, Chapter 13] also show that (ex-
ponential) Lévy models allow calibrating to implied volatility patterns for a single maturity,
but fail to reproduce option prices over a range of differing maturities.

To address these problems, a new process X called an Additive Process will be introduced.
Additive processes are processes with independent but not stationary increments. This gen-
eralization takes into account deterministic time inhomogeneities, i.e., the parameters that
describe the behavior of the process X may now be time-dependent, however, they are not
random. The big upside of this new model is that it allows us to preserve almost all the
nice tractability of Lévy processes, while it also enables us to reproduce the whole range of
option prices across multiple strikes and maturities.

An additive process X – which is made by dropping condition (iii) in Definition 1.1 – is
presented in Definition 1.3.

Definition 1.3 An R-valued process X = (Xt)t≥0 defined on a filtered probability space
(Ω,F , (F)t≥0,P) is called an additive process if it is (Ft)-adapted and if it has the following
properties

1. X is continuous in probability, i.e., for fixed s ≥ 0, P(|Xt−Xu| > ε) → 0 holds as t→ s
for all ϵ > 0.

2. P(X0 = 0) = 1.
3. For 0 ≤ s ≤ t,Xt −Xs is independent of Fs.

All additive processes have a càdlàg modification. Without loss of generality, we will assume
that all sample paths of additive processes are càdlàg. More specifics about additive processes
can be found in, for example, Cont and Tankov [16, Chapter 14].

The main advantage of these additive processes is that the underlying parameters that
describe the motion can now be time-dependent and time inhomogeneities can now more
easily be taken into account. The calibration of the parameters will be done by using option
prices at maturities Tj , j = 1, .., n. To use all available data to reconstruct the option
prices over all maturities, we want to create a model where the dynamics on every interval
(Tj − Tj−1)j=1,..,n is governed by an independent Lévy process. Then the whole process on
the interval (Tn − T0) is an additive process with time-dependent parameters. We will call
this subset of additive processes time-inhomogeneous Lévy processes. Definition 1.4 defines
this subset X of additive processes based on observations at the finite number of maturities
(Tj)j=1,...,n.

Definition 1.4 An R-valued additive process X = (Xt)t≥0 defined on a filtered probability
space (Ω,F , (F)t≥0,P) will be called a time-inhomogeneous Lévy process if it can be written
as a composition of independent Lévy processes (Xt − XTj )Tj−1≤t≤Tj with Lévy triplet
(σ2
j , γj , νj) where Tj , j = 0, ..., n, with T0 = 0 and Tn = T .

To track these time-inhomogeneous Lévy processes a new Lévy-Khintchine representation
for the characteristic function φTj (v) of the process X can be made.

Using the independent increments property (iii) in Definition 1.3 and making the assump-
tion that all (Xt −XTj

)Tj−1≤t≤Tj
have a jump component of finite activity and absolutely

continuous jump measure, the characteristic function can be written as

φTj
(v) := E

[
eivXTj

]
= E

[
eiv(XTj

−XTj−1
)eivXTj−1

]
= E

[
eiv(XTj

−XTj−1
)
]
φTj−1

(v),

where φT0(v) = 1. Notice that (XTj −XTj−1) is the Lévy process with characteristic triplet
(σ2
j , γj , νj), thus with the Lévy-Khintchine representation (1.1) we can write

φTj
(v)

φTj−1
(v)

= exp

(
(Tj − Tj−1)

(
−
σ2
j v

2

2
+ iγjv +

∫
R
(eivx − 1)νj(x)dx

))
. (1.2)

The combination of all Lévy triplets (σ2
j , γj , νj)j=1,...,n completely determines the charac-

teristic function and, thereby, the time-inhomogeneous Lévy model.





Chapter 2

The Statistical Model

The statistical model used here is an extension of the homogeneous model developed by
Cont and Tankov [16], Belomestny and Reiß [7], Söhl and Trabs [44], and a clarified and
improved version of the introduced time-inhomogeneous model by Tendijck [46].

As portrayed in the introduction, all models in this thesis correspond to incomplete
markets, which implies that we can not make perfect hedges and options prices can not
be uniquely identified from the underlying price process by arbitrage arguments only. These
difficulties of incomplete markets illustrate that the approach of using historical data for the
calibration of the parameters of (exponential) Lévy models is not satisfactory — due to the
incomplete market, knowledge of the historical price process alone does not bear a way to
compute option prices uniquely [21, 2].

Furthermore, Cont and Tankov [16, Chapter 9] show that in a market that is free of
arbitrage all prices of securities can be written as discounted conditional expectations con-
cerning a certain risk-neutral measure Q for which discounted asset prices are martingales.
When markets are incomplete, the risk-neutral measure Q bears only a weak relation to the
time-series behavior described by P. With weak relation we mean that Q cannot be identi-
fied from P, it only inherits some qualitative properties, e.g., variation is finite or infinite,
presence of jumps. This modeling of Q from P is called implied or risk-neutral modeling.
However, the problem still exists that, if Q is modeled in this way, then Q does not give
values consistent with listed options — assuming, of course, that listed options are present.

So, if option prices are available, a market-consistent pricing model Q can not be obtained
by only looking at the historical time series of the underlying asset. When option prices are
quoted on the market for the underlying, these listed options can provide an additional
source of information for selecting Q. The practice of choosing Q such that the options
prices can be reproduced is called model calibration.

Model calibration is known as the choice of a risk-neutral model such that the prices
of traded options are reproduced, i.e., given market prices (Ci)i∈I at t = 0 for a set of
benchmark options, a risk-neutral measure Q needs to be found such that the options are
correctly priced

∀i ∈ I, C0
i = e−rTEQ [CTi ] , (2.1)

where CTi is the payoff function of i ∈ I at time T . The benchmark options that are
mostly used, and that will also be used in this thesis, are plain-vanilla options, e.g, call
options Cti with strike Ki and maturity Ti, such that with the general pricing formula CTi =
max(0, STi

−Ki). The way of thinking is that after the calibration has been done, one could
use the risk-neutral measure Q for the pricing of more exotic, illiquid, or OTC options and
to compute hedge ratios.

Because we are interested in finding parameters that describe the risk-neutral dynamics
from observed option prices, instead of using the dynamics to price options, the calibration
procedure is the inverse problem associated with the pricing problem. This inverse problem
is, however, ill-posed, i.e., there may be many pricing models that generate these option
prices, therefore, the solution is not necessarily unique [16].

9
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In general, one needs to assume for calibrating purposes that the measure Q belongs to
a certain prespecified class of models. In this thesis, we will assume that Q belongs to the
class of exponential time-inhomogeneous Lévy models. When such an assumption is made,
however, there is no guarantee that an exact solution for Q even exists, i.e., there might
be no model that exactly reproduces the option prices. Thus, a better way to look at the
calibration problem is to achieve the best approximation of the option prices within a given
class of models.

In this chapter, the goal is to find a statistical manner to approximate the best exponen-
tial time-inhomogeneous Lévy model that reproduces the option prices for some underlying
asset. The model will be found by nonparametrically calibrating all characteristic triplets
(σ2
j , γj , νj)j=1,...,n from observed plain-vanilla option prices with different maturities. Be-

tween every two maturities, the assumption is thus made that an independent Lévy model
governs the dynamics. The exact calibration is done in the spectral/Fourier domain and is
therefore also called spectral calibration.

2.1 Exponential Time-Inhomogeneous Lévy Models and Plain
Vanilla Options

Since our calibration is based on option prices, we are in a risk-neutral world, portrayed
by a filtered probability space (Ω,F , (F)t≥0,Q), on which the price process of an asset
S = (St)t≥0 after discounting needs to be a martingale. It is common practice in calibration
literature to assume that the risk-neutral measure Q is settled by the market.

Consider European call C(Kj,k, Tj) and put options P(Kj,k, Tj) with maturities at Tj
and strikes at these maturities Kj,k with j = 1, ..., n and k = 1, ..,mj . These maturities
will define the time grid on which the time-inhomogeneous Lévy model will be defined,
i.e., between every two maturities, Tj−1 and Tj an independent Lévy process with triplet
(σ2
j , γj , νj) exists that governs the dynamics.
The price process of the asset St with time 0 ≤ t ≤ T is modelled by an exponential

time-inhomogeneous Lévy process, that is

St = S0e
rt+Xt , (2.2)

where Xt is a time-inhomogeneous Lévy process as in Definition 1.4 with characteristic
triplets (σ2

j , γj , νj)j=1,...,n, r ≥ 0 the risk free rate, and S0 the initial price.
Using the assumption that only finite variation Lévy processes are considered, the mar-

tingale condition for the discounted price process e−rtSt under the risk-neutral measure Q
gives that for all t ≥ 0

S0 = E [St|F0] ⇐⇒ 1 = E
[
eXt
]
. (2.3)

Now applying the Lévy-Khintchine representation (1.2) results that for all the triplets
(σ2
j , γj , νj)j=1,...,n it must hold that

σ2
j

2
+ γj +

∫ ∞

∞
(ex − 1)νj(x)dx = 0, for all j = 1, ..., n. (2.4)

To facilitate the results in the following sections, a mild assumption must be made on the
price process, namely that the price process has finite second moment E[S2

T ] < ∞, this is
equivalent to

E
[
e2XTj

]
<∞, for all j = 1, ..., n. (2.5)

As a remark, notice that this assumption is rather intuitive for a financial security – financial
securities with infinite variance are rather uncommon.

The risk-neutral prices for the call options C(Kj,k, Tj) and put options P(Kj,k, Tj) at
t = 0 with underlying price process St are given by

C(Kj,k, Tj) = e−rTjE
[
(STj

−Kj,k)
+
]

and P(Kj,k, Tj) = e−rTjE
[
(Kj,k − STj

)+
]
,
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where (Y )+ := max(0, Y ). The number of parameters can be reduced by defining the negative
log-forward moneyness

xj,k := log(Kj,k/S0)− rTj ,

then the call and put prices can be expressed as

C(xj,k, Tj) = S0E
[
(eXTj − exj,k)+

]
and P(xj,k, Tj) = S0E

[
(exj,k − eXTj )+

]
.

Using no-arbitrage arguments, the well-known put-call parity in terms of the negative log-
forward moneyness can easily be derived

C(xj,k, Tj)− P(xj,k, Tj) = S0E
[
eXTj − exj,k

]
= S0 (1− exj,k) . (2.6)

2.2 Observations of the Option Prices

The model will be calibrated using option prices. These option prices can exhibit noise and
we need to deal with this noise in a certain way. The observations of the option prices will
therefore be made using a regression model. Next to that, there are complications with the
fact that call and put option prices as functions of the strike are not Fourier transformable,
this is also a problem we need to deal with in this section. In the end, we will show a manner
how the desired regression function will be estimated.

2.2.1 Data Transformation

Due to imperfections of the markets and bid-ask spreads, the observed risk-neutral prices
of the options will exhibit noise. We will employ a regression model in the modeling of this
noise factor. The prices of mj call options Yj,k (or, equivalently, put options by the parity
(2.6)) observed at strikes Kj,k, k = 1, ...,mj with maturity Tj and corrupted by noise ([39]
motivates this model), are modelled by

Yj,k = C(Kj,k, Tj) + ζj,kεj,k, k = 1, ..,mj , (2.7)

with ζj,k > 0 and random variables εj,k. We assume that the observed noise (εj,k) consists
of independent centered sub-Gaussian random variables with variance V[εj,k] = 1. Sub-
Gaussianity means that the tails of the distribution are dominated by Gaussian tails, which
ensures that the tails of (εj,k) do not have too much mass.

By the moment condition for sub-Gaussian tails, we have that all moments are finite, in
particular E[ε4j,k] < ∞ — which is the assumption Belomestny and Reiß [7] used for their
time-homogeneous work. Belomestny and Reiß [7] then show that minimax results hold for
the assumed noise.

As discussed in the introduction of this chapter, the calibration procedure will be done
using option prices listed for St on the market. For the calibration procedure, we need
to employ Fourier techniques. Note that the options functions C(x, Tj) and P(x, Tj) do not
converge to 0, when x→ ∞ and x→ −∞, respectively. Thus, the Fourier transforms of these
functions do not exist. However, if we use the fact that lim

x→∞ C(x, Tj) = 0 = lim
x→−∞ P(x, Tj),

then, in the spirit of Carr and Madan [14], we can define the Fourier transformable function

Oj(x) :=

{
C(x, Tj)/S0, x ≥ 0,

P(x, Tj)/S0, x < 0.
(2.8)

With the put-call parity (2.6), one can always ensure that all option information is used for
Oj(x) by transforming the call options to put options and vice versa.

Now it is favourable to write the regression model (2.7) in terms of the negative log-
forward moneyness xj,k and the Fourier transformable function O(xj,k), this results in

Oj,k = Oj(xj,k) + δj,kεj,k, k = 1, ..,mj , (2.9)
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where we defined Oj,k := C(xj,k, Tj)/S0 and δj,k := ζj,k/S0.

2.2.2 Estimation of Oj

From the regression model (2.9) it can be seen that we do not observe the function Oj(xj,k)
directly, but the version Oj,k corrupted by noise. Therefore, a way to approximate the

Oj(xj,k) using the observations Oj,k, given by the function Õj , needs to be implemented. In
the spirit of [10], the problem can be formulated as

Problem 2.1 Find function Õj among all functions Oj with two continuous derivatives that
minimize the penalized residual sum of squares

RSS(Oj , α) =
N+1∑
k=0

(Oj,k −Oj(xk))
2 + α

∫ xN+1

x0

[O′′
j (u)]

2du, (2.10)

where x0 ≪ x1 and xN+1 ≫ xN are two artificial points and Oj,N+1 = Oj,0 = 0.

The first term in expression (2.10) measures the closeness of the data, whereas the second
term penalizes the non-smoothness of the function, and α defines the trade-off between the
two.

The solution of Problem 2.1 can be proven to be a unique natural cubic spline with knots
at the unique values xj,k, k = 1, ...,mj (proven in, for example, [25]), i.e., Õj can be written
as

Õj(x) =

mj∑
k=1

Oj,kej,k(x), x ∈ R, (2.11)

where ej,k(x) with k = 1, ...,mj are the set of basis functions for representing the family of
cubic smoothing splines.

However, the asymptotic theoretical results become more concise and comprehensible
using interpolation with linear splines – all the preliminary theoretical work of [7] and [46]
were also done using linear splines. Furthermore, if the theoretical results hold for linear
splines, they will also hold for cubic splines, which are better approximations. The cubic
splines will be implemented in the practical calibration part of the thesis.

Therefore, in the theoretical part, just the linear cubic spline interpolation scheme will
be used

Õj(x) = βj,0(x) +

mj∑
k=1

Oj,kbj,k(x), x ∈ R, (2.12)

where (bj,k) are linear splines and the function βj,0 is added to take care of the jump in
the derivative of Oj at zero: β′

j,0(0+) − β′
j,0(0−) = −1. In particular, bj,k is chosen as the

triangular function, i.e., bj,k(x) = Λ(
x−xj,k

xj,k+1−xj,k ) with Λ(x) = (1− |x|)1|x|≤1.

Due to the non-smooth behavior of Oj(x) at 0 (see [6]), it is recommended to fit smoothing
splines — in both approximations (2.12) and (2.11) — separately for x ≥ 0 and x < 0, and
combine them thereafter.

As mentioned, in the theoretical results, the basis of the linear spline scheme (2.12) will
be used, whereas in the practical results both spline schemes linear (2.12) and cubic (2.11)
will be implemented and investigated.

2.3 Statistical Estimation Approach

Now, after we have implemented a manner how the data in the form of call C(Kj,k, Tj) and
put option prices P(Kj,k, Tj) can be transformed and observed through the interpolated

linear splines estimator Õj , the question arises how this can be coupled to the underlying
time-inhomogeneous Lévy model. In the first subsection, we will see that there exists a
natural relation between Oj(x) and the characteristic function φTj

(v) using the Fourier

transform. However, we observe the interpolated version Õj(x), and therefore we also need
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to define an estimator φ̃Tj
(v) for φTj

(v). Thereafter, in the next subsection, the actual
calibration method for finding the Lévy triplet (σj , γj , νj)j=1,...,n will be extracted from this
relation.

2.3.1 Relation between Oj and φTj

Using the martingale condition (2.4) and the put-call parity (2.6), Carr and Madan [14]
proposed and Belomestny and Reiß [6, p.4] proved and derived some important properties of
the function Oj(x) for j = 1, i.e., the homogeneous case. In Proposition 2.1 these properties
will be extended and proved for the inhomogeneous case.

Proposition 2.1 The function Oj(x), defined in (2.8), satisfies the following properties:

(i) For all x ∈ R, it holds that Oj(x) = C(x, Tj)/S0 − (1− ex)+.
(ii) For all x ∈ R, it holds that Oj(x) ∈ [0, 1 ∧ ex].
(iii) Cα := E[eαXTj ] is finite for some α ≥ 1 =⇒ Oj(x) ≤ Cαe

(1−α)x for all x ≥ 0.
(iv) The Fourier transform of Oj satisfies

F (Oj(x))(v) =

∫ ∞

−∞
Oj(x)e

ivxdx =
1− φTj (v − i)

v(v − i)

for all v ∈ C with Im(v) ∈ [0, 1].

Proof All the different properties will be proven individually:

(i) If x ≥ 0, then trivially Oj(x) = Cj(x, Tj)/S0 = Cj(x, Tj)/S0 − (1 − ex)+. If x < 0,
then with the put-call parity (2.6) we have

Cj(x, Tj)− S0Oj(x) = S0(1− ex) ⇔ Oj(x) = C(x, Tj)/S0 − (1− ex)

= C(x, Tj)/S0 − (1− ex)+.

Hence, the result follows.
(ii) Oj(x) ≥ 0 follows directly from the definition while Oj(x) ≤ E[eXTj ]−(1−ex)+ = 1∧ex

follows from (i) and the martingale condition (2.3).
(iii) By Hölder’s and Markov’s inequality for x ≥ 0,

Oj(x) = Cj(x, Tj)/S0 ≤ E[eXTj 1{XTj
>x}] ≤ C1/α

α P(XTj
> x)α/(1−α)

≤ C1/α
α

(
Cα
eαx

)(α−1)/α

= Cαe
(1−α)x.

(iv) By the definition of Oj(v) it follows that

F (Oj(x))(v) =
1

S0

(∫ 0

−∞
eivxP(x, Tj)dx+

∫ ∞

0

eivxC(x, Tj)dx
)

=

∫ 0

−∞
eivxE[1{XTj

≤x}(e
x − eXTj )]dx+

∫ ∞

0

eivxE[1{XTj
>x}(e

XTj − ex)]dx.

Using partial integration, we find the results∫ 0

−∞
e(iv+1)xP(XTj

≤ x)dx =
1

1 + iv
P(XTj

≤ 0)− 1

1 + iv
E[1{XTj

≤0}e
(1+iv)XTj ]∫ 0

−∞
eivxE[1{XTj

≤x}e
XTj ]dx =

1

iv
E[1{XTj

≤0}e
XTj ]− 1

iv
E[1{XTj

≤0}e
(1+iv)XTj ]

and therefore
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−∞
eivxE[1{XTj

≤x}(e
x − eXTj )]dx =

1

1 + iv
P(XTj

≤ 0)− 1

1 + iv
E[1{XTj

≤0}e
(1+iv)XTj ]

− 1

iv
E[1{XTj

≤0}e
XTj ] +

1

iv
E[1{XTj

≤0}e
(1+iv)XTj ].

In a similar fashion∫ ∞

0

eivxE[1{XTj
>x}(e

XTj − ex)]dx =− 1

iv
E[1{XTj

>0}e
XTj ] +

1

iv
E[1{XTj

>0}e
(1+iv)XTj ]

+
1

1 + iv
P(XTj > 0)− 1

1 + iv
E[1{XTj

>0}e
(1+iv)XTj ].

Combining these results and using the martingale condition E[eXTj ] = 1 (2.3) gives

F (Oj(x))(v) =
1

1 + iv
− 1

1 + iv
E[e(1+iv)XTj ]− 1

iv
+

1

iv
E[e(1+iv)XTj ] =

1− φTj
(v − i)

v(v − i)
.

□

The assumption of the finite second moment of the price process C2 := E[e2XTj ] < ∞
given in (2.5) guarantees by Proposition 2.1 (ii), (iii) the exponential decay of Oj(x), which
in turn guarantees that the Fourier transform of Oj(x) exists.

This is the first time we encountered the Fourier transform and because many different
definitions exist, let us make sure the definition of the Fourier transform used in this thesis
is clear. In the rest of the thesis, the following definition of Fourier pairs will be used

Ff(v) := F (f(x))(v) =

∫ ∞

−∞
f(x)e−ivxdx and

F−1F (x) := F−1(F (v))(x) =
1

2π

∫ ∞

−∞
F (v)eivxdv.

The last relation (iv) in Proposition 2.1 is the most important and will be crucial in the
estimation procedure. Note that this relation couples the characteristic function φTj (v − i)
to observed plain-vanilla option prices through a Fourier transform of the Oj(x) function.
This opens a way to estimate the characteristic function φTj

(v− i) through the option price
function Oj(x),

φTj
(v − i) = 1− v(v − i)FOj(v) = 1 + iv(1 + iv)FOj(v). (2.13)

The function φTj
(v− i) was the characteristic function of the Lévy process that governed

the dynamics between Tj−1 and Tj . Recall that in the Theory expression (1.2) we found the
Lévy-Khintchine representation for time-inhomogeneous Lévy processes was given by

φTj (v)

φTj−1
(v)

= exp

(
(Tj − Tj−1)

(
−
σ2
j v

2

2
+ iγjv +

∫
R
(eivx − 1)νj(x)dx

))
.

Therefore, to calibrate the characteristic triplet (σ2
j , γj , λj), we need two characteristic

functions, namely φTj
(v) and φTj−1

(v), which can both be extracted by the option price
functions Oj(x) and Oj−1(x) by expression (2.13). This calibration is the topic of the next
subsection.

2.3.2 Calibration Function ψj and Calibration Estimator ψ̃j

To signify the important relation in Proposition 2.1 (iv), the functions ψlj for j = 1, ..., n
and l = 0, 1 will be defined as

ψlj(v) :=
1

Tj − Tj−1
log [1 + iv(1 + iv)FOj−l(v)]

(iv)
=

1

Tj − Tj−1
log
[
φTj−l

(v − i)
]
,
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where the complex logarithm is taken such that ψlj(0) = 0 and such that ψlj is continuous
on (−v0, v0) with v0 being the smallest positive zero of φTj−l

.
In the calibration procedure, we would like to find all Lévy triplets (σ2

j , γj , νj)j=1,...,n

for calibrating the time-inhomogeneous Lévy model. These Lévy triplets are coupled to the
characteristic functions using the derived Lévy-Khintchine representation (1.2), this suggests
defining the calibration function ψj as

ψj(v) := ψ0
j (v)− ψ1

j (v),

=
1

Tj − Tj−1
log

[
1 + iv(1 + iv)FOj(v)

1 + iv(1 + iv)FOj−1(v)

]
,

=
1

Tj − Tj−1
log

[
φTj

(v − i)

φTj−1(v − i)

]
,

= −
σ2
j (v − i)2

2
+ iγj(v − i) +

∫
R
(ei(v−i)x − 1)νj(x)dx,

= −
σ2
j v

2

2
+ i(σ2

j + γj)v
2 + (σ2

j /2 + γj − λj) + Fµj(v), (2.14)

with µj(x) := exνj(x) called the exponentially weighted jump density.
Due to the Riemann-Lebesgue Lemma Fµj(v) tends to 0 when |v| → ∞, such that

ψj is, at least for large |v|, the sum of a quadratic polynomial and a function vanishing
at 0. Therefore, formula (2.14) shows that the Lévy triplet (σ2

j , γj , µj) (Lévy triplets will
equivalently be parametrized with νj and µj) is uniquely identifiable given the whole option
price functions Oj and Oj−1 without noise. The parameters σ2

j , γj and λj can be identified
as parameters of the polynomial for arguments tending to infinity, thereafter Fµj(v) can
be obtained as the difference between the polynomial and ψj . The exact nonparametric
statistical approach to this estimation will be examined later.

In subsection 2.2.2 we argued that, because of noise, the option function Oj(x) is not ob-

served, but an approximated version Õj(x). Therefore we need to approximate the function

ψj by some estimator ψ̃j . After observing the definition of the function ψ, a natural choice

for the estimator ψ̃j of the function ψj can be given by

ψ̃j(v) := ψ̃0
j (v)− ψ̃1

j (v)

:=
1

Tj − Tj−1
log≥κ(v,Tj)[φ̃Tj

(v − i)]− 1

Tj − Tj−1
log≥κ(u,Tj−1)[φ̃Tj−1

(v − i)],

:=
1

Tj − Tj−1
log≥κ(v,Tj)

[
1 + iv(1 + iv)F Õj(v)

]
− 1

Tj − Tj−1
log≥κ(v,Tj−1)

[
1 + iv(1 + iv)F Õj−1(v)

]
,

where after calibration using the interpolated observations Õj−l instead of Oj−l for l = 0, 1
we find the approximated version (σ̃j , γ̃j , µ̃j(x)) of (σj , γj , µj(x)). Note that a trimmed
logarithm log≥κ(v,Tj−l)

, l = 0, 1, defined by

log≥κ(v,Tj−l)
(z) :=

{
log(z), |z| ≥ κ(v, Tj−l),

log(κ(v, Tj−l)z/|z|), |z| < κ(v, Tj−l),

was used instead of the normal logarithm. The reason for this is that small errors in the
argument of the normal logarithm close to zero could result in large statistical errors. This
stabilization of the logarithm is mainly used for theoretical reasons; its practical importance
is minor [7, p. 8].

The complex trimmed logarithms are again taken such that ψ̃lj is continuous on (−v0, v0)
with ψ̃lj(0) = 0 and v0 being the smallest positive zero of φ̃Tj−l

.
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In the first section of the theoretical part, we will show a reasonable choice for the trimmed
value κ(v, Tj−l), and a proof will be given that with this trimmed value the estimator ψ̃j for
ψj is asymptotically well-defined.

2.4 Spectral Estimation of the Lévy Triplet

The exact estimation method of the parametric part (σ̃2
j , γ̃j , λ̃j) and the exponentially

weighted jump density µ̃j(x) = exν̃j(x) for j = 1, ..., n will now be worked out. The ex-
act problem is summarized below.

Problem 2.2 Given the approximated option price functions Õj(x) and Õj−1(x), nonpara-

metrically find best estimates of σ̃2
j , γ̃j , λ̃j and µ̃j from

ψ̃j(v) =
1

Tj − Tj−1
log≥κ(v,Tj)

[
1 + iv(1 + iv)F Õj(v)

]
− 1

Tj − Tj−1
log≥κ(v,Tj−1)

[
1 + iv(1 + iv)F Õj−1(v)

]
= −

σ̃2
j v

2

2
+ i(σ̃2

j + γ̃j)v + (σ̃2
j /2 + γ̃j − λ̃j) + F µ̃j(v). (2.15)

In the first chapter, it was already explained that for the Lévy-Khintchine representation
(1.2) we made the underlying assumption that µ̃j is absolutely continuous and of finite
activity. Then with the Riemann-Lebesgue lemma it can be shown that F µ̃j(v) → 0 as
|v| → ∞ (See, for example, Kawata [30, p. 43]).

Consequently, ψ̃ in expression (2.15) can be viewed, at least for large |v|, as a quadratic
polynomial in v with coefficients (σ̃2

j /2 + γ̃j − λ̃j , i(σ̃
2
j + γ̃j),−σ̃2

j /2), plus a part F µ̃j(v)
that vanishes for arguments tending to infinity. Using the decaying effect of F µ̃j(v), we will
regularize the problem by cutting off frequencies |v| higher than a certain “cutoff frequency”
Uj > 0, which may depend on smoothness assumptions and noise levels of the underlying
jump density.

Thus, the parametric part can be estimated using the following general optimization
problem, where the term F µ̃j(v) squared and weighted will be minimized,

inf
(σ̃j

2,γ̃j ,λ̃j)

∫
{|v|>Uj}

w̃Uj (v)
∣∣∣ψ̃j(v) + 1

2
σ̃2
j v

2 − i(σ̃j
2 + γ̃j)v − (σ̃2

j /2 + γ̃j − λ̃j)
∣∣∣2dv,

where w̃Uj is some nonnegative weight function that satisfies

w̃Uj (v) :=
1

Uj
w̃1

(
v

Uj

)
with w̃1(v) continuous, supp w̃1 ⊆ [0, 1] and w̃1(u) > 0 on (0,1). The estimation of the
parametric part can be understood as an orthogonal projection with respect to a weighted
L2 scalar product.

Let us expand on the exact reason why the weight function w̃Uj (v) is introduced. Be-
lomestny et al. [4] show that the deviation of ψ̃j(v) from ψj(v) increases exponentially in v
whenever σ̃j > 0. It is therefore advised to restrict the range of frequencies v used for esti-

mating the parametric part (σ̃2
j /2+γ̃j−λ̃j , i(σ̃2

j+γ̃j),−σ̃2
j /2). This task can be accomplished

by introducing the weight function w̃Uj (u).
The optimisation problem can be simplified by splitting the integrand in a real and

imaginary part

inf
(σ̃2

j ,γ̃j ,λ̃j)

∫
{|v|>Uj}

w̃Uj (v)
∣∣∣ψ̃j(v) + 1

2
σ̃2
j v

2 − i(σ̃j
2 + γ̃j)v − (σ̃2

j /2 + γ̃j − λ̃j)
∣∣∣2dv

= inf
(σ̃2

j ,γ̃j ,λ̃j)

∫
{|v|>Uj}

w̃Uj (v)

{(
Re(ψ̃j(v)) +

1

2
σ̃2
j v

2 − (σ̃2
j /2 + γ̃j − λ̃j)

)2



2.4 Spectral Estimation of the Lévy Triplet 17

+
(
Im(ψ̃j(v))− (σ̃j

2 + γ̃j)v
)2}

dv,

where we used that for z ∈ C it holds that |z|2 = Re(z)2 + Im(z)2.
Now using the linearity of the integral and the reparametrization

(σ̂2, γ̂, λ̂) = (σ̃2
j , (σ̃2

j + γ̃j), (σ̃2
j /2 + γ̃j − λ̃j)), (2.16)

the optimisation problem can be separated into two parts, namely

(σ̂2
j , λ̂j) := argmin

(σ2
j ,λj)

∫ Uj

−Uj

w̃Uj (v)

(
Re(ψ̃j(v)) +

1

2
σ2
j v

2 − λj

)2

dv and

γ̂j := argmin
γj

∫ Uj

−Uj

w̃Uj (v)
(
Im(ψ̃j(v))− γjv

)2
dv.

The solutions are found by straightforward calculations by taking partial derivatives and
identifying the minimum. For completeness, these calculations are done in the next subsec-
tions.

Solving for σ̂2
j and λ̂j

For solving the problem

(σ̂2
j , λ̂j) := argmin

(σ2
j ,λj)

∫ Uj

−Uj

w̃Uj (v)

(
Re(ψ̃j(v)) +

1

2
σ2
j v

2 − λj

)2

dv,

define the function g by

g(v) =

∫ Uj

−Uj

w̃Uj (v)

(
Re(ψ̃j(v)) +

1

2
σ2
j v

2 − λj

)2

dv.

By taking the partial derivatives ∂g(v)
∂σ2

j
and ∂g(v)

∂λj
, and setting these to zero, the following

results can be found

0 =
∂g(v)

∂σ2
j

=

∫ Uj

−Uj

w̃Uj (v)Re(ψ̃j(v))v
2dv +

1

2
σ2
j

∫ Uj

−Uj

w̃Uj (v)v4dv − λj

∫ Uj

−Uj

w̃Uj (v)v2dv,

0 =
∂g(v)

∂λj
= −2

∫ Uj

−Uj

w̃Uj (v)Re(ψ̃j(v))dv − σ2
j

∫ Uj

−Uj

w̃Uj (v)v2dv + 2λj

∫ Uj

−Uj

w̃Uj (v)dv.

These are two linear equations in σ2
j and λj that can easily be solved to find isolated

expressions for σ2
j and λj .

Solving for σ2
j and verifying that this is indeed a minimum gives

σ̂2
j =

∫ Uj

−Uj

wUj
σj
Re(ψ̃j(v))dv,

where we defined w
Uj
σj in terms of wUj as

wUj
σj
(v) := w̃Uj (v)

2
[(∫ Uj

−Uj
w̃Uj (s)ds

)
v2 −

∫ Uj

−Uj
w̃Uj (s)s2ds

]
(∫ Uj

−Uj
w̃Uj (s)s2ds

)2
−
∫ Uj

−Uj
w̃Uj (s)s4ds ·

∫ Uj

−Uj
w̃Uj (s)ds

.

The new weight function w
Uj
σj (v) inherits from w̃Uj (v) some rather natural conditions, first

of all, it is symmetric, and secondly
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−Uj

(−v2/2)wUj
σj
dv = 1 and

∫ Uj

−Uj

wUj
σj
dv = 0.

Furthermore, it can be seen that w
Uj
σj (v) =

1
U3

j
w1
σj
(v/Uj), where w

1
σj

is supported on [0, 1],

symmetric and bounded, because(∫ Uj

−Uj

w̃Uj (s)s2ds

)2

−
∫ Uj

−Uj

w̃Uj (s)s4ds ·
∫ Uj

−Uj

w̃Uj (s)ds > 0

by the Cauchy-Schwarz inequality.
Now solving for λj and verifying that it is a minimum gives

λ̂j =

∫ Uj

−Uj

w
Uj

λj
(v)Re(ψj(v))dv,

where we defined w
Uj

λj
in terms of w̃Uj as

w
Uj

λj
(v) := w̃Uj (v)

∫ Uj

−Uj
w̃Uj (s)s4ds−

(∫ Uj

−Uj
w̃Uj (v)s2ds

)
v2∫ Uj

−Uj
w̃Uj (s)s4ds ·

∫ Uj

−Uj
w̃Uj (s)ds−

(∫ Uj

−Uj
w̃Uj (v)s2ds

) .
The weight functions w

Uj

λj
(v) again inherits some natural conditions, it is symmetric, and∫ Uj

−Uj

w
Uj

λj
(v)dv = 1 and

∫ Uj

−Uj

(v2/2)w
Uj

λj
(v)dv = 1.

Next to this, the weight function can be written as w
Uj

λj
(v) = 1

Uj
w1
λj
(v/Uj) where w1

λj
is

supported on [0, 1] and bounded, again by the Cauchy-Schwarz inequality.

Solving for γ̂j

For solving the problem for γ̂j ,

γ̂j := argmin
γj

∫ Uj

−Uj

w̃Uj (v)
(
Im(ψ̃j(v))− γjv

)2
dv,

define the function h by

h(v) =

∫ Uj

−Uj

w̃Uj (v)
(
Im(ψ̃j(v))− γjv

)2
dv.

Setting the partial derivative ∂h/∂γ to 0, we find

0 =
∂h

∂γ
= −2

∫ Uj

−Uj

vw̃Uj (v)Im(ψ̃j(v))dv + 2γ

∫ Uj

−Uj

w̃Uj (v)v2dv.

Solving for γ and verifying that this is indeed a minimum gives the solution

γ̂j =

∫ Uj

−Uj

w̃Uj
γj (v)Im(ψ̃j(v))dv,

where we defined w̃
Uj
γj as

w̃Uj
γj (v) = w̃Uj (v)

v∫ Uj

−Uj
w̃Uj (s)s2ds

.
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The weight function w̃
Uj
γj (v) fulfills ∫ Uj

−Uj

vwUj
γj (v)dv = 1,

and w̃
Uj
γj (v) = 1

U2
j
w1
γj (v/Uj), where w

1
γj is an anti-symmetric function, supported on [0, 1]

and bounded.

End Results for σ̃2
j , γ̃j , λ̃j and ν̃j

The solutions for the original estimators (σ̃2
j , γ̃j , λ̃j) can be found after plugging back the

reparametrization (σ̂2, γ̂, λ̂) = (σ̃2
j , (σ̃

2
j + γ̃j), (σ̃

2
j /2 + γ̃j − λ̃j)) as in expression (2.16), this

results in

σ̃2
j =

∫ Uj

−Uj

wUj
σj
(v)Re(ψ̃j(v))dv,

γ̃j = −σ̃2
j +

∫ Uj

−Uj

wUj
γ (v)Im(ψ̃j(v))dv,

λ̃j =
σ̃2
j

2
+ γ̃j −

∫ Uj

−Uj

w
Uj

λj
(v)Re(ψ̃j(v))dv,

where the weight functions w
Uj
σj (v), w

Uj
γj (v) and w

Uj

λj
(v) satisfy∫ Uj

−Uj

−v2
2 wUj

σj
(v)dv = 1,

∫ Uj

−Uj

vwUj
γj (v)dv = 1,

∫ Uj

−Uj

w
Uj

λj
(v)dv = 1,∫ Uj

−Uj

wUj
σj
(v)dv = 0,

∫ Uj

−Uj

v2w
Uj

λj
(v)dv = 0.

Furthermore, w
Uj
σj (v) =

1
U3

j
w1
σj
(v/Uj) is symmetric, w

Uj
γj (v) =

1
U2

j
w1
γj (v/Uj) is antisymmet-

ric, and w
Uj

λj
(v) = 1

Uj
w1
λj
(v/Uj) is symmetric, with all normalised functions w1

σj
, w1

γj , and

w1
λj

bounded and supported on [0, 1].
The exponentially weighted jump density µ̃j can, thereafter, be estimated by the smoothed

inverse Fourier transform of the weighted difference of the quadratic polynomial and ψ̃j with
the found parameters, that is,

µ̃j(x) = F−1

[(
ψ̃j(·) +

σ̃2
j

2
(· − i)2 − iγ̃j(· − i) + λ̃j

)
wµj

(·)

]
(x), x ∈ R,

where w
Uj
µj (v) = w1

µj
(v/Uj) is a symmetric weight function supported on [−Uj , Uj ].

From practical applications, it is found that estimating the jump measure νj(x) directly
– instead of the exponentially weighted jump measure µ(x) = exνj(x) – leads to more stable
results,

ν̃j(x) = F−1

[(
ψ̃j(·+ i) +

σ̃2
j

2
(·)2 − iγ̃j(·) + λ̃j

)
wνj (·)

]
(x), x ∈ R.

For practical purposes, we define the shifted ψj by

ψ̃νj (v) := ψ̃j(v + i) =
1

Tj − Tj−1
log≥κ(v+i,Tj)

[
1− v(v + i)F Õj(v + i)

]
− 1

Tj − Tj−1
log≥κ(v+i,Tj−1)

[
1− v(v + i)F Õj−1(v + i)

]
.
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The version ψ̃νj has more stability in practical cases for estimating the density. The estima-
tion procedure for ν̃j(x) then becomes

ν̃j(x) = F−1

[(
ψ̃νj (·) +

σ̃2
j

2
(·)2 − iγ̃j(·) + λ̃j

)
wνj (·)

]
(x), x ∈ R. (2.17)

Due to the estimation error and the cut-off procedure, the estimated jump density ν̃j(x)
might take negative values and needs correction. Belomestny and Reiß [10, Section 2.6]
provide the following, a posteriori, correction procedure: find ν̂+j such that

||ν̃+j − ν̃j || → min, inf
x∈R

ν̃+j ≥ 0 subject to

∫
R
ν̃+j (x)dx =

∫
R
ν̃j(x)dx.

The solution can easily be shown to be

ν̃+j (x; ϱ) := max(0, ν̃j(x)− ϱ),

where ϱ is chosen to satisfy the equation∫
R
ν̃+j (u; ϱ)du =

∫
R
ν̃j(u; ϱ)du = λ̃j . (2.18)

This corrected density ν̃+j can be thought of as the density that is nonnegative and the
closest to ν̃j(x).

Now we have found a statistical method to calibrate all Lévy processes between two
maturities Tj−1 and Tj . Note that to find the whole time-inhomogeneous Lévy model we

need to do the calibration of (σ̃2
j , γ̃j , λ̃j , ν̃j(x)) for all j = 1, ..., n and thereafter “glue” them

all together.



Chapter 3

Theoretical Results

As is common in statistical estimation procedures, we are interested in the performance
and distribution of the created estimators of the last chapter. The calibration results on
real-life data and simulations are presented in the second half of this thesis. Before we tackle
the calibration from simulations and real-life data, it is good practice to investigate the
theoretical properties of the estimators. Therefore, in this chapter, the well-definedness and
asymptotic normality of the estimators will be proven.

First, the underlying assumptions for the results will be elucidated. We then show a
satisfactory parameter κ(v, Tj−l) of the complex trimmed logarithm and prove that the

estimator ψ̃j for ψj is asymptotically well-defined. Recall that this estimator is the basis of
the estimation of the Lévy triplet. Thereafter, the most important theoretical result will be
proven, namely that the estimators (σ̃2

j , γ̃j , λ̃j) are asymptotically normal. The asymptotic

normality of µ̃j will be proven afterward because the derivation differs from (σ̃2
j , γ̃j , λ̃j) by

the fact that it was obtained by an inverse Fourier transform of the remainder. Finally, the
optimal convergence rates of the parameters will also be looked upon.

We shall use throughout this chapter the notation A ≲ B if A is bounded by a constant
multiple of B, independently of the parameters involved, that is, in the Landau notation
A = O(B).

3.1 Underlying Assumptions

Before these derivations are done we need to impose some important underlying assumptions
that will be the basis of all theoretical results.

Assumptions of the Lévy Triplets

The assumptions we will lay upon the underlying parameters of the time-inhomogeneous
Lévy process (σ2

j , γj , λj , µj) are presented below in Definition 3.1.

Definition 3.1 For integers sj ≥ 0, and R, σmax > 0, let Gnsj (R, σmax) denote the set of all

Lévy triplets τ = (σ2
j , γj , µj)j=1,...,n such that for all j = 1, ..., n, µj is sj-times (weakly)

differentiable, the martingale condition (2.4) and finite second moment assumption (2.5) are
satisfied, and

σj ∈ (0, σmax], |γj |, λj ∈ [0, R], max
k=0,..,s

||µ(k)
j ||L2(R) ≤ R, and ||µ(sj)

j ||∞ ≤ R.

This definition makes multiple assumptions, some may be directly clear to one reader and
unclear to another. The reasoning behind these assumptions will, therefore, now be discussed.

Recall that expression (2.4) was the martingale condition and is the basis of the fact
that the model is a martingale under the risk-neutral measure Q. Expression (2.5) was the
assumption that the variance of the path of the underlying security St, which is modeled
by an exponential time-inhomogeneous Lévy model, must be finite. This reassured that the
Fourier transform of Oj exists and is well-defined.

21
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The parameters R and σmax are introduced to bound the to-be-estimated parameters —
we do not want the underlying parameters to be “too large”. In the case that the parameters
become too large, it is difficult to construct a statistically stable estimation method because
then we will not have any guarantee that the argument in the logarithm of ψj is bounded from
below by a positive constant. This can result in two undesirable outcomes: 1) a statistically
unstable estimation method, and/or, 2) an extra bias term.

The assumption is imposed that µj is sj times differentiable. Recall that the jump density
νj was coupled to the exponentially weighted jump density µj by µj(x) = exνj(x), such that
νj is also sj times differentiable. To show the theoretical results, the exact value of the
integer sj ≥ 0 does not matter that much, even for small values the results still hold. The
value matters most for the speed of convergence and performance of the statistical model,
the smoother µj , i.e. the bigger sj , the faster the convergence rate. Next to that the value sj
also plays a crucial role in the determination of the optimal cut-off values Uj . In empirical
results, sj is, of course, not known a priori, and here we need to assume the smoothness of
the underlying security. This will be elaborated at the empirical results.

Assumptions of the Weight Functions

The exact choice of the weight functions w1
σ2
j
(v), w1

γj (v), w
1
λj
(v), and w1

λj
(v) will not matter

for the theoretical results. Definition 3.2 will only impose some conditions the considered
weight functions need to obey.

Definition 3.2 For an integer sj ≥ 0, let Wn
sj denote the set of all weight function w1

σj
,

w1
γj , w

1
λj

and w1
µj

that satisfy the implied conditions of section 2.4, and

w1
σ2
j
(v)/vsj , w1

γj (v)/v
sj , w1

λj
(v)/vsj , (1− w1

µj
(v))/vsj ∈ L2(R),

F [w1
σ2
j
(v)/vsj ],F [w1

γj (v)/v
sj ],F [w1

λj
(v)/vsj ],F [(1− w1

µj
(v))/vsj ] ∈ L1(R).

In Definition 3.2 the smoothness parameter sj for µj is the same as in Definition 3.1.
The implied conditions of section 2.4 were the conditions that these weight functions

inherited from the statistical estimation procedure. Of course, if we choose weight functions
ourselves, we want those conditions to be valid. Otherwise, the estimation procedure can be
invalid.

The L2(R)-integrability assumptions of the weight functions w1
σ2
j
, w1

γj , w
1
λj

divided by

vsj , and also the L1(R)-integrability of their Fourier transforms, are necessary to make sure
that the integrals in the theoretical results will be well behaved.

Assumptions of the Interpolation Scheme

Recall the underlying regression model (2.9)

Oj,k = Oj(xj,k) + δj,kεj,k, k = 1, ..,mj .

By the noise introduced in this regression model, we can not observeOj(x) directly and called

the empirical observed counterpart Õj(x). In the theoretical results, out of simplification
and previous work by Tendijck [46], Belomestny and Reiß [7], a linear spline will be used to
construct Õj(x), i.e.

Õj(x) = β0,j(x) +

mj∑
k=1

Oj,kbj,k(x), x ∈ R,

where (bj,k) are linear splines and the function β0 is added to take care of the jump in the
derivative of O at zero: β′

0(0+)−β′
0(0−) = −1. In particular, bj,k is chosen as the triangular

function, i.e., bj,k(x) = Λ(
x−xj,k

xj,k+1−xj,k ) with Λ(x) = (1− |x|)1|x|≤1.
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It is important to keep in mind that in the statistical estimation model we already made
the underlying assumption that (εj,k) are independent (in j and k) centered sub-Gaussian
random variables with V[εj,k] = 1.

The magnitude of the error is modeled by the factor δj,k > 0. For this δj,k we assume that
it can be modeled by a certain L2+η(R)-integrable function δj with η > 0 such that at the
design points δj,k = δj(xj,k). This assumption must be made to make sure the asymptotic
variance of the to-be-found asymptotic normal distribution of the parameters does exist.

For the asymptotics in the theoretical results, we need a growing number of observations
to identify the whole option function Oj(x) for all x ∈ R,

∆j := max
k=2,...,mj

|xj,k − xj,k−1| → 0 and Aj := min(xj,mj
,−xj,1) → ∞. (3.1)

These conditions ensure that the observations will now contain the whole x-axis.
Another assumption that will be made in the theoretical results is that the log-forward

moneyness grid {xj,k : k = 1, ...,mj} will be equidistant such that

∆j = |xj,k − xj,k−1| for all k = 2, ...,mj ,

is a constant. This will make the theoretical calculations easy and concise without seriously
affecting the model and the results.

Using the interpolation scheme (2.12), a useful result that relates the error of the estimator
of the characteristic function φ̃Tj−l

to φTj−l
can be found

φ̃Tj−l
(v − i)− φTj−l

(v − i) = iv(1 + iv)F (Õj−l(x)−Oj−l(x))(v)

= iv(1 + iv)F

(mj−l∑
k=1

(Oj−l,k −Oj−l(xj,k))bj−l,k(x)

)
(v)

= iv(1 + iv)

mj−l∑
k=1

δj,kεj,kF bj,k(v). (3.2)

For calculating F bj,k(v), recall that in the interpolation scheme (2.12), (bj,k) were chosen as

bj,k(x) = Λ(
x−xj,k

xj,k+1−xj,k
) with Λ(x) = (1− |x|)1|x|≤1. Remember that the triangular function

Λ(x) is the convolution of two box functions Π(x) = 1|x|≤1/2, and that the Fourier transform
of the box function is FΠ(v) = sinc(v/2) = sin(v/2)/(v/2). This convolution transforms
into a product in the spectral domain, therefore

FΛ(v) = F (Π ∗Π)(v) = sinc2(v/2).

Now the Fourier transform of bj,k(x) = Λ(
x−xj,k

xj,k+1−xj,k
) is found by using the scale- and

time-shift properties of the Fourier transform

F bj,k(v) = ∆je
ivxj,k sinc2(∆jv/2), (3.3)

where we use the assumption of an equidistant grid.

3.2 The Estimator ψ̃j for ψj

The estimator ψ̃j of ψj in the model section was defined as

ψ̃j(v) =
1

Tj − Tj−1
log≥κ(v,Tj)

[
1 + iv(1 + iv)F Õj(v)

]
− 1

Tj − Tj−1
log≥κ(v,Tj−1)

[
1 + iv(1 + iv)F Õj−1(v)

]
.

There were still two theoretical open-ended questions that needed to be answered for the
estimator ψ̃j , namely:
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1. how to choose the trimmed value κ(v, Tj−l),
2. is the estimator ”well-defined”.

3.2.1 Choice of Trimmed Value κ(v, Tj−l)

The martingale condition in expression (2.4) can also be written as

σ2
j

2
+ γj +

∫
R
(ex − 1)νj(x)dx = 0 ⇐⇒

σ2
j

2
+ γj − λj = −Fµj(0). (3.4)

The general idea of the trimmed value κ(v, Tj−l) was to prevent unboundedness in the case
of large stochastic errors, with this in mind we introduced the trimmed logarithm which

ensures that |ψ̃j(v)| ≥
∣∣ log ( κ(v,Tj)

κ(v,Tj−1)

) ∣∣, this result trivially follows from the definition of

the trimmed logarithm.
The goal of this section is that for Lévy triplets in Gnsj (R, σmax) we want to define

a lower bound for |φ̃Tj (v − i)|. Using expression (3.4) and the fact that Re(Fµj(v)) =∫
R µj(x) cos(x)dx ≥ −||µj ||L1 we can first find∣∣∣∣ φTj (v − i)

φTj−1
(v − i)

∣∣∣∣ = ∣∣e(Tj−Tj−1)ψj(v)
∣∣ = ∣∣e(Tj−Tj−1)(−

σ2
j v2

2 +i(σj+γj)v+(
σ2
j
2 +γj−λj)+Fµj(v))

∣∣
= e(Tj−Tj−1)(−

σ2
j v2

2 +(
σ2
j
2 +γj−λj)+Re(Fµj(v)))

(3.4)
= e(Tj−Tj−1)(−

σ2
j v2

2 −Fµj(0)+Re(Fµj(v)))

= e(Tj−Tj−1)(−
σ2
j v2

2 −||µj ||L1+Re(Fµj(v)))

≥ e(Tj−Tj−1)(−
σ2
j v2

2 −2||µj ||L1 )

def 3.1
≥ e(Tj−Tj−1)(−

σ2
j v2

2 −2R) =: 2K(Tj − Tj−1, σj , R, v) (3.5)

The factor two in the definition is useful for mathematical tractability in the bound later on
in Proposition 3.1. With expression (3.5), it is easy to find a desired lower bound

|φTj
(v − i)| =

j∏
r=1

∣∣∣∣ φTr (v − i)

φTr−1
(v − i)

∣∣∣∣ ≥ j∏
r=1

2K(Tr − Tr−1, σi, R, v)

= e−
∑j

r=1(Tr−Tr−1)σ2
rv2

2 −(
∑j

r=1 Tr−Tr−1)2R

def 3.1
≥ e−Tj(

σ2
maxv2

2 −2R) =: 2κ(v, Tj). (3.6)

Hence, the trimmed value for l = 0, 1 can be chosen as κ(v, Tj−l) = 1
2e

−Tj−l(
σ2
maxv2

2 −2R).
Note that κ(v, Tj−l) is a decreasing function in the first argument. The bound in expressions
(3.5) will also be of great importance in the rest of the theoretical results.

3.2.2 Asymptotically Well-Definedness of ψ̃j for ψj

For the estimation procedure to work properly, the estimator ψ̃j does not need to blow up,
this happens whenever φ̃Tj

(v − i) = 0 for some j = 1, ..., n [40, p.8]. In this section, we will
therefore prove that P(φ̃Tj (v − i) = 0) = 0 for all j = 1, ..., n. This result will be proven to
be asymptotically true if the cut-off value Uj does not converge too quickly to infinity, when
the maximum distance between the observations ∆j converges to zero, i.e., one quantity can
be expressed as an intermediate sequence with respect to the other quantity.

The result P(φ̃Tj
(v− i) = 0) = 0 for all j = 1, ..., n will be shown by stating the result of

Proposition 3.1. The proof of Proposition 3.1 can be found at the end of this section.
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Proposition 3.1 Let j ∈ {1, ..., n} and k ∈ {1, ...,mj}. Assume that the error distributions
(εj,k) consists of independent centered sub-Gaussian random variables with V[εj,k] = 1.
Choose the cut-off value Uj and grid size ∆j such that

∆jU
4
j logUje

U2
j

∑j
r=1(Tr−Tr−1)σ

2
r → 0 when Uj → ∞ and ∆j → 0.

If there exists a constant p > 1 with limUj→∞∆j

∑mj

k=1 δ
2
j,k(1 + |xj,k|p) <∞, then

lim
Uj→∞

P

(
sup

v∈[0,Uj ]

|φ̃Tj
(v − i)− φTj

(v − i)| > inf
v∈[0,Uj ]

j∏
r=1

K(Tr − Tr−1, σr, R, v)

)
= 0.

To show the well-definedness of the complex logarithm, the result of Lemma 3.1 below
will be utilized. 1

Lemma 3.1 Let f, g : [0, T ] → C be two continuous functions with |f(t)| > C, |f(t)−g(t)| ≤
C for all t ∈ [0, T ] and arg f(0) = arg g(0). If arg is chosen such that t → arg γ(t) is
continuous for a continuous function γ(t), then

sup
t∈[0,T ]

| arg g(t)− arg f(t)| ≤ π.

In expression (3.6) it was deduced that 2j−1
∏j
r=1K(Tr − Tr−1, σr, R, v) ≥ κ(v, Tj). Propo-

sition 3.1 then states that asymptotically with probability tending to one

sup
v∈[0,Uj ]

|φ̃Tj
(v − i)− φTj

(v − i)| ≤ inf
v∈[0,Uj ]

κ(v, Tj) = κ(Uj , Tj),

where we used that κ is a decreasing function in the first argument. Moreover (3.6) gives
|φTj (v− i)| > 2κ(v, Tj) > κ(Uj , Tj) and it is easy to see that arg φ̃Tj (−i) = argφTj (−i) = 0.
All the conditions of Lemma 3.1 are satisfied, thus asymptotically with probability one,

sup
v∈[0,Uj ]

| arg φ̃Tj (v − i)− argφTj (v − i)| ≤ π

and, thereby,

lim
Uj→∞

P

(
sup

v∈[0,Uj ]

| arg φ̃Tj
(v − i)− argφTj

(v − i)| > π

)
= 0. (3.7)

Expression (3.7) shows that the branches of the complex logarithms are taken similarly and
that the estimated characteristic function is distinct from zero everywhere.

Proof (Proposition 3.1) Applying Markov’s inequality with the convex function x2 we get

P

(
sup

v∈[0,Uj ]

|φ̃Tj
(v − i)− φTj

(v − i)| > 2j−1 inf
v∈[0,Uj ]

j∏
i=r

K(Tr − Tr−1, σr, R, v)

)

≤
E
[
supv∈[0,Uj ] |φ̃Tj

(v − i)− φTj
(v − i)|2

]
(
2j−1 infv∈[0,Uj ]

∏j
r=1K(Tr − Tr−1, σr, R, v)

)2 .
The main difficulty in simplification of the expression above is in the term |φ̃Tj (v − i) −
φTj (v − i)|2. Using (3.2) we can write

|φ̃Tj
(v − i)− φTj

(v − i)|2 =
∣∣iv(1 + iv)

mj∑
k=1

δj,kεj,kF bj,k
∣∣2 =: ∆j(v

4 + v2)|G(v)|2

1 In the rest of the thesis, all proofs of the intermediate lemmata can be found in the appendix.
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with G(v) := 1√
∆j

∑mj

k=1 δj,kεj,kF bj,k(v). We will bound the function G(v) using an entropy

argument and Dudley’s theorem, i.e., we will bound the difference |G(v) − G(w)| in terms
of |v − w|. Let q ∈ [0, 1], then

∆jE[|G(v)−G(w)|2] = E

[∣∣∣∣ mj∑
k=1

δj,kεj,k

∫
R
bj,k(x)(e

ixv − eixu)dx

∣∣∣∣2
]

IND
=

mj∑
k=1

δ2j,k

∣∣∣∣ ∫
R
bj,k(x)(e

ixv − eixu)dx

∣∣∣∣2 ≤
mj∑
k=1

δ2j,k

(∫
R
bj,k(x)min(2, |v − w||x|)dx

)2

=

mj∑
k=1

δ2j,k

(∫
|x|>2/(v−w)

2bj,k(x)dx+

∫
|x|≤2/(v−w)

bj,k(x)|v − w||x|dx
)2

≤
mj∑
k=1

δ2j,k

(∫
|x|>2/(v−w)

2bj,k(x)

(
|x||v − w|

2

)q
dx

+

∫
|x|≤2/(v−w)

bj,k(x)|v − w||x|
(

2

|x||v − w|

)1−q

dx

)2

=

mj∑
k=1

δ2j,k

(∫
R
21−qbj,k(x)|x|q|v − w|qdx

)2

= |v − w|2q22−2q

mj∑
k=1

δ2j,k

(∫
R
bj,k(x)|x|qdx

)2

≤ |v − w|2q22−2q

mj∑
k=1

δ2j,k

(∫ xj,k+1

xj,k−1

bj,k(x)|x|qdx
)2

≤ |v − w|2q22−2q

mj∑
k=1

δ2j,k(xj,k+1 − xj,k−1)
2|max{xj,k+1, xj,k−1}|2q

≤ |v − w|2q24−2q∆2
j

mj∑
k=1

δ2j,k(|xj,k|+∆j)
2q

Lemma 3.2 below can simplify this last expression even further.

Lemma 3.2 Let q, x ∈ R and c > 0, then (x2 + c)2q ≤ max{22q−1, 1}((x2)2q + c2q), where
in the case of x = q = 0 it should be read as (x2)2q = 1.

For some q ∈ [0, 1] we have that max{22q−1, 1} ≤ 2, and we can then finally bound the
difference

∆jE[|G(v)−G(w)|2] ≤ |v − w|2q25−2q∆2
j

mj∑
k=1

δ2j,k(|xj,k|2q +∆2q
j ) <∞,

where the finiteness follows from the second assumption of the proposition with q =
min{p/2, 1}.

With regards to the entropy argument, there thus exists a c > 0 such that

d(v, w) :=
√
E[|G(v)−G(w)|2] ≤ c|v − w|H =: ρ(v, w),

with H = q = min{p/2, 1}. So, Bρ(x, r) ⊂ Bd(x, r) for all x ∈ R and r > 0, and thus
Nd(X, r) ≤ Nρ(X, r) for sets X and all r > 0.

Before we can apply Dudley’s theorem, the metric entropy needs to be estimated. Firstly,
notice that there exists a D ∈ R such that d(v, w) ≤ D for all v, w ∈ R. This is immediate
when one applies the inequality

∣∣eix − eiy
∣∣ ≤ 2 for x, y ∈ R.

The covering number of [0, Uj ] of the metric ρ given a radius r is equal to

Nρ ([0, Uj ] , r) =
⌈
Uj(c/r)

1/H/2
⌉
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The asymptotic assumption is made that Uj is large enough such that Uj ≥ (eD/c)1/H ,
then

Nρ ([0, Uj ] , r) ≤ Uj(c/r)
1/H .

We can now estimate the metric entropy

J ([0, Uj ] , d) :=

∫ ∞

0

√
log (Nd ([0, Uj ] , r))dr =

∫ D

0

√
log (Nd ([0, Uj ] , r))dr

≤
∫ D

0

√
log (Nρ ([0, Uj ] , r))dr ≤

∫ D

0

√
log
(
Uj(c/r)1/H

)
dr

= H−1/2

∫ D

0

√
log
(
UHj (c/r)

)
dr = cH−1/2UHj

∫ D/(UH
j c)

0

√
log(1/s)ds

≤ cH−1/2UHj ·D/
(
UHj c

)√
log
((
UHj c

)
/D
)
=
√

log (Uj) + log
(
c1/H/D1/H

)
≲
√

logUj .

Some further explanation about the steps in this derivation needs to be given. Firstly, note
that if x := D/

(
UHj c

)
≤ e−1, then log x−1 ≥ 1. Now the integral is solved and estimated as

follows ∫ x

0

√
log(1/s)ds =

√
π

2
·
(
1− Erf

(√
log x−1

))
+ x
√

log x−1,

with

Erf(x) :=
2√
π

∫ x

0

e−s
2

ds.

This can be further simplified using

1− Erf
(√

log x−1
)
≤ exp

(
− log x−1

)
/
(√

π
√
log x−1

)
=

x√
π
· 1√

log x−1
.

Then if we use log x−1 ≥ 1,∫ x

0

√
log(1/s)ds ≤ x

2
·

(
1√

log x−1
+
√
log x−1

)
≤ x

√
log x−1.

Dudley’s theorem now states that for all Uj > 0 we have a version of the process which
is almost surely continuous on [0, Uj ] for the metric d. Moreover, it provides the following
bound [50, Corollary 2.2.8] for all a ≥ 1

E

[
sup

v∈[0,Uj ]

|G(v)|a
]
≲ (logUj)

a/2
.

Note that we now found a way to bound the described difficult term in Markov’s inequality

P( sup
v∈[0,Uj ]

∣∣φ̃Tj
(v − i)− φTj

(v − i)
∣∣ > 2j−1 inf

v∈[0,Uj ]

j∏
r=1

K (Tr − Tr−1, σr, R, v)

)

≤ E

[
sup

v∈[0,Uj ]

∣∣φ̃Tj (v − i)− φTj (v − i)
∣∣2] ·(2j−1 inf

v∈[0,Uj ]

j∏
r=1

K (Tr − Tr−1, σr, R, v)

)−2

≤ ∆j

(
U4
j + U2

j

)
E

[
sup

v∈[0,Uj ]

|G(v)|2
]
· 22−2j

j∏
r=1

(K (Tr − Tr−1, σr, R, Uj))
−2

≤ ∆j

(
U4
j + U2

j

)
E

[
sup

v∈[0,Uj ]

|G(v)|2
]
· 4 exp

(
U2
j ·

j∑
r=1

(Tr − Tr−1)σ
2
r − 4RTj

)
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≲ ∆jU
4
j log (Uj) · exp

(
U2
j ·

j∑
r=1

(Tr − Tr−1)σ
2
r

)
,

where we used that asymptotically when Uj → ∞ the U4
j term dominates the U2

j term. By
the assumption of the proposition, the last bound found converges to 0. □

3.3 Asymptotic Normality of (σ̃2
j , γ̃j, λ̃j)

This section is devoted to the main theoretical result of this thesis, namely that the estima-
tors (σ̃j , γ̃j , λ̃j)j=1,...,n for (σj , γj , λ̃j)j=1,...,n are asymptotically normal. As can be seen in

the spectral estimation part, the estimators (σ̃j , γ̃j , λ̃j)j=1,...,n bear great resemblance and
are therefore treated together. Whereas (µ̃j(x))j=1,...,n has a different estimation procedure
with an inverse Fourier transform, and will therefore be treated separately afterward.

To the end of showing the normality of (σ̃j , γ̃j , λ̃j)j=1,...,n, we will first make a decom-
position of the errors of the estimators in Bias terms, Linear terms, and Remainder terms.
Thereafter, it will be shown that asymptotically, the Bias and Remainder terms are negligible
to the Linear terms, and that the Linear terms asymptotically admit a normal distribution.

For conciseness, the case of the volatility estimator σ̃j will be completely evaluated, and

because the estimators γ̃j and λ̃j bear great resemblance, the differences in the proofs of
these estimators will be given at the end of every section.

The Greek letter ξj will sometimes be used to generalize that a given expression is valid
for all ξj ∈ {σj , γj , λj}

3.3.1 Error Decomposition

The error analysis will be exemplified by considering σ̃2
j −σ2

j . By expressions (2.14) and the
properties of the weight functions, we can decompose the error into

σ̃2
j − σ2

j =

∫ Uj

−Uj

wUj
σj
(v)Re

(
ψ̃j(v)− ψj(v)

)
dv +

∫ Uj

−Uj

wUj
σj
(v)Re (ψj(v))) dv − σ2

j

=

∫ Uj

−Uj

wUj
σj
(v)Re

(
ψ̃j(v)− ψj(v)

)
dv +

∫ Uj

−Uj

wUj
σj
(v)Re (Fµj(v))) dv

=

∫ Uj

−Uj

wUj
σj
(v)Re

(
ψ̃0
j (v)− ψ0

j (v)
)
dv +

∫ Uj

−Uj

wUj
σj
(v)Re

(
ψ̃1
j (v)− ψ1

j (v)
)
dv︸ ︷︷ ︸

Stochastic Error

+

∫ Uj

−Uj

wUj
σj
(v)Re (Fµj(v)) dv︸ ︷︷ ︸

Bias

.

In the first line to the second line, we used the conditions of the weight functions
∫ Uj

−Uj
(−v2/2)wUj

σj (v)dv =

1 and
∫ Uj

−Uj
w
Uj
σj (v)dv = 0 such that with expression (2.15) it follows that

∫ Uj

−Uj

wUj
σj
(v)Re (ψj(v))) dv − σ2

j

=

∫ Uj

−Uj

wUj
σj
(v)Re (ψj(v))) dv − σ2

j

∫ Uj

−Uj

(−v2/2)wUj
σj
(v)dv − (

σ2
j

2
+ γj − λj)

∫ Uj

−Uj

wUj
σj
(v)dv

=

∫ Uj

−Uj

wUj
σj
(v)

{
Re(ψj(v)) +

σ2
j v

2

2
− (

σ2
j

2
+ γj − λj)

}
dv

(2.15)
=

∫ Uj

−Uj

wUj
σj
(v)Re (Fµj(v)) dv.
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Recall that for l = 0, 1, we did define

ψ̃lj(v)− ψlj(v) =
1

Tj − Tj−1

[
log≥κ(v,Tj−l)

(φ̃j−l(v − i))− log(φj−l(v − i))
]
.

Neglecting the stabilisation of κ(v, Tj−l), we will split the Taylor approximation of the
logarithm log(φ̃j−l(v − i)/φj−l(v − i)) into a first-order term (linearisation) Llj(v) and a

remainder term Rl
j(v):

Llj(v) =
1

Tj − Tj−1

φ̃Tj−l
(v − i)− φTj−l

(v − i)

φTj−l
(v − i)

and Rl
j(v) = ψ̃lj(v)−ψlj(v)−Llj(v). (3.8)

Using the terms of (3.8), the error decomposition becomes

σ̃2
j − σ2

j =

∫ Uj

−Uj

wUj
σj
(v)Re

(
L0
j (v)

)
dv −

∫ Uj

−Uj

wUj
σj
(v)Re

(
L1
j (v)

)
dv

+

∫ Uj

−Uj

wUj
σj
(v)Re

(
R0
j (v)

)
dv −

∫ Uj

−Uj

wUj
σj
(v)Re

(
R1
j (v)

)
dv

+

∫ Uj

−Uj

wUj
σj
(v)Re (Fµj(v)) dv

=: L 0
σ2
j
− L 1

σ2
j
+ R0

σ2
j
− R1

σ2
j
+ Bσ2

j
. (3.9)

The idea is that we will show that the difference of the linear terms L 0
σ2
j
−L 1

σ2
j
is asymp-

totically normal with some standard deviation sn and, secondly, we will show that the bias
term Bσ2

j
and remainder terms R0

σ2
j
,R1

σ2
j
divided by sn are asymptotically negligible with

respect to the Linear terms L 0
σ2
j
,L 1

σ2
j
. Then we can conclude

σ̃2
j − σ2

j

sn
=

L 0
σ2
j
− L 1

σ2
j

sn
+

R0
σ2
j
− R1

σ2
j

sn
+

Bσ2
j

sn

d→ N (0, 1),

where d stands for convergence in distribution.
From the spectral estimators of γ̃j and λ̃j it can be seen that it is useful — in the same

manner as in the estimating part — to restrict the error decomposition of these estimators
to the parametrizations γ̂j := γ̃j + σ̃2

j and λ̂j := λ̃j − σ̃2
j /2− γ̃j instead of simply γ̃j and λ̃j .

Following a similar line of thought of first decomposing the bias term and stochastic error
term, and then writing the stochastic error term in a first order and remainder term, we get

(γ̃j+σ̃
2
j )− (γj + σ2

j ) =

∫ Uj

−Uj

wUj
γj Im

(
L0
j (v)

)
dv −

∫ Uj

−Uj

wUj
γj Im

(
L1
j (v)

)
dv

+

∫ Uj

−Uj

wUj
γj Im

(
R0
j (v)

)
dv −

∫ Uj

−Uj

wUj
γj Im

(
R1
j (v)

)
dv +

∫ Uj

−Uj

wUj
σj
Im (Fµj(v)) dv

=: L 0
γj − L 1

γj + R0
γj − R1

γj + Bγj , and (3.10)

(λ̃j−σ̃2
j /2− γ̃j)− (λj − σ2

j /2− γj) =

∫ Uj

−Uj

w
Uj

λj
Re
(
L0
j (v)

)
dv −

∫ Uj

−Uj

w
Uj

λj
Re
(
L1
j (v)

)
dv

+

∫ Uj

−Uj

w
Uj

λj
Re
(
R0
j (v)

)
dv −

∫ Uj

−Uj

w
Uj

λj
Re
(
R1
j (v)

)
dv +

∫ Uj

−Uj

w
Uj

λj
Re (Fµj(v)) dv

=: L 0
λj

− L 1
λj

+ R0
λj

− R1
λj

+ Bλj
. (3.11)
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Note that the main differences between the error decompositions are due to the properties

of the different weight functions w
Uj
σj , w

Uj
γj ,w

Uj

λj
∈ Wn

sj and the different use of Re and Im.

3.3.2 Asymptotic Normality of Linear Terms L l
ξj

The asymptotic normality of the linear terms L 0
ξj
,L 1

ξj
for ξj ∈ {σ2

j , γj , λj} will be shown.

The whole derivation of L l
σ2
j
is presented, and the deviations of L l

γj , L l
λj

will be noted at

the end of the section.
First of all for l = 0, 1 recall that

Llj(v) =
1

Tj − Tj−1

φ̃Tj−l
(v − i)− φTj−l

(v − i)

φTj−l
(v − i)

and L l
σ2
j
=

∫ Uj

−Uj

wUj
σj
Re
(
Llj(v)

)
dv.

The asymptotic normality will be shown by writing L l
σ2
j
as a sum of the error distribution of

the regression model (εj,k), which were centered independent sub-Gaussian random variables
with V[εj,k] = 1. Thereafter, we will show that the conditions of Theorem 3.1 below hold 2,
and conclude that L l

σ2
j
is asymptotically normal.

Theorem 3.1 (Lyapunov CLT)

Let X1, X2, ..., Xn be independent random variables such that E[Xi] = 0 and V[Xi] =
σ2
i < ∞ for all i = 1, ..., n. Define Tn =

∑n
i=1Xi and s2n =

∑n
i=1 σ

2
i , then the following

relation holds(
∃η > 0 : lim

n→∞

1

s2+ηn

n∑
i=1

E[|Xi|2+η] = 0

)
=⇒

(
1

sn
Tn →d N (0, 1)

)
. (3.12)

The condition on the left-hand side is known as the Lyapunov condition.

Using (3.2), we can first write Llj(v) as

Llj(v) =
1

Tj − Tj−1

iv(1 + iv)
∑mj−l

k=1 δj,kεj−l,kF bj−l,k(v)

φTj−l
(v)

. (3.13)

Note that all the randomness is portrayed in the distribution (εj−l,k). Next to that, with
the Lévy-Khintchine expression (1.2), the deterministic function φTj−l

can be written as

φTj−l
(v − i) =

j−l∏
r=1

φTr
(v − i)

φTr−1
(v − i)

= exp

(
−v2

2

(
j−l∑
r=1

(Tr − Tr−1)σ
2
r

)
+ iv

(
j−l∑
r=1

(Tr − Tr−1)
(
σ2
r + γr

))

+

(
j−l∑
r=1

(Tr − Tr−1)

(
σ2
r

2
+ γr − λr

))
+

(
j−l∑
r=1

(Tr − Tr−1)Fµr(v)

))

=: exp

(
−v

2

2
Aj−l + ivBj−l + Cj−l +Dj−l(v)

)
. (3.14)

At this moment, the goal is to write L l
σ2
j
as a sum of the independent (εj,k), such that we

are in the form of Theorem 3.1. Using the properties of the weight function wσj ∈ Wn
sj and

expression (3.13) gives the result

2 Theorem 3.1 is the so-called Lyapunov Central Limit Theorem, which is generalized by the famous
Lindeberg Central Limit Theorem.
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L l
σ2
j
=

∫ Uj

−Uj

Re
(
Llj(v)

)
wUj
σj
(v)dv = Uj

∫ 1

−1

Re
(
Llj (vUj)

)
wUj
σj

(vUj) dv

= U−2
j

∫ 1

−1

Re
(
Llj (vUj)

)
w1
σj
(v)dv

= U−2
j

∫ 1

0

Re
(
Llj (vUj)

)
w1
σj
(v)dv + U−2

j

∫ 1

0

Re
(
Llj (−vUj)

)
w1
σj
(−v)dv

= U−2
j

∫ 1

0

Re
(
Llj (vUj)

)
w1
σj
(v)dv + U−2

j

∫ 1

0

Re
(
Llj (vUj)

)
w1
σj
(v)dv

= 2U−2
j

∫ 1

0

Re
(
Llj (vUj)

)
w1
σj
(v)dv

=
2U−2

j

Tj − Tj−1

mj−l∑
k=1

δj−l,kεj−l,k Re

(∫ 1

0

ivUj (1 + ivUj)F bj−l,k (vUj)

φTj−l
(vUj − i)

w1
σj
(v)dv

)
.

(3.15)

If, for k = 1, ...,mj−l, we define random variables

Xk :=
2U−2

j

Tj − Tj−1
δj−l,kεj−l,k Re

(∫ 1

0

ivUj (1 + ivUj)F bj−l,k (vUj)

φTj−l
(vUj − i)

w1
σj
(v)dv

)
,

then, from the properties that (εj,k) are independent centered random variables with
V[εj,k] = 1, it follows that (Xk) are independent centred random variables with V[Xk] =
σ2
k < ∞. Note that this is exactly the setting of Theorem 3.1 where L l

σ2
j

= Tmj−l
=∑mj−l

k=1 Xk.
Now for the normality of L l

σ2
j
=
∑mj−l

k=1 Xk the Lyapunov condition needs to be shown.

Firstly, the asymptotic variance s2n,l of L l
σ2
j
will be looked upon. The result is stated as a

proposition because the proof is rather tedious and enduring.

Proposition 3.2 Let s2n,l =
∑mj

k=1 σ
2
k with σ2

k = V[Xk] < ∞ for k = 1, ...,mj and let
δj−l ∈ Lη(R) for η ≥ 2 and l = 0, 1. As Uj tends to infinity, then

s2n,l = w1
σj
(1)2dj,j−l∆j−lU

−4
j exp

(
Aj−lU

2
j

)
,

where we defined the constant

dj,j−l := 2 ∥δj−l∥2L2 (Tj − Tj−1)
−2
A−2
j−l exp (−2Cj−l) ,

and the terms Aj−l and Cj−l are as in expression (3.14).

Proof (Proposition 3.2) Using that V[εj−l,k] = 1, it follows that

s2n,l =

mj−l∑
k=1

σ2
k =

4U−4
j

(Tj − Tj−1)
2

mj−l∑
k=1

δ2j−l,k Re
2

(∫ 1

0

ivUj (1 + ivUj)F bj−l,k (vUj)

φTj−l
(vUj − i)

w1
σj
(v)dv

)
.

Instead of computing the real part immediately, we will make use of the following identity

Re2 z =

(
z + z̄

2

)2

=
1

4

(
z2 + 2zz̄ + z̄2

)
,

and compute the three different parts instead. The problem can then be decomposed to

s2n,l =
U−4
j

(Tj − Tj−1)
2

mj−l∑
k=1

δ2j−l,k
(
I2
v + 2IvIv̄ + I2

v̄

)
(3.16)

with Iv :=
∫ 1

0
f(v)dv and Iv̄ :=

∫ 1

0
f(v)dv for function f(v) =

ivUj(1+ivUj)Fbj−l,k(vUj)
φTj−l

(vUj−i) w1
σj
(v).
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Let us start with I2
v , using expression (3.14) for φTj−l

(vUj − i) we have

I2
v :=

(∫ 1

0

ivUj (1 + ivUj)F bj−l,k (vUj)

exp
(
−v2U2

j Aj−l/2 + ivUjBj−l + Cj−l +Dj−l (vUj)
)w1

σj
(v)dv

)2

=

∫ 1

0

∫ 1

0

ivUj (1 + ivUj) iwUj (1 + iwUj)F bj−l,k (vUj)F bj−l,k (wUj)

exp
(
− (v2 + w2)U2

j Aj−l/2 + i(v + w)UjBj−l + 2Cj−l +Dj−l (vUj) +Dj−l (wUj)
)

w1
σj
(v)w1

σj
(w)dvdw

= −U2
j exp (−2Cj−l)

∫ 1

0

∫ 1

0

vw exp
(
Aj−l

(
v2 + w2

)
U2
j /2
)
(1 + ivUj) (1 + iwUj) g(v, w)dvdw

= −U2
j exp (−2Cj−l)

(∫ 1

0

∫ 1

0

vw exp
(
Aj−l

(
v2 + w2

)
U2
j /2
)
g(v, w)dvdw

+ iUj

∫ 1

0

∫ 1

0

vw exp
(
Aj−l

(
v2 + w2

)
U2
j /2
)
(v + w)g(v, w)dvdw

−U2
j

∫ 1

0

∫ 1

0

vw exp
(
Aj−l

(
v2 + w2

)
U2
j /2
)
· vwg(v, w)dvdw

)
,

with g defined as

g(v, w) := gUj
(v, w) :=

F bj−l,k (vUj)F bj−l,k (wUj)

exp (i(v + w)UjBj−l +Dj−l (vUj) +Dj−l (wUj))
w1
σj
(v)w1

σj
(w).

Note that we can decompose gUj
(v, w) = hUj

(v)hUj
(w) and that hUj

(−x) is the complex
conjugate of hUj (x).

In a similar manner, the terms I2
v̄ and IvIv̄ can be expressed as

Iv̄2 = −U2
j exp (−2Cj−l)

(∫ 1

0

∫ 1

0

vw exp
(
Aj−l

(
v2 + w2

)
U2
j /2
)
g(−v,−w)dvdw

+ iUj

∫ 1

0

∫ 1

0

vw exp
(
Aj−l

(
v2 + w2

)
U2
j /2
)
(−v − w)g(−v,−w)dvdw

−U2
j

∫ 1

0

∫ 1

0

vw exp
(
Aj−l

(
v2 + w2

)
U2
j /2
)
vwg(−v,−w)dvdw

)
and

IvIv̄ = U2
j exp (−2Cj−l) ·

(∫ 1

0

∫ 1

0

vw exp
(
Aj−l

(
v2 + w2

)
U2
j /2
)
· g(v,−w)dvdw

+iUj

∫ 1

0

∫ 1

0

vw exp
(
Aj−l

(
v2 + w2

)
U2
j /2
)
· (v − w)g(v,−w)dvdw

−U2
j

∫ 1

0

∫ 1

0

vw exp
(
Aj−l

(
v2 + w2

)
U2
j /2
)
· −vwg(v,−w)dvdw

)
.

For evaluating these integrals further Lemma 3.3 below will be used.

Lemma 3.3 Let gU (v, w) be a bounded function on the unit square 0 ≤ |gU (v, w)| ≤ C for
(v, w) ∈ [0, 1]2, let h(x) be a function such that h(x) ↓ 0 as x → ∞, and let fU (v, w) be a
positive function such that

lim
U→∞

∫ 1

0

∫ 1

0

fU (v, w)dvdw = 1 and lim
U→∞

∫ 1

1−h(U)

∫ 1

1−h(U)

fU (v, w)dvdw = 1.

If the function gU (v, w) satisfies

lim
U→∞

sup
(v,w)∈[1−h(U),1]2

|gU (v, w)− gU (1, 1)| = 0,
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then

lim
U→∞

∫ 1

0

∫ 1

0

fU (v, w)gU (v, w)dvdw = lim
Uj→∞

gU (1, 1).

Remembering the solution of the Fourier transform F bj,k(v) in expression (3.3), we can
show that limUj→∞ gUj

(v, w) is not necessarily finite.
For applying Lemma 3.3 a new function g̃Uj (v, w), defined by

g̃Uj
(v, w) := vw exp (2iUjBj−l)F bj,k (Uj)

−2
gUj

(v, w),

will be used. With this new addition, limUj→∞ g̃Uj (1, 1) exists and is finite. Hence, we need
to check the conditions on g̃Uj

and we need to find functions fUj
which converge to a Dirac

delta function at (1, 1). Rescaling the other factors in the integrals, such that these integrals
are in the form of Lemma 3.3, gives

fUj
(v, w) := A2

j−lU
4
j exp

(
−Aj−lU2

j

)
vw exp

(
Aj−l

(
v2 + w2

)
U2
j /2
)
=: F (v) · F (w).

The h(x) function in Lemma 3.3 will be chosen as h(x) = x−3/2, it is easy to see that
h(x) ↓ 0 as x → ∞. Now the conditions of Lemma 3.3 will be checked on this particular
fUj

(w, v) function

lim
Uj→∞

∫ 1

1−U−3/2
j

∫ 1

1−U−3/2
j

fUj
(v, w)dvdw = lim

Uj→∞

(∫ 1

1−U−3/2
j

F (v)dv

)2

= 1,

lim
U→∞

∫ 1

0

∫ 1

0

fU (v, w)dvdw = lim
Uj→∞

(∫ 1

0

F (v)dv

)2

= 1,

where it was used that for a certain function b(v),∫ 1

b(Uj)

F (v)dv = exp
(
−Aj−lU2

j /2
) ∫ 1

b(Uj)

vAj−lU
2
j exp

(
Aj−lv

2U2
j /2
)
dv

= exp
(
−Aj−lU2

j /2
)
·
[
exp

(
Aj−lv

2U2
j /2
)]1
b(Uj)

= exp
(
−Aj−lU2

j /2
)
·
[
exp

(
Aj−lU

2
j /2
)
− exp

(
Aj−l (b(Uj))

2
U2
j /2
)]

= 1− exp
(
−Aj−lU2

j

[
1− b(Uj)

2
]
/2
)
.

The function f is thus satisfactory. What remains to check is the boundedness of g̃U on the
unit square and we need to check that

lim
Uj→∞

sup
(v,w)∈[1−U−3/2,1]2

∣∣g̃Uj
(v, w)− g̃Uj

(1, 1)
∣∣ = 0.

First of all recall

g̃U (v, w) := vw exp (2iUjBj−l)F bj,k (Uj)
−2
g(v, w)

= vw
F bj−l,k (vUj)F bj−l,k (vUj)

F bj−l,k (Uj)
2 w1

σj
(v)w1

σj
(w)

exp (2iUjBj−l)

exp (i(v + w)UjBj−l)
e−Dj−l(vUj)−Dj−l(wUj)

The mild assumption is made that Uj > c for a certain c > 0. For ease of notation let

g̃1(v, w) = vw, g̃2(v, w) =
F bj−l,k (vUj)F bj−l,k (wUj)

F bj−l,k (Uj)
2 , g̃3(v, w) = w1

σj
(v)w1

σj
(w)

g̃4(v, w) = exp (i(2− v − w)UjBj−l) , g̃5(v, w) = exp (−Dj−l (vUj)−Dj−l (wUj))

Note that g̃1, g̃3 and g̃4 are uniformly bounded on the unit square. Also, note that
by the Riemann-Lebesgue lemma Fµj(x) → 0 when x → ∞. Hence, Dj−l(vUj) =
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r=1 (Tr − Tr−1)Fµr(vUj) is a bounded function, which implies that g̃5 is bounded uni-

formly. Proving boundedness of g̃2, recall expression (3.3), then

g̃2(v, w) = exp (i(v + w − 2)Ujxj,k∆j−l) ·
sinc2 (vUj∆j−l/2) sinc

2 (wUj∆j−l/2)

sinc2 (Uj∆j−l/2)
(3.17)

where ∆j−l was the grid size. Since Uj∆j−l → 0, a c > 0 can be found such that for all
Uj > c we have sinc2 (Uj∆j−l/2) ≥ 1/2, which leads to the bound

|g̃2(v, w)| ≤
∣∣∣∣ sinc2 (vUj∆j−l/2) sinc

2 (wUj∆j−l/2)

sinc2 (Uj∆j−l/2)

∣∣∣∣ ≤ ∣∣∣∣ 1

sinc2 (Uj∆j−l/2)

∣∣∣∣ ≤ 2,

So, g̃2 is bounded on the unit square. Putting everything together we can conclude that
g̃Uj (v, w) is bounded on the unit square.

We note that g̃1 · g̃3 is continuous on [0, 1]2. Moreover, the second part of g̃2 in expression
(3.17) also behaves satisfactorily. Thus, these factors can be taken out of the equation. Note
that, g̃5 converges uniformly to 1 for Uj → ∞ because of the smoothness of µj(x). The only
problems thus occur in the first part of g̃2 in expression (3.17) and in g̃4,

sup
(v,w)∈

[
1−U−3/2

j ,1
]2 |g̃4(v, w)− 1| =

∣∣∣exp(i(2− (1− U
−3/2
j

)
−
(
1− U

−3/2
j

))
UjBj−l

)
− 1
∣∣∣

=
∣∣∣exp(i · U−1/2

j Bj−l

)
− exp(i · 0)

∣∣∣ ≤ ∣∣∣U−1/2
j Bj−l

∣∣∣→ 0.

Similarly, the first part of g̃2 can be controlled. This completes all the conditions of the
function g̃Uj (v, w) in Lemma 3.3. To conclude, now we have found and checked the functions
fUj (v, w) and g̃Uj (v, w) in Lemma 3.3 and we can use these functions to solve the desired
integrals.

From this Lemma, it appears that all the integrals in the final expressions for I2
v , I2

v̄ and
IvIv̄ converge equally fast to 0 and the dominating asymptotic term is the last one with the
U4
j factor in front of it. Henceforth, the first two integrals will be left out of the equation.

Reminding the extra term of g̃Uj (v, w) with respect to g(v, w), then using Lemma 3.3 the
limit is found to be

lim
Uj→∞

I2
v̄A

2
j−l exp

(
−Aj−lU2

j

)
F bj,k (Uj)

−2
exp (2iUjBj−l)

= lim
Uj→∞

exp (−2Cj−l)

∫ 1

0

∫ 1

0

fUj (v, w)g̃Uj (v, w)dvdw = exp (−2Cj−l) lim
Uj→∞

g̃Uj (1, 1)

= exp (−2Cj−l)w
1
σj
(1)2 lim

Uj→∞
exp (−2Dj−l (Uj)) = exp (−2Cj−l)w

1
σj
(1)2. (3.18)

In a similar manner, the other terms I2
v̄ and IvIv̄ their convergence can be deduced

lim
Uj→∞

I2
v̄A

2
j−l exp

(
−Aj−lU2

j

)
F bj,k (Uj)

−2
exp (−2iUjBj−l) = exp (−2Cj−l)w

1
σj
(1)2,

lim
Uj→∞

IvIv̄A2
j−l exp

(
−Aj−lU2

j

)
|F bj,k (Uj)|−2

= exp (−2Cj−l)w
1
σj
(1)2.

Recalling expression (3.16) for s2n,l, the asymptotic variance s2n,l will be found by consid-
ering the following adapted limit

lim
Uj→∞

s2n,l

∆j−lU
−4
j A−2

j−1 exp(Aj−1U2
j )

=
1

(Tj − Tj−1)
2 lim
Uj→∞

∆−1
j−l

mj−l∑
k=1

δ2j−l,kA
2
j−1e

−Aj−1U
2
j
(
I2
v + 2IvIv̄ + I2

v̄

)
. (3.19)
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An important remark to make is that when Uj → ∞ the maximum distance between the
grid points needs to go to zero ∆j−l → 0, and thereby the number of observations needs to
go infinity mj−l → ∞.

All the different limits for I2
v , IvIv̄ and I2

v̄ will be individually considered by replacing
the summands by their respective asymptotic behavior. Note that this is not a trivial step
and should be proven. The result is given in Lemma (3.4).

Lemma 3.4 Under the assumptions of Proposition 3.2,

lim
Uj→∞

∆−1
j−l

mj−l∑
k=1

δ2j−l,kA
2
j−le

−Aj−lU
2
j I2

v

= lim
Uj→∞

∆−1
j−l

mj−l∑
k=1

δ2j−l,ke
−2Cj−lw1

σj
(1)2F bj−l,k (Uj)

2
e−2iBj−lUj

Recalling the Fourier transform F bj−l,k(v) in (3.3), the underlying assumption that the
magnitudes of the errors δj−l,k can be modeled by a function δj−l ∈ L2+η(R) with η > 0,
and the definition of the Riemann integral, then with Lemma 3.4 it follows that

lim
Uj→∞

∆−1
j−l

mj−l∑
k=1

δ2j−l,kA
2
j−le

−Aj−lU
2
j I2

v

= e−2Cj−lw1
σj
(1)2 lim

Uj→∞
e−2iBj−lUj∆−1

j−l

mj−l∑
k=1

δ2j−l,kF bj−l,k (Uj)
2

= e−2Cj−lw1
σj
(1)2 lim

Uj→∞
e−2iBj−lUj sinc4 (Uj∆j−l/2)

mj−l∑
k=1

δ2j−l,ke
2iUjxj−l,k∆j−l

= e−2Cj−lw1
σj
(1)2 lim

Uj→∞
e−2iBj−lUj sinc4 (Uj∆j−l/2)

∫ ∞

−∞
δj−l(x)

2e2iUjxdx

= e−2Cj−lw1
σj
(1)2 lim

Uj→∞
e−2iBj−lUj sinc4 (Uj∆j−l/2)F δ2j−l (2Uj) . (3.20)

In a similar manner, the following asymptotics for the other terms I2
v̄ and IvIv̄ can be

found

lim
Uj→∞

∆−1
j−l

mj−l∑
k=1

δ2j−l,kA
2
j−le

−Aj−lU
2
j I2

v̄

= e−2Cj−lw1
σj
(1)2 lim

Uj→∞
e2iBj−lUj∆−1

j−l

mj−l∑
k=1

δ2j−l,kF bj−l,k (−Uj)2

= e−2Cj−lw1
σj
(1)2 lim

Uj→∞
e2iBj−lUj sinc4 (−Uj∆j−l/2)F δ2j−l (−2Uj) (3.21)

lim
Uj→∞

∆−1
j−l

mj−l∑
k=1

δ2j−l,kA
2
j−le

−Aj−lU
2
j IvIv̄

= e−2Cj−lw1
σj
(1)2 lim

Uj→∞
∆−1
j−l

mj−l∑
k=1

δ2j−l,k |F bj−l,k (Uj)|2

= e−2Cj−lw1
σj
(1)2 lim

Uj→∞
sinc4 (Uj∆j−l/2)

∫ ∞

−∞
δj−l(x)

2dx

= e−2Cj−lw1
σj
(1)2 lim

Uj→∞
sinc4 (Uj∆j−l/2) ∥δj−l∥2L2(R) . (3.22)

We have assumed that δj−l is an L2(R) integrable function, therefore F δ2j−l (2Uj) → 0.

Moreover, Uj∆j−l → 0, thus sinc4 (Uj∆j−l) → 1 as Uj → ∞. So, we can conclude that
expressions (3.20) and (3.21) are equal to 0 in the limit. Furthermore, expression (3.22)
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becomes

lim
Uj→∞

∆−1
j−l

mj−l∑
k=1

δ2j−l,kA
2
j−le

−Aj−lU
2
j IvIv̄

= e−2Cj−lw1
σj
(1)2 lim

Uj→∞
sinc4 (Uj∆j−l/2) ∥δj−l∥2L2(R) .

Using expression (3.19) the asymptotic variance s2n,l is then found to be

s2n,l = ∆j−lU
−4
j A−2

j−le
Aj−lU

2
j · 1

4

(
0 + 2 · 4 (Tj − Tj−1)

−2
e−2Cj−lw1

σj
(1)2 ∥δj−l∥2L2 + 0

)
= 2 ∥δj−l∥2L2 (Tj − Tj−1)

−2
A−2
j−l exp (−2Cj−l)w

1
σj
(1)2 ·∆j−lU

−4
j eAj−lU

2
j

= w1
σj
(1)2dj,j−l∆j−lU

−4
j eAj−lU

2
j

where we defined the constant

dj,j−l := 2 ∥δj−l∥2L2 (Tj − Tj−1)
−2
A−2
j−le

−2Cj−l .

□

Now the asymptotic variance s2n,l in the Lyapunov condition is found. Next to that, an

expression or bound for E |Xr|2+η is needed. Note that (εj,k) were sub-Gaussian random
variables. The moment condition for sub-Gaussian random variables states that for some
K > 0:

E[ε2+ηj,k ] ≤ K2+η(2 + η)(2+η)/2.

Using the moment condition, the following bound is found

E |Xk|2+η = E


∣∣∣∣∣ 2U−2

j

Tj − Tj−1
δj−l,kεj−l,k Re

(∫ 1

0

ivUj (1 + ivUj)F bj−l,k (vUj)

φTj−l
(v − i)

w1
σj
(v)dv

)∣∣∣∣∣
2+η


≲ U
−2(2+η)
j |δj−l,k|2+η

∣∣∣∣∣Re
(∫ 1

0

ivUj (1 + ivUj)F bj−l,k (vUj)w
1
σj
(v)

exp
(
−v2U2

j Aj−l/2 + ivUjBj−l + Cj−l +Dj−l (vUj)
)dv)∣∣∣∣∣

2+η

≤ U
−2(2+η)
j |δj−l,k|2+η

∣∣∣∣∣
∫ 1

0

ivUj (1 + ivUj)F bj−l,k (vUj)w
1
σj
(v)

exp
(
−v2U2

j Aj−l/2 + ivUjBj−l + Cj−l +Dj−l (vUj)
)dv∣∣∣∣∣

2+η

.

Note that the integral looks similar to Iv in the proof of Proposition 3.2. In avoidance of
repeating arguments, the integral behaved in the limit as

lim
Uj→∞

|Iv| ·Aj−le−Aj−lU
2
j /2 |F bj−l,k (Uj)|−1

= e−Cj−lw1
σj
(1).

Now using expression (3.3), it can be found that the limit behaves asymptotically as

|Iv| ≲ A−1
j−le

Aj−lU
2
j /2 |F bj−l,k (Uj)| e−Cj−lw1

σj
(1)

= A−1
j−le

Aj−lU
2
j /2∆j−l sinc

2 (Uj∆j−l/2) e
−Cj−lw1

σj
(1).

Then the following bound is found

E |Xk|2+η ≲ U−2η
j |δj−l,k|2+η eAj−lU

2
j ·η/2∆2+η

j−l . (3.23)

With the expression for s2n in Proposition 3.2 and the bound in expression (3.23), the Lya-
punov condition can be verified
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lim
n→∞

s
−(2+η)
n,l

mj−l∑
k=1

E
{
|Xk|2+η

}
≲ lim
mj−l→∞

U
2(2+η)
j ∆

−(2+η)/2
j−l e−Aj−lU

2
j (2+η)/2

mj−l∑
k=1

U
−2(2+η)
j |δj−l,k|2+η eAj−lU

2
j (2+η)/2∆2+η

j−l

= lim
mj−l→∞

∆
(2+η)/2−1
j−l

mj−l∑
k=1

|δj−l,k|2+η∆j−l = lim
mj−l→∞

∆
(2+η)/2−1
j−l

∫ ∞

−∞
|δj−l(x)|(2+η) dx

= ∥δj−l∥L2+η lim
mj−l→∞

∆
(2+η)/2−1
j−l = 0

where in the last step, it is used that η > 0, δj−l ∈ L2+η and δj−l Riemann integrable.
Hence, Theorem 3.1 implies that

L l
σ2
j

sn,l
=
Tm
sn,l

d→ N (0, 1), for l = 0, 1.

Now, let us look at the terms L l
γj and L l

λj
, as given in the error decompositions (3.10)

and (3.11), by pointing out the differences and arguing how this does affect the derivation.
For L l

γj three main differences in the derivation occur:

1. w
Uj
γj = 1

U2
j
w1
γj instead of w

Uj
σj = 1

U3
j
w1
σj
,

2. w1
γj is antisymmetric instead of w

Uj
σj which was symmetric, and

3. we have Im(ψ̃j(v)) instead of Re(ψ̃j(v)).

Point (i) does not change the essence of the proof but does affect the convergence rate, which
is now a factor Uj slower. Point (ii) will mostly give a minus sign instead of a plus sign in the
simplification of the integral at (3.15), this minus sign is, however, canceled because we also
have the Im of point (iii) and a conjugation in the second integral. For finding the expression
(3.19) we used the identity Re2(z) = ((z+z̄)/2)2 = (z2+2z̄z+(̄z)2)/4. From point (iii), Re is
replaced by Im, we should now use the identity Im2(z) = ((z− z̄)/2i)2 = −(z2−2z̄z+ z̄2)/4.
This does not affect the result, because in the proof we showed that the factor zz̄ is the
factor that defined the asymptotics, and this factor is the same in Re2 and Im2.

The term L l
λj

is less complicated, here only one main difference occurs w
Uj

λj
= 1

Uj
w1
λj

instead of w
Uj
σj = 1

U3
j
w1
σj
, which only affects the convergence to be U2

j slower.

To summarize this section, the results will be presented in Proposition 3.3.

Proposition 3.3 Let εj−l,k be independent centered sub-Gaussian random variables with
V[εj−l,k] = 1 for all k = 1, ...,mj−l, l = 0, 1 and let δj−l ∈ L2+η for η > 0, l = 0, 1. Further-
more, let the Levy triplets (σj , γj , λj) belong to Gnsj and the weight function (w1

σj
, w1

γj , w
1
λj
)

belong to Wn
sj . As Uj tends to infinity, then for l = 0, 1 we have the asymptotic normality

L l
σ2
j

sn,l

d→ N (0, 1),
L l
γj

Uj sn,l

d→ N (0, 1) and
L l
λj

U2
j sn,l

d→ N (0, 1),

with
s2n,l = w1

σj
(1)2dj,j−l∆j−lU

−4
j eAj−lU

2
j ,

where we defined the constant

dj,j−l := 2 ∥δj−l∥2L2 (Tj − Tj−1)
−2
A−2
j−le

−2Cj−l ,

and the terms Aj−l and Cj−l are as in expression (3.14).
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3.3.3 Bias Term Bξj

In this section we will bound the bias terms Bξj for ξj ∈ {σ2
j , γj , λj} from above. Again we

first derive it for Bσ2
j
, and then investigate where Bγj and Bλj differ, and show how this

affects the results.
In the derivation, a couple of results about Fourier transforms are needed, which are

stated in Remark 3.1 below.

Remark 3.1 1. The definition of the Fourier transform can be extended from L1(R) to
L1(R) ∪ L2(R) and the Plancherel identity states that for all f, g ∈ L2(R)∫

R
f(x)g(x)dx =

1

2π

∫
R

Ff(v)Fg(v)dv.

2. Let f ∈ L2(R) be such that for all k ∈ {0, 1, ..., s} the (weak) derivative f (k) satisfies
f (k) ∈ L2(R). Then for all k ∈ {1, ..., s}

F [f (k)](v) = (iv)kFf(v).

3. For U > 0 we have

Ff(v) = UF [f(U ·)](Uv) and F−1f(v) = UF−1[f(U ·)](Uv)

Assume that (σ2
j , γj , λj) ∈ Gnsj (R, σmax) and (wσj

, wγj , wλj
) ∈ Wn

sj as given in Definitions 3.1

and 3.2. From these assumptions we have that for an integer sj > 0 it holds that w1
σj
(v)/vsj ∈

L2(R), w1
σj
(v)/vsj ∈ L1(R) and for some R > 0 we have maxk=0,..,s ||µ(k)

j ||L2(R) ≤ R and

||µ(sj)
j ||∞ ≤ R. Firstly, using the triangle inequality (normal and for integrals), w

Uj
σj = w

Uj
σj ,

and Remark 4.1, the dependency of µj(x) can be abstracted

|Bσ2
j
| =

∣∣∣∣ ∫ Uj

−Uj

Re (Fµj(v)))w
Uj
σj
dv

∣∣∣∣ ≤ ∣∣∣∣ ∫ Uj

−Uj

Fµj(v)w
Uj
σj
(v)dv

∣∣∣∣ = ∣∣∣∣ ∫ ∞

−∞
Fµj(v)w

Uj
σj
(v)dv

∣∣∣∣
(ii)
=

∣∣∣∣ ∫ ∞

−∞
Fµ

(sj)
j (v)

w
Uj
σj (v)

(iv)sj
dv

∣∣∣∣ = ∣∣∣∣ ∫ ∞

−∞
Fµ

(sj)
j (v)

(
w
Uj
σj (v)

(−iv)sj

)
dv

∣∣∣∣
(i)
= 2π

∣∣∣∣ ∫ ∞

−∞
µ
(sj)
j (x)F−1

(
w
Uj
σj (v)

(−iv)sj

)
(x)dx

∣∣∣∣ ≤ 2π

∫ ∞

−∞

∣∣µ(sj)
j (x)

∣∣∣∣∣∣∣F−1

(
w
Uj
σj (v)

(−iv)sj

)
(x)

∣∣∣∣∣dx
≤
∣∣∣∣µ(sj)

j (x)
∣∣∣∣
∞2π

∫ ∞

−∞

∣∣∣∣∣F−1

(
w
Uj
σj (v)

(−iv)sj

)
(x)

∣∣∣∣∣dx.
The properties of the weight function w

Uj
σj (v) can now be used to see the dependency of the

resulting integral to the cut-off Uj and the weight function w1
σj
(v),

2π

∫ ∞

−∞

∣∣∣∣∣F−1

(
w
Uj
σj (v)

(−iv)sj

)
(x)

∣∣∣∣∣dx = 2π

∫ ∞

−∞

∣∣∣∣∣ 12π
∫ ∞

−∞

w
Uj
σj (v)

(−iv)sj
e−ivxdv

∣∣∣∣∣dx
=

∫ ∞

−∞

∣∣∣∣∣
∫ ∞

−∞

w
Uj
σj (v)

(iv)sj
eivxdv

∣∣∣∣∣dx =

∫ ∞

−∞

∣∣∣∣∣
∫ ∞

−∞

U−3
j w1

σj
(v/Uj)

(iv)sj
eivxdv

∣∣∣∣∣dx
u=v/Uj

= U−2
j

∫ ∞

−∞

∣∣∣∣∣
∫ ∞

−∞

w1
σj
(u)

(iuUj)sj
eiuUjxdu

∣∣∣∣∣dx = U
−(2+sj)
j

∫ ∞

−∞

∣∣∣∣∣
∫ ∞

−∞

w1
σj
(u)

usj
eiuUjxdu

∣∣∣∣∣dx
y=xUj
= U

−(2+sj)
j

∫ ∞

−∞

∣∣∣∣∣
∫ ∞

−∞

w1
σj
(u)

usj
eiuydu

∣∣∣∣∣U−1
j dy = U

−(3+sj)
j

∫ ∞

−∞

∣∣∣∣∣F
(
w1
σj
(u)

usj

)
(y)

∣∣∣∣∣dy
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= U
−(3+sj)
j

∣∣∣∣∣
∣∣∣∣∣F
(
w1
σj
(u)

usj

)∣∣∣∣∣
∣∣∣∣∣
L1

,

where this last norm exists by the assumptions of the class Wn
sj . Hence, it follows that

|Bσ2
j
| ≤ U

−(sj+3)
j ||µ(sj)||∞||F (w1

σj
(v)/vsj )||L1(R),

or, with ||µ(sj)||∞ < R and ||F (w1
σj
(v)/vsj )||L1(R) <∞,

|Bσ2
j
| ≲ U

−(sj+3)
j .

The main differences between the term Bγj as in the error decomposition (3.10) and

Bσ2
j
are that we have Im(Fµj(v)) instead of Re(Fµj(v)), the weight functions w

Uj
γj is

antisymmetric instead of w
Uj
σj which was symmetric, and w

Uj
γj (v) = U−2

j w
Uj
γj (v) instead of

w
Uj
σj (v) = U−3

j w
Uj
σj (v). Note that it was used that |Re(Fµj(v))| ≤ |Fµj(v)|, and that this

will just be replaced with |Im(Fµj(v))| ≤ |Fµj(v)|, so the first point does not matter. The
second point was never used in the derivation, so this does also not matter. The third point
is the only difference that matters in the derivation, the result is that the upper bound is a
factor Uj smaller.

For Bλj
as in (3.11) the only difference is w

Uj

λj
(v) = U−1

j w
Uj

λj
(v) instead of w

Uj
σj (v) =

U−3
j w

Uj
σj (v), so the upper bound will be a factor U2

j smaller.
All the assumptions and results are summarized in Proposition 3.4

Proposition 3.4 Suppose the Lévy triplets belong to Gnsj (R, σmax) and the weight functions
belong to Wn

sj , then

|Bσ2
j
| ≤ U

−(sj+3)
j ||µ(sj)

j ||∞||F
(
wσj

(v)/vsj
)
||L1

,

|Bγj | ≤ U
−(sj+2)
j ||µ(sj)

j ||∞||F
(
wσj

(v)/vsj
)
||L1

,

|Bλj
| ≤ U

−(sj+1)
j ||µ(sj)

j ||∞||F
(
wσj

(v)/vsj
)
||L1

,

such that, using the definitions of the classes Gnsj (R, σmax) and Wn
sj ,

|Bσ2
j
| ≲ U

−(sj+3)
j , |Bγj | ≲ U

−(sj+2)
j , and |Bλj

| ≲ U
−(sj+1)
j .

3.3.4 Remainder Terms Rl
ξj

In this section, we want to investigate if and under which conditions the asymptotic remain-
der term will be asymptotically negligible. We first investigate Rl

σ2
j
, and thereafter look at

the differences of Rl
γj and Rl

λj
with the derivation of Rl

σ2
j
.

Before we begin, recall that we did define

Rl
j(v) = ψ̃lj(v)− ψlj(v)− Llj(v) and Rl

σ2
j
=

∫ Uj

−Uj

Re(Rl
j(v))w

Uj
σj
(v)dv.

Note that Rl
σ2
j
is a random variable with E[Rl

σ2
j
] = 0, because it is connected to the error

terms (εj,k) without a bias term.
The idea is going to be that we are going to look at certain conditions such that asymp-

totically when Uj → ∞ and ∆j → 0 we have

Rl
σ2
j
fσ2

j
(Uj , ∆j)

P−→ 0,

where the function fσ2
j
(Uj , ∆j) is given by
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fσ2
j
(Uj , ∆j) =

U2
j e

−U2
j

∑j
i=1(Ti−Ti−1)σ

2
i /2√

dj,j∆j + dj,j−1∆j−1e
−U2

j (Tj−Tj−1)σ2
j

.

Note that fσ2
j
(Uj , ∆j) is a positive deterministic function and P stands for convergence in

probability.
This function fσ2

j
(Uj , ∆j) may feel arbitrary now, but it will be shown that this function

is coupled to the asymptotic standard deviation sn of σ̃2
j by fσ2

j
(Uj , ∆j) =

|w1
σj

(1)|
sn

. We

actually want
Rl

σ2
j

sn
to become 0, because then we can conclude that

σ̃2
j−σ

2
j

s2n

d→ N (0, 1). This

will be elucidated in the next section.
Markov’s inequality will be used with the convex function x2 to bound the convergence

in probability, i.e., let ε > 0 then

P
(∣∣∣Rl

σ2
j
fσ2

j
(Uj , ∆j)

∣∣∣ > ε
)
≤ 1

ε2
E
[∣∣∣Rl

σ2
j
fσ2

j
(Uj , ∆j)

∣∣∣2] =
∣∣∣fσ2

j
(Uj , ∆j)

∣∣∣2
ε2

E
[∣∣∣Rl

σ2
j

∣∣∣2] .
So we want to find a bound for E

[∣∣∣Rl
σ2
j

∣∣∣2], this will be a tedious task in the next two

pages.

Bounding E
[∣∣∣Rl

σ2
j

∣∣∣2]
It is advised to first find a bound for the term |Rl

j(v)|. In the persuasion of this, first
remember the definition

ψ̃lj(v) :=
1

Tj − Tj−1
log≥κ(v,Tj−l)

(
φ̃Tj−l

(v − i)
)
.

Using that ψ̃lj(v) = elog ψ̃
l
j(v) and the triangle inequality, we can write the remainder term

as a second order Taylor expansion of the logarithm

(Tj − Tj−1)
∣∣Rl

j(v)
∣∣ = ∣∣∣(Tj − Tj−1) ψ̃

l
j(v)− (Tj − Tj−1)ψ

l
j(v)− (Tj − Tj−1)Llj(v)

∣∣∣
=

∣∣∣∣log e(Tj−Tj−1)ψ̃
l
j(v) − log e(Tj−Tj−1)ψ

l
j(v) −

φ̃Tj−l
(v − i)− φTj−l

(v − i)

φTj−l
(v − i)

∣∣∣∣
≤

∣∣∣∣∣log e(Tj−Tj−1)ψ̃
l
j(v) − log e(Tj−Tj−1)ψ

l
j(v) −

e(Tj−Tj−1)ψ̃
l
j(v) − φTj−l

(v − i)

φTj−l
(v − i)

∣∣∣∣∣
+

∣∣∣∣∣ φ̃Tj−l
(v − i)− e(Tj−Tj−1)ψ̄

l
j(v)

φTj−l
(v − i)

∣∣∣∣∣
=

∣∣∣∣∣log e(Tj−Tj−1)ψ̃
l
j(v) − log e(Tj−Tj−1)ψ

l
j(v) − e(Tj−Tj−1)ψ̄

l
j(v) − e(Tj−Tj−1)ψ

l
j(v)

e(Tj−Tj−1)ψl
j(v)

∣∣∣∣∣
+
∣∣∣φTj−l

(v − i)−1(φ̃Tj−l
(v − i)− e(Tj−Tj−1)ψ̃

l
j(v))

∣∣∣ .
Recall that in expression (3.6) it was found that

|φTj−l
(v − i)| ≥

j−l∏
r=1

2K(Tr − Tr−1, σr, R, v) =: 2Kj−l(v)

where Kj−l(v) is defined for ease of notation later on. A consequence of Proposition 3.1 with
this notation is that asymptotically with probability one we have |φ̃Tj−l

(v−i)−φTj−l
(v−i)| ≤
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Kj−l(v). From this, it can be derived that

lim
Uj→∞

P
(
|φ̃Tj−l

(v − i)| ≥ Kj−l(v)
)
= 1, (3.24)

which implies with the definition of the trimmed complex logarithm that,

lim
Uj→∞

P
(
e(Tj−Tj−1)ψ̃

l
j(v) = φ̃Tj−l

(v − i)
)
= 1. (3.25)

Therefore, the second term in (Tj − Tj−1)
∣∣Rl

j(v)
∣∣,∣∣∣φTj−l

(v − i)−1(φ̃Tj−l
(v − i)− e(Tj−Tj−1)ψ̃

l
j(v))

∣∣∣ ,
is asymptotically zero. The first term of (Tj − Tj−1)

∣∣Rl
j(v)

∣∣ will be bounded with Lemma
3.5.

Lemma 3.5 Let z ∈ C. If |z̃| > C, |z| > 2C, and | arg(z)− arg(z̃)| ≤ π, then∣∣∣∣log(z̃)− log(z)− z̃ − z

z

∣∣∣∣ ≤ |z̃ − z|2

2C2

From (3.31) we already know that |φTj
(v−i)| = |e(Tj−Tj−1)ψ

l
j(v)| ≥ 2Kj(v). From expressions

(3.25) and (3.24) it then follows for the estimator that with probability tending to one∣∣∣exp((Tj − Tj−1) ψ̃
l
j(v)

)∣∣∣ = ∣∣φ̃Tj−l
(v − i)

∣∣ ≥ Kj−l(v).

Furthermore, in expression (3.7) it was also shown that with probability tending to one,∣∣argφTj−l
(v − i)− arg φ̃Tj−l

(v − i)
∣∣ ≤ π.

Hence, we can apply Lemma 3.5 with probability tending to one to bound the first term and
find the result

| log e(Tj−Tj−1)ψ̄
l
j(v) − log e(Tj−Tj−1)ψ

l
j(v) − e−(Tj−Tj−1)ψ

l
j(v)

(
e(Tj−Tj−1)ψ̄

l
j(v) − e(Tj−Tj−1)ψ

l
j(v)
)
|

≤ 1

2
Kj−l(v)

−2
∣∣∣e(Tj−Tj−1)ψ̃

l
j(v) − e(Tj−Tj−1)ψ

l
j(v)
∣∣∣2

=
1

2
Kj−l(v)

−2
(
v4 + v2

) ∣∣∣F (Oj−l − Õj−l

)
(v)
∣∣∣2 .

To summarize, the following important bound with probability tending to one is found

|Rl
j | ≤

1

2
(Tj − Tj−1)

−1Kj−l(v)
−2(v4 + v2)

∣∣∣F (Õj−l −Oj−l)(v)
∣∣∣2

≲ Kj−l(v)
−2(v4 + v2)

∣∣∣F (Õj−l −Oj−l)(v)
∣∣∣2 . (3.26)

The original problem was to find an estimate of the upper bound of the quadratic remainder
term |Rl

σ2
j
|2. Using the normal and integral triangle inequality, we first find

E
[
|Rl

σ2
j
|2
]
= E

[∣∣∣ ∫ Uj

−Uj

Re(Rl
j(v))w

Uj
σj
(v)dv

∣∣∣2]

≤ E

[∣∣∣ ∫ Uj

−Uj

Rl
j(v)w

Uj
σj
(v)dv

∣∣∣2] ≤ E

(∫ Uj

−Uj

|Rl
j(v)||wUj

σj
(v)|dv

)2
 .

Note that for |Rl
j(v)| the upper bound of (3.26) can be used and that the quadratic integral

can be extended,
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E
[
|Rl

σ2
j
|2
]
≲ E

(∫ Uj

−Uj

(v4 + v2)
∣∣∣F (Õj−l −Oj−l)(v)

∣∣∣2 |wUj
σj (v)|

Kj−l(v)2
dv

)2


≲ E

[∫ Uj

−Uj

∫ Uj

−Uj

(v4 + v2)(w4 + w2)
∣∣∣F (Õj−l −Oj−l)(v)

∣∣∣2 ∣∣∣F (Õj−l −Oj−l)(w)
∣∣∣2

|wUj
σj (v)||w

Uj
σj (w)|

Kj−l(v)2Kj−l(w)2
dvdw

]

≲
∫ Uj

−Uj

∫ Uj

−Uj

E
[∣∣∣F (Õj−l −Oj−l)(v)F (Õj−l −Oj−l)(w)

∣∣∣2] v4|wUj
σj (v)|w4|wUj

σj (w)|
Kj−l(v)2Kj−l(w)2

dvdw

where in the last expression all the lower order terms of (v4 + v2)(w4 + w2) are neglected,
because asymptotically when Uj → ∞ the term v4w4 dominates.

In the subsequent analysis, we frequently use the following norm bounds for the B-splines
bj,k in the interpolation scheme (2.12),

||F bj,k||L2 =
√
2π||bj,k||L2 ≤ (4π∆j)

1/2, ||F bj,k||∞ ≤ ||bj,k||L1 ≤ 2∆j (3.27)

which follows from expression (3.3), ||bj,k||∞ = 1 and |xj,k+1 − xj,k−1| ≤ 2∆j .
Using the interpolation scheme, the term

E
[∣∣∣F (Õj−l −Oj−l)(v)F (Õj−l −Oj−l)(w)

∣∣∣2]
will be bounded. The idea is that the terms will be split into a bias and variance term by
addition and subtraction of the expected values EÕj−l. After working out the terms and
using the triangle inequality, the following simplified expression can be found

E[
∣∣∣F (

Õj−l −Oj−l

)
(v)F

(
Õj−l −Oj−l

)
(w)
∣∣∣2]

= E
[∣∣∣F (

Õj−l − EÕj−l + EÕj−l −Oj−l

)
(v)F

(
Õj−l − EÕj−l + EÕj−l −Oj−l

)
(w)
∣∣∣2]

≤ 4E
[∣∣∣F (

Õj−l − EÕj−l

)
(v)F

(
Õj−l − EÕj−l

)
(w)
∣∣∣2]

+ 4||F (Oj−l − EÕj−l)||2∞E
[∣∣∣F (

Õj−l − EÕj−l

)
(v)
∣∣∣2]

+ 4||F (Oj−l − EÕj−l)||2∞E
[∣∣∣F (

Õj−l − EÕj−l

)
(w)
∣∣∣2]

+ 4||F (Oj−l − EÕj−l)||4∞. (3.28)

Note that in the expression (3.28) the second and third terms are constants multiplied
with the variance of F Õj−l. Now, let us estimate this variance by using the interpolation
scheme (2.12) and the properties imposed on the distributions of (εj−l,k) and the magnitude
(δj−l,k), this results in

V
[
F Õj−l(v)

]
= V

[
F

(
βj−l,0(x) +

mj−l∑
k=1

Oj−l,kbj−l,k(x)

)
(v)

]

= V

[
Fβ0,j−l(v) +

mj−l∑
k=1

Oj−l,kF bj−l,k(v)

]

= V

[mj−l∑
k=1

Oj−l,kF bj−l,k(v)

]
= V

[mj−l∑
k=1

(Oj−l (xj,k) + δj−l,kεj−l,k)F bj−l,k(v)

]
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= V

[mj−l∑
k=1

δj−l,kεj−l,kF bj−l,k(w)

]
=

mj−l∑
k=1

|δj−l,kF bj−l,k(v)|2 V [εj−l,k]

=

mj−l∑
k=1

|δj−l,kF bj−l,k(v)|2 ≤
mj−l∑
k=1

|δj−l,k|2 ∥F bj−l,k∥2∞ ≤
mj−l∑
k=1

|δj−l,k|2 ∥bj−l,k∥2L1

≤ 4∆2
j−l

mj−l∑
k=1

|δj−l,k|2 = 4∆2
j−l ∥δj−l∥

2
l2 ≲ ∆j−l ∥δj−l∥2∞ , (3.29)

where we made the assumption that ∆j−l ∥δj−l∥2l2 ≤ ∥δj−l∥2∞, which is rather intuitive
because ∆j−l → 0.

Substituting expression (3.29) in (3.28) then gives the intermediate bound

E[
∣∣∣F (

Õj−l −Oj−l

)
(v)F

(
Õj−l −Oj−l

)
(w)
∣∣∣2]

≲ E
[∣∣∣F (

Õj−l − EÕj−l

)
(v)F

(
Õj−l − EÕj−l

)
(w)
∣∣∣2]+ ||δj−l||2∞E

[∣∣∣F (
Õj−l − EÕj−l

)
(v)
∣∣∣2]

+ ||δj−l||2∞E
[∣∣∣F (

Õj−l − EÕj−l

)
(w)
∣∣∣2]+ ||F (Oj−l − EÕj−l)||4∞

≲ E
[∣∣∣F (

Õj−l − EÕj−l

)
(v)F

(
Õj−l − EÕj−l

)
(w)
∣∣∣2]+ ||δj−l||2∞∆4

j−l +∆8
j−l (3.30)

Furthermore, we also want to find a simplified bound for

E
[∣∣∣F (

Õj−l − EÕj−l

)
(v)F

(
Õj−l − EÕj−l

)
(w)
∣∣∣2] . (3.31)

First, again with the interpolation scheme (2.12), we can write

Õj−l − EÕj−l =

mj−l∑
k=1

(Oj−l,k −Oj−l(xj−l,k))bj−l,k(x) =

mj−l∑
k=1

δj−l,kεj−l,kbj−l,k(x).

Substituting the above expression into (3.31), then provides the bound

E
[∣∣∣F (

Õj−l − EÕj−l

)
(v)F

(
Õj−l − EÕj−l

)
(w)
∣∣∣2]

= E

∣∣∣∣∣F
(mj−l∑
k=1

δj−l,kεj−l,kbj−l,k

)
(v)F

(mj−l∑
k=1

δj−l,kεj−l,kbj−l,k

)
(w)

∣∣∣∣∣
2


= E

∣∣∣∣∣
mj−l∑
k=1

δj−l,kεj−l,kF bj−l,k(v)

mj−l∑
k=1

δj−l,kεj−l,kF bj−l,k(w)

∣∣∣∣∣
2


= E

[mj−l∑
i=1

mj−l∑
k=1

δ2j−l,iδ
2
j−l,kε

2
j−l,iε

2
j−l,k|F bj−l,i(v)|2|F bj−l,k(w)|2

]

=

mj−l∑
i=1

mj−l∑
k=1

δ2j−l,iδ
2
j−l,kE[ε2j−l,iε2j−l,k]|F bj−l,i(v)|2|F bj−l,k(w)|2

Now we use that (εj−l,k) are independent sub-Gaussian centered random variables with
V[εj−l,i] = 1, this results in

=

mj−l∑
i=1

δ4j−l,iE[ε4j−l,i] |F bj−l,i(v)|2 |F bj−l,k(w)|2
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+

mj−l∑
i=1

mj−l∑
k=1,k ̸=i

δ2j−l,iδ
2
j−l,kE[ε2j−l,i]E[ε2j−l,k]|F bj−l,i(v)|2|F bj−l,k(w)|2

≲
mj−l∑
i=1

δ4j−l,i |F bj−l,i(v)|2 |F bj−l,k(w)|2 +
mj−l∑
i=1

mj−l∑
k=1,k ̸=i

δ2j−l,iδ
2
j−l,k |F bj−l,i(v)|2 |F bj−l,k(w)|2

=

mj−l∑
i=1

mj−l∑
k=1

δ2j−l,iδ
2
j−l,k |F bj−l,i(v)|2 |F bj−l,k(w)|2

=

(mj−l∑
i=1

δ2j−l,i |F bj−l,i(v)|2
)(mj−l∑

k=1

δ2j−l,k |F bj−l,k(w)|2
)
. (3.32)

For finding the final bound for E
[∣∣∣Rl

σ2
j

∣∣∣] we first substitute (3.32) in (3.30), and then (3.30)

back into the original expression, this gives

E
[
|Rl

σ2
j
|2
]
≲
∫ Uj

−Uj

∫ Uj

−Uj

E
[∣∣∣F (Õj−l −Oj−l)(v)F (Õj−l −Oj−l)(w)

∣∣∣2]
·
v4|wUj

σj (v)|w4|wUj
σj (w)|

Kj−l(v)2Kj−l(w)2
dvdw

≲
∫ Uj

−Uj

∫ Uj

−Uj

[(mj−l∑
i=1

δ2j−l,i |F bj−l,i(v)|2
)(mj−l∑

k=1

δ2j−l,k |F bj−l,k(w)|2
)

+ ||δj−l||2∞∆4
j−l +∆8

j−l

]

·
v4|wUj

σj (v)|w4|wUj
σj (w)|

Kj−l(v)2Kj−l(w)2
dvdw

=

[∫ Uj

Uj

mj−l∑
k=1

δ2j−l,k |F bj−l,k(v)|2
v4|wUj

σj (v)|
Kj−l(v)2

dv

]2
+
(
||δj−l||2∞∆4

j−l +∆8
j−l
) [∫ Uj

Uj

v4|wUj
σj (v)|

Kj−l(v)2
dv

]2
It is possible to bound the first integral in terms of the second one, because∫ Uj

Uj

mj−l∑
k=1

δ2j−l,k |F bj−l,k(v)|2
v4w

Uj
σj (v)

Kj−l(v)2
dv ≤

∫ Uj

Uj

mj−l∑
k=1

δ2j−l,k ||F bj−l,k(v)||2∞
v4|wUj

σj (v)|
Kj−l(v)2

dv

≲ ∆2
j−l

∫ Uj

−Uj

mj−l∑
k=1

δ2j−l,k
v4|wUj

σj (v)|
Kj−l(v)2

dv ≲ ∆2
j−l||δj−l||2l2

∫ Uj

−Uj

v4|wUj
σj (v)|

Kj−l(v)2
dv

≲ ∆j−l||δj−l||2∞
∫ Uj

−Uj

v4|wUj
σj (v)|

Kj−l(v)2
dv.

To simplify this common integral, Lemma 3.6 can be used.

Lemma 3.6 For all j = 1, 2, ..., n the following inequality holds∫ Uj

−Uj

v4|wUj

ξ (v)|
Kj−l(v)2

dv ≲ ζje
U2

j

∑j−l
i=1(Ti−Ti−1)σ

2
i

where Kj−l(v) := K(Tj−l, σmax, R, v), ξj ∈ {σj , γj , λj} and respectively ζj ∈ {1, Uj , U2
j }.

Note that Lemma 3.6 is also specified for γj and λj , which will be investigated at the end
of the section. As with all Lemma’s, the proof of Lemma 3.6 can be found in the appendix.

Now using the bound for the first integral and Lemma 3.6 the final bound can be found

E
[
|Rl

σ2
j
|2
]
≲
(
∥δj−l∥4∞∆2

j−l +
(
∥δj−l∥2∞∆4

j−l +∆8
j−l

))(∫ Uj

−Uj

Kj−l(v)
−2v4

∣∣∣wUj
σj
(v)
∣∣∣dv)2
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≲
(
∥δj−l∥4∞∆2

j−l + ∥δj−l∥2∞∆4
j−l +∆8

j−l

)
e2U

2
j ·

∑j−l
i=1(Ti−Ti−1)σ

2
i . (3.33)

Showing Asymptotic Convergence to Zero

Now with the found bound in expression (3.33) the asymptotic convergence (Uj → ∞, ∆j →
0) in probability of the term

U2
j e

−U2
j

∑j
i=1(Ti−Ti−1)σ

2
i /2√

dj,j∆j + dj,j−1∆j−1e
−U2

j (Tj−Tj−1)σ2
j

· Rl
σ2
j

P→ 0

can be proven using Markov’s inequality. The terms dj,j and dj,j−1 are defined in the same
manner as the case of the Linear terms L l

ξj
in Proposition 3.3.

Note that the prefactor before Rl
σ2
j
is the defined function fσ2

j
(Uj , ∆j), which was coupled

to the asymptotic standard deviation.
Now let us start with the exact derivation. Let ε > 0, then with Markov’s inequality and

expression (3.33) we can find

P

∣∣∣∣∣∣ U2
j e

−U2
j

∑j
i=1(Ti−Ti−1)σ

2
i /2√

dj,j∆j + dj,j−1∆j−1e
−U2

j (Tj−Tj−1)σ2
j

Rl
σ2
j

∣∣∣∣∣∣ > ε


= P

 U2
j e

−U2
j

∑j
i=1(Ti−Ti−1)σ

2
i /2√

dj,j∆j + dj,j−1∆j−1e
−U2

j (Tj−Tj−1)σ2
j

∣∣∣Rl
σ2
j

∣∣∣ > ε


Markov
≤ 1

ε2
E


 U2

j e
−U2

j

∑j
i=1(Ti−Ti−1)σ

2
i /2√

dj,j∆j + dj,j−1∆j−1e
−U2

j (Tj−Tj−1)σ2
j

∣∣∣Rl
σ2
j

∣∣∣
2


=
1

ε2

U4
j e

−U2
j

∑j
i=1(Ti−Ti−1)σ

2
i E
[∣∣∣Rl

σ2
j

∣∣∣2]
dj,j∆j + dj,j−1∆j−1e

−U2
j (Tj−Tj−1)σ2

j

(3.33)

≲
1

ε2

U4
j e

−U2
j

∑j
i=1(Ti−Ti−1)σ

2
i

(
∥δj−l∥4∞∆2

j−l + ∥δj−l∥2∞∆4
j−l +∆8

j−l

)
e2U

2
j

∑j−l
i=1(Ti−Ti−1)σ

2
i

dj,j∆j + dj,j−1∆j−1e
−U2

j (Tj−Tj−1)σ2
j

≤ 1

ε2
U4
j ∥δj−l∥

4
∞∆2

j−le
2U2

j

∑j−l
i=1(Ti−Ti−1)σ

2
i−U

2
j

∑j
i=1(Ti−Ti−1)σ

2
i

dj,j∆j

=
1

ε2
∥δj−l∥4∞
dj,j

∆2
j−l

∆j
U4
j e

2U2
j

∑j−l
i=1(Ti−Ti−1)σ

2
i−U

2
j

∑j
i=1(Ti−Ti−1)σ

2
i =:

1

ε2
pj,j−l.

For convergence of both R0
σj

and R1
σj

in the error decomposition, we need to impose that
for l = 0 and l = 1 both respectively pj,j and pj,j−1 go to zero. Hence, we need to have the
conditions

pj,j =
∥δj∥4∞
dj,j

∆jU
4
j e
U2

j

∑j
i=1(Ti−Ti−1)σ

2
i → 0

for l = 0, and

pj,j−1 =
∥δj−1∥4∞
dj,j

∆2
j−1

∆j
U4
j e
U2

j ((
∑j−1

i=1 (Ti−Ti−1)σ
2
i )−(Tj−Tj−1)σ

2
j ) → 0

for l = 1. These conditions impose the restrictions on how fast the convergences of Uj → ∞
and ∆j → 0 can be compared to each other.
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We provide a summary of the conditions imposed and the asymptotic result in Proposition
3.5.

Proposition 3.5 Let εj−l,k be independent centered sub-Gaussian random variables with
V[εj−l,k] = 1 for all k = 1, ...,mj, l = 0, 1 and let δj−l ∈ L2+η(R) ∩ C∞(R) for η > 0,
l = 0, 1 with ∆j ||δj−l||2L2

≤ ||δj−l||2∞. Furthermore, let the Levy triplets (σj , γj , λj) belong
to Gnsj and the weight function (w1

σj
, w1

γj , w
1
λj
) belong to Wn

sj . Control Uj → ∞ and ∆j → 0
such that

∆jU
4
j e
U2

j

∑j
i=1(Ti−Ti−1)σ

2
i → 0 and

∆2
j−1

∆j
U4
j e
U2

j (
∑j−1

i=1 (Ti−Ti−1)σ
2
i−(Tj−Tj−1)σ

2
j ) → 0,

then we have an asymptotic convergence of

Rl
σ2
j

U2
j e

−U2
j

∑j
i=1(Ti−Ti−1)σ

2
i /2√

dj,j∆j + dj,j−1∆j−1e
−U2

j (Tj−Tj−1)σ2
j

P−→ 0

where P stands for convergence in probability.

The differences in the proof with γj and λj occur only at a single point. In applying
Lemma 6 we get respectively an extra Uj and U2

j term. In the next section, it can however

be seen that the asymptotic standard deviations of the cases γ̃j and λ̃j are coupled to the
functions fγj (Uj , ∆j) =

1
Uj
fσ2

j
(Uj , ∆j) and fλj

(Uj , ∆j) =
1
U2

j
fσ2

j
(Uj , ∆j). Hence, these cut-

off factors exactly cancel, and under the same assumptions as Proposition 3.5, it can be
concluded that

Rl
γj

1

Uj

U2
j e

−U2
j

∑j
i=1(Ti−Ti−1)σ

2
i /2√

dj,j∆j + dj,j−1∆j−1e
−U2

j (Tj−Tj−1)σ2
j

P−→ 0 (3.34)

and

Rl
λj

1

U2
j

U2
j e

−U2
j

∑j
i=1(Ti−Ti−1)σ

2
i /2√

dj,j∆j + dj,j−1∆j−1e
−U2

j (Tj−Tj−1)σ2
j

P−→ 0 (3.35)

Moreover, note that we have constructed a proof for the absolute value of the remainder.
Therefore, this proof works for both the real part of the remainder as well as the imaginary
part of the remainder.

Assymptotic Normality of (σ̃j, γ̃j, λ̃j)

Now all tools have been acquired to state the asymptotic normality of the estimators
(σ̃j , γ̃j , λ̃j) while controlling the growth of Uj → ∞ with the shrinkage of ∆j → 0.

3.3.5 Normality of σ̃j

First, the normality of the estimator σ̃j will be evaluated. Recall the error decomposition
(3.9) that remarked

σ̃2
j − σ2

j = L 0
σ2
j
− L 1

σ2
j
+ R0

σ2
j
− R1

σ2
j
+ Bσ2

j
. (3.36)

Following Proposition (3.3) it is found that, under certain conditions, we have

L 0
σ2
j

sn,0

d→ N (0, 1) and
L 1
σ2
j

sn,1

d→ N (0, 1),

with
s2n,l = w1

σj
(1)2dj,j−l∆j−lU

−4
j exp

(
Aj−lU

2
j

)
,
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where we defined

dj,j−l := 2 ∥δj−l∥2L2 (Tj − Tj−1)
−2
A−2
j−l exp (−2Cj−l) ,

and the terms Aj−l and Cj−l are as in expression (3.14).
Note that because (εj−l,k) are independent for different l, the linear terms L 0

σ2
j
and L 1

σ2
j

– which were only non-deterministic because of these (εj−l,k) – inherit this independence.
Hence, L 0

σ2
j
− L 1

σ2
j
is asymptotically a sum of independent normally distributed random

variables with variances s2n,0 and s2n,1, and, therefore,

L 0
σ2
j
− L 1

σ2
j√

s2n,0 + s2n,1

d→ N (0, 1). (3.37)

Recalling that from (3.14),

Aj−l :=

j−l∑
i=1

(Ti − Ti−1)σ
2
i ,

the inverse of the asymptotic standard deviation sn can be written as:

1

sn
:=

1√
s2n,0 + s2n,1

=
U2
j

|w1
σj
(1)|

1√
dj,j∆je

U2
jAj + dj,j−1∆j−1e

U2
jAj−1

,

=
U2
j

|w1
σj
(1)|

e−U
2
jAj/2√

dj,j∆j + dj,j−1∆j−1e
U2

j (Aj−1−Aj)
,

=
U2
j

|w1
σj
(1)|

e−U
2
j

∑j
i=1(Ti−Ti−1)σ

2
i /2√

dj,j∆j + dj,j−1∆j−1e
−U2

j (Tj−Tj−1)σ2
j

. (3.38)

Now let us write the error decomposition resembling the normality in (3.37),

σ̃2
j − σ2

j

sn
=

L 0
σ2
j
− L 1

σ2
j

sn
+

1

sn
R0
σ2
j
− 1

sn
R1
σ2
j
+

1

sn
Bσ2

j
.

In Proposition 3.5 it is stated that asymptotically we have the following convergence in
probability

1

sn
R0
σ2
j

P→ 0 and
1

sn
R1
σ2
j

P→ 0,

whenever the following conditions are satisfied asymptotically

∆jU
4
j e
U2

j

∑j
i=1(Ti−Ti−1)σ

2
i → 0 and

∆2
j−1

∆j
U4
j e
U2

j (
∑j−1

i=1 (Ti−Ti−1)σ
2
i−(Tj−Tj−1)σ

2
j ) → 0.

Furthermore, from Proposition 3.4 it was stated that

Bσ2
j
≲ U

−(sj+3)
j ,

the asymptotic term then simplifies to

1

sn
Bσ2

j
=

U2
j

|w1
σj
(1)|

Bσ2
j√

dj,j∆je
U2

jAj + dj,j−1∆j−1e
U2

jAj−1

≲
U

−(sj+1)
j√

dj,j∆je
U2

j

∑j
i=1(Ti−Ti−1)σ2

i + dj,j−1∆j−1e
U2

j

∑j−1
i=1 (Ti−Ti−1)σ2

i
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≲
(
U

2(sj+1)
j

{
dj,j∆je

U2
j

∑j
i=1(Ti−Ti−1)σ

2
i + dj,j−1∆j−1e

U2
j

∑j−1
i=1 (Ti−Ti−1)σ

2
i

})−1/2

.

If the following condition is imposed,

U
2(sj+1)
j

{
∆je

U2
j

∑j
i=1(Ti−Ti−1)σ

2
i +∆j−1e

U2
j

∑j−1
i=1 (Ti−Ti−1)σ

2
i

}
→ ∞, (3.39)

then the desired result is found
1

sn
Bσ2

j
→ 0,

whenever sj ≥ 2.
From the fact that convergence in probability is stronger than convergence in distribution,

all elements can be combined to come to the result that asymptotically

σ̃2
j − σ2

j

sn

d→ N (0, 1), (3.40)

or, written differently remembering (3.38),

U2
j Ξj (σ̃

2
j − σ2

j )
d→ |w1

σj
(1)| Z1,

where Z1 ∼ N (0, 1) and we defined

Ξj :=
e−U

2
j

∑j
i=1(Ti−Ti−1)σ

2
i /2√

dj,j∆j + dj,j−1∆j−1e
−U2

j (Tj−Tj−1)σ2
j

. (3.41)

The reason that we have written it in this way becomes clear when evaluating γ̃j and λ̃j ,
these cases will namely resemble the same asymptotic term Ξj . Also, the exact conditions
that imply this result will be summarized in a main theorem at the end of the section,
together with the cases γ̃j and λ̃j .

3.3.6 Normality of γ̃j

The case of γ̃j follows a similar line of thought as the case of σj . However, there is a difference
in the error decomposition of γ̃j , given in expression (3.10),

(γ̃j + σ̃2
j )− (γj + σ2

j ) = L 0
γ2
j
− L 1

γ2
j
+ R0

γ2
j
− R1

γ2
j
+ Bγ2

j

which depends on the σ̃j case.
From Proposition 3.3 and the independence of L 0

γj and L 1
γj , it can be deduced that

L 0
γj − L 1

γj

Uj sn

d→ N (0, 1),

where the only difference is in the used weight function

1

sn
:=

1√
s2n,0 + s2n,1

=
U2
j

|w1
γj (1)|

e−U
2
j

∑j
i=1(Ti−Ti−1)σ

2
i /2√

dj,j∆j + dj,j−1∆j−1e
−U2

j (Tj−Tj−1)σ2
j

.

Let us first write the error decomposition in a way that resembles this normality,

1

Ujsn

(
(γ̃j + σ̃2

j )− (γj + σ2
j )
)
=

L 0
γ2
j
− L 1

γ2
j

Ujsn
+

1

Ujsn
R0
γ2
j
− 1

Ujsn
R1
γ2
j
+

1

Ujsn
Bγ2

j

Using Proposition 3.5 and expression 3.34 it follows that
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1

Ujsn
R0
γj

P→ 0 and
1

Ujsn
R1
γj

P→ 0,

whenever the same asymptotic conditions are satisfied

∆jU
4
j e
U2

j

∑j
i=1(Ti−Ti−1)σ

2
i → 0 and

∆2
j−1

∆j
U4
j e
U2

j (
∑j−1

i=1 (Ti−Ti−1)σ
2
i−(Tj−Tj−1)σ

2
j ) → 0.

Proposition 3.4 provides that Bγj ≲ U
−(sj+2)
j such that 1

Ujsn
Bγj → 0, whenever the

same condition is as in expression (3.39) is satisfied. The reason for this is that 1
Uj

and

U
−(sj+2)
j combine to get the same factor U

−(sj+3)
j as in the case σ̃2

j .
From the fact that convergence in probability is stronger than convergence in distribution

and using the same definition of Ξj as in (3.41), the following result follows

Uj Ξj
(
(γ̃j + σ̃2

j )− (γj + σ2
j )
) d→ |w1

γj (1)| Z2, (3.42)

where Z2 ∼ N (0, 1).
Expression (3.42) is first rewritten such that it resembles the term γ̃j − γj and the nor-

mality results in (3.40) and (3.42),

UjΞj
(
(γ̃j + σ̃2

j )− (γj + σ2
j )
)
= UjΞj(γ̃j − γj) +

1

Uj
U2
j Ξj(σ̃j − σj).

Now using the previous expression with the convergence results of (3.40) and (3.42) we
can see that the term (γ̃j − γj) is a factor Uj slower in convergence than the term (σ̃j −
σj). Therefore, asymptotically the first term with |w1

γj (1)| dominates the second term with

|w1
σj
(1)|, because Uj → ∞. Thus we get

Uj Ξj (γ̃j − γj)
d→ |w1

γj (1)|Z2,

where Z2 ∼ N (0, 1).

3.3.7 Normality of λ̃j

For the case of λ̃j we first recall the error decomposition (3.11),

(λ̃j − σ̃2
j /2− γ̃j)− (λj − σ2

j /2− γj) = L 0
λ2
j
− L 1

λ2
j
+ R0

λ2
j
− R1

λ2
j
+ Bλ2

j
.

Following a similar approach to γ̃j , Proposition 3.3 with the independence of L 0
λj

and L 1
λj

gives
L 0
λj

− L 1
λj

U2
j sn

d→ N (0, 1),

where the only difference is again in the weight function

1

sn
:=

1√
s2n,0 + s2n,1

=
U2
j

|w1
λj
(1)|

e−U
2
j

∑j
i=1(Ti−Ti−1)σ

2
i /2√

dj,j∆j + dj,j−1∆j−1e
−U2

j (Tj−Tj−1)σ2
j

.

Rewriting the error decomposition to resemble the normality results gives

1

U2
j sn

(
(λ̃j − σ̃2

j /2− γ̃j)− (λj − σ2
j /2− γj)

)
=

L 0
λ2
j
− L 1

λ2
j

U2
j sn

+
1

U2
j sn

R0
λ2
j
− 1

U2
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R1
λ2
j
+

1

U2
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Bλ2
j
.
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Using Proposition 3.5 and expression 3.35 it follows that

1

U2
j sn

R0
λj

P→ 0 and
1

U2
j sn

R1
λj

P→ 0,

whenever the same asymptotic conditions are satisfied

∆jU
4
j e
U2

j

∑j
i=1(Ti−Ti−1)σ

2
i → 0 and

∆2
j−1

∆j
U4
j e
U2

j (
∑j−1

i=1 (Ti−Ti−1)σ
2
i−(Tj−Tj−1)σ

2
j ) → 0.

Proposition 3.4 provides that Bλj
≲ U

−(sj+1)
j such that 1

U2
j sn

Bλj
→ 0, if the same

condition is as in expression (3.39) is satisfied. The reason for this is that again 1
U2

j
and

U
−(sj+1)
j combine to get the same factor U

−(sj+3)
j as in the case σ̃2

j .
Hence, combining all these results and remembering that convergence in probability is

stronger than convergence in distribution, it can be concluded that

Ξj

(
(λ̃j − σ̃2

j /2− γ̃j)− (λj − σ2
j /2− γj)

)
d→ |w1

λj
(1)|Z3 (3.43)

with Z3 ∼ N (0, 1) independent of Z1 and Z2.
Expression (3.43) is first rewritten such that it resembles the term λ̃j − λj and the

normality results in (3.40) and (3.42),

Ξj

(
(λ̃j − σ̃2

j /2− γ̃j)− (λj − σ2
j /2− γj)

)
= Ξj(λ̃j − λj)−

1

Uj
UjΞj((γ̃j + σ̃2

j )− (γj − σj)) +
1

U2
j

U2
j Ξj(σ̃j − σj).

Now using the normality expressions (3.40), (3.42) and (3.43), it can be derived that the
term with (λ̃j − λj) is respectively Uj and U

2
j slower than the terms ((γ̃j + σ̃2

j )− (γj − σj))

and (σ̃j − σj). Therefore, the second term with |w1
γj (1)| and the third term with |w1

σj
(1)|

both converge to 0 faster when Uj → ∞. Hence,

Ξj(λ̃j − λj)
d→ |w1

λj
(1)|Z3,

where Z3 ∼ N (0, 1).

3.4 Asymptotic Normality of µ̃j(x)

This section is devoted to showing the asymptotic normality of the estimator (µ̃j(x))j=1,...,n

for (µj(x))j=1,...,n. From theoretical considerations, it is advised to look at the error decom-
position of the exponentially weighted jump density µ̃j(x) = exν̃j(x) instead of the jump

density ν̃j(x). The reason for this is that the shifted estimator ψ̃νj (v) = ψj(v + i) used for
ν̃j(x) will result in a term F bj−l,k(v + i) instead of F bj−l,k(v). This term will give an e−x

term which makes the analysis considerably less comparable to the triplet (σ̃j , γ̃j , λ̃j) and
also more difficult. Therefore, it is advised to look at µ̃j(x), and when the result for µ̃j(x)
is derived it is easy to get the result for ν̃j(x).

The case of (µ̃j(x))j=1,...,n bears resemblance with the asymptotic normality of the esti-

mators (σ̃2
j , γ̃j , λ̃j)j=1,..,n in the fact that again an error decomposition will be made into a

Bias term, Remainder term and Linear term. Thereafter it will be shown that the Bias and
Remainder terms are asymptotically negligible, whereas the Linear term will asymptotically
admit a normal distribution.

The difference with the cases of (σ̃2
j , γ̃j , λ̃j)j=1,..,n is mostly in the spectral estimation

part where now a smoothed inverse Fourier transform is used (2.17),
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µ̃j(x) = F−1

[(
ψ̃j(·) +

σ̃2
j

2
(· − i)2 − iγ̃j(· − i) + λ̃j

)
wUj
µj

(·)

]
(x)

where wµ is a symmetric weight function supported on [−1, 1].

Error Decomposition of µ̃j(x)

The error decomposition of µ̃j(x) will be made by looking upon the term µ̃j(x)− µj(x),

µ̃j(x)− µj(x) = F−1

[(
ψ̃j(·) +

σ̃2
j

2
(· − i)2 − iγ̃j(· − i) + λ̃j

)
wUj
µj

(·)

]
(x)

− F−1

[(
ψj(·) +

σ2
j

2
(· − i)2 − iγj(· − i) + λj

)]
(x).

Recalling the definition of the inverse Fourier transform

F−1f(x) =
1

2π

∫
R
f(v)e−ivxdx

and the fact that the weight function w
Uj
µj (v) is 0 outside the region [−Uj , Uj ], then with the

linearity of F−1 the term µ̃j(x)− µj(x) can be written as

µ̃j(x)− µj(x) =
1

2π

[∫ Uj

−Uj

(ψ̃j(v)− ψj(v))w
Uj
µj
(v)e−ivxdv +

σ̃2
j − σ2

j

2

∫ Uj

−Uj

(v − i)2wUj
µj
(v)e−ivxdv

− i(γ̃j − γj)

∫ Uj

−Uj

(v − i)wUj
µj
(v)e−ivxdv + (λ̃j − λj)

∫ Uj

−Uj

wUj
µj
(v)e−ivxdv

+

∫
R\[−Uj ,Uj ]

(
ψj(v) +

σ2
j

2
(v − i)2 − iγj(v − i) + λj

)
(1− wUj

µj
(v))e−ivxdv

]
=: Ψ +Σ + Γ + Λ+ B. (3.44)

First of all, note that in the decomposition B is a Bias term and does not behave stochas-
tically.

From the assumption of w
Uj
µj ∈ Wsj

n , we can see that the integrals in the terms of Σ, Γ
and Λ exist and are well-defined functions in x. Furthermore, we have already proven the
asymptotic normality of σ̃2

j − σj , γ̃j − γj and λ̃j − λj , thus the terms Σ, Γ and Λ follow the
same normality multiplied by this well-defined function.

It will later be shown that the term Ψ converges in a slower manner than the terms Σ,
Γ and Λ, such that Ψ dominates the asymptotic behaviour of µ̃j(x)− µj(x).

Asymptotic Normality Result of µ̃j(x)

We need to show the convergence of the Bias term B to 0 and the asymptotic behavior of
Ψ composed in a linear and remainder term. The line of thought in these two derivations
is similar to the cases of (σ̃j , γ̃j , λ̃j) and the exact derivations is for the sake of not repeat-
ing arguments placed in the appendix. Below, we will summarize the results found in the
appendix.

In section B we can write Ψ into linear terms and remainder terms

2πΨ =

∫ Uj

−Uj

[
L0
j (v)− L1

j (v) +R0
j (v)−R1

j (v)
]
wUj
µj
(v)e−ivxdv

=: L 0
µj

− L 1
µj

+ R0
µj

− R1
µj
.
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Using the Lyapunov Central Limit theorem, the linear terms converge to a normal distribu-
tion

L l
µj

U3
j sn,l

=
Tm

U3
j sn,l

d→ N (0, 1), for l = 0, 1.

with asymptotic variance s2n,l similar to the previously found asymptotic variance of σ̃2
j .

Then, for the remainder terms, it can be shown that, in probability, the following conver-
gence with sn as in (3.38) can be found:

1

U3
j sn

R0
µj

P→ 0 and
1

U3
j sn

R1
µj

P→ 0,

whenever the following conditions are satisfied asymptotically

∆jU
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2
i → 0 and
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∆j
U4
j e
U2
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2
i−(Tj−Tj−1)σ

2
j ) → 0.

In section B.1 the result is found that the Bias term can be bounded by

|B| ≤ 1

2π
U

−2sj
j ||µsjj ||L2(R),

such that
|B|
U3
j sn

→ 0

whenever for sj > 2,

U
2(sj+1)
j

{
∆je

U2
j

∑j
i=1(Ti−Ti−1)σ

2
i +∆j−1e

U2
j

∑j−1
i=1 (Ti−Ti−1)σ

2
i

}
→ ∞.

Thus, in the same spirit as the other parameters, from the fact that convergence in proba-
bility is stronger than convergence in distribution, all elements can be combined to come to
the result that asymptotically

2π
Ψ

U3
j sn

d→ N (0, 1)

or, written differently remembering (3.41),

1

Uj
Ξj Ψ

d→ 1

2π
|w1
µj
(1)| Z4,

where Z4 ∼ N (0, 1).
Recalling the asymptotic results of σ̃2

j − σj , γ̃j − γj , and λ̃j − λj that are respectively
portrayed in the factors Σ, Γ and Λ in (3.44), it can be seen that the asymptotic convergence
rate of Ψ is the slowest and dominates the asymptotic behavior when Uj → ∞. Hence, it
can be concluded that

1

Uj
Ξj (µ̃j(x)− µj(x))

d→ 1

2π
|w1
µj
(1)| Z4.

The result of ν̃j(x) can easily be deduced after recalling that νj(x) = exµj(x) and using the
continuous mapping theorem,

1

Uj
Ξj e

x(ν̃j(x)− νj(x))
d→ 1

2π
|w1
νj (1)| Z4.
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where the exact specification of the weight function for µj and νj can be chosen equivalently,
i.e., w1

νj = w1
µj
.

3.5 Concluding Theorem of Normality Results

All found results of Propositions 3.1, 3.3, 3.4, and 3.5 will be combined to make a final
theorem about the asymptotic normality of the Lévy triplet. Note that in Proposition 3.1
the condition was imposed

∆jU
4
j logUje

U2
j

∑j
r=1(Tr−Tr−1)σ

2
r → 0,

and in Proposition 3.3 the condition,

∆jU
4
j e
U2

j

∑j
i=1(Ti−Ti−1)σ

2
i → 0,

when Uj → ∞ and ∆j → 0. The first condition incorporates the second condition when
Uj → ∞ – the logUj only makes the convergence slower.

Using this fact, the combination of all Propositions and expression (3.39) result in The-
orem 3.2.

Theorem 3.2 Let εj−l,k be independent centered sub-Gaussian random variables with V[εj−l,k] =
1 for all k = 1, ...,mj, l = 0, 1 and let δj−l ∈ L2+η(R) ∩ C∞(R) for η > 0, l = 0, 1 with
∆j ||δj−l||2L2

≤ ||δj−l||2∞. Furthermore, let the Levy triplets (σj , γj , µj) belong to Gnsj and the

weight function (w1
σj
, w1

γj , w
1
λj
, w1

µj
) belong to Wn

sj . Control Uj → ∞ and ∆j → 0 such that
for j = 1, .., n,
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3.6 Difficulty of Inverse Calibration Problem

An important factor in all the results is parameter Ξj which was defined by
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with, for l = 0, 1,
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We want to write the term Ξj in such a way that we can say something about the difficulty
of the problem with increasing j. The asymptotic variance of all problems will be influenced
by 1
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, which can be written as

1

Ξj
=

√
2

(Tj − Tj−1)

(
||δj ||2L2

e
∑j

i=1(Ti−Ti−1)(σ
2
i /2+γi−λi)(∑j

i=1(Ti − Ti−1)σ2
i

)2 ∆je
U2

j

∑j
i=1(Ti−Ti−1)σ

2
i

+ ||δj−1||2L2

e
∑j−1

i=1 (Ti−Ti−1)(σ
2
i /2+γi−λi)(∑j−1

i=1 (Ti − Ti−1)σ2
i

)2 ∆j−1e
U2

j

∑j−1
i=1 (Ti−Ti−1)σ

2
i

)1/2

.

The factors that mostly influence the size with increasing j are
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Note that in the asymptotics Uj → ∞, thus the terms
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i and eU
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dominate. Of course, in these terms,∆j and∆j−1 have been left out, because if we multiplied
these terms respectively with the grid sizes, then we demanded that they went to 0. However,
here we are most interested in the complexity of the problem with increasing j and ∆j and
∆j−1 do not necessarily change in the same manner as these terms with increasing j.

The convergence of the asymptotic variance of the time-inhomogeneous Lévy model with
increasing j is thus coupled to the factors in the exponential

∑j−l
i=1(Ti−Ti−1)σ

2
i with l = 0, 1.

Note that this term contains the time differences (Ti−Ti−1) and volatilities σ2
i of all previous

calibrations i = 1, ..., j.
Belomestny et al. [4] and Söhl and Trabs [44] already point out that in the case of the

homogeneous Lévy model, i.e. one Lévy process between 0 and end time Tn = T , the
difficulty of the inverse calibration problem is coupled to σ2T . It is easy to see by filling in
j = 1 that the time-inhomogeneous model also incorporates the time-homogeneous model
and we only have the term

∑1
i=1(Ti−Ti−1)σ

2
i = σ2

1T1 =: σ2T . Thus, a theoretical argument
is found why the difficulty of the time-homogeneous problem is coupled to σ2T .

Furthermore, the difficulty of the time-inhomogeneous inverse calibration problem is cou-
pled to

∑j−l
i=1(Ti − Ti−1)σ

2
i with l = 0, 1. This term grows for increasing j and the problem

becomes more difficult when calibration occurs for higher j. This fact will be clearly shown
in the practical side of the thesis, which contains the simulations and the empirical results.
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3.7 Convergence Rates

Let us recall the asymptotic assumptions on Uj → ∞ and ∆j → 0 that needed to be made
for the convergence to hold. For the well-definedness of ψj and the remainder terms Rl

j

divided by the asymptotic variance to converge to 0 in probability, we needed to impose the
conditions
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(3.46)
Furthermore, for the bias Bj divided by the asymptotic variance to become 0, we also needed
to have

U
2(sj+1)
j

{
∆je

U2
j

∑j
i=1(Ti−Ti−1)σ

2
i +∆j−1e

U2
j

∑j−1
i=1 (Ti−Ti−1)σ

2
i

}
→ ∞, (3.47)

which was only possible with sj ≥ 2. These 3 conditions imply under what conditions the
convergence rates must be found.

The idea is that we want to find Uj = f(∆j) for some function f : R+ → R+ such that
all 3 conditions are satisfied and optimal convergence is found. The assumption still holds
that all Lévy triplets (σj , γj , µj)j=1,...,n belong to Gnsj as in Definition 1.1.

Define f : [0, 1] → R+ as

Uj,σmax
= f(∆j) :=

1
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√
log(1/∆j)

Tj
. (3.48)

We will show that this choice gives the desired convergence rate. The domain [0, 1] is chosen
such that log(1/∆j) ≥ 0 and the square root is well-defined. Note that the restriction of the
domain is minor because we are interested in the case ∆j → 0.

Let us verify if the limited relations in expressions (3.46) and (3.47) are satisfied for this
choice of Uj = Uj,σmax

. First, note that
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because, by the definition of Gnsj , we have σ
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where the last limit can be proven by using a power series expansion or L’Hôpital’s rule to
note that the exponential term dominates. For the second limiting relation in (3.46), the
following expression is useful
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because the exponent is positive again. The minor assumption is made that the factor
∆j−1

∆j
≤ C for some C ∈ R. Then the second limit can be shown by observing the bounds
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such that the squeeze theorem implies
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Thus all limited relations of expression (3.46) — the conditions such that ψ̃j is well-defined
and the remainder terms divided by the asymptotic variance converge to 0 in P — are
satisfied for this choice of Uj,σmax

.
Remind that for the domain [0, 1] it holds that log(1/∆j) ≥ 0. For the condition of the

Bias term divided by the standard deviation (3.47) it follows that for Uj = Uj,σmax we have
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where the squeeze theorem was used
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and for general α > 0 we have
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This last limit can easily be proved by a power series expansion or rewriting the term to
(− log∆j)

sj+1/∆−α
j and applying L’Hôpital’s rule sj + 1 times. Note that the limit goes to

0 and not the required ∞ for convergence of the Bias to 0.
Thus, for the choice of Uj,σmax the remainder terms divided by the standard deviation

converge to 0 and the bias term divided by the standard deviation does not converge to 0.
Therefore, the Bias term dominates the Remainder term.
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Intuitively this can also be verified, in the rate Uj,σmax
∼ 1

σmax
the fact was used that

σ2
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max, such that the rate Uj,σmax
is smaller than the rate Uj,σi

— which can only be
known if σ2

i is known. Therefore, oversmoothing is deployed, and the Bias is dominating.
Using the domination of the Bias term then, for example, with σ̃2

j , it follows with the
error decomposition (3.9) that
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where we used that Bσ2
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and sn are deterministic. Using Proposition 3.4 it then follows that
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All the other cases γj , λj , νj were dependent on the same limiting relations of (3.46) and
(3.47), the only difference occurs in Proposition 3.4. Therefore,
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The rates given by Uj,σmax
in expression (3.48) are also optimal. The reason for this is

that if Uj is chosen slightly larger than Uj,σmax
, then it is not guaranteed that the remainder

asymptotic relations in (3.46) hold. The cut-off Uj can only be chosen larger if σ2
i is exactly

known, which is not the case in practical problems. Furthermore, if Uj is chosen slightly
smaller than Uj,σmax

, then the bound on the Bias terms becomes larger, such that the rate
is less optimal. Hence, Uj,σmax

is the optimal rate. These rates agree with Belomestny and
Reiß [7, p.459], which proved these rates for the time-homogeneous model.

All the findings of this section are summarized in Theorem 3.3.

Theorem 3.3 Let ∆j−1/∆j ≤ C for some C ∈ R and let the Lévy triplets (σ2
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Uj,σmax
:= f(∆j) =

1

σmax

√
log(1/∆j)

Tj
,

then Uj,σmax
is the optimal choice of the cut-off value in terms of ∆j for all Lévy triplets
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Chapter 4

Confidence Intervals with Finite Sample Variance

The asymptotic standard deviation of the asymptotic normality results (Theorem 3.2) can
be used to make (100 − ϑ)% (asymptotic) confidence intervals. This can be done by using
the continuous mapping theorem and Slutsky’s theorem.

From practical applications, however, it is found that these confidence intervals are not
necessarily satisfactory in terms of coverage probabilities. The reason for this is that the
estimation of the finite sample by its limit, as in the normality part has been done, is not
a good practice in real-life/finite sample applications. Therefore, this practice has been left
out of the thesis, and a new more practical side, where the variance is not estimated by its
limit, will be investigated.

The new approach of creating confidence intervals by estimating the variance of a finite
sample will be called finite sample variance. On the practical side of the report, it can be
seen that this method works particularly well in terms of coverage probabilities.

Söhl and Trabs [44] already derived confidence intervals for finite samples by using a sim-
plified continuous scheme. The exact simplification is that [44] made an idealized continuous
observation scheme of the regression model (2.9),

Oj,k = Oj(xj,k) + δj,kεj,k,

by using the Gaussian white noise model,

dOk(x) = O(x)dx+ εkδk(x)dW (x),

where W is a two-sided Brownian motion, δk ∈ L2(R), and εk > 0. Transferring asymptotic
results from the Gaussian white noise model to the regression model is formally justified
by the concept of asymptotic equivalence [13] – this result only holds when the errors are
Gaussian. Nevertheless, as [41] points out, it is an idealized model and the ultimate interest
is in the regression model with discrete observations. This would lead to less asymptotic
results and assumptions.

Therefore, Tendijck [46] made a start obtaining finite sample variance confidence intervals
by directly using the regression model (2.9), i.e., the discrete case is investigated instead of
making a simplified continuous case. In this section, we will clarify, improve and complete
the work he started.

The idea of the method is to build confidence intervals by estimating the variance of the
stochastic error. The same error decomposition as in the asymptotic normality case will be
used, i.e., the error decomposition where we split into a linear, a remainder, and a bias term.
Now the important assumption will be made that for the finite/non-asymptotic case the bias
and remainder term can be neglected 1. The reason behind this assumption is that in the
theoretic results, we have already seen that these terms converge to 0 in the limit compared
to the linear terms. After neglecting these terms, the variance s2n (as in the linear term) will

1 This assumption will be further inspected in the practical side of the thesis. Sometimes bias can be
observed and the assumption does not always hold, however, the coverage probabilities can still be
satisfactory.
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be estimated for the finite case, i.e. not its limiting behavior, and used to make confidence
intervals.

First, the case of σ̃j will be inspected, and thereafter the cases of γ̃j and λ̃j which bear
great resemblances to σ̃j . In the end, a point-wise confidence interval for ν̃j(x) for a certain
point x will also be constructed.

4.1 Confidence Intervals for σ̃j

For constructing confidence intervals, the variance of the estimator σ̃2
j will be estimated,
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where after the assumptions we will later see that E[σ̃2
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Note that it is easy to see that E[L l
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Recall that the linear cubic spline interpolation scheme (2.12) is used, such that bj−l,k(x) =
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sj is 0 outside the region
[−Uj , Uj ], thus∫ Uj

−Uj

f lσj
(v)eivxj−l,kdv = 2π

1

2π

∫
R
f lσj

(v)eivxj−l,kdv = 2πF−1f lσj
(−xj−l,k)

and the following expression is found

L l
σ2
j
= 2π

mj−l∑
k=1

δj−l,kεj−l,k∆j−lRe
(
F−1f lσj

(−xj−l,k)
)
.

Using the fact that (εj,k) are independent centered sub-Gaussian random variables with
V[εj,k] = 1, it follows that L 0

σ2
j
and L 1

σ2
j
are independent, and the estimated variance

becomes

V(σ̃2
j ) = E

[(
σ̃2
j − E[σ̃2

j ]
)2]

= E
[(
σ̃2
j − σ2

j

)2] ≈ E
[
(L 0

σ2
j
− L 1

σ2
j
)2
]

≈ E[(L 0
σ2
j
)2] + E[(L 1

σ2
j
)2]− 2E[L 0

σ2
j
]︸ ︷︷ ︸

=0

E[L 1
σ2
j
]︸ ︷︷ ︸

=0

≈ E

(2π mj∑
k=1

δj,kεj,k∆jRe
(
F−1f lσj

(−xj,k)
))2


+ E

(2πmj−1∑
k=1

δj−1,kεj−1,k∆jRe
(
F−1f lσj

(−xj−1,k)
))2


≈ 4π2

mj∑
k=1

δ2j,k∆
2
jRe

(
F−1f0σj

(−xj,k)
)2

+ 4π2

mj−1∑
k=1

δ2j−1,k∆
2
j−1Re

(
F−1f1σj

(−xj−1,k)
)2

The estimated variance is thus given by

s2σj
= 4π2

mj∑
k=1

δ2j,k∆
2
jRe

(
F−1f0σj

(−xj,k)
)2

+ 4π2

mj−1∑
k=1

δ2j−1,k∆
2
j−1Re

(
F−1f1σj

(−xj−1,k)
)2
.

(4.4)
Note that in practical applications the function φTj−l

(v − i) in f lσj
(v) is not available. The

estimator φ̃Tj−l
(v − i) will therefore be used instead of φTj−l

(v − i) in the function f lσj
(v).

Using the continuous mapping theorem and Slutsky’s theorem a (100− ϑ)% asymptotic
confidence interval for σ̃2

j can be constructed by[
σ̃2
j + zϑ/2 · sσ2

j
, σ̃2

j − z100−ϑ/2 · sσ2
j

]
, (4.5)

where zp is the pth quantile of a standard normal distribution.
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4.2 Confidence Intervals for γ̃j

Now let us estimate the variance of γ̃j ,

s2γj ≈ V(γj) = E
[
(γ̃j − E[γj ])2

]
.

It has a similar line of thought as the case σ̃2
j , so the calculations will be made more concise.

When combining the error decompositions (3.9) and (3.10),

σ̃2
j − σ2

j = L 0
σ2
j
− L 1

σ2
j
+ R0

σ2
j
− R1

σ2
j
+ Bσ2

j
,

(γ̃j + σ̃2
j )− (γj + σ2

j ) = L 0
γj − L 1

γj + R0
γj − R1

γj + Bγj ,

a sole expression for γ̃j − γj can be found

γ̃j − γj = L 0
γj − L 0

σ2
j
− L 1

γj + L 0
σ2
j
+ R0

γj − R0
σ2
j
− R1

γj + R1
σ2
j
+ Bγj − Bσ2

j
.

The assumption is made that the remainder terms R0
γj ,R

1
γj ,R

0
σ2
j
,R1

σ2
j
and the bias terms

Bγj ,Bσ2
j
can again neglected. Thus,

γ̃j − γj = L 0
γj − L 0

σ2
j
− L 1

γj + L 0
σ2
j
.

Recall that

L l
σ2
j
=

∫ Uj

−Uj

wUj
σj
(v)Re(Llj(v))dv and L l

γj =

∫ Uj

−Uj

wUj
γj (v)Im(Llj(v))dv,

where

Llj(v) =
1

Tj − Tj−1

φ̃Tj−l
(v − i)− φTj−l

(v − i)

φTj−l
(v − i)

.

Using expression (3.2) the stochastic term φ̃Tj−l
(v − i)− φTj−l

(v − i) will be written in the
more basic form

φ̃Tj−l
(v − i)− φTj−l

(v − i) = iv(1 + iv)

mj−l∑
k=1

δj−l,kεj−l,kF bj−l,k(v),

≈ iv(1 + iv)

mj−l∑
k=1

δj−l,kεj−l,k∆j−le
ivxj−l,k ,

where the Fourier transform was approximated as in (4.2). After defining the function f lγj
as

f lγj (v) := wUj
γj (v)

iv(1 + iv)

(Tj − Tj−1)φTj−l
(v − i)

,

then L l
γj can be written as

L l
γj =

∫ Uj

−Uj

wUj
γj (v)Im(Llj(v))dv,

=

∫ Uj

−Uj

Im

(
f lγj (v)

mj−l∑
k=1

δj−l,kεj−l,kF bj−l,k(v)

)
dv,

≈
mj−l∑
k=1

δj−l,kεj−l,k∆j−lIm

(∫ Uj

−Uj

f lγj (v)e
ivxj−l,kdv

)
,

= 2π

mj−l∑
k=1

δj−l,kεj−l,k∆j−lIm
(
F−1f lγj (−xj−l,k)

)
, (4.6)
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where we again used that w
Uj
γj is 0 outside the region [−Uj , Uj ].

Observing expressions (4.3) and (4.6) it can be seen that the independence of (εj,k) implies
that L 0

σ2
j
,L 0

γj are independent of L 1
σ2
j
,L 1

γj . Furthermore, it is easy to see that E[γ̃j ] = γj .

Having this in mind, the variance of γ̃j takes the form

V(γ̃j) = E
[
(γ̃j − γj)

2
]
≈ E[(L 0

γj − L 0
σ2
j
)2] + E[(L 1

γj − L 1
σ2
j
)2].

Now using expression (4.3) and (4.6) together with the fact that (εj,k) are independent and
were chosen such that V(εj,k) = 1, a final approximation of the variance can be found

V(γ̃j) ≈ E

(2π mj∑
k=1

δj,kεj,k∆j

{
Im
(
F−1f0γj (−xj,k)

)
− Re

(
F−1f0σj

(−xj,k)
)})2


+ E

(2πmj−1∑
k=1

δj−1,kεj−1,k∆j−1

{
Im
(
F−1f1γj (−xj−1,k)

)
− Re

(
F−1f1σj

(−xj−1,k)
)})2

 ,
≈ 4π2

mj∑
k=1

δ2j,k∆
2
j

{
Im
(
F−1f0γj (−xj,k)

)
− Re

(
F−1f0σj

(−xj,k)
)}2

+ 4π2

mj−1∑
k=1

δ2j−1,k∆
2
j−1

{
Im
(
F−1f1γj (−xj,k)

)
− Re

(
F−1f1σj

(−xj,k)
)}2

.

Thus, the estimation of the variance of γj is given by

s2γj = 4π2

mj∑
k=1

δ2j,k∆
2
j

{
Im
(
F−1f0γj (−xj,k)

)
− Re

(
F−1f0σj

(−xj,k)
)}2

+ 4π2

mj−1∑
k=1

δ2j−1,k∆
2
j−1

{
Im
(
F−1f1γj (−xj,k)

)
− Re

(
F−1f1σj

(−xj,k)
)}2

. (4.7)

Note that in practical application the function φTj−l
(v − i) in f lγj (v) and f lσj

(v) is not
available. The estimator φ̃Tj−l

(v − i) will therefore be used instead of φTj−l
(v − i) in these

functions.
Using the continuous mapping theorem and Slutsky’s theorem a (100 − ϑ)% confidence

interval for γ̃j can be constructed by[
γ̃j + zϑ/2 · sγj , γ̃j − z100−ϑ/2 · sγj

]
, (4.8)

where zp is the pth quantile of a standard normal distribution.

4.3 Confidence Intervals for λ̃j

Finally, the variance of λ̃j will be estimated,

s2λj
≈ V(λj) = E

[(
λ̃j − E[λj ]

)2]
.

Again it has a similar line of thought as the case σ̃2
j and γ̃j , so the calculations will be made

rather quickly.
When combining the error decompositions (3.9), (3.10) and (3.11),

σ̃2
j − σ2

j = L 0
σ2
j
− L 1

σ2
j
+ R0

σ2
j
− R1

σ2
j
+ Bσ2

j
,

(γ̃j + σ̃2
j )− (γj + σ2

j ) = L 0
γj − L 1

γj + R0
γj − R1

γj + Bγj ,

(λ̃j − σ̃2
j /2− γ̃j)− (λj − σ2

j /2− γj) = L 0
λj

− L 1
λj

+ R0
λj

− R1
λj

+ Bλj
,
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a sole expression for λ̃j − λj can be found

λ̃j − λj = L 0
λj

+ L 0
γj −

1

2
L 0
σ2
j
− L 1

λj
− L 1

γj +
1

2
L 1
σ2
j

+ R0
λj

+ R0
γj −

1

2
R0
σ2
j
− R1

λj
− R1

γj +
1

2
R1
σ2
j
+ Bλj + Bγj −

1

2
Bσ2

j
.

The assumption is made that the remainder terms R0
λj
,R1

λj
,R0

γj ,R
1
γj ,R

0
σ2
j
,R1

σ2
j
and the

bias terms Bγj ,Bσ2
j
can again be neglected. Thus,

λ̃j − λj = L 0
λj

+ L 0
γj −

1

2
L 0
σ2
j
− L 1

λj
− L 1

γj +
1

2
L 1
σ2
j
.

Recall that

L l
σ2
j
=

∫ Uj

−Uj

wUj
σj
(v)Re(Llj(v))dv, L l

γj =

∫ Uj

−Uj

wUj
γj (v)Im(Llj(v))dv, and

L l
λj

=

∫ Uj

−Uj

w
Uj

λj
(v)Re(Llj(v))dv with Llj(v) =

1

Tj − Tj−1

φ̃Tj−l
(v − i)− φTj−l

(v − i)

φTj−l
(v − i)

.

Using expression (3.2) the stochastic term φ̃Tj−l
(v − i)− φTj−l

(v − i) will again be written
in the approximated form

φ̃Tj−l
(v − i)− φTj−l

(v − i) = iv(1 + iv)

mj∑
k=1

δj−l,kεj−l,kF bj−l,k(v),

≈ iv(1 + iv)

mj∑
k=1

δj−l,kεj−l,k∆j−le
ivxj−l,k .

After defining the function f lλj
as

f lλj
(v) := w

Uj

λj
(v)

iv(1 + iv)

(Tj − Tj−1)φTj−l
(v − i)

,

then L l
λj

can be written as

L l
λj

=

∫ Uj

−Uj

w
Uj

λj
(v)Re(Llj(v))dv,

≈
mj−l∑
k=1

δj−l,kεj−l,k∆jRe

(∫ Uj

−Uj

f lλj
(v)eivxj−l,kdv

)
,

= 2π

mj−l∑
k=1

δj−l,kεj−l,k∆j−lRe
(
F−1f lλj

(−xj−l,k)
)
, (4.9)

where we again used that w
Uj

λj
is 0 outside the region [−Uj , Uj ].

Observing expressions (4.3), (4.6) and (4.9) it can be seen that the independence of (εj,k)
implies that L 0

σ2
j
,L 0

γj ,L
0
λj

are independent of L 1
σ2
j
,L 1

γj ,L
1
λj
. Furthermore, it is easy to see

that E[λ̃j ] = λj . The variance of λ̃j then takes the form

V(λ̃j) = E
[(
λ̃j − λj

)2]
≈ E[(L 0

λj
+ L 0

γj −
1

2
L 0
σ2
j
)2] + E[(L 1

λj
+ L 1

γj −
1

2
L 1
σ2
j
)2].

Now using expression (4.3) and (4.6) together with the fact that (εj,k) are independent with
V(εj,k) = 1 a final approximation of the variance can be found
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V(λ̃j) ≈ E

[(
2π

mj∑
k=1

δj,kεj,k∆j

{
Im
(
F−1f0γj (−xj,k)

)

+Re

(
F−1f0λj

(−xj,k)−
1

2
F−1f0σj

(−xj,k)
)})2]

+ E

[(
2π

mj−1∑
k=1

δj−1,kεj−1,k∆j−1

{
Im
(
F−1f1γj (−xj−1,k)

)

+Re

(
F−1f1λj

(−xj−1,k)−
1

2
F−1f1σj

(−xj−1,k)

)})2]

≈ 4π2

mj∑
k=1

δ2j,k∆
2
j

{
Im
(
F−1f0γj (−xj,k)

)
+Re

(
F−1f0λj

(−xj,k)−
1

2
F−1f0σj

(−xj,k)
)}2

+ 4π2

mj−1∑
k=1

δ2j−1,k∆
2
j−1

{
Im
(
F−1f1γj (−xj−1,k)

)

+Re

(
F−1f1λj

(−xj−1,k)−
1

2
F−1f1σj

(−xj−1,k)

)}2

.

Thus, the estimation of the variance of λj is given by

s2λj
= 4π2

mj∑
k=1

δ2j,k∆
2
j

{
Im
(
F−1f0γj (−xj,k)

)
+Re

(
F−1f0λj

(−xj,k)−
1

2
F−1f0σj

(−xj,k)
)}2

+ 4π2

mj−1∑
k=1

δ2j−1,k∆
2
j−1

{
Im
(
F−1f1γj (−xj−1,k)

)

+Re

(
F−1f1λj

(−xj−1,k)−
1

2
F−1f1σj

(−xj−1,k)

)}2

. (4.10)

Note that in practical application the function φTj−l
(v − i) in f lλj

(v), f lγj (v) and f lσj
(v) is

not available. The estimator φ̃Tj−l
(v − i) will therefore be used instead of φTj−l

(v − i) in
these functions.

Using the continuous mapping theorem and Slutsky’s theorem a (100 − ϑ)% confidence
interval for λ̃j can be constructed by[

λ̃j + zϑ/2 · sλj , λ̃j − z100−ϑ/2 · sλj

]
, (4.11)

where zp is the pth quantile of a standard normal distribution.

4.4 Confidence Intervals for ν̃j(x)

In the theoretical part, out of convenience, we derived the asymptotic normality of the
exponentially weighted jump density µ̃j(x) = exν̃j(x), instead of the density νj(x). However,
in the statistical model, we already mentioned that estimating ν̃j(x) directly in practical
cases is more stable than estimating µ̃j(x). Therefore, the finite sample variance confidence
intervals will also be made for ν̃j(x) directly.

For constructing confidence intervals the variance of the estimator ν̃2j at a certain point
x will be estimated,

s2νj (x) ≈ V(ν̃j(x)) = E
[
(ν̃j(x)− E[ν̃j(x)])2

]
,
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where after the assumptions we will later see that E[ν̃j(x)] = νj(x). The case of ν̃j is different
from previous cases, because – as can be seen in expression (2.17) – here we had the shifted
estimator ψ̃νj (v) = ψ̃j(v + i) and an inverse Fourier transform F−1. Similar to µ̃j(x) the
error decomposition of ν̃j(x) can be written as

ν̃j(x)− νj(x) =
1

2π

[∫ Uj

−Uj

(ψ̃νj (v)− ψνj (v))w
Uj
νj (v)e

−ivxdv +
σ̃2
j − σ2

j

2

∫ Uj

−Uj

v2wUj
νj (v)e

−ivxdv

− i(γ̃j − γj)

∫ Uj

−Uj

vwUj
νj (v)e

−ivxdv + (λ̃j − λj)

∫ Uj

−Uj

wUj
νj (v)e

−ivxdv

+

∫
R\[−Uj ,Uj ]

(
ψνj (v) +

σ2
j

2
v2 − iγjv + λj

)
(1− wUj

νj (v))e
−ivxdv

]
=: Ψ +Σ + Γ + Λ+ B,

where Ψ can be written in linear terms L 0
j ,L

1
j and remainder terms R0

j ,R
1
j ,

Ψ =
1

2π

∫ Uj

−Uj

[
L0
j (v)− L1

j (v) +R0
j (v)−R1

j (v)
]
wUj
νj (v)e

−ivxdv,

=: L 0
νj − L 1

νj + R0
νj − R1

νj .

Note that in ν̃j(x)− νj(x) all the other terms σ̃2
j −σj , γ̃j − γj and λ̃j −λj appear. All these

terms are multiplied by integrals, which can be recognized as inverse Fourier Transforms.

These transforms are well-defined by the conditions w
Uj
νj ∈ Wn

sj . For conciseness of notation

of these transforms, the function gkUj
for k = 0, 1, 2 will be introduced as

g
(k)
Uj

(x) := F−1
[
vkwUj

νj (v)
]
(x). (4.12)

For general weight functions, w
Uj
νj (v) the function g

k
Uj
(x) is not necessarily analytically solv-

able, and will therefore be approximated numerically in the computer script. If, as with the
previous cases, the assumptions are made that the bias term B and remainder terms R0

j ,R
1
j

can be neglected, together with expression (4.12), then ν̃j(x)− νj(x) can be written as

ν̃j(x)− νj(x) = L 0
νj − L 1

νj +
σ̃2
j − σ2

j

2
g
(2)
Uj

(x)− i(γ̃j − γj)g
(1)
Uj

(x) + (λ̃j − λj)g
(0)
Uj

(x).

From the previous sections, recall the approximations

σ̃2
j − σ2

j ≈ L 0
σ2
j
− L 1

σ2
j
,

γ̃j − γj ≈ L 0
γj − L 0

σ2
j
− L 1

γj + L 0
σ2
j

λ̃j − λj ≈ L 0
λj

+ L 0
γj −

1

2
L 0
σ2
j
− L 1

λj
− L 1

γj +
1

2
L 1
σ2
j
.

Substituting these expressions and aligning all the terms with l = 0 and l = 1, then gives

ν̃j(x)− νj(x) =

{
L 0
νj + L 0

σ2
j

(
1

2
g
(2)
Uj

(x) + ig
(1)
Uj

(x)− 1

2
g
(0)
Uj

(x)

)
+ L 0

γj

(
−ig(1)Uj

(x) + g
(0)
Uj

(x)
)

+ L 0
λj
g
(0)
Uj

(x)

}
−

{
L 1
νj + L 1

σ2
j

(
1

2
g
(2)
Uj

(x) + ig
(1)
Uj

(x)− 1

2
g
(0)
Uj

(x)

)

+ L 1
γj

(
−ig(1)Uj

(x) + g
(0)
Uj

(x)
)
+ L 1

λj
g
(0)
Uj

(x)

}
. (4.13)
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Simplified expression for L l
σ2
j
, L l

γj and L l
λj

were already respectively derived in expression

(4.3), (4.6) and (4.9). Thus, we only still need to derive a simplified expression for L l
νj . In

persuasion of this, recall that

L l
νj =

1

2π

∫ Uj

−Uj

Llνj (v)w
Uj
νj (v)e

−ivxdv,

with

Llνj (v) =
1

Tj − Tj−1

φ̃νj ,Tj−l
(v − i)− φνj ,Tj−l

(v − i)

φνj ,Tj−l
(v − i)

=
1

Tj − Tj−1

φ̃Tj−l
(v)− φTj−l

(v)

φTj−l
(v)

.

Using expression (3.2) the stochastic term φ̃Tj−l
(v) − φTj−l

(v) will be written in the more
basic form

φ̃Tj−l
(v)− φTj−l

(v) = −v(v + i)

mj∑
k=1

δj−l,kεj−l,kF bj−l,k(v + i).

Following the same line of thought as (4.2), but then with F bj−l,k(v + i) instead of
F bj−l,k(v), an approximation for F bj−l,k(v + i) is

F bj−l,k(v + i) =

∫
R
bj−l,k(x)e

i(v+i)xdx =

∫
R
bj−l,k(x)e

−xeivxdx

≈ xj−l,k+1 − xj−l,k−1

2
e−xj−l,keivxj−l,k = ∆j−le

−xj−l,keivxj−l,k (4.14)

where we used the equidistant grid ∆j−l = |xj−l,k+1 − xj−l,k| = |xj−l,k − xj−l,k−1|.
The following convenient function f lνj is defined as

f lνj (v) := −wUj
νj (v)

v(v + i)

(Tj − Tj−1)φTj−l
(v − i)

,

then also using (4.14) the term L l
νj can be written as

L l
νj =

1

2π

∫ Uj

−Uj

Llνj (v)w
Uj
νj (v)e

−ivxdv

=
1

2π

∫ Uj

−Uj

wUj
νj (v)

1

Tj − Tj−1

−v(v + i)
∑mj−l

k=1 δj−l,kεj−l,kF bj−l,k(v + i)

φTj−l
(v)

e−ivxdv

=
1

2π

∫ Uj

−Uj

f lνj (v)

mj−l∑
k=1

δj−l,kεj−l,kF bj−l,k(v + i)e−ivxdv

≈ 1

2π

∫ Uj

−Uj

f lνj (v)

mj−l∑
k=1

δj−l,kεj−l,k∆je
−xj−l,keivxj−l,ke−ivxdv

=
1

2π

mj−l∑
k=1

δj−l,kεj−l,k∆je
−xj−l,k

∫ Uj

−Uj

f lνj (v)e
−iv(x−xj−l,k)dv. (4.15)

Note that by the definition of the class Wn
sj , it was that w

Uj
νj ∈ Wn

sj is 0 outside the region
[−Uj , Uj ], thus∫ Uj

−Uj

f lνj (v)e
−iv(x−xj−l,k)dv = 2π

1

2π

∫
R
f lνj (v)e

−iv(x−xj−l,k)dv = 2πF−1f lνj (x− xj−l,k)

and the following expression for (4.3) is found
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L l
ν2
j
= 2π

mj−l∑
k=1

e−xj−l,k

2π
δj−l,kεj−l,k∆j−lF

−1f lνj (x− xj−l,k). (4.16)

Observing expressions (4.3), (4.6), (4.9) and (4.16) it can be seen that the independence
of (εj,k) implies that L 0

σ2
j
,L 0

γj ,L
0
λj

and L 0
νj are independent of L 1

σ2
j
,L 1

γj ,L
1
λj

and L 1
νj .

Furthermore, it is easy to see in (4.13) that E[ν̃j(x)] = νj(x), because E[L l
ξj
] = 0 for all

ξj ∈ {σ2
j , γj , λj , νj}. Having this in mind and using expression (4.13) the variance of ν̃j at a

certain point x takes the form

V(ν̃j(x)) ≈ E
[
(ν̃j(x)− νj(x))

2
]

≈ E

[{
L 0
νj + L 0

σ2
j

(
1

2
g
(2)
Uj

(x) + ig
(1)
Uj

(x)− 1

2
g
(0)
Uj

(x)

)
+ L 0

γj

(
−ig(1)Uj

(x) + g
(0)
Uj

(x)
)

+ L 1
λj
g
(0)
Uj

(x)

}2]
+ E

[{
L 1
νj + L 1

σ2
j

(
1

2
g
(2)
Uj

(x) + ig
(1)
Uj

(x)− 1

2
g
(0)
Uj

(x)

)

+ L 1
γj

(
−ig(1)Uj

(x) + g
(0)
Uj

(x)
)
+ L 1

λj
g
(0)
Uj

(x)

}2]
.

Substituting all approximations for L l
σ2
j
, L l

γj , L l
λj

and L l
νj (respectively given in expres-

sion (4.3), (4.6), (4.9) and (4.16)) into the approximation of V(ν̃j(x)) gives

V(ν̃j(x)) ≈ E

[{
2π

mj∑
k=1

δj,kεj,k∆j

(
e−xj,k

2π
F−1f0νj (x− xj,k)

+ Re
(
F−1f0σj

(−xj,k)
)(1

2
g
(2)
Uj

(x) + ig
(1)
Uj

(x)− 1

2
g
(0)
Uj

(x)

)

+ Im
(
F−1f0γj (−xj,k)

)(
−ig(1)Uj

(x) + g
(0)
Uj

(x)
)
+Re

(
F−1f0λj

(−xj,k)
)
g
(0)
Uj

(x)

)}2]

+ E

[{
2π

mj−1∑
k=1

δj−1,kεj−1,k∆j−1

(
e−xj−1,k

2π
F−1f1νj (x− xj−1,k)

+ Re
(
F−1f1σj

(−xj−1,k)
)(1

2
g
(2)
Uj

(x) + ig
(1)
Uj

(x)− 1

2
g
(0)
Uj

(x)

)

+ Im
(
F−1f1γj (−xj−1,k)

)(
−ig(1)Uj

(x) + g
(0)
Uj

(x)
)
+Re

(
F−1f1λj

(−xj−1,k)
)
g
(0)
Uj

(x)

)}2]
.

Now using that (εj,k) were centered independent random variables with V[εj,k] = 1 gives
the approximation s2νj (x) of the variance V(ν̃j(x)),

s2νj (x) ≈ 4π2

mj∑
k=1

δ2j,k∆
2
j

(
e−xj,k

2π
F−1f0νj (x− xj,k)

+ Re
(
F−1f0σj

(−xj,k)
)(1

2
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(2)
Uj

(x) + ig
(1)
Uj

(x)− 1

2
g
(0)
Uj

(x)

)

+ Im
(
F−1f0γj (−xj,k)

)(
−ig(1)Uj

(x) + g
(0)
Uj

(x)
)
+Re

(
F−1f0λj

(−xj,k)
)
g
(0)
Uj

(x)

)2

+ 4π2

mj−1∑
k=1

δ2j−1,k∆
2
j−1

(
e−xj−1,k

2π
F−1f1νj (x− xj−1,k)
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+Re
(
F−1f1σj

(−xj−1,k)
)(1

2
g
(2)
Uj

(x) + ig
(1)
Uj

(x)− 1

2
g
(0)
Uj

(x)

)

+ Im
(
F−1f1γj (−xj−1,k)

)(
−ig(1)Uj

(x) + g
(0)
Uj

(x)
)
+Re

(
F−1f1λj

(−xj−1,k)
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g
(0)
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(x)

)2

.

Note that in practical application the function φTj−l
(v) in f lλj

(v), f lγj (v), f
l
σj
(v) and f lνj (v)

is not available. The estimator φ̃Tj−l
(v) will therefore be used instead of φTj−l

(v) in these
functions.

Using the continuous mapping theorem and Slutsky’s theorem a (100 − ϑ)% confidence
interval for ν̃j(x) can be constructed by[

ν̃j(x) + zϑ/2 · sνj (x), ν̃j(x)− z100−ϑ/2 · sνj (x)
]
, (4.17)

where zp is the pth quantile of a standard normal distribution.
Expression (4.17) is a confidence interval for ν̃j(x) at a fixed point x, and is not a confi-

dence band. In applications, we, therefore, need to choose points x in which at every point
x expression (4.17) is evaluated — we do not have an upper and lower function.





Chapter 5

Simulations

In this chapter, we will test the calibration model with simulated data 1. The goal is to evalu-
ate how accurate the estimations are, inspect the difficulty of the inverse calibration problem,
look at how the bias and stochastic variance trade-off takes place for finite samples, and test
the performance of the finite sample confidence intervals. At the end of the chapter, we want
to have a general insight into the properties and performance of the time-inhomogeneous
model, such that we can apply the model to market data in the next chapter.

Before the calibrations take place, we first need to construct an underlying model. Some
open-ended questions need to be addressed for constructing this model, e.g., which under-
lying time-inhomogeneous price process St will be used and how do we construct the option
prices Oj from St. Furthermore, some calibration settings also need to be addressed, e.g.,
how do we choose the cut-off value Uj in a data-driven manner, and what weight functions
are appropriate? All these questions will first be answered in section 5.1, hereafter we will
evaluate the results in section 5.2.

5.1 Simulation Settings

Before the calibration algorithm can be tested on simulations, there are some important
decisions and settings to be made, namely

1. How do we choose the cut-off parameters Uj and Uνj?
2. Which weight functions in the classes Wn

sj do we choose?
3. What underlying time-inhomogeneous Lévy model St will be calibrated?
4. How are the option prices O simulated from St and how do we choose the design points

Oj,k, distribution of the noise (εj,k), and magnitude of the noise δj,k?
5. How do we numerically approximate the Fourier transform F?

All these questions will respectively be elucidated in the following sections.

5.1.1 Choice of Cut-off Parameters Uj and Uνj

The most important tuning parameters are the cut-off frequencies Uj for (σ̃
2
j , γ̃j , λ̃j) and Uνj

for ν̃j in the time period Tj−Tj−1. Note that, due to the underlying nonlinear ’change point
detection’-structure, a proper mathematical analysis for the data-driven parameters Uj and
Uνj — even in the idealized linear setting — is not found yet [24]. However, we can propose
some well-known methods that choose Uj and Uνj in a data-driven practical manner.

An intuitive method that comes to mind in simulations is the oracle method, in which
the a priori knowledge of the parameters is used to find the best cut-off value.

Method 5.1 (Oracle) Choose U∗
j and U∗

νj such that the L1-distance off the estimators

(σ̃2
j , γ̃j , λ̃j) and ν̃j with respect to the true values (σ2

j , γj , λj) and νj is minimized,

1 Coputer code has been made in the computational program R. The code can be found at the GitHub
page: https://github.com/Loek44/Spectral-Calibration-of-Time-Inhomogeneous-Levy-processes
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U∗
j = argmin

Uj>0
||(σ̃2

j , γ̃j , λ̃j)− (σ2
j , γj , λj)||L1 and U∗

νj = argmin
Uj>0

||ν̃j(x)− ν̃j(x)||L1 .

A drawback of this method is that it cannot be used in the case of empirical data because
the underlying parameters are unknown. The flat method can be used in such a case. The
flat method finds the flattest region for all estimates of the parameters, i.e., the region where
the estimators stabilize.

Method 5.2 (Flat) Choose U∗
j and U∗

νj that correspond to the point where the estimators
stabilize,

U∗
j = argmin

Uj>0

(∣∣ d

dUj
σj(Uj)

∣∣+ αUj

)
, α > 0 and U∗

νj = argmin
0<Uνj

<U∗
j

∣∣∣∣ d

dUj
νj(Uj)

∣∣∣∣
L2 .

From practical results, it is found that this method works well in practice where the un-
derlying model follows an exponential Lévy model (See Bauer and Reiß [1] for theoretical
arguments why this is the case). However, with empirical data, it is less obvious to find
the region where the estimators stabilize because the data is only approximated by a time-
inhomogeneous Exponential Lévy model. For empirical data, the next method is preferred.

The last method, introduced by Cont and Tankov [16], is the partial least squares (PLS )
method, which chooses the best Lévy triplet (σ2

j , γj , νj) whose implied option function

Õ(σ2
j ,γj ,νj)

is closest, in L2 sense, to the smoothed spline Õj .

Method 5.3 (PLS) Choose U∗
j that minimizes the L2-distance between the implied option

function Õ(σ2
j ,γj ,νj)

and the smoothing spline Õj where over-fitting is penalized by the factor
α,

U∗
j = argmin

Uj>0

[∣∣∣∣Õ(σ2
j ,γj ,νj)

(x)− Õj(x)
∣∣∣∣
L2 + α

∫
R
|ν̃′′Uj

(x)|2dx
]
.

The over-fitting parameter α was introduced by [10] for theoretical consideration to avoid
over-fitting. Nevertheless, [44] show from practical experience with this method that the
correction procedure of the Lévy densities for the shape restriction (2.18) leads to an auto-
penalization. Due to the Fourier techniques, a rigorous fit leads to high fluctuations of the
estimator of the nonparametric part. Thus, the correction procedure has a significant effect,
which in turn worsens the fit.

The PLS method needs a minimization procedure to find the implied option function and
is therefore considerably slower than the other two methods. Furthermore, the PLS method
better fits the option price function, whereas the oracle and flat method better fit the Lévy
triplet for simulations. Note that the PLS method, by the excellent estimation of the option
price function, opens a way to estimate the underlying noise with real data – this noise can
be used in the construction of confidence intervals.

5.1.2 Choice of Weight Functions

The literature of Belomestny and Reiß [7] and Söhl and Trabs [44] both provide different
choices of the weight functions that satisfy the conditions of the set Wn

sj in definition (3.2).
The weight functions of [44] are however preferred to the weight functions of [7]. The reason
is that the noise is particularly large in the high frequencies and thus it is desirable to assign
less weight to these frequencies. Smoothly transitioning the weight function to 0 at the cut-
off value slightly improves the results. With this in mind, we would like the weight functions
and the first two derivatives of the weight functions to be 0 at the cut-off value.

The weight functions then become
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w1
σj
(v) = cσ

(
(2sj + 1)v2sj − (8sj + 12)v2sj+2 + (12sj + 30)v2sj+4

− (8sj + 32)v2sj+6 + (2sj + 9)v2sj+8
)
1{|v|≤1},

w1
γj (v) = cγ

(
v2sj+1 − 3v2sj+3 + 3v2sj+5 − v2sj+7

)
1{|v|≤1},

w1
λj
(v) = cλ

(
(2sj + 3)v2sj − (8sj + 20)v2sj+2 + (12sj + 42)v2sj+4

− (8sj + 36)v2sj+6 + (2sj + 11)v2sj+8
)
1{|v|≤1},

w1
νj (v) = 1{|v|≤0.05} + exp

(
−e

−(|v|−0.05)−2

(|v| − 1)2

)
1{0.05<|v|<1},

where cσ, cγ and cλ are normalization constants such that the conditions in section 2.4 of
the weight functions are satisfied. Note that wνj is just the flat top kernel. Figure 5.1 shows,
for example, a plot of the weight functions w1

σ2
j
(v), w1

γj (v), w
1
λj
(v) functions with sj = 2.

Fig. 5.1: Plots of the weight functions w1
σ2
j
(v), w1

γj (v) and w
1
λj
(v) proposed by [44] with

underlying smoothness assumption of the density sj = 2.

An important point to make is that one should remember that for the theoretical results
the weight functions are forbidden from being zero at the cut-off value. This is an argument
to use the weight functions of [7]. However, practical results show that the usage of weight
functions that equal zero at the cut-off value improves upon the theoretical results, i.e., the
root-mean-square errors of the estimators become smaller.

The value sj in the weight functions denotes the smoothness of the underlying jump
density νj and has the same meaning as the order of the kernel in nonparametric estimation.
As with classical kernel estimators, the exact choice of the weight functions in spectral
estimation is not very critical, although, as argued, the weight functions of [44] are slightly
preferred. Still, the global error will be mostly due to the estimation of the cut-off value Uj .

5.1.3 Simulation of Exponential Time-Inhomogeneous Lévy Model

A time-inhomogeneous exponential Lévy model St = S0e
rt+Xt withXt a time-inhomogeneous

Lévy process, as in Definition 1.4, needs to be constructed to test our calibrations. In
other words, we need to provide maturities (Tj)j=1,..,n and provide within these maturi-
ties Tj − Tj−1 exponential Lévy processes with triplet (σ2

j , γj , νj).
The spectral calibration algorithm was derived to be applicable to Lévy processes with a

jump component of finite activity and an absolutely continuous jump measure. The reason
for this was that empirical financial data also mostly satisfies these properties, e.g., infinitely
many small jumps are generally not observed in financial data. For interest in the theoretical
infinite activity in a homogeneous setting see [4].

Typical parametric sub-models of the finite activity case are the Merton model [33] and
the double exponential/Kou model [31].
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Model 5.1 (Merton) The Merton model is a jump-diffusion finite activity Lévy process
with volatility σ, drift γ, and jump intensity λ, where the jumps are normally distributed
with mean µ and standard deviation δ, or, equivalently, the Lévy density is

ν(x) =
λ

δ
√
2π
e−

(x−µ)2

2δ2 .

An easy derivation is to obtain that the martingale condition (2.4) for the Merton model is
satisfied whenever

σ2

2
+ γ + λ(e

δ2

2 +µ − 1) = 0. (5.1)

Model 5.2 (Kou) The double exponential or Kou model is a jump-diffusion finite activity
Lévy process with volatility σ, drift γ, and jump intensity λ, where the jumps are double
exponentially distributed with positive intensity λ+, negative intensity λ−, and probability
parameter p ∈ [0, 1], this gives the Lévy density

ν(x) = λ
(
pλ+e

−λ+x1{x∈[0,∞)} + (1− p)λ−e
λ−x1{x∈(−∞,0)}

)
.

First of all, we want the Kou model to be continuous at x = 0, this is the case if we choose
p = λ−

λ++λ−
. Furthermore, the Kou model satisfies the martingale condition (2.4) whenever,

σ2

2
+ γ + λ

(
p

λ+ − 1
− 1− p

λ− + 1

)
= 0. (5.2)

The double exponential jump density in the Kou model is difficult — but still significantly
accurate — to estimate because of the non-differentiability at zero. Smoother estimates than
the Kou model correspond to better representations seen from empirical data and, therefore,
the Merton model is preferred to calibrate the simulations.

For example, we will construct a model with three maturities (Tj)j=1,2,3 with homoge-
neous spacings of a week apart Tj − Tj−1 = 1

52 for all j = 1, 2, 3. Between these maturities,
three Merton models operate with parameters (σj , γj , λj , µj , δj)j=1,2,3 given in Table 5.1.
The drift parameters (γj)j=1,2,3 were calculated such that the martingale condition of the
Merton model (5.1) is satisfied.

The importance of the satisfaction of the martingale condition lies in the fact that if
the martingale condition is unsatisfied, then the right expression of the pricing formula in
Proposition 2.9 (iv), i.e.

F (Oj(x))(v) =

∫ ∞

−∞
Oj(x)e

ivxdx =
1− φTj

(v − i)

v(v − i)
,

might have a singularity at zero. We can then not apply the inverse Fourier transform to
construct an option function for simulations.

σj γj λj µj δj

j = 1 0.2 0.3644183 5 -0.1 0.2
j = 2 0.1 0.1597298 2 -0.2 0.4
j = 3 0.3 0.1155446 3 -0.1 0.3

Table 5.1: Parameters of the three Merton models used to produce the sample path of the
price process St in Figure 5.2.

.

Figure 5.2 shows a sample path of the price process St against the time t where the grey
lines portray the maturities (Tj)j=0,1,2,3 with T0 = 0. The risk-free interest rate and initial
price were respectively set to r = 0.06 and S0 = 100.
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Fig. 5.2: Sample path of the time-inhomogeneous exponential model used for the
construction of the price process St built up from three Merton models with parameters

given in Table 5.1.

5.1.4 Simulation of Noised Option Prices from Models

Simulated noised option prices from a proposed model are needed to execute the calibration.
The model for noised option prices, given in (2.9), is

Oj,k = Oj(xj,k) + δj,kεj,k, k = 1, ..,mj ,

where we defined Oj,k := C(xj,k, Tj)/S0 and δj,k := ζj,k/S0. Put prices P(xj,k, Tj) can also
be used by first transferring them to call prices C(xj,k, Tj) using the put-call parity (2.6).

For making noised observations we need to 1) calculate the option function Oj(x) from
the simulation model, 2) decide on the spacing and number of design points (xj,k)k=1,..,mj ,
and 3) decide on the distributions of (εj,k)k=1,...,mj and magnitude (δj,k)k=1,..,mj .

For 1), Proposition 2.1 (iv) provides a direct way to calculate the function Oj(x) from a
given characteristic function φTj

by

Oj(x) = F−1

[
1− φTj

(v − i)

v(v − i)

]
(x).

Now for 2), the number of design points (xj,k)k=1,...,mj
is chosen to be mj = 150 for

all j = 1, 2, 3. This is also around the number of design points that we will encounter in
empirical data. Furthermore, empirical data has the property that more option prices are
found at the money (i.e. at x=0) than further in or out the money (i.e. x≪ 0 and x≫ 0).
Therefore, the design points (xj,k)k=1,...,mj

have been obtained by a random sample which
yields more option prices at the money.

And for 3), the distributions of (εj,k)k=1,...,mj
are chosen to be Gaussian N (0, 1) and the

magnitude δj,k is chosen proportional to the underlying value of Oj(xj,k) with a noise level
α, i.e., δj,k = αOj(xj,k). The noise level α decides the percentage of noise that will be added
to the underlying option function, in practice we will choose 0.005 ≤ α ≤ 0.03.

5.1.5 Numerical Approximation Fourier Transform

In the construction of the calibration model using option prices, the Fourier transforms

Ff(v) =

∫ ∞

−∞
f(x)eivxdx and F−1F (x) =

1

2π

∫ ∞

−∞
F (v)e−ivxdv

are used regularly. In practice, these Fourier transforms need to be (mostly) calculated
numerically. This process can be rather fast due to the usage of the Fast Fourier Transform
FFT algorithm. This section will concisely elaborate on this numerical approximation.
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An efficient way to calculate the Fourier transforms is by the usage of the discrete Fourier
transform DFT,

Ffk =

N−1∑
k=0

fke
−2πink/N , n = 0, ..., N − 1.

Generically, the computation of F0, ..., FN−1 needs N2 operations a priori. However, when
N is a power of 2, the FFT algorithm can be implemented to reduce the complexity from
N2 to O(N logN) operations (see, for example, [51]). The FFT algorithm is implemented
in almost all high-level scientific computation environments.

Suppose that we want to find the inverse Fourier transform of f(x) using the DFT. In
persuasion of this, the integral needs to be truncated and discretized as follows:∫ ∞

−∞
f(x)e−ivxdx ≈

∫ L/2

−L/2
f(x)e−ivxdx ≈ L

N

N−1∑
k=0

wkf(xk)e
ivxk

where xk = −A/2 + k∆, ∆ = A/(N − 1) is the discretization step and wk the weights that
correspond to the particular integration rule, e.g., for the trapezoidal rule w0 = wN−1 = 1
and w1,...,N−2 = 1

2 . The substitution of un = 2πn
N∆ in the sum will make the expression in the

DFT take the form:

Ff(un) ≈
L

N
eiuL/2

N−1∑
k=0

wkf(xk)e
−2πink/N .

Thus, the FFT algorithm allows to compute Ff(u) at the points un = 2πn
N∆ . The relation

between the grid step d in the Fourier space and the initial grid step ∆j is given by:

d∆j =
2π

N
.

The above expression implies that if option prices need to be computed on a fine grid of
strikes and, at the same time, the discretization error needs to be kept low, then numerous
points need to be used. An additional limitation of the FFT method is that the grid must
always be uniform and the grid size must always be a power of 2. The functions that need to
be integrated with this report are in general irregular at the money and smooth elsewhere.
However, it is impossible to increase the resolution close to the money without doing it
elsewhere. These observations show that the use of FFT is only justified when one has many
options with the same maturity (somewhat more than 10) available. Luckily, we mostly
calibrate to empirical results and simulations with numerous option prices, so this is not a
problem here.

5.2 Simulation Results

The underlying model that will be calibrated is the model of section 5.1.3, i.e., a time-
inhomogeneous Lévy model which is built up from maturities (T1, T2, T3) = (1/52, 2/52, 3/52)
where the Lévy processes between the maturities are given by Merton models with param-
eters (σj , γj , λj , µj , δj)j=1,2,3 and their values displayed in Table 5.1.

Furthermore, as was explained in section 5.1.4, the sample size/number of design points
is chosen to be mj = 150, the distribution of (εj,k) is chosen to be Gaussian N (0, 1), and
the magnitude is chosen to be proportional to the option function δj,k = αOj(xj,k) with
α = 0.010.

For the general parameters, we choose the risk-free rate as r = 0.06 and the initial stock
price as S = 100.

The code written for the simulations is generic and all simulation settings can be adjusted
to inspect certain dependencies, e.g., all cut-off schemes have been implemented, both the
weight function of [44] and [7] can be chosen, all model parameters can be varied, the
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distribution and the magnitude of the noise can be adjusted, the interpolation scheme can
be varied, the design can be chosen in a deterministic or random manner, different underlying
time-inhomogeneous models with Merton and/or Kou, and more.

After inspecting all the different dependencies, we find that the code runs cleanly for all
cases. One important thing to note is that the difficulty of the inverse problem for the Lévy
process that governs the dynamics in (Tj − Tj−1) relates to the factor

∑j
i=1 σ

2
i (Ti − Ti−1).

The bigger
∑j
i=1 σ

2
i (Ti − Ti−1) becomes, the more difficult the problem is. We, therefore,

advise keeping these values small enough for sensible results.
The major new subjects of this thesis are the fact that we used a time-inhomogeneous

Lévy model and the first usage of the finite sample variance method to create confidence
intervals. Thus, we are most interested in looking into these new practices in the simulation
results.

The simulation results are constructed as follows 1) the estimators (ψ̃j)j=1,2,3 for

(ψj)j=1,2,3 will be inspected, 2) from (ψ̃j)j=1,2,3 the estimators (σ̃j , γ̃j , λ̃j)j=1,2,3 are es-
timated and we compare them to (σj , γj , λj)j=1,2,3, 3) the estimator ν̃j for νj will thereafter
be individually inspected, and 4) the confidence intervals will be added and coverage prob-
abilities inspected.

All the above steps will be done for multiple Monte-Carlo simulations to get an idea of the
bias-variance trade-off and underlying distributions of the estimators. In every Monte-Carlo
simulation, we first calibrate all results in the order j = 1, 2, 3, i.e. one time-inhomogeneous
Lévy model at a time, and then move on to the next simulation.

An important decision for all simulation steps is the choice of the scheme for choosing
the cut-off values (Uj)j=1,2,3. All different schemes for choosing Uj , i.e. oracle method, flat
method, and PLS method, have been implemented and coded. As mentioned in section 5.1.1,
the flat method works particularly well for simulations and is used for calibration.

Another important choice for 4) is the fact if one should use the ”known” error distri-
bution, where the error is exactly known, or one should use the PLS method to estimate
the error — which is also necessary for empirical results where the underlying error is un-
known. Consequently, step 4) will be analyzed for both scenarios, and both scenarios are
implemented in the code.

5.2.1 Estimating (ψ̃j)j=1,2,3 for (ψj)j=1,2,3

The performance of the estimator ψ̃j for ψj needs to be analyzed, because this estimator

is at the root of the estimation of the triplet (σ̃2
j , γ̃j , λ̃j). Remember that σ̃2

j and λ̃j are

estimated using the real part Re(ψ̃j(v)) and γ̃j using the imaginary part Im(ψ̃j(v)). These
parts are therefore inspected separately.

Figure 5.3 shows the results of estimating the real Re and imaginary parts Im of ψj with

ψ̃j for j = 1, 2, 3. In these plots, the grey circles depict the estimation grid of ψ̃j and the
black lines depict the known underlying ψj function.

In these plots we have zoomed in to the region of [−40, 40]. This region depicts the common
range where the calibration algorithm chooses the cut-off frequencies [−Uj , Uj ]. Outside of

these ranges, a large deviation of ψ̃j from ψj can occur. Because of the exponential growth
of the deviation in v whenever σj > 0 (See Belomestny et al. [4]).

The approximate ranges that are well-behaved, i.e. good ranges where the cut-off fre-
quency Uj is chosen in, is mostly due to the difficulty of the inverse problem at the moment∑j
i=1 σ

2
i (Ti − Ti−1). The bigger the sum is, the more difficult it becomes to get an accurate

representation for a certain j of ψ̃j for ψj on an adequate range.
Figures 5.3a, 5.3b and 5.3c show that the estimation of the ψj function in the range

[−40, 40] is adequate and that the values are mostly well-predicted. An important remark
to see in these figures is that the estimation of ψj becomes more difficult for increasing j,
i.e. predicting ψ1 is more accurate than predicting ψ3. This is a direct consequence of the
difficulty of the inverse problem for increasing j.
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(a) Estimation of ψ̃1 for ψ1

(b) Estimation of ψ̃2 for ψ2

(c) Estimation of ψ̃3 for ψ3

Fig. 5.3: These plots show the estimation of the real Re and imaginary part Im of ψ̃j
portrayed by grey circles for ψj portrayed by a black line for j = 1, 2, 3.

5.2.2 Estimating (σ̃j , γ̃j , λ̃j)j=1,2,3 for (σj , γj , λj)j=1,2,3

To get a general idea of the performance of the estimators (σ̃j , γ̃j , λ̃j)j=1,2,3 for (σj , γj , λj)j=1,2,3

one hundred Monte-Carlo simulations will be executed and analyzed. In every Monte-Carlo
simulation, new random noise is generated and we look at how this affects the spectral
calibration.

Figure 5.4 displays the result of the 100 spectral calibrations in 3 sub-figures. Every
subfigure displays for a certain j = 1, 2, 3 the results for the accompanying triplet (σ̃j , γ̃j , λ̃j)
through separate scatter-plots. A black line has been added in these scatterplots to display
the underlying theoretical value that needs to be estimated. Furthermore, a boxplot has
been added to the right of every scatterplot to give insight into the distribution of the 100
estimates.

Before we go into the details of Figure 5.4, it is important to have an intuition about
what values the flat method chose as cut-off values. The cut-off values determine the bias
and stochastic variance trade-off for the practical case, i.e., Uj finite and ∆j ̸= 0. Figure 5.5
shows the values of Uj that correspond to the scatter-plots in Figure 5.4.

First and foremost, Figures 5.4a, 5.4b, and 5.4c show that most estimators behave well
and that the values are generically well predicted, i.e., not many outliers or insensible results
are displayed. The only insensible results would be the estimation of λ̃3 to be zero one time.

From the y-axis in Figures 5.4a, 5.4b and 5.4c we see that in every case j = 1, 2, 3 the
accuracy of the estimators is respectively decreasing in the order σj , γj , λj . This fact was



5.2 Simulation Results 79

(a) 100 hundred Monte-Carlo estimates

(σ̃1, γ̃1, λ̃1) for (σ1, γ1, λ1) ≈ (0.2, 0.36, 5)

(b) 100 hundred Monte-Carlo estimates

(σ̃2, γ̃2, λ̃2) for (σ2, γ2, λ2) ≈ (0.1, 0.16, 2)

(c) 100 hundred Monte-Carlo estimates

(σ̃3, γ̃3, λ̃3) for (σ3, γ3, λ3) ≈ (0.3, 0.12, 3)

Fig. 5.4: These scatterplots show the result of 100 Monte-Carlo simulations of
(σ̃j , γ̃j , λ̃j)j=1,2,3 for (σj , γj , λj)j=1,2,3. In every plot, the black line portrays the theoretical
value. Furthermore, to the right of every plot, a boxplot has been added to display the

underlying distribution of the estimators.

also encountered in the speed of convergence proven in the theoretical part (see Theorem
3.2).

In section 3.5 we saw that the difficulty of the time-inhomogeneous inverse calibration
problem is coupled to

∑j
i=1(Ti−Ti−1)σ

2
i . This term grows for increasing j and the problem

becomes more difficult when calibration occurs for higher j. In Figure 5.4 we can see this
decreasing accuracy of the parameters σj , γj , or λj in j. For example, σ1 is more accurately
determined than σ2 in the stochastic variance sense, disregarding the bias, which will be the
topic of the next paragraph.

An obvious fact that can be seen is that in some scatterplots we can note general bias
in the estimators, e.g., in the scatterplot of σ̃1 all estimators are above the theoretical
value which corresponds to a bias term. In the theoretical part, we showed that the bias
asymptotically goes to 0. However, in the practical results, bias can occur. An easy way to
see the general bias is to compare the boxplots with the theoretical values displayed by the
black line. The cut-off value Uj is the parameter that governs the bias and stochastic error
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(a) U1 (b) U2

(c) U3

Fig. 5.5: Scatterplots of cutoff values (Uj)j=1,2,3 for 100 Monte-Carlo simulations.

trade-off — in the same way the bandwidth h plays in kernel estimation in nonparametric
statistics. The bias decreases and the stochastic error increases when Uj increases.

When comparing the results of Figure 5.4 with the corresponding cut-off values in Figure
5.5, it can be seen that all outliers correspond to large values of Uj . General practical advice
is therefore to not let Uj become too large for preventing the stochastic error to be too
big. This is also an important point when making finite sample confidence intervals. Here
we made the assumption that the Bias can be neglected, and this assumption is more true
when Uj is larger, but we also do not want Uj to become too large. More about this later
when building confidence intervals.

5.2.3 Estimating (ν̃j)j=1,2,3 for (νj)j=1,2,3

The estimator for the jump density ν̃j needs to be estimated by taking an inverse Fourier
transform,

ν̃j(x) = F−1

[(
ψ̃νj (·) +

σ̃2
j

2
(·)2 − iγ̃j(·) + λ̃j

)
wνj (·)

]
(x), x ∈ R,
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and is therefore different from the other estimators. This is the reason why we analyze this
estimator on itself.

To calibrate ν̃j the shifted calibration function ψνj is used and therefore a separate cali-
bration is carried out for better stability. In general, the cut-off value Uνj that is chosen for
calibrating ν̃j is smaller than the cut-off value Uj .

The Lévy density estimates ν̃j(x) for νj(x) are calculated with the same 100 Monte-Carlo
simulations. The 100 results of the estimates ν̃j(x) are shown as grey lines and the underlying
known density νj(x) is shown as a black line in Figure 5.6.

(a) Estimation of ν̃1 for ν1 (b) Estimation of ν̃2 for ν2

(c) Estimation of ν̃3 for ν3

Fig. 5.6: These plots show the estimation of 100 Monte-Carlo simulated Lévy densities
ν̃j(x), portrayed by grey lines, for νj(x), portrayed by a black line, for j = 1, 2, 3.

Figure 5.6a shows that the 100 estimates ν̃1(x) look satisfactory, 5.6b deteriorates a little
but still looks satisfactory, and 5.6c looks quite chaotic. The theoretical results already point
out that the performance of the estimators is in the following chronological order σ2

j , γj , λj ,
γj , νj for a certain j. Thus, the estimation part of νj(x) is the most difficult.

We already discussed that the accuracy of the estimators deteriorates with increasing j
because of the difficulty of the inverse problem. Hence, from both considerations, ν̃3(x) in
Figure 5.6c should be the most difficult to estimate. It can be noted in all 3 figures that there
can still be bumps of mass found in the tails. These bumps relate to the fact that we used
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a normal Fourier transform F for getting into the spectral domain, then did the estimation
in this domain, and to get the Lévy density back we then needed to use an inverse Fourier
transform F−1. These tail bumps are thus the result of little errors in the tails that are
portrayed as sine and cosine waves in the densities after transforming back.

The most variance for every j = 1, 2, 3 is found at ν̃j(0) and deteriorates — if the masses
in the tails are neglected — when we move away from 0. This is the result of the smoothness
of the estimated curves, the larger variance of ν̃j(0) leads to an increased variance of ν̃j(x)
in the neighborhood of 0.

Although the estimates of ν̃3(x) in Figure 5.6c appear chaotic, most estimates are sensible.
Figure 5.7 shows a boxplot of the 100 Monte estimates ν̃3(x) at the point of µ3 = −0.1.

Fig. 5.7: Boxplots of the 100 Monte-Carlo estimates ν̃3(µ3) in Figure 5.6c. The left shows
all estimates, whereas the right shows a zoomed-in version.

In the boxplots of Figure 5.7, we see that the 25% and 75% percentiles are respectively
at around 3.27 and 4.98. Consequently, most estimates are well-behaved. In total, there are
10 outliers on 100 Monte-Carlo estimates. Not all outliers also give odd estimates, some are
due to already displayed errors in the approximation of λ̃3, which makes the mass of the
estimates different. This is due to the correction procedure of ν̃j(x) in expression (2.18),

which made sure that ν̃3(x) ≥ 0 for all x ∈ R and λ̃3 = ||ν̃3||L1(R).
All 100 estimates ν̃j(x) are inspected individually and three odd cases that can occur are

shown in Figure 5.8.
All three odd cases in Figure 5.8 display something that can go wrong. The first plot

shows a peak at 0 that is too large and is one of the outliers in the boxplot. This effect is
already due to the miss estimation of λ̃j . The second plot shows an oscillating curve, these
are due to miss estimations in the Fourier transforms F , such that when estimating ν̃j(x)
with F−1 the underlying function is, because of errors, not well-behaved to transform. The
third plot shows the case where both problems in estimating occur in an extreme sense.

If the cut-off values U3 of these simulations 85, 16, and 10 are looked upon in the code
or Figure 5.5, then the results are respectively 33.96, 33.96, and even 56.10. Note that these
cut-off values are all bigger than the generally chosen cut-off values. Also in Figure 5.4 we
can already see that for these estimates the parameters (σ̃2

j , γ̃j , λ̃j) are also outliers. 2

These miss-estimates make the plot of ν̃3(x) in Figure 5.6c look chaotic, where more than
90% are well-behaved and accurate.

2 In the section on the confidence intervals, we will see that large cut-off values will lead to large
intervals such that we can account for this misbehavior.
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Fig. 5.8: Plots of three odd estimates ν̃3(x) for ν3(x) in the simulation results in Figure 5.6c.

It was on purpose that we made plots that showed these misbehaviors. If the factor∑j
i=1 σ

2
i (Ti − Ti−1) or the magnitude of errors (δj,k) are chosen small enough, then these

odd plots do not occur. However, to have an understanding of what can go wrong in empirical
calibration, it is good to already have seen these extreme cases in simulations. Although, as
will be shown in the next section, empirical cases are generally more well-behaved than the
simulations shown here.

5.2.4 Confidence Intervals and Coverage Probabilities

In all statistical procedures, it is common to get a feeling about how accurate the estimation
is. A raw estimation without any confidence can be misleading, especially if the underlying
value as validation is unknown. In section 4 we already discussed that using the derived
asymptotic confidence intervals is not good practice in finite sample cases, and we produced
new confidence intervals with the Finite Sample Variance practice.

The derived (100− ϑ)% confidence intervals for σ̃2
j , γ̃j , λ̃j and ν̃j(x) in the Finite Sample

case were respectively derived and given in expressions (4.5), (4.8), (4.11) and (4.17). We
will choose ϑ = 0.05 such that 95% confidence intervals are strived for. Recall that νj(x)
was a point-wise confidence interval and not a confidence band. The coverage probabilities
will be analysed for the vector (σ̃2

j , γ̃j , λ̃j , ν̃j(µj), ν̃j(δj)) for j = 1, 2, 3, where in the Merton
model µj was the mean and δj the standard deviation.

The main underlying assumption of this practice was that the Remainder terms and Bias
terms are neglected. The reasoning was that in the Theoretical Results these terms converge
to 0 and the Linear terms dominate the asymptotic behavior. As the reader can probably
imagine, this assumption can be quite strong and an analysis of the derived confidence
intervals must be verified, we will do this by using Coverage Probabilities.

Another important point is that for deriving the confidence intervals, the magnitude of
the error (δj,k) is needed. Note that in the simulations these errors were simulated by using
the proportional relation to the option price function δj,k = αOj(xj,k) at the design points
(xj,k) with α = 0.010. These values have been saved and can be used. However, in the
empirical part, we need a manner to estimate these magnitudes. We discussed that the PLS
method is the preferred method for estimating this noise. In the simulation part here, both
the cases of known error magnitudes and estimated error magnitudes will be analyzed.

Thus, in this section, we will investigate the confidence intervals created and verify these
with coverage probabilities for the known and estimated error magnitudes (δj,k). An impor-
tant fact that will be encountered is that we can only reach the coverage probabilities with
exact error magnitudes when undersmoothing is used, i.e. the cut-off value Uj must not be
too small. Otherwise, the Bias term, which was neglected, can dominate.
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Exact Error Distribution

To first get a general feeling and not introduce more randomness into the model with the PLS
method, the situation with the exact/known error distribution will be analyzed. For con-
ciseness, the first ten Monte-Carlo simulations are analyzed, i.e., the same first 10 estimates
as Figure 5.4.

For the first 10 Monte-Carlo simulations Table 5.2 shows the cut-off values (Uj)j=1,2,3 and

Figure 5.9 shows the accompanying ten 95% confidence intervals for (σ̃2
j , γ̃j , λ̃j , ν̃j(µj), ν̃j(µj+

δj))j=1,2,3 where the grey lines portray the underlying values of (σ2
j , γj , λj , νj(µj), νj(µj +

δj))j=1,2,3.
3

1 2 3 4 5 6 7 8 9 10

U1 38.9 26.8 28.2 26.8 40.3 30.9 41.6 33.6 25.5 26.8
U2 20.1 22.8 14.8 14.8 14.8 20.1 20.1 30.9 20.1 14.8
U3 21.5 16.1 26.8 18.8 18.8 20.1 22.8 18.8 21.5 26.8

Table 5.2: Cut-off values (Uj)j=1,2,3 chosen by the flat method for the 10 Monte-Carlo
simulations in Figure 5.9.

Furthermore, Figure 5.10 shows for the first Monte-Carlo simulation the estimates
(ν̃j(x))j=1,2,3 in gray with confidence intervals in black and the underlying density (νj(x))j=1,2,3

in red. All the estimates appear accurate and well-behaved. Next to that νj(x) is contained
in almost all ranges of the confidence interval, only at ν3(x) in the left tail a bump can be
seen that the confidence interval does not capture.

Note in Figure 5.9 that the size of the underlying confidence interval for every estimate
is different. This is mostly due to the difference in cut-off value Uj portrayed in Table 5.2.
The larger Uj , the larger the confidence interval. For example, we can see this in the 7th
observation with U1 = 41.6.

Next to that, we can see that some confidence intervals of these small samples are not
close to the 95% coverage that they should have. The most extreme cases of σ̃2

1 in Figure
5.9a only have 70% coverage. On the contrary, some other confidence intervals, e.g. λ̃2, even
get 100% coverage. The goal is to find confidence intervals where all parameters exceed 95%,
i.e. we want to be conservative. The reason is that when considering the empirical data we
can have some certainty in the lower bound of the coverage probability in the results.

The example case of σ̃2
j provides an answer to why some intervals are inaccurate. We can

see that some estimates of σ̃2
j display the same kind of bias, they are all portrayed above

the theoretical value. Now recall that in the construction of the Finite Sample confidence
intervals the assumption was made that the bias can be neglected. This might, however, as
can be seen here, not be the case.

Söhl and Trabs [44] provide a manner in which accurate practical confidence intervals can
still be created. For example, recall that the error decomposition

σ̃2
j − σ2

j =

∫ Uj

−Uj

wUj
σj
Re
(
ψ̃0
j (v)− ψ0

j (v)
)
dv +

∫ Uj

−Uj

wUj
σj
Re
(
ψ̃1
j (v)− ψ1

j (v)
)
dv︸ ︷︷ ︸

Stochastic Error

+

∫ Uj

−Uj

wUj
σj
Re (Fµj(v)) dv︸ ︷︷ ︸
Bias

,

was decomposed into a stochastic part and a deterministic bias term. The choice of the
cut-off value Uj allows a trade-off between these two terms. Larger Uj correspond to larger
stochastic errors and smaller bias, whereas smaller Uj the case is vice versa. Deliberately

3 With a little abuse of notation remind that (δj,k) were the error magnitudes and δj was the standard
deviation of the Merton model.
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(a) 10 Monte-Carlo estimates

(σ̃1, γ̃1, λ̃1, ν̃1(µ1), ν̃1(µ1 + δ1)) with
confidence intervals for

(σ1, γ1, λ1, ν1(µ1), ν1(µ1 + δ1)) ≈
(0.2, 0.36, 5,−0.1, 0.2).

(b) 10 Monte-Carlo estimates

(σ̃2, γ̃2, λ̃2, ν̃2(µ2), ν̃2(µ2 + δ2)) with
confidence intervals for

(σ2, γ2, λ2, ν2(µ2), ν2(µ2 + δ2)) ≈
(0.1, 0.16, 2,−0.2, 0.4)

(c) 10 Monte-Carlo estimates

(σ̃3, γ̃3, λ̃3, ν̃3(µ3), ν̃3(µ3 + δ3)) with
confidence intervals for

(σ3, γ3, λ3, ν3(µ3), ν3(µ3 + δ3))) ≈
(0.3, 0.12, 3,−0.1, 0.3).

Fig. 5.9: These plots show the result of 10 Monte-Carlo simulations of
(σ̃2
j , γ̃j , λ̃j , ν̃j(µj), ν̃j(µj + δj))j=1,2,3 with 95% confidence intervals. In every plot, the thick

grey lines portray the theoretical values (σj , γj , λj , νj(µj), νj(µj + δj))j=1,2,3.

choosing Uj larger to counter the bias is a common practice in nonparametric statistics and
is called undersmoothing.

Using larger Uj the confidence intervals are widened but the deterministic term reduces.
This provides a way to obtain practically usable confidence intervals that attain the coverage
probabilities. Let us propose choosing the new cut-off values:

Uj = ζUflat
j

with ζ > 1 to provide undersmoothing. Söhl and Trabs [44] do not provide exact argu-
mentation for their exact choice of ζ = 4/3, which they used in the time-homogeneous
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(a) plot of ν1(x) (b) plot of ν2(x)

(c) plot of ν3(x)

Fig. 5.10: For the first Monte-Carlo simulation these plots show the estimates (ν̃j(x))j=1,2,3

in gray with confidence intervals in black and the underlying densities (νj(x))j=1,2,3 in red.

model. Mostly, this value is chosen in a practical manner such that the required coverage
probabilities are attained. Therefore, multiple simulations with different values of ζ will be
evaluated.

Recall that the densities νj required a different calibration with ψ̃νj and thereby chose a
cut-off value Uνj . For the parameter Uνj we will use the same undersmoothing with ζ.

To clarify, first all calibrations are done with the flat method, then all cut-off values
(Uflat

j )j=1,2,3 for every Monte-Carlo simulation are subtracted, and then a new calibration
for every Monte-Carlo simulation and j = 1, 2, 3 is done with the new fixed cut-off values
Uj = ζUflat

j .

Table 5.3 shows the coverage results (σ̃j
2, γ̃j , λ̃j , ν̃j(µj), ν̃j(µj + δj)) of 100 Monte-Carlo

simulations using the flat method and thereafter under-smoothing with ζ. For more accurate
results, more Monte-Carlo simulations need to be evaluated. However, the evaluated time
already gets quite large, because two calibrations for every Monte-Carlo simulation have
been done, i.e., one with the flat methods to find Uj and one with the fixed method with
ζUj . The table provides a rough estimate in which range ζ should be evaluated with more
Monte-Carlo simulations.

From Table 5.3 it can be seen that the results get better and better for increasing val-
ues of ζ. This result is most clearly seen in σ̃2

1 . Larger ζ means undersmoothing, but also
larger confidence intervals. It appears that the 95% coverage probability for σ̃2

1 is attained
conservatively for all parameters for ζ = 1.2.
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1.1 1.2 1.3
j = 1 87 100 100 98 100 96 97 100 98 100 98 100 100 98 100
j = 2 98 100 100 99 99 99 100 100 99 99 99 100 100 99 99
j = 3 99 100 96 95 98 100 100 100 98 97 100 100 100 99 98

Table 5.3: Coverage probabilities of (σ̃2
j , γ̃j , λ̃j , ν̃j(µj), ν̃j(µj + δj))j=1,2,3 in % for 100

Monte-Carlo simulations and undersmoothing Uj = ζUflat
j with the value ζ ∈ {1.1, 1.2, 1.3}.

To obtain a more accurate coverage probability 1000 Monte-Carlo simulations will be
carried out for ζ = 1.2. The results are shown in Table 5.4 and the width of the first 10
confidence intervals can be seen in Figure 5.11.

ζ = 1.2 σ̃2
j γ̃j λ̃j ν̃j(µj) ν̃j(µj + δj)

j = 1 95.3% 99.2% 99.3% 98.0% 99.6%
j = 2 99.3% 99.9% 100.0% 98.8% 99.4%
j = 3 99.3% 98.9% 98.8% 97.6% 96.1%

Table 5.4: Coverage probabilities of (σ̃2
j , γ̃j , λ̃j , ν̃j(µj), ν̃j(µj + δj))j=1,2,3 for 1000

Monte-Carlo simulations and undersmoothing Uj = ζUflat
j with the value ζ = 1.2.

Figure 5.11 shows that most bias now has disappeared when using undersmoothing with
ζ = 1.2. Furthermore, the confidence intervals are bigger. In Figure 5.8 it was shown that
sometimes calibration can go wrong. However, it is satisfactory to see that this can be seen
in the large confidence intervals, this opens a way to detect misleading calibrations.

The main practical result is that conservative adequate confidence intervals can be created
using undersmoothing with ζ = 1.2. Note that different parameters might need a different
value of ζ. Although, after multiple simulations with different parameters, the undersmooth-
ing of ζ = 1.2 is found to be generally satisfactory.

PLS Estimated Error Distribution

In the previous section, we used that the error magnitudes (δj,k) are known a priori in
constructing confidence intervals. However, outside of the simulations, the error magnitudes
are unknown. Therefore, we construct an estimator for these error magnitudes.

The regression model for the noise in the option prices was given by (2.9), i.e.,

Oj,k = Oj(xj,k) + δj,kεj,k, k = 1, ..,mj .

In a similar fashion as the simulations, we assumed that the error magnitudes are propor-
tional to the underlying option function:

δj,k = δjOj(xj,k).

Plugging this assumption into the regression model, we get

Oj,k = Oj(xj,k) + δjOj(xj,k)εj,k

Rewriting to get an expression for δj gives

δjεj,k =
Oj,k

Oj(xj,k)
− 1 =

Oj,k −Oj(xj,k)

Oj(xj,k)
.

Using the fact that the error distribution was centered and had unit variance, we can then
write

δj =

√
E
[
δ2j ε

2
j,k

]
=

√√√√E

[(
Oj,k −Oj(xj,k)

Oj(xj,k)

)2
]
.
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(a) 10 Monte-Carlo estimates

(σ̃1, γ̃1, λ̃1, ν̃1(µ1), ν̃1(µ1 + δ1)) with
confidence intervals for

(σ1, γ1, λ1, ν1(µ1), ν1(µ1 + δ1)) ≈
(0.2, 0.36, 5,−0.1, 0.2).

(b) 10 Monte-Carlo estimates

(σ̃2, γ̃2, λ̃2, ν̃2(µ2), ν̃2(µ2 + δ2)) with
confidence intervals for

(σ2, γ2, λ2, ν2(µ2), ν2(µ2 + δ2)) ≈
(0.1, 0.16, 2,−0.2, 0.4)

(c) 10 Monte-Carlo estimates

(σ̃3, γ̃3, λ̃3, ν̃3(µ3), ν̃3(µ3 + δ3)) with
confidence intervals for

(σ3, γ3, λ3, ν3(µ3), ν3(µ3 + δ3))) ≈
(0.3, 0.12, 3,−0.1, 0.3).

Fig. 5.11: These plots show the result of 10 Monte-Carlo simulations of
(σ̃2
j , γ̃j , λ̃j , ν̃j(µj), ν̃j(µj + δj))j=1,2,3 with 95% confidence intervals and undersmoothing

with ζ = 1.2. In every plot, the thick grey lines portray the theoretical values
(σj , γj , λj , νj(µj), νj(µj + δj))j=1,2,3.
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Approximating the expected value E by the mean gives an estimator δ̃j for δj ,

δ̃j =

√√√√ 1

mj

mj∑
k=1

(
Oj,k −Oj(xj,k)

Oj(xj,k)

)2

.

Note that for the estimator δ̃j and the approximation of the error magnitudes δ̃j,k =

δ̃jOj(xj,k) the function Oj(xj,k) is needed. This function is however unknown.
Recall that the Penalized Least Squares method was the method that minimized the

L2-distance between the implied option function Õ(σ2
j ,γj ,νj)

and the smoothing spline Õj .

Therefore, using the PLS method the final estimator of the error magnitudes can be given
as

δ̃j,k = δ̃jÕ(σ2
j ,γj ,νj)

(xj,k) with δ̃j =

√√√√√ 1

mj

mj∑
k=1

(
Oj,k − Õ(σ2

j ,γj ,νj)
(xj,k)

Õ(σ2
j ,γj ,νj)

(xj,k)

)2

. (5.3)

Figure 5.12 shows the PLS-estimated functions Õ(σ2
j ,γj ,νj)

(xj,k) in black and the observed

points Oj,k in grey for the cases j = 1, 2, 3. In these plots, the x-axis is limited to values that

are not too close to 0. These values can result in an unstable estimator of δ̃j . This is mostly

because the Fourier transform can imply bumps in the tails of Õ(σ2
j ,γj ,νj)

(xj,k), which can

result in unrealistic large values of

Oj,k − Õ(σ2
j ,γj ,νj)

(xj,k)

Õ(σ2
j ,γj ,νj)

(xj,k)
,

in the tails.
Figure 5.12 shows that the PLS-estimate Õ(σ2

j ,γj ,νj)
(xj,k) is quite stable and accurate in

portraying the underlying denoised function of the observed points Oj,k. Only at the point of
the peaks, the values are underestimated and some bias can be noticed. This can be mostly
seen in Figure 5.12a, and decreases in 5.12b, and decreases even more in 5.12c.

Using expression (5.3) the underlying error factor δ̃j can be calculated. For 100 Monte-
Carlo simulations, this error factor is calculated and the estimated mean µδ̃j and standard

deviation σδ̃j are given in Table 5.5.

j = 1 j = 2 j = 3
µδ̃j

0.019 0.015 0.013

σδ̃j
0.003 0.002 0.003

Table 5.5: Mean µδ̃j and standard deviation σδ̃j of the estimator (δ̃j)j=1,2,3 for 100

Monte-Carlo simulations.

Recall that the underlying noise factor was given by δj = 0.010 for j = 1, 2, 3. Table 5.5
shows that all estimates are above the underlying theoretical value. As mentioned, this bias
is mostly due to the miss-estimation of the PLS method at the peaks in Figure 5.12.

Overestimating δ̃j is not necessarily a problem, the confidence intervals just become more
conservative. This opens a way that the Bias in the estimation of the triplet (σ̃j , γ̃j , ν̃j)j=1,2,3

can already be captured in the overestimation of δ̃j . Thus, the undersmoothing parameter
ζ – which governed the Bias and Stochastic Error trade-off – might not be needed anymore.

To verify this, using 1000 Monte-Carlo simulations, calculating δj in every Monte-Carlo
simulation, the same Figure as in 5.11 can be created. The new coverage probabilities are
given in Table 5.6.

Table 5.6 shows that all coverage probabilities are above the implied 95% confidence
interval without using undersmoothing. So if expression (5.3) is used to estimate δj , one
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(a) Estimation of
Õ(σ2

1
,γ1,ν1)(x1,k)

(b) Estimation of
Õ(σ2

2
,γ2,ν2)(x2,k)

(c) Estimation of
Õ(σ2

3
,γ3,ν3)(x3,k)

Fig. 5.12: These plots show the PLS-estimation of the function Õ(σ2
j ,γj ,νj)

(xj,k) as a black

line for the observed grey points Oj,k for the cases j = 1, 2, 3.

σ̃2
j γ̃j λ̃j ν̃j(µj) ν̃j(µj + δj)

j = 1 97.3% 99.1% 99.4% 98.9% 99.9%
j = 2 99.9% 99.6% 99.8% 98.8% 99.4%
j = 3 96.9% 97.4% 95.4% 96.1% 99.2%

Table 5.6: Coverage probabilities of (σ̃2
j , γ̃j , λ̃j , ν̃j(µj), ν̃j(µj + δj))j=1,2,3 for 1000

Monte-Carlo simulations while estimating δ̃j with expression (5.3).

does not in general also need to employ undersmoothing to reduce the bias, because the bias
is already captured in the estimation error of δ̃j .



Chapter 6

Empirical Results

The constructed time-inhomogeneous calibration model will be applied to empirical data
in this chapter. The data set that will be used is downloaded from the website https://
historicaloptiondata.com, which is run by an enterprise that has been actively providing
historical option prices and historical stock prices for over twenty years. 1

For the choice of the data, it is advised to choose a liquid product such that numerous
stable option prices are provided for the underlying asset. The ticker SPY — the most
popular exchange-traded fund of the S&P500 — is generally considered to have the most
liquid on-screen traded options and is therefore a natural choice.

The SPY data that has been downloaded contains call and put option prices with quote
dates in August 2022 and maturities running up to December 2024. More about the specifics
of the data, the cleaning of the data, and the amount of data, in the upcoming section
Underlying Data Set.

The empirical settings resemble in many parts the same simulation settings section as in
5.1, e.g., the weight functions are chosen similarly. Therefore, the differences with respect
to the simulations will first be discussed in section 6.1. The calibration results in a similar
setting as the simulations, i.e. three maturities one week apart, will be shown in section 6.2.
In the last section 6.3, a calibration will be evaluated using all maturities in the data set
to test the full capacity of the model and provide insight into the time dependency of the
parameters.

6.1 Empirical Settings

6.1.1 Underlying Data Set

Figure 6.1 shows a snapshot of the data that has been downloaded. The data frame contains
the underlying ticker (underlying), the quote date (quotedate), the last price of the underlying
on the quote date (underlying last), the type of option call or put (type), the strike price
(strike), the last (last), bid (bid) and ask (ask) prices, and the underlying volume (volume).

Fig. 6.1: Snapshot of S&P500 ETF (SPY) market options data set used for empirical
calibrations.

1 Downloading the data costs a fee to provide the underlying company for running the data services.

91
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The data frame contained much more information, such as the contract number, the
exchange the product is traded on, the greeks, and the implied volatility, which are not of
interest to our calibration.

Some products portrayed prices with low volume, these are however not actively traded
and not accurately priced. Therefore, all contracts with a volume of less than 5 have been
filtered out of the data.

For the actual price of the call and put options, the mid-price will be taken, i.e., the mean
of the bid and ask prices. This is the most natural choice of what the product should be
worth.

The quote date is taken as the first available quote date namely 2nd of August 2022. The
available expiration/maturity dates and the underlying number of call and put options with
volume> 5 for this quote day are

"08/03/2022":128, "08/05/2022":160, "08/08/2022":126, "08/10/2022":135,

"08/12/2022":165, "08/15/2022":123, "08/17/2022":101, "08/19/2022":214,

"08/22/2022":74, "08/24/2022":96, "08/26/2022":145, "08/29/2022":102,

"08/31/2022":111, "09/02/2022":136, "09/06/2022":60, "09/07/2022":15,

"09/09/2022":109, "09/16/2022":288, "09/30/2022":168, "10/21/2022":210,

"11/18/2022":76, "12/16/2022":198, "12/30/2022":76, "01/20/2023":104,

"03/17/2023":72, "03/31/2023":26, "06/16/2023":78, "06/30/2023":9,

"09/15/2023":24, "12/15/2023":42, "01/19/2024":28, "06/21/2024":4,

"12/20/2024":14.

It can be seen that the amount of call and put options can change from expiration to
expiration. In general, as with the simulations, the maturities containing more than 100 data
points will be considered for stability.

Using the put-call parity it is possible to use both the call and put prices. The dynamic
parameter that governs the same prices of calls and puts with the same strike is the interest
rate r – if the interest rate r is not adequately chosen the put-call parity might not be
satisfied.

6.1.2 Interest Rate r

The risk-free interest rate underlying the price process will be inferred from the option prices.
Recall that the put-call parity in expression (2.6) was given by

C(xj,k, Tj)− P(xj,k, Tj) = S0E
[
eXTj − exj,k

]
= S0 (1− exj,k) .

with
xj,k = log(Kj,k/S0)− rj,kTj ,

where rj,k is denoted instead of r to clarify the dependency on j and k. The dependency
on j means that for different maturities Tj the interest rate may change over time. The
parameter k models that for the same maturity Tj there might still be noise in the interest
rates implied by the option prices for different strike prices.

Rewriting (2.6) to isolate rj,k results in

rj,k = − 1

Tj
log

(
S0 − C(xj,k, Tj) + P(xj,k, Tj)

Kj,k

)
.

For every maturity Tj there should be one interest rate rj displayed by the multiple
option prices C(xj,k, Tj) and P(xj,k, Tj) for k = 1, ...,mj . Let us, therefore, approximate the
interest rate rj by the mean of the observations rj,k,

rj = − 1

mjTj

mj∑
k=1

log

(
S0 − C(xj,k, Tj) + P(xj,k, Tj)

Kj,k

)
. (6.1)
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Calculating rj for the option prices with maturity ”08/31/2022” gives the estimate of
0.0126. A plot of the price of the call options against the strikes can be found in Figure 6.2a.
A plot of the put prices converted to calls with the put-call parity with this interest rate rj
against strikes can be found in Figure 6.2b.

(a) Call prices (b) Call prices from put prices

Fig. 6.2: Call prices (left) and call prices from puts by put-call parity (right) against strike
price for maturity ”08/31/2022” and interest rate rj ≈ 0.01.

From Figure 6.2 it appears that a lot of put prices with a relatively small strike price
are sold more than call prices with a relatively high strike price – both cases are the out-of-
the-money regions. This is due to hedging from risk-averse agents, which get insurance with
these puts in the case when the index drops majorly.

Combining Figures 6.2a and 6.2b gives us a wide range of option prices that will be used
in constructing the option function Oj for the calibration process.

6.1.3 Smoothness Parameter sj

The underlying smoothness parameter sj was an important parameter that governed the
convergence in the theoretical results. The parameter in the simulations for the Merton
model is, for example, infinitely smooth, but we chose the parameter to be 6. In the empirical
results, we assume that the underlying densities are at least 2 times differentiable and we
take sj = 2 for all maturities.

6.1.4 Choice of Cut-Off Parameters Uj and Uνj

In the case of real data, the Lévy model serves as an approximation only. The real underlying
dynamics of the stock process do not necessarily have to be exactly portrayed by an Lévy
model, as with the simulations. Consequently, the flat method of section 5.1.1 does not have
to stabilize and does not necessarily lead to sensible results in estimating Uj and Uνj as it
did with the simulations. The preferred method for choosing Uj and Uνj with real data is,
therefore, the PLS method.

6.2 Empirical Results

In the same manner as with the simulations, we would like to calibrate a process that has
three maturities approximately a week apart and more than 100 data points per maturity.
Looking at the data displayed in section 6.1.1 the maturities can be takes as (T1, T2, T3) =
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(08/08/2022, 08/15/2022, 08/26/2022) with the quote date T0 = 08/02/2022. The amount
of data points per maturity is respectively 126, 123, and 145, which are all quite close to the
amount of 150 data points in the simulations.

The risk-free rate rj is chosen between every two maturities (Tj−1, Tj)j=1,2,3 as in expres-
sion (6.1) and from the data it follows that S = 408.15 at T0.

Most theoretical considerations have been explained in the simulations and will therefore
not be repeated in the real-life data. Mostly, the results and differences with respect to the
simulations will be shown.

Estimation of ψ̃j for ψj

The estimators (ψ̃j)j=1,2,3 will first be investigated because it is at the root of the estimation

procedure of the triplets (σ̃j , γ̃j , λ̃j)j=1,2,3. Recall that σ̃j and λ̃j were estimated with the

real part Re(ψ̃j) and γ̃j was estimated with the imaginary part Im(ψ̃j). Figure 6.3 shows the

real and imaginary parts of (ψ̃j)j=1,2,3 that follow from the data for the different maturities.

(a) Estimation of ψ̃1 (b) Estimation of ψ̃2

(c) Estimation of ψ̃3

Fig. 6.3: These plots show the estimation of the real Re and imaginary part Im of the
calibration function ψ̃j for j = 1, 2, 3.

Note that in Figure 6.3 all estimations look stable and similar to the simulation plots of
5.3.

Calibration of Oj Functions by PLS Method

Both the cut-off parameters (Uj)j=1,2,3 that will be used for estimating the triplets

(σ̃j , γ̃j , λ̃j)j=1,2,3 and the underlying noise parameter (δ̃j)j=1,2,3 – as in expression (5.3)
– need to follow from the PLS-method, which minimized the Residual Sum of Square in the
option function, i.e.,

U∗
j = inf

Uj>0

[∣∣∣∣Õ(σ2
j ,γj ,νj)

(xj,k)− Õj,k

∣∣∣∣
l2

]
.
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The best estimated implied option function Õ(σ2
j ,γj ,νj)

(x) to the underlying data Õj,k

chosen by the PLS-method for j = 1, 2, 3 is shown in Figure 6.4. The data Õj,k is displayed

as grey points and the function Õ(σ2
j ,γj ,νj)

(x) is displayed as a black line.

(a) Estimation of
Õ(σ2

1
,γ1,ν1)(xj,k)

(b) Estimation of
Õ(σ2

2
,γ2,ν2)(xj,k)

(c) Estimation of
Õ(σ2

3
,γ3,ν3)(xj,k)

Fig. 6.4: These plots show the PLS-estimation of the function Õ(σ2
j ,γj ,νj)

(xj,k) as a black

line for the observed grey points Oj,k for the cases j = 1, 2, 3.

In the simulations at Figure 5.12, we noted the fact that the PLS method underestimates
the peak of the observations and [46] did support this fact. However, it can be seen in the
real-life data that this is not necessarily the case. This is probable since the real-life data is
not necessarily portrayed by an exponential Lévy process as the simulations were.

The cut-off parameters (Uj)j=1,2,3 that follow from the best fits of the PLS method in
Figure 6.4 are given by:

U1 = 35.5, U2 = 61.4 and U3 = 55.3. (6.2)

Furthermore, the underlying noise parameters, as in expression (5.3), are given by

δ̃1 = 0.057, δ̃2 = 0.050, and δ̃3 = 0.020, (6.3)

such that we can construct the noise to form confidence intervals. [16], [44], and [46] all used
the rule of thumb that δ̃j = 0.01 in constructing their results, which this historical empirical
data set does not support. We also used the calibration procedure on live data, i.e. option
prices that are listed today for maturities in the future, and in this case, even more noise
exists.

Estimation of (σ̃2
j , γ̃j , λ̃j)

The estimation of the triplets (σ̃2
j , γ̃j , λ̃j)j=1,2,3 with the PLS-method together with the

confidence intervals as constructed in expression (5.3) are plotted in Figure 6.5.
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(a) (σ̃2
j )j=1,2,3 (b) (γ̃j)j=1,2,3

(c) (λ̃j)j=1,2,3

Fig. 6.5: Plots of the estimation of the triplets (σ̃2
j , γ̃j , λ̃j)j=1,2,3 for the empirical data as

black points with confidence intervals in green.

In Figure 6.5 it can be seen that for the closest maturity of T1 = 08/08/2022 the volatility
σ̃1 is highest but the drift γ̃1 and intensity λ̃1 are lowest. Whereas with the cases of j = 2, 3 we
can notice the opposite effect. This effect can be seen in more real-life data and can provide
an argument for time-inhomogeneous models instead of homogeneous models. However, a
more detailed analysis must be carried out to support and verify this argument. In the next
section, we will investigate a calibration with 19 maturities for a closer look at the time
dependencies of the parameters.

The finite-sample confidence intervals for these triplets (4.5), (4.8) and (4.11) were mostly
dependent on the underlying noise parameter δj,k – and thereby δ̃j – and the chosen cut-
off frequency Uj . Furthermore, the confidence intervals also had a term with the previous
calibration j − 1 for j > 1. Recalling the estimated values in (6.2) and (6.3) it makes sense
that the first one has the lowest confidence intervals, the second one the highest, and the
third one just lower than the second.
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Estimation of νj(x)

The estimators of (νj(x))j=1,2,3 were estimated by an inverse Fourier transform with separate
cut-off values (Uνj )j=1,2,3 to gain more accurate results. The constructed Lévy densities by
the PLS method and their confidence intervals (4.17) are plotted in Figure 6.6. All these
densities have a similar shape to what [10] and [44] already captured in the homogeneous
model.

(a) ν̃1(x) (b) ν̃2(x)

(c) ν̃3(x)

Fig. 6.6: Plots of the estimation of the jump densities (ν̃j)j=1,2,3 in black with confidence
intervals in grey.

Figure 6.6 shows that there can be some fluctuations in the confidence intervals at the tails
of the density. The difference between these confidence intervals compared to the simulations
with the Merton model is that they do not look normally distributed. At a certain moment,
they look to hinge to 0 instead of a gradual convergence to 0. The confidence intervals then
get these minor fluctuations at 0 and take these into account in the confidence intervals.
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At the confidence intervals at T2 = 08/15/2022 and T3 = 08/26/2022 a bump can be no-
ticed before x = −0.25. These densities appear to be unimodal or have only minor additional
modes in the tails, which may be described as artifacts of the spectral calibration model –
these results were also shown by [44]. However, these modes scarcely occur on the positive
x-axis. A stylized fact from real-life data is that in price processes small jumps mostly occur
downwards, as is displayed by the peaks that are all centered at the negative x-axis.

Construction of path St

Figures 6.5 and 6.6 show the Lévy triplets (σ̃j , γ̃j , ν̃j)j=1,2,3 that governs the price dynamics
in every interval (Tj − Tj−1)j=1,2,3 as described by the time-inhomogeneous model. Using
these parameters, paths of the price process using this time-inhomogeneous exponential Lévy
model can be constructed. Figure 6.7 shows two paths where in Figure 6.7a no jump occurs
and in 6.7b a jump occurs. The grey lines portray the maturities of T1, T2, and T3 where
the first grey line at 0 portrays T0.

(a) sample path without jump (b) sample path with jump

Fig. 6.7: Two sample paths of the price dynamics St against time modeled by a
time-inhomogeneous exponential Lévy model that follow from calibration of real-life data

of SPY options. The grey lines portray the 3 used maturities of the options.

The strength of the time-inhomogeneous Lévy models compared to the homogeneous
Lévy models was in the fact that it allows us to preserve almost all the tractability of Lévy
models — as with the homogeneous case — but it also enables us to reproduce the whole
range of option prices across all maturities by dynamics that specifically describe the process
between two maturities.

6.3 Real-Life Parameters over Time

To test the full capacity of the model and use all the data, let us consider calibrating a
time-inhomogeneous model with numerous maturities. This will also give insight into how
the parameters may change over time. The maturities and the number of data points at
these maturities that will be considered are:

"08/03/2022":128, "08/05/2022":160, "08/08/2022":126, "08/10/2022":135,

"08/12/2022":165, "08/15/2022":123, "08/17/2022":101, "08/19/2022":214,

"08/22/2022":74, "08/24/2022":96, "08/29/2022":102, "08/31/2022":111,
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"09/02/2022":136, "09/06/2022":60, "09/09/2022":109, "09/16/2022":288,

"09/30/2022":168, "10/21/2022":210, "11/18/2022":76.

We use the PLS method to calibrate all these Lévy processes to the underlying option
prices between all time intervals [Tj−1, Tj ]j=1,...,19. Note that the time intervals are not
equidistant, in the month of August we have a lot of expiration days only several days
apart, but afterward the maturities can even be a week or more apart. In general, the closer
to the quote date of 2nd of August, the more maturities and options listed at these maturities
an agent can find.

(a) (σ̃2
j )j=1,...,19 (b) (γ̃j)j=1,2,3

(c) (λ̃j)j=1,...,19

Fig. 6.8: Plots of the estimation of the triplets (σ̃2
j , γ̃j , λ̃j)j=1,...,19 for the empirical data as

black points with confidence intervals in grey.

Figure 6.8 shows the results of the estimation of the triplet (σ̃j , γ̃j , λ̃j)j=1,...,19 with con-
fidence intervals over the period of all maturities. Recall that in the previous section in
Figure 6.5 we got the estimates of (σ̃j , γ̃j , λ̃j) at the dates 08/08/2022, 08/15/2022, and
08/26/2022. When comparing these to Figure 6.8 we can see that the estimates differ. The
reason behind this is that now we use much more maturities and the intervals between the
maturities are much shorter, such that the calibration takes place between different maturi-
ties with different characteristic functions. The coefficient over a longer period can be seen
as the average over all the shorter periods.

Furthermore, Figure 6.8 shows that the estimates and confidence intervals can signif-
icantly differ over time, especially close to the quote date. This confirms that the time-
inhomogeneous model is preferred over the time-homogeneous model where the parameters
are constant and only calibrated from the quote day until a certain maturity.

The time-homogeneous model would take the intervals [T0, Tj ]j=1,...,19 for calibrating and
one could make a time-dependent model by combining all triplets as suggested by Cont and
Tankov [16, Chapter 14.2.2]. However, the dynamics between maturities are then neglected
or over-counted, one would have an overlap between maturities, e.g., would the volatility
calibrated on the period [08/02/2022, 08/15/2022] be a good estimate of the volatility on
[08/08/2022, 08/15/2022]. The time-inhomogeneous model carefully uses all data to calibrate
between two maturities and would take certain events between maturities better into account
in the dynamics.

In Figure 6.9 all jump densities (ν̃j(x))j=1,...,19 with confidence intervals have been plot-
ted. It is visible that the width of the densities differs per maturity, some maturities are
narrow and peaked, while some are broader and more spread out. Therefore some Lévy
densities give more weight to more negative jumps than others.
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Fig. 6.9: Plots of the estimation of the jump densities (ν̃j)j=1,...,19 in black with confidence
intervals in grey.

The confidence intervals in Figure 6.9 also differ quite much from maturity to maturity.
For example, ”08/17/2022” is accurate where the next maturity ”08/19/2022” is less precise,
and then ”08/22/2022” is accurate again. This is due to the different underlying noise
and chosen cut-off values per calibration. Also, the confidence intervals for the last 4 plots
”09/16/2022”, ”09/30/2022”, ”10/21/2022”, and ”10/21/2022” look rather imprecise. The
reason here is that the calibration gets more difficult because the time frame is in the units
of weeks now instead of several days.

Using the results of Figures 6.8 and 6.9 paths of the underlying price process can be
constructed. Figure 6.10 shows two of these paths, where in 6.10a a path without jumps is
presented and in 6.10b a path with jumps is presented. The grey lines portray the different
maturities. In the beginning there are a lot of maturity dates and it decreases over time.
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(a) sample path without jump (b) sample path with jump

Fig. 6.10: Two sample paths of the price dynamics St against time modeled by a
time-inhomogeneous exponential Lévy model that follows from calibration of real-life data

of SPY options. The grey lines portray the 19 used maturities of the options.





Chapter 7

Conclusion

In this thesis, the time-inhomogeneous exponential Lévy model was introduced as a discrete
additive process. An estimation procedure for the nonparametric calibration using option
prices of these time-inhomogeneous models was constructed with the usage of the spectral
domain. The time-inhomogeneous model can incorporate all option prices over all maturities
and strike prices, which makes it a natural extension of the homogeneous model.

The underlying estimators of the process are asymptotically normally distributed under
certain conditions of the increasing cut-off parameter and decreasing grid size. Furthermore,
the calibration is well-defined, optimal convergence rates are found, and the inverse calibra-
tion problem has been inspected. From the difficulty of the inverse calibration, we found that
the calibration works sufficiently whenever the time between maturities- and volatilities do
not become too large.

Using the asymptotic variance of the normality results to create confidence intervals was
not sufficient. The limiting result does not necessarily portray the finite sample cases. Thus,
a new method that constructs the finite sample variance while disregarding the bias and
remainder terms was built.

In the simulations, options have been extracted from a time-inhomogeneous Lévy process
based on Merton models with 3 maturities a week apart. The calibration works for the
majority of the Monte-Carlo simulations, but some odd cases/miss-calibrations could be
noted. These odd cases could however be easily identified by the larger chosen cut-off values
and the in turn widened confidence intervals. For the usage of the exact error distribution
in the confidence intervals, undersmoothing should be employed to deal with the neglected
bias term. Whereas the Penalised Least Squares estimated error distribution leads to an
overestimation and an auto-penalization of this bias term.

Finally, the application of the constructed model to option prices of the S&P500 ETF
(SPY) provided us with the insight that the model and confidence intervals work well in prac-
tice whenever enough option prices at different maturities are listed. The calibration of many
maturities of the inhomogeneous model with confidence intervals showed us that the param-
eters differ over time, and this provided us with an argument for the time-inhomogeneous
model.

For future research, we recommend investigating the performance of the time-inhomogeneous
model in the pricing of exotic options, hedging, and risk management. Next to that, the
constructed non-parametric spectral calibration method could also be used to construct
goodness-of-fit tests to parametric time-inhomogeneous exponential Lévy models. As a last
note, the extension of the inhomogeneous model to the case of infinite jump activity might
also be theoretically interesting (See Trabs [48] for an extension for the homogeneous model).
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Appendix A

Proofs of Lemmata

Proof (Lemma 3.1) (Proof by Contradiction) Suppose that supt∈[0,T ] | arg g(t)− arg f(t)| >
π. Then by the continuity of arg g(t) and arg f(t) we can employ the Mean Value Theorem
to conclude that there exists a t0 ∈ [0, T ] such that | arg g(t0) − arg f(t0)| = π. This is
equivalent with g(t0) = −rf(t0) for some r ∈ R>0. But then

|f(t0)− g(t0)| = (1 + r)|f(t0)| > |f(t0)| ≥ C.

This contradicts the assumption |f(t0)− g(t0)| ≤ C for all t ∈ [0, T ]. □

Proof (Lemma 3.2) For the case of q = 0, the bound becomes

(x2 + c)0 = 1 ≤ max(20−1, 1)((x2)0 + c0) = 1,

and the inequality holds. Now let q ∈ R \ {0}. Define y := x2 and instead of considering x
it is easier to consider y ≥ 0. Define fc : R≥0 → R≥0 as

fc(y) =
(y + c)2q

y2q + c2q
.

Note that the function fc has no singularities and that the derivative can be given by

dfc(y)

dy
=

(y2q + c2q)2q(y + c)2q−1 − (y + c)2q2qy2q−1

(y2q + c2q)2

=
2q(y + c)2q−1

(
(y2q + c2q)− (y + c)y2q−1

)
(y2q + c2q)2

=
2qc(y + c)2q−1

(
c2q−1 − y2q−1

)
(y2q + c2q)2

.

Furthermore, the function fc also satisfies

lim
y→∞

fc(y) = 1,

and fc(0) = 1. Thus, we must either have that |fc(y)| ≤ 1 for all y > 0 or |fc(y)| ≤ fc(z)
with z a zero of dfc(y)/dy. From the expression of the derivative, it is clear that dfc(y)/dy
only has one zero on its domain which equals c. The value of this zero of the function is a
maximum and has the value f(c) = 22q−1. Hence, for any q, x ∈ R and c > 0 we have that

|fc(y)| ≤ max(22q−1, 1)

holds, substituting y := x2 back and rearranging then completes the proof

(x2 + c)2q ≤ max(22q−1, 1)
(
(x2)2q + c2q

)
.

□

109



110 A Proofs of Lemmata

Proof (Lemma 3.3) By the monotonicity property of integrals, it follows that

lim
U→∞

∣∣∣∣∣
∫
(0,1)2\(0,1−h(U))2

fU (v, w)gU (v, w)d(v, w)

∣∣∣∣∣
≤ lim
U→∞

C

∫
(0,1)2\(0,1−h(U))2

fU (v, w)d(v, w) = 0.

Thus,

lim
U→∞

∫ 1

0

∫ 1

0

fU (v, w)gU (v, w)dvdw = lim
U→∞

∫ 1

1−h(U)

∫ 1

1−h(U)

fU (v, w)gU (v, w)dvdw

Now it will be proven that this integral equals g(1, 1) by looking at the difference

lim
U→∞

∣∣∣∣∣
∫ 1

1−h(U)

∫ 1

1−h(U)

fU (v, w)(gU (v, w)− gU (1, 1))dvdw

∣∣∣∣∣
≤ lim
U→∞

∫ 1

1−h(U)

∫ 1

1−h(U)

fU (v, w)dvdw sup
(u,v)∈[1−h(U),1]2

|gU (v, w)− gU (1, 1)|

= 0,

by the assumptions in the Lemma. Concluding we have

lim
U→∞

∫ 1

0

∫ 1

0

fU (v, w)gU (v, w)dvdw = lim
Uj→∞

gU (1, 1).

□

Proof (Lemma 3.4) For the proof, we will show that the difference

lim
Uj→∞

∆−1
j−l

mj−l∑
k=1

δ2j−l,k

(
A2
j−le

−Aj−lU
2
j I2v − e−2Cj−lw1

σj
(1)2F bj−l,k (Uj)

2
e−2iBj−lUj

)
= lim
Uj→∞

mj−l∑
k=1

δ2j−l,k∆j−l

(
A2
j−le

−Aj−lU
2
j I2v∆

−2
j−l − e−2Cj−lw1

σj
(1)2F bj−l,k (Uj)

2
e−2iBj−lUj∆−2

j−l

)
will be 0. By the assumption that δj−l ∈ L2+η(R) with η > 0 we can see by the Riemann
Integral that limUj→∞

∑mj−l

k=1 δ2j−l,k∆j−l = ||δj−l||2L2 < ∞. Therefore, it is enough to show
that the second part of the summation becomes 0 asymptotically,

lim
Uj→∞

m∑
k=1

A2
j−le

−Aj−lU
2
j I2v∆

−2
j−l − e−2Cj−lw1

σj
(1)2F bj−l,k (Uj)

2
e−2iBj−lUj∆−2

j−l = 0.

This is similar to bounding the term by any ε > 0 provided that Uj > 0 is large enough.
Thereafter, letting ε converge to 0 completes the proof. In expression (3.18) we already
proved the case without the term ∆−2

j−l, thus it is enough to show that the second term is
bounded, indeed because if fn/gn → 1, hn ∈ C and |gnhn| ≤ C, then

lim
n→∞

|fnhn − gnhn| = lim
n→∞

|gnhn| |fn/gn − 1| ≤ C lim
n→∞

|fn/gn − 1| = 0.

Inserting F bj−l,k (Uj) = ∆j−le
iUjxj,k sinc2 (Uj∆j−l), gives

lim
Uj→∞

m∑
k=1

A2
j−le

−Aj−lU
2
j I2v∆

−2
j−l − e−2Cj−lw1

σj
(1)2e2iUjxj,k sinc4 (Uj∆j−l) e

−2iBj−lUj .



A Proofs of Lemmata 111

The absolute value of the second part converges to e−2Cj−lw1
σj
(1)2, so it is easily bounded,

which concludes the proof. □

Proof (Lemma 3.5) Without loss of generality, we can assume that C = 1, because if C ̸= 1
then we can replace z and z̃ by z/C and z̃/C. Furthermore, the result only needs to be proven
for positive real z, the rest of the complex plane for z thereafter follows by a rotational
argument zeiφ and rotating z̃ in a similar manner.

So, without loss of generality, we assume C = 1 and z ∈ R+. Let us write z̃ = x + iy
with (x, y) ∈ R2. We then want to have |z| > 2, |z̃| = x2 + y2 > 1, and | arg z − arg z̃| ≤ 2π.
The proof is based on showing that 1/4 bounds the real-valued function that satisfies these
conditions,

f : (R2 \ {(x, y) : x2 + y2 < 1})× [2,∞) → R+

defined by

f(x, y, z) =
| log(x+ iy)− log(z)− (x+ iy − z)z−1|2

|x+ iy − z|4
.

The optimization of the function is difficult and will be done by the computer. From the
computer, it is believed that the maximum of the function is attained at z = 2 and x2+y2 =
1. Moreover, the maximum will be located at the point such that the difference in the
argument is maximized. In our example this would be x = −1 and y = 0, leading to a
difference in the argument of π. Hence, combining everything results in

f(z) ≤ (3/2− log 2)2 + π2

34
≈ 0.1299 ≤ 1

4
,

which completes the proof. □

Proof (Lemma 3.6) The result will first be proven for the case ξj = σj , thereafter the

differences for the proves of γj and λj will be pointed out. Define Aj =
∑j
i=1(Ti − Ti−1)σ

2
i

and recall
Kj(v) := 2j−1e−v

2Aj/2+2RTj .

It is easy to see that
1

Kj(v)2
=

1

22j−2
ev

2Aj−4RTj ≲ ev
2Aj .

Using the symmetry of w
Uj
σj , w

Uj
σj (v) = w1

σj
/U3

j , and the properties of w1
σj

∈ Wn
sj , then for

the desired bound it follows that∫ Uj

−Uj

v4|wUj
σj (v)|

Kj(v)2
dv ≲

∫ Uj

−Uj

ev
2Ajv4|wUj

σj
(v)|dv ≲

∫ Uj

−Uj

ev
2Ajv4

v4

U
sj+3
j

|v|sjdv

≲ U
−(sj+3)
j

∫ Uj

0

v3+sj2Ajve
Ajv

2

dv ≤
∫ Uj

0

2Ajve
Ajv

2

dv =
[
eAjv

2
]Uj

v=0
= eAjU

2
j .

For the cases of γj and λj the proofs are almost analogous, only use that w
Uj
γj is anti-

symmetric and w
Uj
γj = w1

γj/U
2
j for γj , and w

Uj
γj = w1

γj/Uj for λj . □





Appendix B

Additional Details Asymptotic Normality µ̃j(x)

B.1 Bias Term B

The Bias term B is given by

B =
1

2π

∫
R\[−Uj ,Uj ]

(
ψj(v) +

σ2
j

2
(v − i)2 − iγj(v − i) + λj

)
(1− wUj

µj
(v))e−ivxdv.

To show the asymptotic rate of the Bias term it is easier to analyze B2, by the triangle rule

for integration and the properties of w
Uj
µj ∈ Wsj

n , it follows that

4π2B2 ≤
∫
R\[−Uj ,Uj ]

∣∣∣∣∣
(
ψj(v) +

σ2
j

2
(v − i)2 − iγj(v − i) + λj

)
(1− wUj

µj
(v))e−ivx

∣∣∣∣∣
2

dv

≤
∫
R

∣∣∣∣∣
(
ψj(v) +

σ2
j

2
(v − i)2 − iγj(v − i) + λj

)
(1− wUj

µj
(v))e−ivx

∣∣∣∣∣
2

dv

=

∫
R

∣∣∣∣∣
(
ψj(v) +

σ2
j

2
(v − i)2 − iγj(v − i) + λj

)
(1− wUj

µj
(v))

∣∣∣∣∣
2

dv

=

∫
R

∣∣∣∣∣Fµj(v)(1− wUj
µj
(v))

∣∣∣∣∣
2

dv ≤
∫
R
|Fµj(v)|2

v2sj

U
2sj
j

dv.

Now using the Fourier property Ff (k)(v) = (iv)kFf(v),

4π2B2 ≤ 1

U
2sj
j

∫
R

∣∣∣∣∣Fµ
sj
j (v)

(−iv)sj

∣∣∣∣∣
2

v2sjdv =
1

U
2sj
j

∫
R

∣∣Fµ
sj
j (v)

∣∣2 dv = U
−2sj
j ||µsjj ||2L2(R).

The properties of µj ∈ Gsjn imply that ||µsjj ||2L2(R) is a constant. Hence, it follows that

|B| ≤ 1

2π
U

−sj
j ||µsjj ||L2(R).

B.2 Decomposition of Ψ Term

The Ψ term was defined by

Ψ =
1

2π

∫ Uj

−Uj

(ψ̃j(v)− ψj(v))w
Uj
µj
(v)e−ivxdv.
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To show the asymptotic normality of the Ψ term we again split up Ψ in Linear parts L 0
µj
,L 1

µj

and Remainder parts R0
µj
,R1

µj
, whereafter we will show that L l

µj
is asymptotically normal

and Rl
µj

is asymptotically negligible for l = 0, 1.

Note that the Ψ term bears a lot of resemblance with the cases of (σ̃2
j , γ̃j , γ̃j). The differ-

ence is in the fact that we now have a different weight function w
Uj
µj (v) and an extra term

e−ivx.
Recalling the definition of ψ̃j = ψ̃0

j − ψ̃1
j and ψj = ψ0

j −ψ1
j and neglecting the stabilisation

of κ(v, Tj−l) in the log, we can write

Ψ =
1

2π

∫ Uj

−Uj

[
1

Tj − Tj−1
log

(
φ̃Tj

(v − i)

φTj
(v − i)

)
− 1

Tj − Tj−1
log

(
φ̃Tj−1

(v − i)

φTj−1
(v − i)

)]
wUj
µj
(v)e−ivxdv.

Splitting the log into linear terms and remainder terms with a Taylor expansion opens up a
way to write Ψ as

Ψ =
1

2π

∫ Uj

−Uj

[
L0
j (v)− L1

j (v) +R0
j (v)−R1

j (v)
]
wUj
µj
(v)e−ivxdv

=: L 0
µj

− L 1
µj

+ R0
µj

− R1
µj
, (B.1)

where for l = 0, 1 we have

Llj(v) =
1

Tj − Tj−1

φ̃Tj−l
(v − i)− φTj−l

(v − i)

φTj−l
(v − i)

and Rl
j(v) = ψ̃lj − ψlj(v)− Llj(v).

The goal is to show that the linearized terms L 0
µj
(v),L 1

µj
(v) are asymptotic normal and

that the remainder terms R0
µj
(v),R1

µj
(v) are asymptotically negligible.

B.3 Normality of Terms L l
µj
(v) in Ψ

Firstly, the normality of the linearized terms L 0
µj
(v),L 1

µj
(v) will be evaluated. This will

be done by writing L l
µj
(v) for l = 0, 1 as a sum of the error distribution of the regression

model (ε)j,k – recall that these were centered independent sub-Gaussian random variables
with V[εj,k] = 1. Then we again show that the conditions of the Lyapunov Central limit
Theorem – given in 3.1 – again hold and we can imply asymptotic normality.

As in (3.14) the deterministic characteristic function will again be written as

φTj−l
(v − i) = exp

(
−v2

2

(
j−l∑
r=1

(Tr − Tr−1)σ
2
r

)
+ iv

(
j−l∑
r=1

(Tr − Tr−1)
(
σ2
r + γr

))

+

(
j−l∑
r=1

(Tr − Tr−1)

(
σ2
r

2
+ γr − λr

))
+

(
m∑
r=1

(Tr − Tr−1)Fµr(v)

))

= : exp

(
−v

2

2
Aj−l + ivBj−l + Cj−l +Dj−l(v)

)
.

At this moment, the goal is to write L l
j as a sum of the independent (εj,k), such that

we are in the form of Theorem 3.1. Using the properties of the weight function wµj ∈ Wn
sj

gives the result

L l
µj

=
1

2π

∫ Uj

−Uj

Llj(v)wUj
µj
(v)e−ivxdv =

1

2π
Uj

∫ 1

−1

Llj (vUj)w1
µj
(v)e−ivUjxdv

=
1

2π
Uj

∫ 1

0

Llj (vUj)w1
µj
(v)e−ivUjxdv +

1

2π
Uj

∫ 1

0

Llj (−vUj)w1
µj
(−v)eivUjxdv
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=
1

2π
Uj

∫ 1

0

Llj (vUj)w1
µj
(v)e−ivUjxdv +

1

2π
Uj

∫ 1

0

Llνj (vUj)w
1
µj
(v)eivUjxdv

=
1

π
Uj

∫ 1

0

Re
(
Llj (vUj) e−ivUjx

)
w1
µj
(v)dv

Using expression (3.2), we can write Llj(v) in a more basic form

Llj(v) =
1

Tj − Tj−1

iv(1 + iv)
∑m
k=1 δj−l,kεj−l,kF bj−l,k(v)

φTj−l
(v − i)

.

Substituting this, switching summation and integration, and switching integration and
taking the real part, we can find

L l
µj

=
1

π

Uj
Tj − Tj−1

mj−l∑
k=1

δj−l,kεj−l,k

∫ 1

0

Re

(
ivUj(1 + ivUj)F bj−l,k(vUj)

φTj−l
(vUj − i)

e−ivUjx

)
w1
µj
(v)dv,

=
1

π

Uj
Tj − Tj−1

mj−l∑
k=1

δj−l,kεj−l,kRe

(∫ 1

0

ivUj(1 + ivUj)F bj−l,k(vUj)

φTj−l
(vUj − i)

e−ivUjxw1
µj
(v)

)
.dv

If, for k = 1, ...,mj−l, we define random variables

Xk :=
1

π

Uj
Tj − Tj−1

δj−l,kεj−l,kRe

(∫ 1

0

ivUj(1 + ivUj)F bj−l,k(vUj)

φTj−l
(vUj − i)

e−ivUjxw1
µj
(v)dv

)
,

then, from the properties that (εj,k) are independent centered random variables with
V[εj,k] = 1, it follows that (Xk) are independent centred random variables with V[Xk] =
σ2
k <∞. Note that this is exactly the setting of Theorem 3.1 where L l

µj
= Tm =

∑m
k=1Xk.

The Lyapunov conditions in Theorem 3.1 need to be shown. Firstly, the variance s2n,l of

L l
µj

will be looked upon. The result is stated as a proposition because the proof is rather
tedious and enduring.

Proposition B.1 Let s2n,l =
∑mj−l

k=1 σ2
k with σ2

k = V[X2
k ] < ∞ for k = 1, ...,m and let

δj−l ∈ Lη(R) for η ≥ 2 and l = 0, 1. As Uj tends to infinity, then

s2n,l = w1
σj
(1)2dj,j−l∆j−lU

−4
j exp

(
Aj−lU

2
j

)
,

where we defined the constant

dj,j−l := 2 ∥δj−l∥2L2 (Tj − Tj−1)
−2
A−2
j−l exp (−2Cj−l) ,

and the terms Aj−l and Cj−l are as in expression (3.14).

Proof (Proposition B.1) Using that E[εj−l,k] = 0 and V[εj−l,k] = 1, it follows that

s2n,l =

mj−l∑
k=1

σ2
k

=
U2
j

π2 (Tj − Tj−1)
2

m∑
k=1

δ2j−l,k Re
2

(∫ 1

0

ivUj (1 + ivUj)F bj−l,k (vUj)

φTj−l
(vUj − i)

e−ivUjxw1
µj
(v)dv

)
.

Instead of computing the real part immediately, we will make use of the following identity

Re2 z =

(
z + z̄

2

)2

=
1

4

(
z2 + 2zz̄ + z̄2

)
,

and compute the three different parts instead. The problem can then be decomposed to
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s2n,l =
U2
j

4π2 (Tj − Tj−1)
2

m∑
k=1

δ2j−l,k
(
I2
v + 2IvIv̄ + I2

v̄

)
(B.2)

with Iv :=
∫ 1

0
f(v)dv and Iv̄ :=

∫ 1

0
f(v)dv for the function

f(x, v) :=
ivUj (1 + ivUj)F bj−l,k (vUj)

φTj−l
(vUj − i)

e−ivUjxw1
µj
(v).

We start with the simplification of the term I2
v ,

I2
v :=

(∫ 1

0

ivUj (1 + ivUj)F bj−l,k (vUj)

exp
(
−v2U2

j Aj−l/2 + ivUjBj−l + Cj−l +Dj−l (vUj)
)e−ivUjxw1

µj
(v)dv

)2

=

∫ 1

0

∫ 1

0

ivUj (1 + ivUj) iwUj (1 + iwUj)F bj−l,k (vUj)F bj−l,k (wUj)

exp
(
− (v2 + w2)U2

j Aj−l/2 + i(v + w)UjBj−l + 2Cj−l +Dj−l (vUj) +Dj−l (wUj)
)

e−ivUjxe−iwUjxw1
µj
(v)w1

µj
(w)dvdw

= −U2
j exp (−2Cj−l)

∫ 1

0

∫ 1

0

vw exp
(
Aj−l

(
v2 + w2

)
U2
j /2
)
(1 + ivUj) (1 + iwUj) g(v, w)dvdw

= −U2
j exp (−2Cj−l)

(∫ 1

0

∫ 1

0

vw exp
(
Aj−l

(
v2 + w2

)
U2
j /2
)
g(v, w)dvdw

+ iUj

∫ 1

0

∫ 1

0

vw exp
(
Aj−l

(
v2 + w2

)
U2
j /2
)
(v + w)g(v, w)dvdw

−U2
j

∫ 1

0

∫ 1

0

vw exp
(
Aj−l

(
v2 + w2

)
U2
j /2
)
· vwg(v, w)dvdw

)
,

with g defined as

g(v, w) :=
F bj−l,k (vUj)F bj−l,k (wUj) e

−ivUjxe−iwUjx

exp (i(v + w)UjBj−l +Dj−l (vUj) +Dj−l (wUj))
w1
µj
(v)w1

µj
(w).

In a similar manner, the terms I2
v̄ and IzIz̄ can be expressed as

Iz̄2 = −U2
j exp (−2Cj−l)

(∫ 1

0

∫ 1

0

vw exp
(
Aj−l

(
v2 + w2

)
U2
j /2
)
g(−v,−w)dvdw

+ iUj

∫ 1

0

∫ 1

0

vw exp
(
Aj−l

(
v2 + w2

)
U2
j /2
)
(−v − w)g(−v,−w)dvdw

−U2
j

∫ 1

0

∫ 1

0

vw exp
(
Aj−l

(
v2 + w2

)
U2
j /2
)
vwg(−v,−w)dvdw

)
and

IzIz̄ = U2
j exp (−2Cj−l) ·

(∫ 1

0

∫ 1

0

vw exp
(
Aj−l

(
v2 + w2

)
U2
j /2
)
· g(v,−w)dvdw

+iUj

∫ 1

0

∫ 1

0

vw exp
(
Aj−l

(
v2 + w2

)
U2
j /2
)
(v − w)g(v,−w)dvdw

−U2
j

∫ 1

0

∫ 1

0

vw exp
(
Aj−l

(
v2 + w2

)
U2
j /2
)
· −vwg(v,−w)dvdw

)
.

For evaluating these integrals even further Lemma 3.3 will again be used as in the case of
σ̃2
j , only now the function g(v, w) is slightly different.
Remembering the solution of the Fourier transform F bj,k(v) in expression (3.3), it can

be shown that limUj→∞ g(v, w) is not necessarily finite.
For applying Lemma 3.3, the function g̃Uj (v, w) will be defined as
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g̃Uj
(v, w) := vw exp (2iUj(Bj−l + x))F bj,k (Uj)

−2
g(v, w).

With this new addition, limUj→∞ g̃Uj
(1, 1) exists and is finite. Hence, we need to check the

conditions on g̃Uj
and we need to find functions fUj

which converge to a Dirac delta function
at (1, 1). Rescaling the other factors in the integrals, such that these integrals are in the form
of Lemma 3.3, gives

fUj
(v, w) := A2

j−lU
4
j exp

(
−Aj−lU2

j

)
vw exp

(
Aj−l

(
v2 + w2

)
U2
j /2
)
=: F (v) · F (w).

The h(x) function in Lemma 3.3 will be chosen to be h(x) = x−3/2, it is easy to see that
h(x) ↓ 0 as x → ∞. Now the conditions of Lemma 3.3 will be checked on this particular
fUj

(u, v) function

lim
Uj→∞

∫ 1

1−U−3/2
j

∫ 1

1−U−3/2
j

fUj
(v, w)dvdwv = lim

Uj→∞

(∫ 1

1−U−3/2
j

F (v)dv

)2

= 1,

lim
Uj→∞

∫ 1

0

∫ 1

0

fUj (v, w)dvdw = lim
Uj→∞

(∫ 1

0

F (v)dv

)2

= 1,

where it was used that∫ 1

b(Uj)

F (v)dv = exp
(
−Aj−lU2

j /2
) ∫ 1

b(Uj)

vAj−lU
2
j exp

(
Aj−lv

2U2
j /2
)
dv

= exp
(
−Aj−lU2

j /2
)
·
[
exp

(
Aj−lv

2U2
j /2
)]1
b(Uj)

= exp
(
−Aj−lU2

j /2
)
·
[
exp

(
Aj−lU

2
j /2
)
− exp

(
Aj−l (b(Uj))

2
U2
j /2
)]

= 1− exp
(
−Aj−lU2

j

[
1− b(Uj)

2
]
/2
)
.

The function f is thus satisfactory. What remains to check is the boundedness of g̃U on the
unit square and we need to check that

lim
Uj→∞

sup
(u,v)∈[1−U−3/2,1]2

∣∣g̃Uj
(u, v)− g̃Uj

(1, 1)
∣∣ = 0.

First of all recall

g̃Uj
(v, w) := vw exp (2iUj(Bj−l + x))F bj,k (Uj)

−2
g(v, w)

= vw
F bj−l,k (vUj)F bj−l,k (wUj)

F bj−l,k (Uj)
2 w1

µj
(v)w1

µj
(w)

exp (2iUj(Bj−l + x))

exp (i(v + w)Uj(Bj−l + x))
e−Dj−l(vUj)−Dj−l(wUj)

The assumption is made that Uj > c for a certain c > 0. For ease of notation let

g̃1(v, w) = vw, g̃2(v, w) =
F bj−l,k (vUj)F bj−l,k (wUj)

F bj−l,k (Uj)
2 , g̃3(v, w) = w1

µj
(v)w1

µj
(w)

g̃4(v, w) = exp (i(2− v − w)Uj(Bj−l + x)) , g̃5(v, w) = exp (−Dj−l (vUj)−Dj−l (wUm))

Note that g̃1, g̃3 and g̃4 are uniformly bounded on the unit square. Also note that
Fµj(x) → 0 for x → ∞. Hence, Dj−l is a bounded function, which implies that g̃5 is
bounded uniformly. Proving boundedness of g̃2, recall expression (3.3), then

g̃2(v, w) = exp (−i(v + w − 2)Ujxj,k∆j,k) ·
sinc2 (vUj∆j−l/2) sinc

2 (wUj∆j,k/2)

sinc2 (Uj∆j,k/2)
(B.3)

where ∆j−l = |xj,k−1 − xj,k|. We can find a c > 0, such that for all Uj > c we have
sinc2 (Uj∆j−l) ≥ 1/2, which leads to the bound
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|g̃2(v, w)| ≤
∣∣∣∣ sinc2 (vUj∆j−l/2) sinc

2 (wUj∆j−l/2)

sinc2 (Uj∆j−l/2)

∣∣∣∣ ≤ ∣∣∣∣ 1

sinc2 (Uj∆j−l/2)

∣∣∣∣ ≤ 2.

So, g̃2 is bounded on the unit square. Putting everything together we can conclude that
g̃(v, w) is bounded on the unit square.

We note that g̃1 · g̃3 is continuous in (1, 1). Moreover, the second part of g̃2 in expression
(B.3) also behaves satisfactory. Thus these factors can be taken out of the equation. Note
that, g̃5 converges uniformly to 1 for Uj → ∞ because of the smoothness of µj(x). The only
problems thus occur in the first part of g̃2 in expression (B.3) and in g̃4,

sup
(v,w)∈

[
1−U−3/2

j ,1
]2 |g̃4(v, w)− 1| =

∣∣∣exp(i(2− (1− U
−3/2
j

)
−
(
1− U

−3/2
j

))
Uj(Bj−l + x)

)
− 1
∣∣∣

=
∣∣∣exp(i · U−1/2

j (Bj−l + x)
)
− exp(i · 0)

∣∣∣ ≤ ∣∣∣U−1/2
j (Bj−l + x)

∣∣∣→ 0.

Similarly, the first part of g̃2 can be controlled. This completes all the conditions of the
function g̃Uj

(v, w) in Lemma 3.3. To conclude, now we have found and checked the functions
fUj (v, w) and g̃Uj (v, w) in Lemma 3.3 and we can use these functions to solve the desired
integrals.

From this Lemma, it appears that all the integrals in the final expressions for I2
v , I2

v̄ and
IvIv̄ converge equally fast to 0 and the dominating term is the last one with the U4

j factor
in front of it. Henceforth, the first two integrals will be left out of the equation. Reminding
the extra term of g̃Uj (v, w) with respect to g(v, w), using Lemma 3.3 the limit is found to
be

lim
Uj→∞

I2
v̄A

2
j−l exp

(
−Aj−lU2

j

)
F bj−l,k (Uj)

−2
exp (2iUj(Bj−l + x))

= lim
Uj→∞

exp (−2Cj−l)

∫ 1

0

∫ 1

0

fUj
(v, w)g̃Uj

(v, w)dv dw = exp (−2Cj−l) lim
Uj→∞

g̃Uj
(1, 1)

= exp (−2Cj−l)w
1
µj
(1)2 lim

Uj→∞
exp (−2Dj−l (Uj)) = exp (−2Cj−l)w

1
µj
(1)2.

In a similar manner, the other terms I2
v̄ and IvIv̄ their convergence can be deduced

lim
Uj→∞

I2
v̄A

2
j−l exp

(
−Aj−lU2

j

)
F bj,k (Uj)

−2
exp (−2iUj(Bj−l + x)) = exp (−2Cj−l)w

1
µj
(1)2,

lim
Uj→∞

IvIv̄A2
j−l exp

(
−Aj−lU2

j

)
|F bj,k (Uj)|−2

= exp (−2Cj−l)w
1
µj
(1)2.

Recalling expression (B.2) for s2n,l, the asymptotic variance s2n,l will be found by consid-
ering the following adapted limit

lim
Uj→∞

s2n,l

∆j−lU
−4
j A−2

j−1 exp(Aj−1U2
j )

(B.4)

=
1

(Tj − Tj−1)
2 lim
Uj→∞

∆−1
j−l

mj−l∑
k=1

δ2j−l,kA
2
j−1 exp(−Aj−1U

2
j )
(
I2
v + 2IvIv̄ + I2

v̄

)
.

(B.5)

An important remark to make is that when Uj → ∞ the maximum distance between the
grid points needs to go to zero ∆j−l → 0, and thereby the number of observations needs to
go infinity mj−l → ∞.

All the different limits for I2
v , IvIv̄ and I2

v̄ will be individually considered by replacing
the summands by their respective asymptotic behavior. Note that this is not a trivial step
and should be proven. The result is given in Lemma (B.1).

Lemma B.1 Under the assumptions of Proposition 3.2,



B.3 Normality of Terms L l
µj

(v) in Ψ 119

lim
Uj→∞

∆−1
j−l

mj−l∑
k=1

δ2j−l,kA
2
j−le

−Aj−lU
2
j I2

v

= lim
U→∞

∆−1
j−l

mj−l∑
k=1

δ2j−l,ke
−2Cj−lw1

µj
(1)2F bj−l,k (Uj)

2
e−2i(Bj−l+x)Uj

The steps of the proof of Lemma B.1 are completely similar to the steps of the proof of
Lemma 3.4 – the different term e−2i(Bj−l+x)Uj cancels while taking the absolute value of the
second term as in the proof of Lemma 3.4.

Recalling the Fourier transform of bj−l,k in (3.3) and the definition of the Riemann inte-
gral, we can derive

lim
Uj→∞

∆−1
j−l

mj−l∑
k=1

δ2j−l,kA
2
j−le

−Aj−lU
2
j I2

v

= e−2Cj−lw1
µj
(1)2 lim

Uj→∞
e−2i(Bj−l+x)Uj∆−1

j−l

mj−l∑
k=1

δ2j−l,kF bj−l,k (Uj)
2

= e−2Cj−lw1
µj
(1)2 lim

Uj→∞
e−2i(Bj−l+x)Uj sinc4 (Uj∆j−l/2)

mj−l∑
k=1

δ2j−l,ke
2iUjxj−l,k∆j−l

= e−2Cj−lw1
µj
(1)2 lim

Uj→∞
e−2i(Bj−l+x)Uj sinc4 (Uj∆j−l/2)

∫ ∞

−∞
δj−l(x)

2e2iUjxdx

= e−2Cj−lw1
µj
(1)2 lim

Uj→∞
e−2i(Bj−l+x)Uj sinc4 (Uj∆j−l/2)F δ2j−l (2Uj) . (B.6)

In a similar manner,

lim
Uj→∞

∆−1
j−l

mj−l∑
k=1

δ2j−l,kA
2
j−le

−Aj−lU
2
j I2

v̄

= e−2Cj−lw1
µj
(1)2 lim

Uj→∞
e2i(Bj−l+x)Uj∆−1

j−l

mj−l∑
k=1

δ2j−l,kF bj−l,k (−Uj)2

= e−2Cj−lw1
µj
(1)2 lim

Uj→∞
e2i(Bj−l+x)Uj sinc4 (−Uj∆j−l/2)F δ2j−l (−2Uj) (B.7)

and

lim
Uj→∞

∆−1
j−l

mj−l∑
k=1

δ2j−l,kA
2
j−le

−Aj−lU
2
j IvIv̄

=e−2Cj−lw1
µj
(1)2 lim

Uj→∞
∆−1
j−l

mj−l∑
k=1

δ2j−l,k |F bj−l,k (Uj)|2

= e−2Cj−lw1
µj
(1)2 lim

Uj→∞
sinc4 (Uj∆j−l/2)

∫ ∞

−∞
δj−l(x)

2 dx

= e−2Cj−lw1
µj
(1)2 lim

Uj→∞
sinc4 (Uj∆j−l/2) ∥δj−l∥2L2 . (B.8)

We have assumed δ to be an L2+η with η > 0 function, hence F δ2j−l (2Uj) → 0 as

Uj → ∞. Moreover, Uj∆j−l → 0, thus sinc4 (Uj∆j−l/2) → 1 as Uj → ∞. So, we can
conclude that expressions (B.6) and (B.7) are equal to 0 in the limit. Furthermore, expression
(B.8) becomes

lim
Uj→∞

∆−1
j−l

mj−l∑
k=1

δ2j−l,kA
2
j−le

−Aj−lU
2
j IvIv̄ = e−2Cj−lw1

µj
(1)2 lim

Uj→∞
sinc4 (Uj∆j−l/2) ∥δj−l∥2L2 .
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Using expression (B.5) the asymptotic variance s2n,l is then found to be

s2n,l = ∆j−lU
−4
j A−2

j−l exp
(
Aj−lU

2
)
· 1
4

(
0 + 2 · 4 (Tj − Tj−1)

−2
e−2Cj−lw1

µj
(1)2 ∥δj−l∥2L2 + 0

)
= 2 ∥δj−l∥2L2 (Tj − Tj−1)

−2
A−2
j−le

−2Cj−lw1
µj
(1)2 ·∆j−lU

−4
j eAj−lU

2
j

= w1
µj
(1)2dj,j−l∆j−lU

−4
j eAj−lU

2
j

where we had the constant

dj,j−l = 2 ∥δj−l∥2L2 (Tj − Tj−1)
−2
A−2
j−le

−2Cj−l .

□

This asymptotic variance s2n,l is the same as we found earlier for the case in the main

body of σ2
j . In the Lyapunov Central Limit Theorem 3.1 next to the variance also a bound

for E|Xr|2+η needed to be found. Note that the only difference with the case with µj(x)
compared to σj(x) in Xk is the different weight function w1

µj
and the factor e−iUjvx. This

last factor cancels in the absolute signs and the weight function is again bounded. Thus, the
derivation becomes similar and we find the same expression as in (3.23). The verification of
the Lyapunov condition is therefore also completely similar.

Hence, with Theorem 3.1 we can imply that

L l
µj

U3
j sn,l

=
Tj−l
U3
j sn,l

d→ N (0, 1), for l = 0, 1.

B.4 Remainder Terms Rl
µj

in Ψ

In this section, we want to investigate if and under which conditions the asymptotic remain-
der term will be negligible asymptotically.

The idea is again going to be that we are going to look at certain conditions such that
asymptotically when Uj → ∞ and ∆j → 0 we have

Rl
µj
fµj

(Uj , ∆j)
P−→ 0,

where the function fµj
(Uj , ∆j) is given by

fµj (Uj , ∆j) =
1

U3
j

U2
j e

−U2
j

∑j
i=1(Ti−Ti−1)σ

2
i /2√

dj,j∆j + dj,j−1∆j−1e
−U2

j (Tj−Tj−1)σ2
j

.

Note that fµj
(Uj , ∆j) is a positive deterministic function and P stands for convergence in

probability.
This function fµj

(Uj , ∆j) may feel arbitrary now, but it will be shown that this function
is coupled to the asymptotic variance s2n of the previously considered σ̃2

j by fµ2
j
(Uj , ∆j) =

|w1
µj

(1)|
s2n

. We actually want
Rl

µj

s2n
to become 0, because then we can conclude that

µ̃j(x)−µj(x)
s2n

d→
N (0, 1).

Markov’s inequality will be used with the convex function x2 to bound the convergence
in probability, i.e., let ε > 0 then

P
(∣∣∣Rl

µj
fµj (Uj , ∆j)

∣∣∣ > ε
)
≤ 1

ε2
E
[∣∣∣Rl

µj
fµj (Uj , ∆j)

∣∣∣2] = ∣∣fµj
(Uj , ∆j)

∣∣2
ε2

E
[∣∣∣Rl

µj

∣∣∣2] .
So we want to find a bound for E

[∣∣∣Rl
µj

∣∣∣2]. Fortunately, it will be shown that the deriva-

tion will be identical to the triplet in the main part of the thesis.
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Before we begin, recall that we did define

Rl
j(v) = ψ̃lj(v)− ψlj(v)− Llj(v) and Rl

µj
=

∫ Uj

−Uj

Rl
j(v)w

Uj
µj
(v)e−ivxdv.

Note that Rl
µj

is a random variable, because it is connected to the error terms (εj,k).

The term Rl
j(v) is exactly the same as in the case σ2

j . In expression (3.26) we already
derived the bound

|Rl
j | ≤

1

2
(Tj − Tj−1)

−1Kj−l(v)
−2(v4 + v2)

∣∣∣F (Õj−l −Oj−l)(v)
∣∣∣2

≲ Kj−l(v)
−2(v4 + v2)

∣∣∣F (Õj−l −Oj−l)(v)
∣∣∣2 .

Now for E
[
|Rl

µj
|2
]
we get the bound:

E
[
|Rl

µj
|2
]
= E

[∣∣∣ ∫ Uj

−Uj

Rl
j(v)w

Uj
µj
(v)e−ivxdv

∣∣∣2] ≤ E

(∫ Uj

−Uj

|Rl
j(v)||wUj

µj
(v)|dv

)2
 .

We see that the deviating term e−ivx cancels and we are in the same position as with the

σj case where only the weight function w
Uj
µj (v) differs.

The only difference thereafter occurs in Lemma 3.6, where it can be shows that for the

weight function w
Uj
µj (v),∫ Uj

−Uj

v4|wUj
µj (v)|

Kj(v)2
dv ≲

1

Uj
eU

2
j

∑j
i=1(Ti−Ti−1)σ

2
i .

Hence, following the same steps with the same conditions imposed we find the result

Rl
µj

1

U3
j

U2
j e

−U2
j

∑j
i=1(Ti−Ti−1)σ

2
i /2√

dj,j∆j + dj,j−1∆j−1e
−U2

j (Tj−Tj−1)σ2
j

P−→ 0. (B.9)

whenever the same asymptotic conditions are satisfied

∆jU
4
j e
U2

j

∑j
i=1(Ti−Ti−1)σ

2
i → 0 and

∆2
j−1

∆j
U4
j e
U2

j (
∑j−1

i=1 (Ti−Ti−1)σ
2
i−(Tj−Tj−1)σ

2
j ) → 0.




