
Real-time airborne
signal processing for
Synthetic Aperture

Radar
by

Chris Wouters
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Monday March 8, 2021 at 14:00.

Student number: 4959876
Thesis committee: Dr.ir. Stephan Wong, TU Delft, supervisor

Dr. Przemysław Pawełczak, TU Delft
Ir. Matern Otten, TNO
Ir. Danilo Tromp, TNO

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/




Contents

1 Introduction 1
1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Focus and methodology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 3
2.1 Synthetic Aperture Radar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 FMCW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Why SAR? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.3 Processing platforms: motivation for using FPGAs . . . . . . . . . . . . . . . . . . . . . 5

2.2 SAR systems and parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.1 ONR SAR system on drone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Expansion to other systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Beamforming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Range compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4.1 Determining the range of the observed objects . . . . . . . . . . . . . . . . . . . . . . 8
2.4.2 Finding the maximum range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 Backprojection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5.2 Making it real-time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.6 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Range compression in hardware 13
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Motivation for performing full onboard real-time processing . . . . . . . . . . . . . . . 13
3.1.2 Radar systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.3 Onboard FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Intel FFT IP core parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.1 Twiddle factors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.2 Types of latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.3 Matching the latency prediction with measurements . . . . . . . . . . . . . . . . . . . 15

3.3 Numerical precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.1 Evaluation of precision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.2 Input scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.3 Quantization increases the noise floor of the backprojected image . . . . . . . . . . . . 17
3.3.4 Block floating point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.5 Fixed point (for FFT lengths > 65536) . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.6 Block-adaptive quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4.1 Processing in parallel with multiple FFT cores . . . . . . . . . . . . . . . . . . . . . . . 18
3.4.2 Processing time budget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4.3 Saving cycles in Burst mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.5 Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.6 Finding the optimal configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.6.1 How to determine FPGA area usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.6.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.7 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

iii



iv Contents

4 Backprojection in hardware 23
4.1 Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Parameters and requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2.1 Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2.2 Design requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 HLS theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3.1 HLS stream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3.2 Loop unrolling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3.3 Pipelining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3.4 Task-level parallelism: dataflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.4.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.4.2 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4.3 Lookup tables for trigonometry and square root . . . . . . . . . . . . . . . . . . . . . . 29

4.4.4 Range compressed data format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4.5 HLS C++ to MATLAB MEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.5 Numerical precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.5.1 Dynamic range of image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.5.2 Fixed-point simulation in MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.5.3 Dynamic range of range compressed sweeps . . . . . . . . . . . . . . . . . . . . . . . 31

4.5.4 Image quality metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.6 Performance comparison with previous work. . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.7 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Range compression results 33
5.1 Accuracy and errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.1.1 FFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.1.2 Backprojected image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2 Area-latency tradeoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2.1 Optimal configurations for SAR and GMTI modes . . . . . . . . . . . . . . . . . . . . . 35

5.2.2 Twiddle factors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2.3 Multipliers and DSP blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2.4 Pareto plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.3 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6 Backprojection results 41
6.1 Accuracy and errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.2 Area and latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.2.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.2.2 Performance w.r.t. previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.2.3 Verification of paralellization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.2.4 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.3 Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.4 Testing on real hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.5 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7 Conclusions 47
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7.2 Main contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.3.1 Unification and expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.3.2 Space-based radar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



Contents v

Appendices 50
A Large pixel errors in backprojected image 51
B Backprojection development setup 53
C Backprojection HLS code listings 55
Bibliography 59





1
Introduction

TNO regularly develops radar systems, with different RF frontends and digital signal processing solutions.
The processing for radar often reuses similar algorithms, even if the type of radar and the applications are
different. However, for every new analog RF frontend that is developed, the entire digital board, doing data
acquisition and online real-time processing of the signal, has to be redesigned almost every time. The goal
of this research is to produce knowledge on what computing platforms are suited for different kinds of al-
gorithms in use, given the system constraints, and optimize the design process of future systems by making
recommendations for required hardware and implementation parameters.

In order to make sensible recommendations, one radar system will be analyzed in detail, and based on
the findings, conclusions can be drawn. This system is a 32-channel frequency-modulated continuous-wave
(FMCW) Synthetic Aperture Radar (SAR) mounted on a drone, developed by TNO for the Office of Naval
Research (ONR). It is equipped with an Intel Cyclone V FPGA, and currently being developed to be used for
wire detection in fields. Other applications, that will be considered, are (ground) moving target detection
(GMTI), and the M-RaISR SAR modes. The ONR system currently only does data acquisition and storage
onboard, and all other processing steps are currently done offline, in MATLAB and Python.

1.1. Problem statement
With the MATLAB code for the ONR system, it takes tens of minutes to generate an image for a single angle.
Eventually, the area will be 20 times as large, and there will be 10–20 more aspect angles. Multiplying these
numbers gives an extra workload of 200–400 times, which gives a total processing time of days, using the
poorly optimized MATLAB code. Since this system will be used in the field, to quickly scan an area for objects,
this is way too long. Ideally, the latency should be brought back to seconds, to enable real-time operation.

In this thesis, real-time SAR processing on small unmanned aerial vehicles (UAV) will be considered.
These types of aircraft give rise to the following two limitations:

• The typical available wireless link has a speed on the order of 5 Mbps, limiting the possibilities of only
doing data acquisition on the drone, and transmitting it to the ground, where real-time processing is
done. Data compression can be attempted.

• Computing resources are limited by power and area usage, and the preference of a solution without an
operating system running on a CPU.

In addition to aiding the hardware engineer in developing digital processing solutions for future airborne
SAR systems, the communication between the radar engineer and the hardware engineer can be improved.
When designing an algorithm for a new SAR system, the radar engineer typically assumes practically unlim-
ited numerical precision (using double-precision floating points), and leaves it to the hardware engineer to
adapt the algorithm for implementation on an FPGA. Therefore, if a feedback loop between hardware and
radar engineer can be created, the development process can be sped up significantly.

1.2. Research questions
Based on the introduction and problem statement above, the main research question can be formulated:

1



2 1. Introduction

How can real-time performance be achieved for specific algorithms found in many synthetic aper-
ture radar systems, within the limitations of airborne applications?

The main question can be answered by studying a number of sub-questions, that are listed below:

1. What are the relevant system parameters that affect the computational requirements for the radar pro-
cessing algorithms that are regularly used in different types of systems?

2. Of those algorithms, how can they be implemented for reuse in different systems? What parameters
should be varied?

3. What is the impact of implementation in hardware on numerical precision?
4. What are the hardware requirements (e.g. type of FPGA), given the system parameters and required

processing?
5. What development tools are needed?
6. What power (order of magnitude) do specific algorithms use on a chosen platform?
7. What is the reusability of the implementations for offline processing if real-time is not a requirement?

The answers to such questions lead to a better understanding of what type of processing architectures are
suitable for compact radar processing solutions.

1.3. Focus and methodology
Two digital signal processing algorithms will be considered. For each of them, literature study will be per-
formed, to investigate their inner workings. Consequently, the current MATLAB code of the ONR system is
to be benchmarked and expanded with instrumentation to store the intermediate results. Additionally, the
code will be adapted to test the impact of fixed-point arithmetic on numerical precision.

Tools will be developed to aid with the development of the hardware implementations, and to assess the
performance in terms of latency, throughput, area and numerical precision. The hardware implementations
themselves need to be parametrized, to make them adaptable to any given radar system. Ideally, the results
will show a selection of radar systems and the type of FPGA that is large enough to fit all the processing. If
the algorithms do not fit on any FPGA on the market, it can be investigated if it will still be useful to do data
reduction, and perform the real-time processing on the ground.

1.4. Thesis outline
The thesis is organized as follows:

Chapter 2
This chapter explains the background knowledge required for understanding SAR, and introduces the
system context and parameters of the radar systems that will be studied. Consequently, the theory of
the signal processing algorithms range compression and backprojection is explained.

Chapter 3
In order to be able to make estimations about future airborne SAR systems, the implementation of
range compression for one particular system has to be made. This process is explained in this chap-
ter. After that, the methods of evaluating the numerical precision, throughput, latency and area are
introduced.

Chapter 4
Similar to Chapter 3, this chapter is all about the implementation of backprojection. A motivation is
given for the implementation platform (language) and design requirements. Consequently, it is ex-
plained how the implementation works, and lastly, the methods of evaluating the numerical precision
are introduced, also giving answers to how the communication between the radar engineer and hard-
ware engineer can be improved.

Chapters 5 and 6
The following two chapters are about the results, recommendations and conclusions for the two im-
plemented algorithms (range compression and backprojection). Predictions from Chapters 3 and 4 are
verified, and overviews are given of the required resources for a range of studied SAR systems. These
results also enable predictions for future SAR systems, using extrapolation.

Chapter 7
A summary of the entire thesis is given, the research questions are answered, and future work is recom-
mended.



2
Background

In this chapter, an explanation of the relevant theory and system context will be given. In particular, the
following things will be discussed:

• Brief explanation of Synthetic Aperture Radar (Section 2.1)
• An overview of signal processing chain, algorithms and parameter ranges that will be considered. (Sec-

tion 2.2)
• A note on beamforming in SAR (Section 2.3)
• Theory of range compression (Section 2.4)
• Theory of backprojection (Section 2.5)
• Conclusions (Section 2.6)

2.1. Synthetic Aperture Radar
Synthetic Aperture Radar (SAR) is a type of radar system, which scans a target while in motion with respect
to that target. The biggest advantage over a stationary radar is increased resolution[32][15]. The resolution
of a radar system depends on the size of the antennas (aperture). For a SAR system, the received echos are
accumulated over the travelled distance into a synthetic aperture, high resolutions can be achieved with a
small physical aperture[19].

Figure 2.1 shows the geometry of an airborne SAR. In the figure, the X and Y directions are called the
azimuth and range, respectively. The image is created by processing all information of the received echos
during the integration time, during which a certain distance is travelled along the azimuth axis. The image of
the ground essentially respresents a 2D reflectivity map of the terrain[22]. The azimuth and range resolutions

Figure 2.1: FMCW SAR imaging geometry. Source: [2]

3



4 2. Background

t
f

transmitted signal
received echo signal

t

f

Figure 2.2: The FMCW radar works by sweeping the frequency of the transmitted signal. The phase delay ∆t of the received echo signal
manifests itself as a beating frequency∆ f when it is demodulated using the transmitted signal. This is why the first step in the processing
chain (range compression) consists of transforming the signal to the frequency domain (FFT). See also Fig. 2.3

are independent, since they depend on different parameters. Whereas the range resolution is inversely pro-
portional to the bandwidth of the transmitted waves (B) [22], the azimuth resolution depends on the size of
the aperture (and therefore the distance flown) [20].

SAR can be run in multiple different modes, by changing the pattern at which the target is illuminated[22].
Every mode has specific advantages in terms of resolution or swath width. In this work, modes that will be
considered are stripmap and spotlight, as well as (ground) moving target indication (GMTI). The details of the
inner workings of these modes are not relevant for this research, since the implementation of the algorithms
is identical.

2.1.1. FMCW
In this project, we will consider Frequency-Modulated Continuous-Wave (FMCW) radar as opposed to a
Pulse-Doppler radar. It has the following advantages:

• Outputting short high-power pulses is less power efficient than continuously transmitting power[2].
• For a pulse radar, the pulse is sampled and digitized directly. This requires a sampling frequency of

twice the bandwidth (2 GHz in the case of this system). For FMCW, the demodulated signal is sampled,
requiring a much lower sampling frequency.

• The range resolution can be much higher with the same bandwidth and Pulse Repetition Frequency
(PRF) [34].

With a Pulse-Doppler radar, the delay between the sent pulse and the received echo is measured, and from
this, the range of the object can be calculated (distance away from the radar) [29]:

R = c ·∆t

2
(2.1)

where c is the speed of light and ∆t is the delay between two pulses.
In a FMCW radar, there are no pulses, but a continuously sweeping wave, as can be seen in Fig. 2.2. The

received signal is already mixed in hardware with the transmitted signal before it arrives at the ADC. The
output is called the intermediate frequency (IF), which is the sum of all beating frequencies. This beating
frequency is shown as ∆ f in Fig. 2.2. In the digital domain, the signal is stored as separate sweeps, that will be
processed and combined into an image.

2.1.2. Why SAR?
As mentioned in Section 2.1, SAR has significant advantages over stationary radar, especially on a moving
platform like airborne or spaceborne radar. However traditionally, in order to make real-time SAR processing
practical, assumptions had to be made to speed up the calculations, which compromise image quality. For
example, those assumptions could involve restricting the ground positions or antenna positions along the
flight path to regular grids[32]. Some of the algorithms that use those approximations are hybrid correlation
[26][30] and omega-K [5].

Since about the year 2009, processing platforms became small and efficient enough, so that it became
possible for some applications to perform real-time SAR processing without any compromises on accuracy



2.2. SAR systems and parameters 5

[32]. Instead of doing assumptions on antenna or ground positions, the exact GPS coordinate could be used
for each recorded sweep, and the exact desired coordinate on the ground for each image pixel. A visualization
of this can be seen in Fig. 2.1, where the actual platform flight path can be very different than a straight
line, especially on smaller aircraft. To accomplish generating an image without doing those assumptions,
for every pixel, the partial reflectivity of each sweep has to be calculated, and accumulated. The complexity
of generating a image is O (N 3) for an N ×N SAR image [9], where every "operation" in turn involves many
multiplications, some square roots and a complex exponent[31]. Concluding, SAR image processing can be
considered very computationally intensive.

2.1.3. Processing platforms: motivation for using FPGAs
Since the generation of a SAR image is an “embarassingly” parallel – the algorithms are linear and the pixels
are all independent from each other[24] – it is attractive to use processing platforms that provide paralellism,
like GPUs, FPGAs or Cell processors[32]. For this work, FPGAs were chosen, for multiple reasons:

• Previous work on real-time SAR on GPUs has already been done at TNO [28].
• GPUs require an operating system to run, whereas FPGAs can run standalone. This gives FPGAs an

advantage in applications where weight and power are of limited supply, like airborne and spaceborne
applications.

• FPGAs were found to be significantly more power efficient for fast-factorized backprojection [33], which
is an algorithm used in SAR image processing, similar to global brute-force backprojection, which will
be considered in this thesis.

• Modern work involving another SAR mode (VideoSAR) shows promising new technology using FPGAs:
[40]. This application is similar to ONR in the number of aspect angles and the integration times (for
explanation of those terms, see the following sections).

2.2. SAR systems and parameters
We now have a rough understanding how SAR works in general. The next step is to find a way to evaluate the
real-time processing workload. In order to do this, we first introduce two signal processing algorithms that
will be considered, and then take a look at the global system parameters. Then, in Section 2.2.1, the ONR SAR
system is introduced for which an implementation was made. How the findings from this will be used to draw
conclusions about other systems, is explained in Section 2.2.2. Therefore, this section will answer research
question 1.

Algorithms
Range compression

This involves converting the time-domain information of the ADC samples into the frequency domain.
It is implemented using a Fast Fourier Transform (FFT). The frequency domain corresponds to range
(distance) as seen in all direction from the radar antennas. The theory of range compression is ex-
plained in Section 2.4, and Chapter 3 discusses how to approach implementing it in hardware.

Backprojection
This algorithm takes all the sweeps from the output of the range compression step, and integrates them
into a final image. For the theory of backprojection, refer Section 2.5. How it was implemented is shown
in Chapter 4.

Parameters
The computational complexity of the radar signal processing algorithms depend on the system parameters
that are listed below. Not all parameters are independent: some of them can be expressed in terms of the
others. However, explaining how these parameters are determined is outside the scope of this thesis, since it
would require much more understanding of SAR design theory. We assume that the values are given by the
radar engineer.

Sample rate
The rate at which the ADC samples the antennas.

Bit depth
Bits per sample of input data, which can be the raw SAR data, or the range compressed sweeps (as input
for backprojection).



6 2. Background

Decimation factor
The downsampling factor before processing.

Integration time
The total time in seconds over which data is integrated into one final image. This determines the az-
imuth resolution.

Pixels per second
pixels per second = swath width×flying speed/(resolution)2

Upsampling factor
After range compression, the sweeps can be upsampled. This increases the frequency resolution. This
can either be done separately, or embedded in the range compression (by using a larger FFT and zero-
padding the input – this is done in the ONR system).

Sweep time or PRF
The total time per sweep, or the number of sweeps per second (Pulse Repetition Frequency). This
directly influences the workload of the range compression with respect to the backprojection. If the
sweeps are shorter, the range compression gets easier, since the complexity of an FFT is O (N log N )
using big O notation. On the other hand, with shorter sweeps, more of them have to be integrated
to form a final image using backprojection, which has complexity O (M X Y ), for an X ×Y SAR image
with M sweeps [33]. So in theory, decreasing the sweep length will make the complexity of the FFT
proportionally less than the complexity of the backprojection will increase.

Beamformed channels
The number of channels for which the entire processing chain has to be repeated. In this thesis, beam-
forming will not be implemented, but its purpose and working will be discussed in Section 2.3.

From these parameters, we can derive the number of samples per sweep:

samples per sweep = sample rate× sweep time

decimation factor
× (upsampling factor) (2.2)

Multiplication with the upsampling factor is only applicable when the upsampling is done inside the FFT, as
is the case with the ONR radar. For more on upsampling, see [14].

2.2.1. ONR SAR system on drone
The block diagram of the signal processing chain for the ONR SAR system is shown in Fig. 2.3. The system
contains 32 antennas, but typically, around 8 are used simultaneously in order to get the desired field-of-
view[25]. This means that only a section of the sphere around the drone can be illuminated at once. The
first processing step is range compression. In this thesis, the optional pre-beamforming step is not consid-
ered. The output of the range compression step is a set of sweeps, that are needed in the backprojection step
in order to generate the final 2D image. The ONR SAR system is a multi-aspect SAR. This means that the
backprojection step is repeated multiple times, to generate 10 to 20 images of the same terrain as seen from
different angles[25].

In addition to the sweeps, the backprojection step also requires as its input the real-time coordinates of
the radar, in addition to the sweeps, and the output is the final image, that can be sent to the ground or shown
on the screen in real-time.

Values for the parameters listed in Section 2.2 for the ONR system are shown in Table 2.1. If NF F T is calcu-
lated using Eq. (2.2), the value is higher than expected, because only a fixed number of 2048 samples is taken
during every sweep. The sweep time (1/PRF) is slower than the time to take 2048 samples at approximately 2
MHz. Therefore there is some "dead time" in every sweep.

2.2.2. Expansion to other systems
Most other SAR systems also require range compression and backprojection, albeit with different parameters.
Based on the findings from exploring the ONR system, conclusions will be drawn for other applications that
are related. TNO has determined parameters as in Table 2.1 for some other SAR and (G)MTI modes. For the
MTI modes, we will only focus GMTI on the ONR system. Other (G)MTI modes are reserved for future work.
The parameter values will be shown in Chapter 3 and Chapter 4, for range compression and backprojection,
respectively.



2.2. SAR systems and parameters 7

1-32 channels
(typ. 8-16)

Pre-beamforming
(optional)

Range compression
(with upsampling)

Multi-aspect
backprojection

Navigation data

Images to
data link

Figure 2.3: Block diagram of the real-time signal processing algorithms of the ONR drone radar

Table 2.1: System parameters of ONR.

Sample rate 1 953 125 Hz
Bit depth 16
Decimation factor 1
Integration time 4 s
Pixels/s 500 000
Upsampling factor 8
PRF 814 Hz
Channels 8 – 16

NF F T 16384



8 2. Background

Rg(near)

m
ea

n 
of

 z
co

or
di

na
te

s

furthest range

closest range

θ

Rg(far)

Figure 2.4: This is a two-dimensional section of the illumination sphere around the radar. To decrease data storage requirements and
possibly processing power, the parts of the FFT spectrum that correspond to the dotted lines can be discarded. The input parameters
Rg (near ) and Rg ( f ar ) are used to calculate this range, and Rg (near ) is related to the smallest viewing angle θ > 20◦ that provides useful
data.

2.3. Beamforming
As mentioned when discussing the parameters in Section 2.2, we will not look into the implementation of
beamforming in hardware, but since beamforming is a very useful concept in SAR, and may be used in the
ONR system (as shown in Fig. 2.3), its purpose is briefly described here.

With SAR, there is a tradeoff between the signal-to-noise ratio (SNR), and the resolution. Ideally, we want
high SNR and small resolution (in meters). High SNR is achieved by using a large antenna. However, the
resolution can never be smaller than the antenna size, so larger antennas cause larger pixels. To get the best
of both worlds, beamforming can be used to combine the signals of multiple smaller antennas into one, so
that a larger antenna is simulated, with the benefit of high SNR. The resulting signal then keeps its advantage
of small resolution. This does not come for free, however: beamforming adds a processing overhead.

2.4. Range compression
In Section 2.1.1, the concept of sweeps was introduced, and the fact that a sweep contains the beating fre-
quencies of the reflections of all the objects in range. To extract the individual beating frequencies and their
phases, this signal has to be transformed to the frequency domain by means of an FFT. This is called range
compression, and it is the first algorithm from Fig. 2.3, that will be discussed.

In this section, we will first derive the range (distance) as seen from the radar, that every FFT bin cor-
responds to. Based on this knowledge, we will arrive at a possible optimization of the range compression
algorithm by discarding part of the output and thus saving processing time and memory (in Section 3.4.3).

2.4.1. Determining the range of the observed objects
After range compression, we have ∆ f for every object, as shown in Fig. 2.2. The slope of the frequency sweep
d f
d t is a system parameter called the sweep rate (α). It is simply the radar bandwidth (B) multiplied by the
Pulse Repetition Frequency (PRF ):

R = c ·∆ f

2α
= c ·∆ f

2B · (PRF )
(2.3)

Since the width of an FFT frequency bin is determined as follows:

∆ f = fs

NF F T
(2.4)

it is now possible to calculate the range (distance) that every FFT bin corresponds to:

Rbi n =
c · fs

NF F T

2B · (PRF )
(2.5)

2.4.2. Finding the maximum range
The drone on which the radar system is mounted, is equipped with an IMU to provide navigational data.
Amongst others, it provides three-dimensional coordinates. In this section, we will use the z-coordinate to
find a way in which possibly processing time and data storage can be saved. This is done by only storing the
part of the FFT spectrum that we are interested in. The total range of the radar is larger than necessary, so we



2.5. Backprojection 9

Table 2.2: System parameters of the ONR drone radar and the available dataset.

Input parameters
PRF 814 Hz
Radar bandwidth (B) 1 GHz
NF F T 16384
Rg ( f ar ) 75 m 1

Rg (near ) 10 m
θ 20◦

Calculated parameters
Range per FFT bin (Rbi n) 2.195 cm
zdr one 31.061 m
Relevant FFT bins 1485 to 3698

1 The system supports larger values of
Rg ( f ar ), but for the sake of this analysis,
this is a typical value.

can discard the part of the spectrum that extends beyond the ground level. Additionally, we can discard the
part of the spectrum that is nearest the radar. To calculate the number of FFT bins that we can discard, we
use the following input parameters of the system: the far ground range Rg ( f ar ) of the radar image segment
and the near ground range Rg (near ). Ranges that are further resp. nearer than this distance can be discarded,
as illustrated in Fig. 2.4. Another way to calculate it is to use the looking angle of the radar: from around 20
degrees with respect to the z-axis, the data becomes relevant. We can calculate the relevant FFT bins, based
on the range per FFT bin from Eq. (2.5):

#F F T bi n =

ÈÌÌÌÌ
√

zdr one
2 +Rg

2

Rbi n

ÉÍÍÍÍ (2.6)

where zdr one is the mean of all z coordinates of the flight path (i.e. the height of the drone above the ground)
and Rg is the far or near ground range.

If the looking angle θ is used, Rg (near ) can be calculated as follows:

Rg (near ) = zdr one tan(θ) (2.7)

In Table 2.2, the real-world parameters can be found, specifically for the ONR drone radar, and the dataset
that was used for this project.

2.5. Backprojection
The second algorithm from Fig. 2.3, that will be discussed, is backprojection. As mentioned in Section 2.1.2,
there are many ways to implement backprojection, making various assumptions to decrease computational
load. Here, however, we will focus on brute-force time-domain backprojection [32]. This algorithm incre-
mentally calculates radar reflectivity for each desired location on the ground (pixel).

For every pixel, we iterate over all the range compressed sweeps. For every sweep, the partial contribution
of the reflected power is determined by finding the correct range (FFT bin) for that ground location, given the
radar antenna’s exact position. All the partial contributions of the sweeps are accumulated. This is done for
every channel (antenna).

2.5.1. Algorithm
The algorithm will now be studied in more detail. First of all, we define the image as a set of world locations
~w ∈ W . Since the image is two-dimensional, we call the individual elements pixels and denote them with
p(~w). A single range compressed sweep with complex samples is defined as s[r ], indexed by range r . If we as-
sume that the drone or airplane travels a negligible distance during the capture time of a single sweep (called
the stop-and-go assumption), the observation of the sweep is done by the antenna at three-dimensional po-
sition ~a. Since multiple sweeps have to be observed before an image can be constructed, we use the index k



10 2. Background

Real-time Brute Force SAR Processing
Wouter J. Vlothuizen and Maarten Ditzel

TNO Defence, Security and Safety
The Hague, The Netherlands

Email: {wouter.vlothuizen,maarten.ditzel}@tno.nl

Abstract—This paper presents a brute force method to perform
real-time SAR processing. The method has several advantages
over traditional so-called fast SAR implementations, as it does
not make any approximations to alleviate the processing burden.
However, the method does allow efficient implementation on
multi-core platforms. It is implemented on a Cell processor and
achieves better quality at roughly twice the speed required for
real-time operation (better than real-time). A patent is submitted
and pending approval.

I. INTRODUCTION

Synthetic Aperture Radar (SAR) [1] is a vital component in
air-to-ground surveillance. In SAR, a large antenna length is
synthesized using the motion of the radar platform itself. As
the platform flies by, a target area on the ground is illuminated
for a certain period of time depending upon the antenna
beam width. During this time a number of radar pulses are
transmitted and the corresponding echoes are received. The
echoes are coherently integrated to yield a large synthetic
aperture.

The coherent integrations require a huge amount of process-
ing. Therefore, in traditional SAR processing various assump-
tions and approximations are made to make the processing
tractable utilizing fast (or frequency domain) convolutions.
However, with the steadily increasing performance of state-
of-the-art processors, brute force time domain convolution
becomes feasible for implementation in real-time. Key to the
implementation is the shift from a computation oriented ap-
proach to a communication (data transfer) oriented approach.
Because no assumptions or approximations are made, the brute
force method is inherently more accurate.

Nowadays, there is a special interest of the military in small
tactical unmanned aerial vehicles with SAR capabilities. As
a consequence, the volume, weight, and power available to
the SAR system are limited. Moreover, due to their smaller
size, the aircrafts are more susceptible to changes in wind
conditions and turbulence. Therefore, their flight paths are
expected to be more erratic and irregular than with current
larger platforms. It increases the need for a flexible SAR
processing unit, capable of dealing with these conditions.

The remainder of this paper is organized as follows. Sec-
tion II addresses SAR processing in more detail, discussing
conventional methods and the novel brute force approach.
Section III describes a real-time implementation of the method
on a Cell processor. Results are presented in Section IV.
Finally, Section V concludes the paper.

Fig. 1. Schematic representation of the SAR process.

II. SAR PROCESSING

SAR processing is the process of coherently adding multiple
observations of a particular spot in the world to obtain a value,
or voxel, representing the spot’s radar reflectivity. Thus, a
voxel represents the reflected power of an object at a certain
position in the world.

First, we define a radar observation s[r] as an array of
complex, pulse compressed samples indexed by range r.
Associated with every radar observation – assuming a stop
and go approximation for now – is the three dimensional
antenna position ~a. All observations (i.e., pulses) and antenna
positions are indexed by k, and give rise to observations sk[r]
and corresponding antenna positions ~ak.

Given the world position ~w of which we want to estimate
the radar return value v[~w], we can define the one-way distance
between that particular world position and the antenna position
~ak.

rk(~w) = |~w − ~ak| (1)

where the |·| operator denotes the second norm (i.e., Euclidean
distance).

Given the one way distance, the one-way phase shift φk(~w)
can be calculated using

φk(~w) = 2π
rk(~w)

λ
(2)

where λ is the wavelength of the transmitted radar wave.
Subsequently, the two-way phasor corresponding to this

phase shift is given by

Θk(~w) = ej2·φk(~w) (3)

978-1-4244-2871-7/09/$25.00 ©2009 IEEE

Authorized licensed use limited to: TNO. Downloaded on July 22,2020 at 12:31:10 UTC from IEEE Xplore.  Restrictions apply. 

Figure 2.5: Illustration of the geometry of the brute-force backprojection algorithm. After the plane has captured enough data to produce
an image, range compression is performed on all sweeps individually. Consequently, backprojection can be done for every sweep k by
calculating the ranges rk (~w) between the world positions ~w ∈ W and the antenna positions ~ak . The sweep data is then projected back
to the ground along the estimated phase shift, calculated from the range. Source: [32]

to refer to the sweep index, giving rise to sweep sk [r ] and corresponding antenna positions ~ak . We have now
defined the variables as shown in Fig. 2.5.

Assuming only one channel, the range r (the Euclidean distance between the antenna and the world
position) can be calculated as follows:

rk (~w) = |~w −~ak | (2.8)

In the ONR system, the actual antenna position ~ak first has to be derived from the rotation matrix R that is
provided by the IMU and the fixed antenna offset coordinates~o:

~ak = R~o (2.9)

In order to calculate the partial contribution of the sweep to the pixel, we need the complex phasorΘk (~w),
which is a complex exponential of the phase shift φk (~w) that the distance rk (~w) is equivalent to:

φk (~w) = 2π
rk (~w)

λ
(2.10)

Θk (~w) = e2 jφk (~w) (2.11)

where λ is the wavelength of the transmitted wave.
We now get to the exciting part, and the part that gives this algorithm its name: we are going to shift

(“project”) back the radar observations (sweeps) along the phase φ(~w), by multiplying it with the complex
conjugate of the phasors, which yields us the image, comprising of pixels p(~w):

∀~w ∈W p(~w) = ∑
k∈K~w

sk [rk (~w)] (2.12)

Since ONR and most of the other modes considered have multiple channels, all these calculations have
to be repeated for the set of channels C :

p(~w) = ∑
c∈C

pc (~w) (2.13)

2.5.2. Making it real-time
The goal is to make the backprojection implementation real-time. This means, that all the data, that the
radar captures, must be processed within the time needed to capture that data. As explained in Section 2.1,



2.6. Conclusions 11

the total integration time T determines how much time is needed to capture enough data for the desired
azimuth resolution δa in meters per pixel. It can be calculated as follows [22]:

T = λr0

2vδa
(2.14)

where λ is the wavelength, r0 is the slant range as shown in Fig. 2.1, and v is the radar velocity relative to the
target.

Alternatively, we can calculate the number of pixels per second that are required for real-time operation,
assuming that the range and azimuth resolution δ are identical:

px/s = dsw ath v

δ2 (2.15)

where dsw ath is the swath with as shown in Fig. 2.1.
The actual number of pixels per second, that the implementation achieves, can then be compared to this

value.

2.6. Conclusions
In this chapter, the relevant theory and system context was given. SAR was introduced as a radar technique
superior to conventional stationary radar in terms of resolution. However, the computational requirements
are large. The two most important signal processing algorithms for SAR were introduced: range compression
and backprojection. Those will be implemented for a range of different applications. The implementation
platform will be an FPGA, as we saw that the algorithms are easily parallellizable, and FPGAs are significantly
more power efficient than GPUs and Cell processors, which is important in airborne applications.

The system that will be studied in most detail, is the ONR system. A block diagram of the processing chain
was given. When the implementations work for ONR, they will be tested for a range of other applications.

To summarize, SAR works by moving the radar relative to the object that is to be imaged. Sweeps of raw
data are collected. The larger the distance flown, the higher the azimuth resolution, and the higher the radar
bandwidth, the higher the range resolution.

Range compression is implemented as simply an FFT. The raw SAR data is a set of beating frequencies
corresponding to the ranges (distances) of the reflections. In the frequency domain, we can use this informa-
tion to build an image, where the reflections – from peaks in the FFT spectrum – are shown as bright spots in
the corresponding locations. The integration of all the range compressed sweeps into a final image is done
using backprojection.

Backprojection works by calculating the range (and corresponding phase shift) between each ground
location to the radar, for every sweep, and using that to shift (“project”) back the raw SAR data along the
phase. All these observations are then accumulated for every sweep, and every channel, and the final image
is yielded.





3
Range compression in hardware

In this chapter, the first step of the processing chain will be explored: range compression. The goal of this
thesis is to make generalized recommendations for different radar systems. However, in order to accomplish
that, one system has to be studied in detail first. Therefore, in this chapter, we will study the implementation
of range compression for the ONR system (Section 2.2.1).

The organization of this chapter is shown below:

• Section 3.1: introduction;
• Section 3.2: the parameters of the IP core;
• Section 3.3: numerical precision: bit width of calculations;
• Section 3.4: throughput: sweeps must be processed at the Pulse Repetition Frequency (PRF);
• Section 3.5: a note on latency;
• Section 3.6: selecting the optimal FFT core configuration;
• Section 3.7: conclusions.

3.1. Introduction
In Section 2.1.3, it was explained that FPGAs are the best hardware platform for airborne SAR image genera-
tion. Instead of implementing the FFT function from scratch, a prewritten implementation will be used. This
choice was made in order to be able to spend more time on the main research question (Section 1.2). The de-
velopment time can then be minimized, since the point of this research is not to find the best implementation
for any specific radar system.

For the prewritten implementation, the Intel FFT IP core [12] is the most obvious choice, since we are
using an Intel Cyclone FPGA. An implementation from Opencores was also considered [8]. This seemed
favourable because the code is open source, but the project is not actively maintained, and according to
the readme has not been tested on real hardware yet. Therefore, the Intel FFT IP core was chosen.

3.1.1. Motivation for performing full onboard real-time processing
As stated in the problem statement in Section 1.1, the following processing methods can be identified:

1. Full onboard real-time processing
2. Partial onboard processing or data reduction
3. Real-time processing on ground
4. Non-real-time processing on ground

Option 4 is not a good option, because images should be available in real-time, as the radar is active. There-
fore, at first sight the easiest method seems option 3, because on the ground there are less strict limitations on
power, processing power and weight. However, all raw data has to be transferred to the ground in real-time,
which requires a fast wireless link. The speed of the link is calculated as follows:

link speed = channels× sample rate×bit depth (3.1)

13



14 3. Range compression in hardware

Table 3.1: System parameters for the SAR/GMTI applications that are considered for range compression

application PRF Samples per sweep NF F T # channels

ONR SAR 814 2048 16384 8
ONR GMTI 3333 300 512 8–32
other GMTI 2000 1024 1024 8–32
M-RaISR SAR strip 500 30000 32768 1
M-RaISR SAR spot 400 75000 65536 or 131072 4

Substituting the numbers from Table 2.1 gives 250 Mbps. This rate is totally infeasible for a low-power
medium-distance wireless link – in fact, those links typically have a speed of 5 Mbps [24]. Therefore, op-
tion 3 is not possible to implement. Option 1 is then left as most desirable, since the design is simpler than
option 2, because there is no separate processing system on the ground, and the wireless link only has to
transfer back the images. However, if onboard data reduction is not sufficient, option 2 is the only option.

3.1.2. Radar systems
Range compression will be implemented for a number of SAR and GMTI applications. The specific parame-
ters of these systems are shown in Table 3.1. For more information on what these mean, refer to Section 2.2.

3.1.3. Onboard FPGA
The SAR system board that is developed by TNO for ONR, contains an FPGA. Originally, this board was only
intended to do data acquisition and storage. However, for this project, this FPGA will be used as a reference
to see what is possible with it. The board is of the following type: Enclustra MA-MA3-C6-7I-D10. It contains
an Intel Cyclone V type 5CSXFC6C6U23I7N. This FPGA has 557 RAM blocks of each 10240 bits, 84 DSP blocks
that can do two 18×19 signed complex multiplications or one 27×27 multiplication [13].

3.2. Intel FFT IP core parameters
As mentioned in Section 3.1, the FFT function of the range compression will be implemented by using pre-
existing IP from Intel. The Intel FFT IP core is configurable during design time with a number of parameters.
Table 3.2 lists the relevant parameters. In this system, the length is fixed at 16384, as explained in Section 2.2.
How the bitwidth will be determined, will be explained in Section 3.3 and the results are in Section 5.1. The
data representation is coupled to the data flow configuration – all configurations except Variable Streaming
demand the use of block floating points. For an overview of block floating points, refer to Section 3.3.4.

The data flow is the parameter that gives the most control over the latency, together with the number
of output engines. The IP core estimates its latency immediately when setting the parameters, but to get
the area usage, synthesis is necessary. Two types of latency are given, that are called calculation latency and
throughput latency. Their meaning is not obvious from the name, and it is not explained in [12]. An additional
complication is that the Burst configuration does not estimate its latency correctly when using one output
multiplier. Therefore, simulations had to be run to find this out.

3.2.1. Twiddle factors
The twiddle factors are constants, that are multiplied with the data. The value of the constants are indepen-
dent of the data – they are complex exponents, and we will not go into detail of the mathematics of FFTs.
In hardware, the twiddle factors can be stored in ROM. The bitwidth can be set for the data and the twiddle
factors separately. An experiment will be done to reduce the twiddle factor width, without reducing the data
width. Since reducing the bitwidth introduces a constant error to the FFT output, it is expected that the FFT
The results of this are in Section 5.1.1.

3.2.2. Types of latency
While simulating, the following relevant types of latency can be measured, in order to discover what calcula-
tion and throughput latency mean:

1. Time between first input sample and first output sample



3.2. Intel FFT IP core parameters 15

Table 3.2: Most relevant Intel FFT IP core parameters

Transform length 23 to 218

Data flow memory usage / latency tradeoff
Burst slowest
Buffered Burst
Streaming fastest, together with Variable Streaming
Variable Streaming enables changing the transform length during runtime

Data representation
Fixed point simplest and uses least area; only for Variable Streaming
Single floating point only for Variable Streaming
Block floating point Advantages of both; uses a single exponent per block. Is the only

option for Buffered Burst and Streaming.

Bitwidth 8 to 32
Data For fixed point, input and output width are specified separately
Twiddle factors

Number of multipliers in output engine 1 (only for Burst) or 4
Number of output engines 1, 2 or 4

Table 3.3: The latencies that the Intel FFT core reports for a 16384-length Buffered Burst core.

latency (ns) latency (cycles)

calculation latency 122880 18432
throughput latency 82620 12393

2. Time between first input sample and last output sample
3. Time between first input sample and first input sample of next sweep

We are only interested in type 3, since we want to determine if the FFT core is fast enough to keep up with
the PRF. From the latencies reported for the (Variable) Streaming modes, it can be seen that type 1 is not
reported by the Intel Parameter Editor. That is because the throughput and calculation latencies are the same
– both are equal to the FFT length, which means that there is an output sample for every input sample. For
(Buffered) Burst, there is a difference.

3.2.3. Matching the latency prediction with measurements
In order to determine which latency is the relevant one, we need to learn about a few input and output signals
of the FFT core. Not all of them are relevant, so only a subset will be discussed. First of all, sink_means that
the signal is an input, and source_ means that it is an output.

*_sop
Start of packet. A pulse of this signal means that the first sample of the sweep is pushed in or out. We
want to know what is the frequency at which the FFT core accepts input sweeps, so we will measure the
time between two pulses of sink_sop.

*_eop
End of packet. This signal is pulsed at the last sample of the sweep.

sink_ready
When this is high, it means that the core is ready to receive input samples.

A 16384-length Buffered Burst core was simulated using a hand-written testbench that inputs four sweeps
and captures the FFT output. The latencies that this core reports in the Intel Parameter Editor are shown in
Table 3.3. In Fig. 3.1, the simulation results are shown. In Table 3.4, measurement results of time differences
between signal pulses are shown. The colored cells are matching up (approximately), and from this it can be
concluded that the calculation latency is the relevant metric that we are after. The throughput latency does
not seem to be relevant at all, because it shows the latency between the input and output of seemingly the



16 3. Range compression in hardware

0 100 us 200 us 300 us 400 us 500 us 600 us 700 u

00 3C

Time
clk=0

sink_endofpacket=0

sink_ready=1

sink_real[15:0]=0

sink_startofpacket=0

source_endofpacket=0

source_exp[5:0]=3C

source_real[15:0]=-3243

source_startofpacket=0

source_valid=0

Figure 3.1: Simulation of four sweeps of a 16384-length Buffered Burst FFT core. From the simulation, conclusions can be drawn about
the latencies that the Intel Parameter Editor reports.

Table 3.4: Measured time differences between different points in the simulation of the 16384-length Buffered Burst core from Table 3.3.

measured from – to latency (ns) latency (cycles)

sink_sop sweep 1 – source_sop sweep 1 191887 28783
sink_sop sweep 1 – sink_sop sweep 2 122948 18442
sink_sop sweep 2 – source_sop sweep 1 82672 12401

wrong order of sweeps. The reported latency is not correct, however, if the number of output multipliers is 1.
This was found by accident while running the simulations.

3.3. Numerical precision
The original implementation in MATLAB uses double-precision floating point numbers. When designing a
real-time processing solution in hardware, floating point arithmetic is usually not practical, because of the
much larger latency and area usage compared to fixed point (integer) arithmetic. Therefore, in this section,
we will explore the tradeoffs of numerical precision using the FFT IP core.

Firstly, Sections 3.3.1 to 3.3.3 are about how the numerical precision is evaluated. Section 3.3.4 explains
how block floating point numbers work, which is the number representation that is used in (Buffered) Burst
and Streaming modes of the Intel FFT core. Floating point and fixed point are options for Variable Stream-
ing, and there are some notes on that in Section 3.3.5. Finally, Section 3.3.6 shows how to lower memory
requirements with approximately a factor four using block-adaptive quantization.

3.3.1. Evaluation of precision
In order to assess the numerical precision, two different metrics will be used:

1. mean relative error of the output of the hardware FFT with respect to the full-precision MATLAB FFT;
2. noise floor of the backprojected image.

Item 1 is not relevant by itself for the final image, but it can be used to determine the amount of input scaling
(Section 3.3.2). Item 2 is explained in Section 3.3.3.

An estimation can be made of the required bitwidth of the FFT. There are 2048 samples per sweep, which
are all added by the FFT. We are using a 16384 FFT for oversampling, but the extra samples are all 0. The
theoretical bit increase is therefore 11. However, the SNR increase of a signal that includes noise is only half,
as the noise power itself increases by N instead of N 2. So the expected effective bit increase is 5-6. On top of
11 bits effective input that is 16-17 bits.

3.3.2. Input scaling
The FFT core is the most accurate, when the input samples are of the largest possible amplitude within the
amount of bits available. Most sweeps do not make use of the full 16-bit width of the samples. Therefore,
to increase accuracy, the raw data has to be scaled up, before feeding it to the FFT. There are two possible
approaches:

1. Normalization by finding the largest sample in the sweep;



3.3. Numerical precision 17

2. Increasing the average power, while setting overflowed samples to the maximum value – wrapping
around introduces a larger error.

The second approach may improve the accuracy of the FFT, however, it will introduce different errors in the
backprojected image that are due to the clipping. We choose the first approach because it is simpler, and
adds only a very small overhead.

After scaling up and running the FFT, the output should be scaled down by the same factor. The scaling
can be done by bitshifting, so it does not add any processing penalty. The downside is that a less optimal
scaling is performed, because we can only scale with powers of two.

The number of bits Ns that the input should be shifted with can be calculated as follows:

Ns = L−⌈
log2 max x

⌉−1 (3.2)

where L is the bitwidth of the FFT function and x is the input vector. The subtraction with 1 is needed because
signed integers are used.

To verify this theory and to quantify the errors that are introduced if improper input scaling is done, bit-
accurate simulations with real-world input data were run. The results are discussed in Section 5.1.1.

3.3.3. Quantization increases the noise floor of the backprojected image
In this section, a hypothesis will be made about how a lower-accuracy FFT will impact the final backprojected
image. A simplified view on using less bits for the data path of the FFT is simply that the output of the full-
accuracy FFT is quantized. This should introduce quantization noise in the final image. This quantization
noise should increase the noise floor of the image, which could be measured in the darkest part of the image –
the part where there are no objects visible. When compared to the image that is made using the full-accuracy
FFT, the average power of the darkest part should increase if it is lower than the noise floor. From physics, we
know that the power of a field quantity is proportional to its amplitude squared. Therefore we can average
all the pixels in the darkest part of the image, and calculate the square. The increase in decibels with respect
to the original image can then be calculated. The expectation is that the image is not degraded if the lowest
levels are not increased. The result of this will be shown in Section 5.1.2.

3.3.4. Block floating point
Floating point numbers can express a large dynamic range with many fewer bits than fixed point numbers.
However, floating point units cost a lot of area and are slow. A hybrid between the two representations is block
floating point (BFP). With floating point, every number has an individual exponent. With BFP, this exponent
is the same for an entire block of data, that has roughly the same range. This applies well to raw SAR data.
Therefore, only fixed-point arithmetic is needed, while still having the advantage of large dynamic range in
the whole algorithm [6].

The Intel FFT core uses BFP for the (Buffered) Burst and Streaming configurations [12]. After every stage
in the algorithm, the data is scaled down by bit shifting. The total number of right shifts is accumulated, and
output as the signal source_exp. This can be seen in Fig. 3.1. The output therefore has to be shifted left by
source_exp bits to get the correct magnitude.

3.3.5. Fixed point (for FFT lengths > 65536)
The Variable Streaming configuration supports floating point number representations until an FFT length of
65536. Above that, only fixed-point is supported. As mentioned in Table 3.2, the input and output bitwidth
should be specified separately. Since every stage grows the data with maximum 2 bits [12], and there are
log2 N stages, the maximum needed output width is:

input width+ log2(N )+1 (3.3)

3.3.6. Block-adaptive quantization
Block-adaptive quantization (BAQ) is a way to encode the raw SAR data in a way that the dynamic range
is wider than if only truncation is used [16] [7]. Recent work has introduced multichannel BAC (MC-BAC),
that can reduce the bitwidth from 16 to 4 bits per sample [21]. If this technique is used, the data can be
compressed with a factor 4, potentially enabling real-time processing on the ground instead of the onboard
FPGA. Substituting the parameters from Table 2.1 into Eq. (3.1), the data rate of the digitized raw SAR data



18 3. Range compression in hardware

can be calculated:
8channels ·1953125Hz ·16bit/4 = 62.5Mbps (3.4)

Since the wireless downlink from the drone to the ground is only around 4 Mbps, a reduction of an order
of magnitude or larger is needed, to make real-time processing on the ground possible (see option 2 from
Section 3.1.1).

3.4. Throughput
This section will deal with the throughput, i.e. the number of processed sweeps per second. Firstly, Sec-
tion 3.4.1 will introduce parallel processing. Subsequently, Section 3.4.2 will show how the time budget per
sweep is calculated, and Section 3.4.3 will show a way to save a significant amount of memory and processing
time by discarding unused data.

3.4.1. Processing in parallel with multiple FFT cores
If the system contains multiple channels that have to be processed per sweep, they can be processed se-
quentially, using one faster FFT core, or in parallel, using slower (and smaller) cores. Partly parallel is also an
option, if the number of channels is 4 or more. If one FFT core is not fast enough to process all the channels
sequentially, instantiating multiple cores is the only option.

It is expected that running multiple slower cores in parallel will use more area than using fewer faster
cores. The reason for this is that there is more overhead in input and output signals, interconnect, and mem-
ory. The optimal configuration will be selected using a simple algorithm, that will be explained in Section 3.6.

3.4.2. Processing time budget
The radar systems from Table 3.1, that we are considering, have a fixed PRF. Therefore, there is a fixed amount
of available time for processing each sweep. This time is calculated in cycles as follows. First, we calculate the
total number of cycles available per sweep Ctot :

Ctot = fclk

PRF
(3.5)

The number of available cycles per core Ccor e depends on how many channels each core has to process:

Ccor e =

ÌÌÌÌÌÊ Ctot⌈
Nchannels

Ncores

⌉
ÍÍÍÍÍË (3.6)

From now on, we will assume a clock frequency of 150 MHz. This seems a reasonable number, since
the Intel FFT IP core manual lists fmax to be 132 to 240 MHz on the Cyclone V [12, p. 9-10]. To maintain
real-time processing, the backprojection step also has to be finished within the available time. However,
since backprojection can run in parallel on the previous sweep, the FFT can use all available time. This will
increase latency by an additional sweep, but this is not significant, as will be explained in Section 3.5.

3.4.3. Saving cycles in Burst mode
In Section 2.4.2, the range of relevant FFT bins were calculated, which for the ONR drone radar is bin 1485 to
3698 (Table 2.2). Because all other data can be discarded, it is possible to save RAM resources in the FPGA.
Additionally, for some FFT configurations, processing time can be saved as well. With the Burst configuration,
all output samples are pushed out, before input samples of the next sweep are accepted. Therefore, the FFT
core can be reset after the first 3698 samples have been pushed out. Figure 3.2 shows this method in practice.

If the FFT were implemented manually, even more optimizations would be possible, by not only dis-
carding part of the output data, but also skipping part of the computation, making use of the FFT structure
(decimation in time or frequency).

3.5. Latency
For a real-time processing system, the latency can be equally important as the throughput. However, since
the integration time of the ONR drone radar is 4 seconds, a backprojected image is only expected every 4
seconds (assuming no overlap). We can define that the total latency of the signal processing chain should be



3.5. Latency 19

Figure 3.2: Simulation of the FFT core in the Burst configuration. The core is reset after receiving 3690 bins from the output to save
processing cycles (the enabled signal goes low just before 600000 ns).



20 3. Range compression in hardware

under an order of magnitude below the integration time, to ensure a smooth user experience. That would
mean that there can be a latency of the equivalent of over 300 sweeps, based on the PRF of 814 Hz. This is
quite a large amount, so we conclude that latency is not a critical parameter to optimize.

3.6. Finding the optimal configuration
An SQLite database will be made with FFT configurations. The parameters of Table 3.2 will be varied, and for
each application in Table 3.1, the optimal configuration will be found. The optimal configuration is the one
with smallest area, while still being fast enough to finish before the next sweep starts. It can be assumed in
general, that there is an inverse relationship between the area and the latency of the FFT core (this will also
be verified in Section 5.2.4). The latency of a single core determines the throughput of the entire system – if
we define throughput as sweeps per second. The selection will be done using an algorithm, as described in
Section 3.6.2. However, first, we will look at the concept of area in an FPGA (Section 3.6.1).

3.6.1. How to determine FPGA area usage
For an FPGA, the circuit area cannot be straightforwardly defined, like for an ASIC. The actual area of the
blocks inside the FPGA is not so relevant, since we are not designing the actual chip, but only using the already
designed chip. Therefore, we have to make a useful analysis of the used blocks. There are there main types of
blocks:

• Adaptive logic modules (ALMs) with look-up tables (LUTs)
• RAM blocks
• DSP blocks

Section 5.2 will show that the number of ALMs and DSP blocks are mostly proportional to each other, whereas
the RAM blocks change independently, so they will be separately regarded when determining the area usage.

3.6.2. Algorithm
The synthesis results of many FFT configurations, where the parameters from Table 3.2 are varied, are stored
in an SQLite database. For every application in Table 3.1, a query is done on the SQLite database to select
the configurations whose latency fits within the processing time budget for the current application. The
results are sorted, in a way that the highest-latency configurations are at the top. This is done because the
expectation is that higher latency means less area. If there is a configuration with lower RAM usage and lower
latency, however, that one is selected. Lower DSP or ALM usage is given less weight, because those resources
are available in abundance (Section 5.2). A configuration with less DSP and ALM usage will only be selected,
if this does not result in more RAM usage.

A description of this algorithm is also given in Fig. 3.3.

3.7. Conclusions
In this chapter, the implementation of the range compression algorithm was discussed. The goal is real-time
processing, but since the data is generated on an airborne platform, a choice has to be made between pro-
cessing on the ground or onboard. Despite the possibility of compressing the data with a factor 4 using block-
adaptive quantization, the wireless data link is not fast enough for realtime data transmission. Therefore, full
onboard processing was chosen as the preferred method.

Range compression is implemented as an FFT. We can choose to implement the FFT from scratch, or use
a ready-made parametrizable implementation. Keeping the main research question in mind, the goal of this
thesis is not to invent a new implementation of an FFT. Rather, we want to produce knowledge about how
SAR signal processing on FPGAs behave for different types of radar systems. Therefore, it was chosen to use a
prewritten implementation.

The following points are important to remember from this chapter:

• The FFT IP core reports two types of latency. Calculation latency is the time needed for processing of
one sweep, except when the number of output multipliers is 1. Then simulation is needed to find the
actual latency. Optimizing the latency of a single sweep is equivalent to optimizing the throughput of
the system, because more sweeps can be processed per second.

• Multiple FFT cores processing in parallel will be considered if one core is too slow. Using an algorithm,
the lowest-area configuration will be found.



3.7. Conclusions 21

Vary FFT
parameters SQLite database

with all results

Filter results that
are slower than

time budget
Sort for latency,

descending

No Yes, and lower DSP/ALM usageConfiguration with
lower latency AND

equal or lower RAM
exists?

Choose that
configuration

Yes, and lower RAM usage

Choose conf. with
highest latency

Choose that
configuration

Figure 3.3: Block diagram of the algorithm that selects the most optimal FFT core configuration, using the least area.

• The calculations can be sped up by discarding a part of the FFT spectrum without losing any informa-
tion.

• The latency of the calculation of the FFT of all the sweeps is not a critical parameter for optimization,
as opposed to throughput.

• The input samples have to be scaled up to make full use of full output bit width. If the dynamic range
is not used fully, the relative error will be higher.

• The required FFT width is expected to be 16-17 bits.
• The numerical precision of the FFT will be verified by generating a backprojected image, and verifying

whether the noise floor of the image increased. Quantization noise should stay below the original noise
floor in order to not add extra noise.





4
Backprojection in hardware

After implementing the first algorithm from Fig. 2.3 in Chapter 3 (range compression), this chapter is about
the implementation of backprojection. For the theory of how backprojection works, Section 2.5 can be ref-
erenced. The implementation will initially be made for the ONR system (Section 2.2.1), but since the goal of
this thesis is to make generalized recommendations for different radar systems, the implementation will be
made parametrized and tested for a few others, with possibility for easy expansion for arbitrary future FMCW
SAR systems.

The organization is as follows:

• Section 4.2: an elaboration on how to determine the computational requirements of the radar systems
that will be considered;

• ??: implementation platform and design goals that the implementation must adhere to;
• Section 4.3: theory of some HLS aspects
• Section 4.4: implementation details
• Section 4.5: how the numerical precision will be analyzed.

This chapter focuses on the higher-level design choices. If more practical detail is desired of how the
implementation and testing framework is built, and how the results can be reproduced, Appendix B can be
referenced.

4.1. Platform
For range compression, it was decided to use pre-written libraries for the actual implementation (Section 3.1).
However, since backprojection is an algorithm that is specific for SAR, it is not present in any standard library
and we will need to study previous work done on backprojection implementations on FPGAs. The work
that was studied includes [4][18][27][40]. They will be cited again where appropriate, when the details are
discussed.

Since the goal of this thesis is to produce knowledge for TNO for the real-time airborne SAR applications,
an own implementation will be written. The implementation will be optimized for the ONR system, but
parametrized so it can be adjusted to work for other systems as well. In this section, a motivation will be
given for which implementation platform was chosen.

For hardware implementations, many platforms and languages are available. Apart from VHDL and Ver-
ilog, there are multiple flavours of High Level Synthesis (HLS), and newer technologies like CλaSH [1]. With
HLS, hardware is inferred from imperative languages originally designed for CPUs, and CλaSH is a compiler
for the functional language Haskell, that enables designing cycle-accurate RTL using functional abstractions
and Haskell’s type system.

The advantage of HLS is that the design process is much simpler for the hardware engineer, since many
aspects like scheduling and binding are done automatically by the tooling. However, it is more difficult to
get an optimal result. With CλaSH, the code is much clearer to read and less error prone to design than
VHDL / Verilog, and testing is much easier, but the exact architecture still has to be designed by the engineer
[10], making it more complex than HLS. Table 4.1 shows an overview of the considered languages, and their
qualities and flaws.

23



24 4. Backprojection in hardware

Table 4.1: Overview of some platforms that could be used for the implementation of backprojection, and their advantages and disadvan-
tages.

VHDL / Verilog Vivado HLS CλaSH

Design complexity high low medium
Quality of results high medium high
Testing hard easy easy
TNO experience yes no no

All things considered, Vivado HLS was chosen as the design platform. For this research, it is not crucial
to obtain an optimal result, since the objective is to get an orientation for the hardware requirements for the
different SAR modes. Additionally, TNO had no prior experience with Vivado HLS, giving more opportuni-
ties for learning about this technology. A Xilinx ZC702 design board with a Zynq-7000 SoC was provided for
prototyping.

4.2. Parameters and requirements
In Section 2.2, the system parameters were introduced that are relevant to the evaluation of the computa-
tional complexity of the signal processing algorithms. In this section, an overview will be given of the param-
eters specifically important for backprojection, and the requirements that the design has to adhere to.

4.2.1. Parameters
For each SAR mode, the parameters listed below were determined. For a reminder on the general geometry
and workings of SAR, refer to Section 2.1.

• Integration time (Section 2.5.2)
• Dimensions of image:

– Azimuth direction = flying speed×flying time/resolution
Instead of generating the entire image for all the data collected at once, for real-time operation
it is more practical to generate sub-images at a regular frequency. This can be done during each
integration time, for instance. If smaller or larger images are desired, this can be adjusted without
having an effect on the computation complexity.

– Range direction = swath width/resolution
• pixels/s = swath width×flying speed/(resolution)2 ×aspect angles

As explained in Section 2.5.2, this is the fundamental parameter that determines if the implementation
is actually real-time.

• which FFT bins to store in memory
Section 2.4.1 explains this topic.

• sweeps/image = integration time×PRF
• number of channels
• The minimum clock speed, can be calculated, making a number of assumptions (e.g. one image pixel

is produced every period, and the contribution of channels is done in parallel).

4.2.2. Design requirements
The final implementation needs to adhere to the following requirements:

• The image should be finished within the set time, as explained in Section 2.5.2.
• It has to fit on a Zynq-7000 FPGA.
• The code should be parametrizable for other SAR systems. It will be tested for the parameters of the

systems that are shown in Table 4.2 (ONR, MRaISR Strip, MRaISR Spot, MRaISR Spot short range).

In Table 4.2, the number of operations per second required for real-time image generation can be found.
This number was calculated from the theoretical complexity as mentioned in Section 2.2: O (M X Y ), where
M is the number of sweeps, and X and Y are the dimensions of the image. We also have to multiply this with
the number of channels. These numbers do not give a lot of information by themselves, but in Section 6.2,
they will be compared to the hardware resource usage on the FPGA in order to verify the correlation between
this number and the hardware resource usage.



4.3. HLS theory 25

Table 4.2: System parameters of the SAR applications that are considered for backprojection.

ONR M-RaISR strip M-RaISR spot short M-RaISR spot

Integration time 1 s 4 s 9 s 9 s
Resolution 10 cm 1 m 15 cm 30 cm
Px (azi. × range) [1] 50×750 120×5000 1800×2000 900×1667
Pixels / s 375 000 150 000 400 000 166 667
FFT bins 3611 17009 6966 7459
sweeps/image 814 2000 3600 3600
Channels 8 – 16 1 4 4

operations / s 2.4×109 [2] 3×108 5.7×109 2.4×109

3.7×109 [3]

4.9×109 [4]

min. clock speed [5] 305 MHz [6] 300 MHz [6] 1440 MHz [6] 600 MHz [6]

[1] Assuming an image is generated for every integration time. If images spanning a different
area are desired – with identical resolution –, this can be changed without having an effect
on the computational complexity.

[2] 8 channels
[3] 12 channels
[4] 16 channels
[5] Assuming all sweeps are processed sequentially, and all channels in parallel.
[6] Since the highest clock frequency of the ZC702 development board is 250 MHz, it will be

necessary to generate multiple pixels of the image in parallel.

Additionally, Table 4.2 shows the minimum required clock frequency of the FPGA, assuming parallel pro-
cessing of all channels, but sequential processing of every sweep and also image pixel. Since the maximum
clock speed of the ZC702 development board is 250 MHz, multiple image-generating cores will need to be
instantiated in parallel to retain real-time operation.

4.3. HLS theory
Before explaining the details of the implementation of backprojection in HLS in Section 4.4, some aspects
of HLS will be explained for the unfamiliar reader. For further reading, refer to the Vivado Design Suite User
Guide [37] and the Vivado HLS Optimization Methodology Guide [36].

4.3.1. HLS stream
Tasks inside FPGAs perform best when random-access reads to large memories are avoided, because mem-
ories have a limited number of input and output ports. Therefore, if it can be guaranteed that access to large
arrays is sequential, the memory can be replaced by a FIFO (e.g. a shift register), which reduces resources and
improves performance. One way to guarantee that access is sequential, is to use the HLS streaming interface,
which allows only reading every array value once and in sequence.

4.3.2. Loop unrolling
When writing a loop for a program that is to be run on a single-threaded CPU, the iterations are always per-
formed sequentially. On an FPGA, a choice can be made if the iterations should be executed in time, or in
space. A hybrid of the two is also possible, parallelizing only part of the iterations. Loop unrolling directives
can be added to the HLS code to instruct the compiler to instantiate the hardware inside the loop multiple
times. In some cases, the loop is automatically unrolled.

4.3.3. Pipelining
Pipelining is a method to significantly speed up the hardware function, with only a small area penalty. Fig-
ure 4.1 shows the basics of how it works. Without pipelining, all operations in the iteration of the loop are
executed sequentially. Every operation is only active once per iteration – but is taking up valuable resources
on the FPGA. When the intermediate results of the operations are stored in registers, and the new inputs are
fed in when the processing of the old input is done, the hardware can be active a larger percentage of cycles,



26 4. Backprojection in hardware

pragma HLS pipeline
Description

The PIPELINE pragma reduces the initiation interval for a function or loop by allowing the
concurrent execution of operations.

A pipelined function or loop can process new inputs every N clock cycles, where N is the
initiation interval (II) of the loop or function. The default initiation interval for the PIPELINE
pragma is 1, which processes a new input every clock cycle. You can also specify the initiation
interval through the use of the II option for the pragma.

Pipelining a loop allows the operations of the loop to be implemented in a concurrent manner as
shown in the following figure. In this figure, (A) shows the default sequential operation where
there are 3 clock cycles between each input read (II=3), and it requires 8 clock cycles before the
last output write is performed.

Figure 4:   Loop Pipeline

void func(m,n,o) { 
  
  for (i=2;i>=0;i--) {
       op_Read;
       op_Compute;
       op_Write;

  }
}    

4 cycles

RD

3 cycles

8 cycles

1 cycle
RD CMP WR

RD CMP WR

RD CMP WR

(A) Without Loop Pipelining (B) With Loop Pipelining
X14277-110217

CMP WR RD CMP WR RD CMP WR

IMPORTANT!: Loop pipelining can be prevented by loop carry dependencies. You can use the
DEPENDENCE pragma to provide additional information that can overcome loop-carry dependencies
and allow loops to be pipelined (or pipelined with lower intervals).

If Vivado HLS cannot create a design with the specified II, it:

• Issues a warning.

• Creates a design with the lowest possible II.

Appendix B: HLS Pragmas

UG1270 (v2018.1) April 4, 2018  www.xilinx.com  [placeholder text]
Vivado HLS Optimization Methodology Guide  116Send Feedback

Figure 4.1: Optimizing for throughput using pipelining. Source: [36]

therefore improving the throughput. The number of cycles that it takes for the hardware to be ready for the
next input is called the initiation interval (II). In Fig. 4.1, this is 1 cycle.

4.3.4. Task-level parallelism: dataflow
By default, Vivado HLS sequentially schedules tasks (functions) that depend on each other’s data. When
parallel execution of multiple tasks is desired, the dataflow pragma can be used. Vivado will then attempt to
schedule the functions in parallel as much as possible, starting the each task as soon as all the data it depends
on is available. How this works, is shown in Fig. 4.2. It can be seen, that without dataflow, the end result of
one iteration is available after 8 cycles, and new input can be fed in after 8 cycles as well. With dataflow, this
is reduced to 5 respectively 3 cycles.

With dataflow optimization, extra memories have to be employed, similar to pipelining. The intermediate
results of the different tasks can then be stored, and used by the dependent tasks in the next iteration. Vivado
HLS will create this hardware structure automatically if the code follows some guidelines:

• Follow single producer-consumer model
Values or arrays can only be written once, by one task and read once, by another task.

• Tasks cannot be bypassed or conditionally executed
• No feedback between tasks
• Single exit condition from loops

The dataflow hardware structure is shown in Fig. 4.3. Between each task, memories are inferred. This
memory can be implemented as a pingpong buffer or a FIFO. Pingpong buffers are used when random access
is desired, and FIFOs are sufficient when the data can be streamed sequentially. How pingpong buffers work,
is shown in Fig. 4.4. The producing task writes into one memory, while the consuming task reads from the
other memory concurrently. The next iteration, the memories are swapped. This causes one iteration extra
latency, but the gains in throughput are large, if the number of iterations is high enough.

4.4. Implementation
In Section 2.5, the backprojection algorithm was explained. This section describes how an FPGA implemen-
tation was made from the original mathematics.

4.4.1. Approach
At first sight, two possible implementation approaches can be identified:

1. pixel-by-pixel: store all sweeps, and calculate each pixel once, by looping over all sweeps for every pixel
of the final image;



4.4. Implementation 27

All operations are performed sequentially in a C description. In the absence of any directives that
limit resources (such as pragma HLS allocation), Vivado HLS seeks to minimize latency and
improve concurrency. However, data dependencies can limit this. For example, functions or loops
that access arrays must finish all read/write accesses to the arrays before they complete. This
prevents the next function or loop that consumes the data from starting operation. The
DATAFLOW optimization enables the operations in a function or loop to start operation before
the previous function or loop completes all its operations.

Figure 3:   DATAFLOW Pragma

void top (a,b,c,d) {
  ...
  func_A(a,b,i1);
  func_B(c,i1,i2);
  func_C(i2,d)

  return d;
}    

func_A
func_B
func_C

8 cycles

func_A func_B func_C

8 cycles

3 cycles

func_A
func_B

func_C

func_A
func_B

func_C

5 cycles

(A) Without Dataflow Pipelining (B) With Dataflow Pipelining

X14266-110217

When the DATAFLOW pragma is specified, Vivado HLS analyzes the dataflow between sequential
functions or loops and create channels (based on pingpong RAMs or FIFOs) that allow consumer
functions or loops to start operation before the producer functions or loops have completed.
This allows functions or loops to operate in parallel, which decreases latency and improves the
throughput of the RTL.

If no initiation interval (number of cycles between the start of one function or loop and the next)
is specified, Vivado HLS attempts to minimize the initiation interval and start operation as soon
as data is available.

TIP: The config_dataflow command specifies the default memory channel and FIFO depth used
in dataflow optimization. Refer to the config_dataflow command in the Vivado Design Suite User
Guide: High-Level Synthesis (UG902) for more information.

For the DATAFLOW optimization to work, the data must flow through the design from one task to
the next. The following coding styles prevent Vivado HLS from performing the DATAFLOW
optimization:

Appendix B: HLS Pragmas

UG1270 (v2018.1) April 4, 2018  www.xilinx.com  [placeholder text]
Vivado HLS Optimization Methodology Guide  92Send Feedback

Figure 4.2: Optimizing for throughput using task-level paralellism (DATAFLOW pragma). Source: [36]

Figure 64: Dataflow Optimization

void top (a,b,c,d) {
  ...
  func_A(a,b,i1);
  func_B(c,i1,i2);
  func_C(i2,d)

  return d;
}    

func_A
func_B
func_C

8 cycles

func_A func_B func_C

8 cycles

3 cycles

func_A
func_B

func_C

func_A
func_B

func_C

5 cycles

(A) Without Dataflow Pipelining (B) With Dataflow Pipelining

X14266

This type of parallelism cannot be achieved without incurring some overhead in hardware. When
a particular region, such as a function body or a loop body, is identified as a region to apply the
dataflow optimization, Vivado HLS analyzes the function or loop body and creates individual
channels that model the dataflow to store the results of each task in the dataflow region. These
channels can be simple FIFOs for scalar variables, or ping-pong (PIPO) buffers for non-scalar
variables like arrays. Each of these channels also contain signals to indicate when the FIFO or the
ping-pong buffer is full or empty. These signals represent a handshaking interface that is
completely data driven. By having individual FIFOs and/or ping-pong buffers, Vivado HLS frees
each task to execute at its own pace and the throughput is only limited by availability of the input
and output buffers. This allows for better interleaving of task execution than a normal pipelined
implementation but does so at the cost of additional FIFO or block RAM registers for the ping-
pong buffer. The preceding figure illustrates the structure that is realized for the dataflow region
for the same example in the following figure.

Figure 65: Structure Created During Dataflow Optimization

Chapter 1: High-Level Synthesis

UG902 (v2019.2) January 13, 2020  www.xilinx.com
High-Level Synthesis  144Send Feedback

Figure 4.3: Hardware structure created when using dataflow optimization. Source: [37]

Producer Consumer
RAM 1

RAM 2

Figure 4.4: Pingpong buffer



28 4. Backprojection in hardware

HLS code

Flightpath

Flightpath

R
C

 sw
eeps

R
C

 bitshift

Stream in
data

Offset matrixMultiply rotmat
with antenna

offsets

Relative channel coords

Accumulate
columns of
matrix mult

RC sweeps

Rotmat

pixel coordinates

Pixels (for every sweep)

RC bitshift

Channel offsets

Generate
image 1

Generate
image N

Legend
Streaming I/O

Function

Pingpong buffer

FIFO buffer

Accumulate
pixels

Figure 4.5: Block diagram of the HLS implementation of backprojection. For explanation on the entries in the legend, refer to Section 4.3
or [36] and [37].

2. sweep-by-sweep: update all pixels of the final image after a new sweep is available.

The two approaches are equivalent in the number of required calculations, but the second approach requires
less memory, since only one sweep and the final image need to be stored. The final image should in theory
always be smaller than the input data, because the intention is that it is a more efficient representation of
the information. Assuming that the dynamic range of the output is used optimally, it cannot be larger than
the input, because if it were, redundant information is added. Therefore the second approach is chosen for
implementation.

4.4.2. Block diagram
A block diagram of the entire implementation is given in Fig. 4.5. It will be explained below.

I/O and accumulation of pixels
The inputs and outputs are streaming, so access is sequential. For the arrays that need random access (the
rotation matrix, channel offsets and the range compressed sweeps), localized caches are created. A funda-
mental problem for backprojection inside FPGAs is that the pixels of the image are updated for every sweep.
This means, that the image would need to be stored in RAM, and a lot of I/O access is required. However,
inside the FPGA, not enough block RAMs are available. Previous work has solved this by building the image
line-by-line [4], therefore requiring less RAM at a time. Other work has used two parallel external SRAMs [18].



4.4. Implementation 29

In this work, it was chosen to postpone the accumulation of the sub-images, and let the CPU of the Zynq-7000
SoC do it offline, effectively making it recommended future work.

Dataflow optimization
The functions as shown in Fig. 4.5 are inside a dataflow optimization (Section 4.3.4). In order to adhere to
the code guidelines, a variable can only have a single producer and a single consumer. Since a matrix mul-
tiplication requires reading and writing to the same memory location, it had to be separated in two different
functions: one for the multiplication, and one for the accumulation of the columns. Below, the intermediate
memories between the functions are listed:

Range compressed sweeps
From the mathematical description of the algorithm in Section 2.5.1, it can be seen that access is ran-
dom, and therefore a pingpong buffer is needed.

Flightpath
The sweeps and coordinates are processed in order, so a FIFO suffices.

Bitshift of RC sweeps
A bitshift correction is required for every sweep (in order), therefore a FIFO.

Offset matrix
Random access: therefore pingpong buffer.

Relative channel coordinates
Because the channels are processed in order, a FIFO buffer does the job.

Parametrization
The following parameters can be changed at compile-time:

• dimensions of image (azimuth and range)
• number of sweeps required for one image
• number of relevant FFT bins per sweep
• number of channels
• number of parallel image generation instances

Following the conclusion of Table 4.2, multiple instances are required for real-time operation.
• Whether or not to use half floats or lookup tables for trigonometry or the square root (see Sections 4.4.3

and 4.4.4)

Further optimizations
In order to process one pixel per clock cycle, the image generation function needs to be fully pipelined with
an initiation interval of 1. Since all channels are processed in parallel, the flightpath, sweeps and channel
coordinates need to be partitioned into separate FIFOs / block RAMs.

4.4.3. Lookup tables for trigonometry and square root
In addition of using the trigonometry and square root functions from the HLS math library provided by Vi-
vado, lookup table versions of those functions were built, that can be turned off and on with compile-time
flags. Intermediate values are interpolated linearly. For the trigonometry, the constant k = 2π/λ (the factor
to multiply with range to get the phase, Section 2.5.1) was recalculated as if π were half the size of the lookup
table (which is 1024 in this case):

k1024 = k

2π
·1024 (4.1)

The lookups can then be done with zero performance penalty.

4.4.4. Range compressed data format
The Intel FFT IP core, introduced in Chapter 3, can output the range compressed sweeps both in floating
point or integer format. A compile-time flag was added to support both formats as input to the backprojec-
tion core. Internally, the intermediate values of the image pixels are stored as floating points, so the range
compressed sweeps need to be converted to floats anyway. Since 16 bits of information will be shown to be
enough (Sections 5.1.1 and 6.1), half-floats are chosen as the data type for the sweeps.



30 4. Backprojection in hardware

Listing 4.1: HLS code snippet that performs the floating point division by two by subtracting from the exponent.

1 // convert int16 to floating point
2 union convert {
3 float fl;
4 uint32_t in;
5 };
6 Complex<convert> shifted;
7 shifted.real.fl = rc->real;
8 shifted.imag.fl = rc->imag;
9

10 // efficient way of dividing by a power of two (subtracting from the exponent)
11 // in order to scale the RC data back
12 if (shifted.real.in != 0) {
13 shifted.real.in = (shifted.real.in & 0b10000000011111111111111111111111)
14 | ((shifted.real.in >> 23) - rc_shift.real << 23);
15 }
16 if (shifted.imag.in != 0) {
17 shifted.imag.in = (shifted.imag.in & 0b10000000011111111111111111111111)
18 | ((shifted.imag.in >> 23) - rc_shift.imag << 23);
19 }
20

21 complex<float> rc2(shifted.real.fl, shifted.imag.fl);

Scaling

In Section 3.3.2, a method was introduced for making the most use out of the dynamic range of integers, by
scaling up the values in each sweep using bitshifting. If the values are simply scaled back while they are still
in integer format, the extra precision is lost again. Therefore, we must first convert to floating point, and
then scale back. However, floats cannot be scaled by simply bitshifting as we can do with integers. The most
efficient method is adding and subtracting from the exponent. Listing 4.1 shows how this is done practically
in the HLS code.

4.4.5. HLS C++ to MATLAB MEX
The radar engineer generally develops his algorithms in MATLAB. The hardware engineer, however, needs to
know the numerical ranges an required precisions for every intermediate value in the calculations. Addition-
ally, there needs to be an easy way to verify the quality of the HLS implementation, by the radar engineer.
To solve the first problem, the original MATLAB code can be instrumented using the MATLAB fixed-point
toolbox. The second problem was solved by writing a MEX wrapper around the HLS code, to compile it for
running in MATLAB. The results that the HLS implementation produces can then be directly analyzed by the
radar engineer. The solutions are shown schematically in Fig. 4.6. In this way, there can exist a feedback
loop between the radar engineer and the hardware engineer, and therefore answers research question 7 (and
partly 5).

4.5. Numerical precision
We now have an understanding of the structure of the implementation. This section elaborates on the nu-
merical precision requirements. Predictions are made based on theory, and simulations were done.

4.5.1. Dynamic range of image
We will start by determining the expected required bitwidth of the output pixels of the image. As a rule of
thumb, the theoretical SNR of a digitized signal is 6 dB per bit [17, p. 279]. The backprojected image that was
generated using the test dataset provided by TNO is shown in Fig. 5.1a. It can be seen that the dynamic range
is about 100 dB. Taking a wider dynamic range of 144 dB, and using the rule of thumb, 24 bits are expected to
be required for losslessly storing the backprojected image.



4.5. Numerical precision 31

Preprocess (incl.
range

compression)

MEX wrapper
around HLS code

Fixed-point
instrumented

MATLAB code (slow)

MATLAB
backprojection to

MEX

Backprojected
image

Backprojection

Figure 4.6: A framework was developed for MATLAB to help the radar engineer think about numerical precision for the hardware engi-
neer, by providing three different ways to execute the backprojection algorithm.

Figure 4.7: Determining the range of all variables in the code using the MATLAB fixed-point toolbox.

4.5.2. Fixed-point simulation in MATLAB

MATLAB’s fixed-point designer was used to determine the ranges of each variable in the code. A screenshot
is shown in Fig. 4.7. From the ranges, the number of required integer bits can be estimated. The number of
fractional bits of every variable is more difficult to determine, since it depends on the required image quality
and the exact calculations being done and their significance in the final result. So in order to determine that,
full simulations have to be done, generating the images in practice.

4.5.3. Dynamic range of range compressed sweeps

In Section 3.3.1, it was determined that the expected that the range compressed data has a dynamic range of
approximately 16 bits. If the data is input using integers, the same method as described in Section 3.3.2 can
be used to lose as little precision as possible due to rounding. In short, the maximum value of the sweep is
found, and per sweep, all data points are scaled up with a factor of a power of two, so that the largest value
is as large as possible without overflowing. The values are subsequently truncated and converted to integers.
Section 4.4.4 already showed how to efficiently scale down the data again.

4.5.4. Image quality metrics

After determining the integer bit width of the fixed point values as described in Section 4.5.2, the number of
required fractional bits has to be determined. We are not optimizing for the best possible implementation
for a specific application, but the goal of the research is to get general ideas about resource usage. Previous
work was studied that goes in depth about floating point word width [27], classifying image quality as a single
number. The metrics peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) are used [41].

However, these numbers cannot be used to verify the correctness of the implementation, since a single
number does not show where in the image errors occur, and how large those errors are. Therefore, a different
approach was chosen. The image is compared with the original – full-precision – image by normalizing both
and then subtracting from each other, as shown in the MATLAB code snippet below (Listing 4.2). Normaliza-
tion is necessary because the images may have a constant-factor offset. This does not have an impact on the
validity of the result, because the average power is not a meaningful quantity.

Section 6.1 shows the error image produced by this code.



32 4. Backprojection in hardware

Listing 4.2: MATLAB code for drawing a relative error image, comparing the full-precision image with the one produced by the
HLS code.

1 mean1 = mean(abs(img1(:)))
2 mean2 = mean(abs(img2(:)))
3 normalized1 = img1/mean1;
4 normalized2 = img2/mean2;
5 imagesc(20 * log10(abs(normalized1 - normalized2) + 1));

4.6. Performance comparison with previous work
The implementation will be compared with previous work. Generally, it is hard to make a comparison be-
tween various implementations, because all implementations were tested with different parameters and
datasets, and ran on different FPGAs. In [3], the algorithm identical to the one studied in this paper – velocity-
independent global backprojection for FMCW SAR – was implemented. Table III in this paper contains the
runtimes of the various tests that were done, and it includes the image size in pixels, and the number of
sweeps per image. In this table, they are shown as Nx ×Ny and Naz respectively. This is all the information
we need to calculate the algorithm complexity, for which we have to simply multiply those numbers together
– O (N 3), refer to Section 2.1.2.

In order to compare our results with the results of [3], we can divide all runtimes by the complexity. This
normalizes the numbers and makes them more comparable. The hardware, on which the circuit is run, is
is still different, but a general comparison can definitely be made. Using the same method, the speedups
of the two hardware implementations can additionally be compared with any of the two MATLAB software
implementations.

The results of this are shown in Section 6.2.2.

4.7. Conclusions
We discussed the implementation of backprojection in this chapter. When weighing the design complexity,
quality of results, difficulty of testing the code, and whether or not TNO had prior experience with the tech-
nology, Vivado HLS was chosen as the implementation platform. Section 4.1 and in particular Table 4.1 show
the considerations that were made.

Before starting the implementation, the following was design requirements were identified:

• For real-time processing, all data, that is captured during the integration time, has to be processed into
a final image in time. Multiple smaller images can also be produced in the same time if desired.

• The code should be parametrizable for other SAR systems. In this way, we can fulfil the the research
objective of estimating the performance requirements of future SAR systems that use backprojection.

A fully pipelined implementation was made with an initiation interval of 1. For every sweep, one or more
image pixels are produced per clock cycle – depending on the amount of image generation cores that were
instantiated. After implementation, the code was tested for a number of already existing SAR systems (shown
in Table 4.2).

The following parameters can be changed at compile-time in the HLS code:

• dimensions of image (azimuth and range)
• number of sweeps required for one image
• number of relevant FFT bins per sweep
• number of channels
• number of parallel image generation instances
• whether to use integers or half floats for the input sweeps
• choose between lookup tables or floating point calculation for trigonometry or the square root (see

Sections 4.4.3 and 4.4.4)

The bitwidths of the variables in the HLS code can be given by the radar engineer, by simulating the
algorithm with fixed-point arithmetic in MATLAB. In order to validate the resulting image quality, an error
image is drawn, as described in Section 4.5.4.



5
Range compression results

In this chapter, the experimental results of the range compression step will be shown. The hypotheses from
Section 3.7 will be verified, and optimal FFT configurations will be chosen for each of the applications from
Table 3.1. Firstly, the numerical precision and required bitwidth will be evaluated in Section 5.1. The area-
latency tradeoff will be discussed in Section 5.2. Therefore, this chapter answers research questions 3 and
4.

5.1. Accuracy and errors
The numerical precision will be verified in two steps: firstly, the quantized FFT output is compared to the full-
precision FFT (Section 5.1.1). Secondly, the darkest part of the backprojected image made by the quantized
FFT is compared to the full-precision image, in order to see whether the noise floor increased (Section 5.1.2).

In short, this section provides answers to research question 3.

5.1.1. FFT
A dataset was obtained of 24414 sweeps of each 2048 samples, that were recorded during a single flight path.
To determine the required bit width of the FFT core, the data width and twiddle factor width were varied,
and the mean errors with respect to MATLAB’s builtin double-precision fft function were calculated. Data
widths lower than 16 bits are not possible, since the ADC samples of the IF data are 16 bits, and we can never
be certain that there will be no sweeps that actually use the full range of the integer. As said in Section 3.3.2,
not all 16 bits are always used – therefore the input needs to be scaled with a bitshift. To determine the impact
of scaling on the average error, the amount of bitshifts was varied. The results are shown in Table 5.1. The
blue cells indicate the bitshift as calculated by Eq. (3.2). It can be seen that they mostly correspond to the
lowest error (except in the 20/12 configuration). When the input is shifted too much, it overflows and the
error jumps up to above 100 %. Therefore, care has to be taken to never shift more than the input datatype
can hold.

The first and simplest conclusion that we can draw from Table 5.1 is that varying the width of the twiddle
factors does not matter much in accuracy. It will be shown in Section 5.2.2 that it also does not matter much in
area savings. Going from the 20/20 configuration to 20/16 has no significant effect on the error. In some cases,
the error even decreases! This is due to the random selection of input sweeps. Why it has no effect, can be
seen when the twiddle factor width is decreased to 12 bits. Since the twiddle factors are constants, the errors
they introduce are also constant and unrelated to the input data size. Looking at the 20/12 configuration in
Table 5.1, it can be seen that the error matches the 20/20 configuration when the input is shifted fewer than 4
bits. Before that, the error that is introduced by the input not being scaled up enough dominates that of the
error introduced by the twiddle factors. Beyond that point, the twiddle factor error starts dominating, and
the error does not decrease anymore – it stays constant at around 3 %.

The second conclusion is that the error depends a lot on the amount of bits shifted. In this particular
dataset, all data fits within 11 bits, even though the samples are 16-bit signed integers. If one of the sweeps
has samples that are close to 215, the samples should not be shifted, but if all the others fit in 11 bits, the error
will be around 70 % if no shifting is performed, which is obviously unacceptable. It means that it is indeed
necessary to determine the largest sample in a sweep, before processing it, as explained in Section 3.3.2.

33



34 5. Range compression results

Table 5.1: Relative errors for FFT simulations with different data and twiddle factor widths. Input data are 25 sweeps, randomly selected
from a set of 24414 sweeps of real SAR data during a single flight path. Error is with respect to MATLAB’s builtin fft function. The input
vectors are scaled up as described in Section 3.3.2, with the number of bits shown in the first column. The blue cells indicate the bitshift
that is calculated by Eq. (3.2).

input
shift

FFT width: data/twiddle

16/16 18/18 20/20 20/16 20/12

0 72 % 68 % 67 % 68 % 68 %
1 35 % 32 % 32 % 32 % 33 %
2 21 % 18 % 17 % 17 % 17 %
3 12 % 8.2 % 7.4 % 7.7 % 7.7 %
4 7.6 % 5.1 % 4.2 % 4.0 % 5.1 %
5 >100 % 2.6 % 2.0 % 1.9 % 3.5 %
6 >100 % 2.0 % 1.1 % 1.2 % 3.4 %
7 >100 % >100 % 0.84 % 0.76 % 3.1 %
8 >100 % >100 % 0.62 % 0.59 % 3.2 %
9 >100 % >100 % >100 % >100 % >100 %

100 200 300 400 500 600

meters

50

100

150

200

250

300

350

400

450

m
et

er
s

0

10

20

30

40

50

60

70

80

90

dB
 w

.r
.t.

 d
ar

ke
st

 p
ix

el
 in

 im
ag

e

(a) The entire image, with the full brightness range.

520 540 560 580 600 620 640

meters

100

120

140

160

180

200

220

240

260

280

300

m
et

er
s

0

10

20

30

40

50

60

dB
 w

.r
.t.

 d
ar

ke
st

 p
ix

el
 in

 im
ag

e

(b) The same image as Fig. 5.1a, but zoomed in (notice
the different color scale).

Figure 5.1: A single backprojected image, with the darkest area highlighted.

From this table alone, it is hard to draw a conclusion about which configuration is best: that mostly de-
pends on the extra errors introduced in the backprojected image. At first glance it looks like only 20/20 is
accurate enough, since errors above 1 % seem large. However, we will see that the image suffers surprisingly
little when the data from the 16/16 configuration is used as an input for the backprojection algorithm. As
mentioned, the data width can never be lower than 16 bits. The twiddle factors could be reduced in preci-
sion, however.

5.1.2. Backprojected image
In Section 3.3.3, a hypothesis was made, that introducing larger quantization errors in the preprocessing step
– range compression –, will manifest itself as an increased noise floor in the darkest part of the image. An
image, made with the available dataset, is shown in Fig. 5.1. The darkest part of the image was manually
found and highlighted with a black rectangle.

In Table 5.2, the average energy increase for the darkest part of the image is shown for multiple FFT widths.
It can be seen that the energy increase is completely insignificant: 0.028 dB is a very low negligible number.
However, it is likely that the difference is much more visible in a darker image, because the energy in the dark
part of this image is still quite high and possibly higher than the noisefloor. Additionally, there is never a
negative difference – meaning that the energy of the dark area of the quantized image is lower than of the full
precision image. Therefore, the hypothesis can be confirmed: quantization errors in the FFT do increase the
noise floor, however small. The pixel with the largest error may not be a relevant metric, but it is surprising to



5.2. Area-latency tradeoff 35

Table 5.2: Increase of the energy of the dark area of the backprojected image, as calculated with data from FFT simulations with different
data widths. There are a few single pixels that have a very large error (see also Fig. 5.2).

FFT config. dark area energy
increase

max error
in image

16/16 0.0281 dB 24.7 dB
18/18 0.0025 dB 9.88 dB
20/20 0.0013 dB 10.2 dB

see that there are single pixels with a very large error. This effect is further investigated in Appendix A.
To compare the images in another way, histograms were drawn showing the frequency of a specific error

in dB. These histograms are shown in Fig. 5.2. An image that perfectly corresponds with the original image
would have a histogram with a single peak at 0 dB. The 18-bit image has only a few tens of pixels with errors
larger than 1 dB, and the 20-bit image is doing even better. And again, also the 16-bit image is performing
well, with the probability of a pixel having an error larger than 1 dB being smaller than 0.0067. What the exact
requirements are will depend on the wire detection algorithm, and how sensitive it is to single pixels having
a large error. Researching this will be part of recommended future work. Errors in single pixels are unlikely
to have a large impact on the wire detection, however, because the wires are very long compared to only one
pixel.

5.2. Area-latency tradeoff
This section will provide answers to research question 4, by exploring which FFT configurations are feasible
for the different SAR and GMTI applications (Section 5.2.1). Additionally, some small observations and pos-
sible optimizations are shown in Sections 5.2.2 and 5.2.3. Finally, area-latency graphs will be used to draw
some conclusions specifically about the ONR drone radar (Section 5.2.4).

5.2.1. Optimal configurations for SAR and GMTI modes
A Python script was written, that selects the optimal FFT configuration for the respective SAR or GMTI appli-
cation (Section 3.6.2). Table 5.3 shows the results. The optimization from Section 3.4.3 has been performed
on the ONR radar results, but not on the others, because the ranges are not available (Section 2.4.2).

5.2.2. Twiddle factors
In area usage, using 16 bits for the twiddle factors in comparison with 20 saves 13 RAM blocks; that is 4 % of
the total of 305 RAM blocks in use. Additionally, some logic is saved, but since RAM is the resource in highest
demand, we can disregard this. So if the FPGA is almost full, and saving a few RAM blocks is important, the
twiddle factor width can safely be reduced.

In Section 3.2.1 it was said that the twiddle factors are constants and could therefore be stored in ROM.
From these results we can see that this is not happening. The twiddle factors are stored in RAM, just like the
data.

5.2.3. Multipliers and DSP blocks
As mentioned in Section 3.1.3, the multipliers in the Cyclone V DSP blocks can perform one 27×27 multipli-
cation or two 18×19 multiplications. Therefore, for bitwidths larger than 18, more DSP blocks are used.

For floating point (Variable Streaming), DSP resource optimization can be turned on. This will use less
DSPs and reduce fmax . As can be seen in Table 5.3, this is only an option for one application that was con-
sidered. This option was not turned on, because it may make the latency estimation invalid if the fmax drops
below 150 MHz. Additionally, saving DSPs is not a high priority at this point, because for every configuration,
enough DSPs were available.

5.2.4. Pareto plot
In Section 5.2.4, two area-latency plots are shown. For the ONR system – with FFT length 16384 – all configu-
rations were tested. The number of RAM blocks is shown in a different graph than the mean of the ALMs and
DSP blocks, because observations showed that the number of ALMs and DSP blocks are mostly proportional
to each other, whereas the RAM blocks change independently. The following observations can be made:



36 5. Range compression results

0 5 10 15 20 25

error (dB)

10-6

10-5

10-4

10-3

10-2

10-1

100

pr
ob

ab
ili

ty

(a) Using 16-bit FFT

0 5 10 15 20 25

error (dB)

10-6

10-5

10-4

10-3

10-2

10-1

100

pr
ob

ab
ili

ty

(b) Using 18-bit FFT

0 5 10 15 20 25

error (dB)

10-6

10-5

10-4

10-3

10-2

10-1

100

pr
ob

ab
ili

ty

(c) Using 20-bit FFT

Figure 5.2: Histogram of the pixel errors in decibel for the entire backprojected image using different size FFTs.



5.2. Area-latency tradeoff 37

Table 5.3: SAR/GMTI applications and the corresponding optimal FFT implementations. Intel FPGA configurations from [11]. For the ONR system
(length 16384), the optimization from Section 3.4.3 has been performed for Burst mode, by subtracting the latency of the FFT core with 16384−3698 =
12686.

Length PRF # ch # cores 1 avail. cycles 2 config # eng 3 # mult 4 latency 5 RAM DSP ALMs

Cyclone 5CSXC2 140 36 25k
512 3333 8 1 5626 Burst 2 1 2430 10 4 998
512 3333 12 1 3750 Burst 2 1 2430 10 4 998
512 3333 16 1 2813 Burst 2 1 2430 10 4 998
512 3333 20 1 2250 Burst 1 4 1626 10 6 1311
512 3333 24 1 1875 Burst 1 4 1626 10 6 1311
512 3333 28 1 1607 Burst 2 4 1370 17 12 2150
512 3333 32 1 1406 Burst 2 4 1370 17 12 2150
1024 2000 8 1 9375 Burst 1 1 8315 6 2 613
1024 2000 12 1 6250 Burst 1 4 3162 12 6 1429
1024 2000 16 1 4688 Burst 1 4 3162 12 6 1429
1024 2000 20 1 3750 Burst 1 4 3162 12 6 1429
1024 2000 24 1 3125 Burst 2 4 2650 17 12 2295
1024 2000 28 1 2679 Burst 2 4 2650 17 12 2295
1024 2000 32 1 2344 Buffered

Burst
1 4 1291 20 6 1421

Cyclone 5CSXC4 270 84 40k
16384 814 8 1 23034 Buffered

Burst
2 4 18432 212 12 2355

32768 500 1 1 300000 Burst 2 1 196775 225 4 1130
16384 814 12 2 30712 Burst 4 4 26354 216 48 8632

Cyclone 5CSXC6 In ONR radar system 557 112 110k
16384 814 16 2 23034 Buffered

Burst
2 4 18432 424 24 4710

Cyclone 5CGXC9 1220 342 301k
65536 400 4 1 93750 Buffered

Burst
2 4 73728 963 12 2434

e.g. Agilex Does not fit on Cyclone V
131072 400 4 2 187500 Variable

Stream-
ing, fixed
point

1 4 131072 1556 86 14380

1 Number of instantiated FFT cores in parallel.
2 Time budget per sweep in clock cycles.
3 Number of output stages (engines).
4 Number of multipliers per output stage.
5 Number of clock cycles needed to process one sweep.



38 5. Range compression results

• RAM is a scarcer resource than DSPs/ALMs.
• Faster configurations do not always use more area, and vice versa.
• Sometimes there is a tradeoff between using more DSPs/ALMs or more RAM. As an example, stepping

up from the B,1,4 configuration to B,2,4 decreases the latency and the RAM usage. However, it costs
more DSPs and ALMs.

5.3. Conclusions
This chapter showed the results of the investigations into the range compression algorithm, following the
methods that were described in Chapter 3. In that chapter, a prediction was made that the FFT would require
approximately 16-17 bits of output range. In this chapter, that prediction was confirmed, by verifying that the
noise floor of the backprojected image did not increase significantly. In order to optimally use the dynamic
range, however, it is important to scale up every sweep individually before feeding it into the FFT. Combined,
this provides answers to research question 3.

First of all, in this chapter, the hypotheses from Section 3.7 were confirmed. The required FFT bitwidth
was indeed 16 bits, and the noise floor of the backprojected image did not increase significantly (Section 5.1.2).
To answer research question 4, refer to Section 5.2 and in particular Table 5.3.

Some other interesting observations were made:

• If all RAM of the FPGA is utilized, a few resources can be freed up by decreasing the twiddle factor. This
introduces a constant error, which is negligible if it stays below the other errors in the system (Table 5.1).

• Even if the error from the FFT is larger than 7 %, accurate images are still generated.



5.3. Conclusions 39

2 4 6 8 10 12 14

Calculation latency (cycles) 104

10

15

20

25

30

35

40

45

50

55

60
%

 R
A

M
 b

lo
ck

s

  BB,1,4

  B,1,1

  B,1,4   B,2,1
  B,2,4

  B,4,4

  BB,2,4  BB,4,4

  S,2,4
  BB,1,4

  BB,4,4

  B,1,4

  B,4,4

  BB,2,4

  B,2,1
  B,2,4

  B,1,1

  S,2,4   BB,1,4

  B,1,1

  B,1,4   B,2,1

  B,2,4
  B,4,4

  BB,2,4
  BB,4,4

  S,2,4 16 bits
18 bits
20 bits

(a) Area is shown as percentage of RAM blocks in use.

2 4 6 8 10 12 14

Calculation latency (cycles) 104

5

10

15

20

25

m
ea

n(
%

 A
LM

s,
 %

 D
S

P
 b

lo
ck

s)

  BB,1,4

  B,1,1

  B,1,4

  B,2,1

  B,2,4

  B,4,4

  BB,2,4

  BB,4,4

  S,2,4

  BB,1,4

  BB,4,4

  B,1,4

  B,4,4

  BB,2,4

  B,2,1

  B,2,4

  B,1,1

  S,2,4

  BB,1,4

  B,1,1

  B,1,4

  B,2,1

  B,2,4

  B,4,4

  BB,2,4

  BB,4,4

  S,2,4

16 bits
18 bits
20 bits

(b) Area is shown as the mean of the percentages of ALMs and DSP blocks in use.

Figure 5.3: Area-latency graph showing the Pareto points of a 16384-point FFT. The area usage is shown as a percentage of the total
available resources, so it is easier to see the usage in context of the ONR system. For absolute resources and generalisation for other
systems, refer to Table 5.3. The grey line shows the time budget of the ONR system, which means that all configurations on the right of
this line are too slow.





6
Backprojection results

This chapter is to Chapter 4 (backprojection in hardware), what Chapter 5 (range compression results) is to
Chapter 3 (range compression in hardware). The results of the implementation of backprojection will be
analyzed, and conclusions will be drawn about the feasibility and hardware requirements for real-time pro-
cessing of the different radar systems that are tested (as introduced in Table 4.2). And similar to Chapter 5, we
will analyze the numerical accuracy (Section 6.1) and area and latency (Section 6.2). Additionally, the power
requirements are shown (Section 6.3) and there is a brief section on the attempts at running the implemen-
tation on real hardware (Section 6.4).

6.1. Accuracy and errors
Section 4.5.2 introduced the concept of determining the minimum integer bit width using the MATLAB fixed-
point toolbox. However, there is no simple way to determine the optimal fractional bit width. Because the
output image has a dynamic range of 24 bits (Section 4.5.1), as a starting point, all intermediate variables
were also given 24 bits in total. This can be seen in the HLS code of the image generation core in Listing
C.2 (Appendix C). Because the goal of this research is not to fully optimize a single application, but to draw
general conclusions about the requirements for various radar systems, the precision was kept at these 24 bits.

We will now verify the correctness of the HLS implementation, and the errors introduced by the fixed-
point calculations. An error image was produced as described in Section 4.5.4. The images from the HLS
core are compared to the original, full-precision MATLAB-produced image. Both were normalized and then
subtracted from each other, after which the amplitude is taken and it is converted to decibels. Normalization
is necessary because the images may have a constant factor offset, which vanishes if the power is shown in
decibels.

The error image is shown in Fig. 6.1. Errors under 1 dB can be considered small, and it can be seen that
the entire image satisfies this constraint. No implementation errors in the form of unexpected anomalies
can be seen. We only observe noise and a few parabolas. What those parabolas originate from, is explained
in Appendix A (this explains the phenomenon from Fig. A.1). In short, errors in the FFT bins (input to the
backprojection core) can cause these artefacts.

6.2. Area and latency
Just like in Section 5.2, in this section, we provide an answer to research question 4, by analyzing the area
usage and latency results of the backprojection implementation as parametrized for the systems under in-
vestigation. Firstly, an overview is given in a table, showing the performance and area requirements of the
implementations. Secondly, we compare the performance of this implementation to the original MATLAB
implementation, and refer to previous work to put the performance in context. Consequently, it is verified
whether or not the elements that were intended to be parallelized, are indeed executed in parallel. And lastly,
a comparison is made between the computational load of the system (in operations per second) and the
resulting area usage on the FPGA.

41



42 6. Backprojection results

10 20 30 40 50 60 70

range (m)

-5

0

5

10

15

20

25

30

35

fli
gh

t d
ire

ct
io

n 
(m

)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

er
ro

r 
(d

B
)

Figure 6.1: Difference between images produced by HLS code and full-precision MATLAB.

Table 6.1: SAR applications from Table 4.2 and the corresponding backprojection configurations. Xilinx Zynq-7000 FPGAs from [38].

System req. px/s meas. Int. latency paral- BRAM DSP Flipflops LUT
px/s time lel [1] (18kb)

XC7Z014S (Artix-7) 214 170 81 200 40 600
M-RaISR Strip 150 000 249 896 4 s 2.40 s 2 156 66 9 864 9 073

XC7Z030 (Kintex-7) 530 400 157200 78600
M-RaISR Spot 166 667 208 246 9 s 7.20 s 3 360 386 56 841 50 265
ONR 8 ch [2] 375 000 398 322 1 s 0.941 s 2 354 386 105 085 80 682

XC7Z035 (Kintex-7) 1000 900 343 800 171 900
ONR 12 ch [2] 375 000 265 957 1 s 1.14 s [3] 2 530 578 156 681 120 214
M-RaISR Spot 400 000 416 618 9 s 8.64 s 6 720 770 112 793 99 896

short range
ONR 16 ch [2] 375 000 199 468 1 s 1.88 s [3] 2 706 770 586 454 [4] 158 917

[1] Number of image generation cores.
[2] 10 aspect angles calculated in series.
[3] Pipeline initiation interval is equal to Nchannel s × NF F T . So the bottleneck is streaming in the range com-
pressed samples, not calculating the actual image. This is easily solved by adding parallel I/O ports.
[4] Not proportional with ONR 8 ch and ONR 12 ch. Expected approx. 200 000 flipflops. The synthesis report
shows that a lot of extra 32-bit registers were inferred. Investigating this will be future work when this mode will
actually be implemented in the real world.



6.2. Area and latency 43

Table 6.2: Comparison of the backprojection implementation this thesis, with another implementation of the same algorithm by other
authors [3].

This thesis Paper 1 Factor 6

Software runtime 2 6.28×10−7 1.27×10−7 4.95
Hardware runtime 2 3 7.42×10−10 1.29×10−9 0.57
Speedup w.r.t. thesis 4 846 486 1.74
Speedup w.r.t. paper 5 171 98 1.74

1 The data from Table III from [3] was normalized and averaged.
2 In seconds per pixel per sweep.
3 Averaged values from Table 6.1.
4 MATLAB runtime of this thesis divided by respective FPGA run-

time.
5 MATLAB runtime of paper divided by respective FPGA run-

time.
6 The value of this thesis divided by the value of the paper.

6.2.1. Overview
The overview of the performance and area usage is given in Table 6.1. The latency, that is shown, is the
time taken to produce a single image with all data that is gathered during the integration time. For more
information on this, refer to Sections 2.2 and 2.5.2. The rows printed bold show the FPGA model number that
fits the application (data from [38]). The column named “parallel” shows how many image generation cores
are instantiated (refer to Section 4.4.2).

6.2.2. Performance w.r.t. previous work
In Section 4.6, a method was introduced to be able to compare our results to the results from other backpro-
jection implementations. Table III of [3] was taken as an example, because this paper contains an implemen-
tation of the identical backprojection algorithm on an FPGA. Table 6.2 shows the results.

From this table, it can be seen clearly that the implementation from this thesis performs better than the
one from [3]. In absolute terms, the execution time per pixel per sweep is 0.57 times that of the paper, and
the speedup with respect to the MATLAB code is 1.74 times better. We will now look at some factors that may
have influenced the results.

First of all, is from 2016, so the speedup may be partly due to improved tooling. However, we have used
HLS, which is generally less efficient than writing the RTL by hand. The hardware that was used can also make
a difference. In the paper, a Virtex-6 was used, which is of an older generation than the generation 7 FPGAs
that were used in this thesis. However, all we needed for the largest-area system, was a Kintex-7, which is a
lower-end FPGA than the Virtex. All in all it is hard to determine who had the advantage here.

To this argument, it can also be added that this implementation was not even designed to have the best
possible performance for a single system, but rather to get performance data on a range of current systems,
and make it easy to adapt for future systems. The fact that it competes well, or even performs better, than the
compared previous work, could be called a great success.

6.2.3. Verification of paralellization
We can determine if the latency of the implementation is as intended, meaning that all with the knowledge
that all sweeps and pixels are processed sequentially. Equation (6.1) shows how the theoretical expected
latency can be calculated:

latency = pixels× sweeps×aspect angles

parallel×clock freq.
(6.1)

If we substitute the numbers from Tables 4.2 and 6.1, we see that for most applications, the measured
latency matches the ideal latency perfectly. This means that the per clock cycle, one pixel in one sweep is
calculated, as intended. The results are shown in Table 6.3. It can be seen that it does not hold for the ONR
system. The reason for this, is that the bottleneck is not the calculation, but the streaming of the range com-
pressed data. This was concluded because the pipeline initiation interval of the image generation core is
equal to Nchannel s ×NF F T , meaning that it performs as intended. For ONR 12 and 16 channels, extra input
ports can be added to stream in the data in parallel and ensuring real-time operation of the core.



44 6. Backprojection results

Table 6.3: Expected (ideal) theoretical latency versus measured latency during calculation of a single image (for ONR: 10 aspect angles).

System expected measured
latency latency

M-RaISR Strip 2.40 s 2.40 s
M-RaISR Spot 7.20 s 7.20 s
ONR 8 ch 0.611 s 0.941 s
ONR 12 ch 0.611 s 1.14 s
M-RaISR Spot 8.64 s 8.64 s

short range
ONR 16 ch 0.611 s 1.88 s

6.2.4. Comparison
Section 4.2.2 introduced the design requirements that the implementation has to adhere to. Besides the num-
ber of pixels per second that have to be calculated, an estimation was made of the total number of operations
per second. In this section, we will verify that the hardware resource usage on the FPGA is proportional to
this number. If that is true, an estimation can be made for future systems, how many resources they will re-
quire, by extrapolating this data. In Fig. 6.2, the results from Table 6.1 are shown in this manner. It is clear
that there is a correlation between the computational load and the area usage, which is linear. However, the
system with the most computational load (M-RaISR Spot short range) does not follow the trend – it uses less
area than expected.

6.3. Power
After synthesis, Vivado reports an estimation of the power usage on the FPGA. For the backprojection core,
this is 2.7 W. A medium-sized quadcopter drone uses around 150 W for its motors, in order to fly. Therefore,
the FPGA power is negligible. ONR even uses a octocopter.

To make this point stronger, the Xilinx Power Estimator (XPE) [35] was used to estimate the theoretical
maximum power that a Kintex-7 XC7K325T can draw. This FPGA is similar to the one inside a Zynq-7000
XC7Z035 SoC. In the XPE, all logic in the entire FPGA was set to switch every clock cycle, at 250 MHz. At this
extreme scenario, only 20 W is estimated to be used, as can be seen in Fig. 6.3.

6.4. Testing on real hardware
An effort was made to run the HLS core on real hardware: a ZC702 evaluation board. In the end, this was
not successful because more time was spent on getting the results through simulations, and focusing on the
research questions.

To get a HLS design to run on a Zynq device, tutorials from Xilinx’s UG871 [39] can be followed. We will
now discuss a few issues that were encountered.

In the Vivado project, we need the Zynq processing system block to connect to the HLS IP block using
AXI ports. Three types of ports are available: general-purpose (GP), high-performance (HP), and accelerator
coherency port (ACP). The GP port is designed for switching functions off and on, and similar low-bandwidth
purposes. The HP and ACP ports both have high performance, but the ACP port has the advantage of keeping
the CPU cache coherent. However, if high performance is desired for multiple competing tasks, the HP port
performs better [23]. Cache coherency then has to be ensured manually.

After finishing the Vivado project, and generating the bitstream, it has to be imported into the Vitis IDE.
Here, C code can be written, that runs on the CPU of the Zynq SoC. This code performs the tasks of start-
ing and stopping the hardware core, and moving data between the DDR memory and the FPGA using direct
memory access (DMA). This part was unsuccessful, and eventually abandoned in favour of running simula-
tions.

6.5. Conclusions
In this chapter, it was shown that the fixed-point HLS code executes correctly as intended. The produced
image has very small errors compared to the original full-precision image, and the code is working as in-
tended, also when the parameters are changed. One exception is the ONR system for 12 channels and more:



6.5. Conclusions 45

Figure 6.2: A plot where the computational load in operations per second is compared to the area usage. BRAMs and DSPs are shown on
a different axis than flipflops and LUTs, because they fit in a similar order of magnitude. We expect a the area usage to be proportional
to the load, and this is roughly true, except for M-RaISR Spot short range, which has a lower area usage than expected. For ONR 16
channels, the amount of flipflops were set to 200 000 manually (the expected amount approximately), because there was a problem
during synthesis and it inferred many extra unexpected 32-bit registers.

Summary

Total On-Chip Power 20.234 W
0% Transceiver…… 0.000W

4% I/O……………… 0.748W

Junction Temperature 93.5 °C 90% Core Dynamic.. 18.135W

6.5°C 1.7W 7% Device Static….. 1.351W

   Effective ΘJA 3.4 °C/W        Power supplied to off-chip devices… 0.000W

   Thermal Margin              

Transceiver…… I/O………………

Core Dynamic.. Device Static…..

Figure 6.3: Power estimation of a Kintex-7 XC7K325T at 250 MHz using the Xilinx Power Estimator. All logic on the FPGA switches every
clock cycle.



46 6. Backprojection results

it cannot operate in real-time, because the bottleneck is not the image generation calculations, but the actual
streaming in of the range compressed sweep data. This can be fixed by adding extra input ports that operate
in parallel. It is likely that for future systems, similar unforseen issues occur, that have to be fixed in the code,
in order to optimize for that specific system. But all in all, the code is still useful to draw conclusions whether
or not the system is expected to be feasible on a certain FPGA family.

The performance of the implementation was compared with previous work, and we found that this imple-
mentation performs 1.74 times better. The speedups with respect to the original MATLAB implementations
range from 171 to 846, whereas for the reference implementation this is only 98 to 486. The circumstances
and hardware used were found to be similar.

In order to test the linearity of the relationship between the calculation load in operations per second,
and the hardware usage, these two quantities were plotted against each other. The linearity was confirmed
for most systems, except the most demanding one – it uses less area than expected. This result makes it easy
to estimate resource usage of future systems by extrapolating the data by using the trend of the four systems
that seem to form a linear relationship. If future systems with higher computational load use less area than
this trend estimates, this can still be used as a conservative (safe) estimate.

Another point to remember from this chapter is that the power usage of the FPGA is negligible to the
quadcopter motors. The power usage of the backprojection core for ONR 8 channels was estimated to be
2.7 W, which is about an order of magnitude smaller than the motor power. Even when all FPGA logic is set
to switch every clock cycle, causing it to use the maximum power possible, it only uses 20 W, which is more
significant, but still not a high power compared to the motors.



7
Conclusions

7.1. Summary
In this research work, the two most common Synthetic Aperture Radar (SAR) signal processing algorithms
were implemented and tested for a variety of SAR systems, with the goal of aiding in future designs of pro-
cessing systems for airborne SAR. SAR is a radar technique superior to conventional stationary radar in terms
of resolution. It works by physically moving the radar antennas with respect to the object that is to be imaged,
and building an image using accumulated data from a longer time period. The larger the distance flown, the
higher the azimuth resolution, and the higher the radar bandwidth, the higher the range resolution.

The implementations were done for FPGAs specifically, because the algorithms are easily parallellizable,
and FPGAs are significantly more power efficient than GPUs and Cell processors, which is important in air-
borne applications. Initially, the algorithms were implemented for an airborne SAR system that was already
developed for the Office of Naval Research (ONR). Changing the identified system parameters makes the im-
plementations suitable for a wide range of other applications.

Since the wireless downlink was determined to be too slow to enable real-time processing on the ground,
two options were left: onboard data reduction – therefore decoding and processing the data on the ground –,
and onboard real-time processing. An algorithm (block-adaptive quantization) was shown to be compressing
the data insufficiently, and for both range compression and backprojection, it was shown that for all tested
systems, the implementations fit on midrange FPGAs.

Since range compression is implemented as simply an FFT, and designing and implementing a custom
FFT core is outside the scope of this research, pre-existing IP from Intel was used. For backprojection, an
implementation was made using Vivado HLS.

The numerical precision requirements are verified by generating a backprojected image, and verifying
whether the noise floor of the image increased. Quantization noise should stay below the original noise floor
in order to not add extra noise. The predictions, that were made, were found to be correct; namely, that the
FFT would require approximately 16-17 bits of output range and the backprojected image about 24 bits. It is
however important to scale every sweep individually, in order to make optimal use of the available dynamic
range available. The bitwidths of the variables in the HLS code can be determined by the radar engineer, by
simulating the algorithm with fixed-point arithmetic in MATLAB.

The performance of the backprojection implementation was compared with previous work, and this im-
plementation was found to perform 1.74 times better. The speedups with respect to the original MATLAB
implementations range from 171 to 846, whereas for the reference implementation this is only 98 to 486. The
circumstances and hardware used were relatively similar.

The produced image has very small errors compared to the original full-precision image. However, it is
likely that for future systems, unforseen issues will occur. For that specific system, the code will have to be
hand-optimized. But the original goals of the implementations were met: the code is still useful to draw
conclusions about the feasibility of the radar processing chain for the desired FPGA family.

The final point, that was made, is that the power usage of the FPGA is at one or two orders of magnitude
below the quadcopter motors. This makes power usage of low concern.

47



48 7. Conclusions

7.2. Main contributions
In the introduction of this thesis (Chapter 1), the goals, problems and research questions were introduced. In
short, the problem is that TNO has to redesign the digital frontend of new SAR systems, every time when new
developments are made on the analog side. It is generally hard to predict the computational requirements
of such a new system. Therefore, the goal of this research was to produce knowledge about how to achieve
real-time processing for a variety of different SAR systems. Focus is put on two very common algorithms used
in SAR processing: range compression and backprojection.

The research questions will now be revisited, and answered, starting with the main research question:

• How can real-time performance be achieved for specific algorithms found in many synthetic aperture
radar systems, within the limitations of airborne applications?

For airborne applications, FPGAs are the platform of choice. Real-time performance can be achieved
by redesigning all the hardware from scratch, every time a new analog frontend is developed, but this
thesis provided reusable parametrized implementations for two of the most common signal processing
algorithms used in SAR.

1. What are the relevant system parameters that affect the computational requirements for the radar pro-
cessing algorithms that are regularly used in different types of systems?

The system parameters were introduced in Section 2.2. For range compression, the tested param-
eter values were listed in Table 3.1. For backprojection, the same was done in Table 4.2.

2. Of those algorithms, how can they be implemented for reuse in different systems? What parameters
should be varied?

For range compression, there exist prewritten solutions, of which one (the Intel FFT IP core) was
tested in detail. Its latency-area tradeoff can be configured using its parameters (Section 3.2), and a
parameter sweep was done (see question 4).

Backprojection was implemented from scratch in Vivado HLS, which was determined to be the
best platform for this goal. Development and testing is easy, and optimal results are not strictly required
in this stage. In principle, the code should work or be easily adaptable for any future SAR application.

3. What is the impact of implementation in hardware on numerical precision?
It was shown that it is possible to make the algorithms run in real-time on midrange FPGAs, with-

out introducing an error in the final image, that is higher than the already-present noise floor.

4. What are the hardware requirements (e.g. type of FPGA), given the system parameters and required pro-
cessing?

For range compression and backprojection, tables were produced that clearly show the required
FPGA for all the tested systems (Tables 5.3 and 6.1, respectively). Additionally, for backprojection, the
linearity of hardware usage with respect to the computational complexity was verified, making it pos-
sible to predict hardware usage for future systems by extrapolation.

5. What development tools are needed?
MATLAB fixed-point toolbox

For easily determining the bitwidths of the fixed-point variables as described in Section 4.5.2.
Various custom scripts

For finding the optimal FFT configuration and verifying the numerical precision of the image.
Intel Quartus

For development and synthesis of the range compression code.
Vivado (HLS)

For development and synthesis of the backprojection code.
MATLAB MEX compiler

For compiling the HLS code for testing in MATLAB.
Modelsim / Questasim

For simulating the FFT core.



7.3. Future work 49

6. What power (order of magnitude) do specific algorithms use on a chosen platform?
Backprojection for ONR was estimated to use 2.7 W. The exact amount was found to be irrelevant,

compared to the power usage of the quadcopter motors.
7. What is the reusability of the implementations for offline processing if real-time is not a requirement?

The HLS code can be run offline on a CPU as well as synthesized for running on an FPGA. However,
this is mostly useful for testing and verification purposes, and not for production settings. The imple-
mentation is not optimized for running on CPUs at all, and therefore runs much slower than possible.
So we can conclude that this question was not really answered; however, for testing and verification
purposes, this is still useful to TNO, since the design process can be optimized in this way, and the
communication between radar engineer and hardware engineer improved.

7.3. Future work
Two main types of future work will be recommended. One possibility is continuing on the set path by adding
new algorithms, and unifying them into a more complete package. Before that, it can be considered to first
improve on the current shortcomings. Another possibility is putting focus on a different type of system:
space-based radar instead of airborne applications.

Firstly, let’s list the shortcomings of the current work.

• In the backprojected image, single pixels can have very large errors (Appendix A). However, it was also
estimated that it is not a big issue for wire detection (Section 5.1.2)

• The image pixels are currently not accumulated. Instead, this task is deferred to the CPU to do it offline
(Section 4.4.2).

• For other systems than ONR, the algorithms were only parametrized and synthesized. No verification
of the functionality and numerical precision were done, because there was only test data available for
ONR. Therefore, doing these tests can give new insights in how to make a better generalized implemen-
tation.

• Table 6.1 showed an anomaly in the number of required flipflops for ONR 16 channels, due to the un-
expected inference of a large amount of 32-bit registers. This effect can be investigated.

• Table 6.1 also showed that the input bandwith of the backprojection core is too slow for certain systems.
The code will need to be improved, with the possibility of adding parallel input ports.

• Figure 6.2 showed that most systems have a linear relationship between the computational load and
the area usage, except M-RaISR Spot short range. This can be investigated by adding more systems,
and checking the linearity, or studying why these particular parameters cause lower area usage than
expected.

7.3.1. Unification and expansion
The ultimate goal of this project is a premade set of hardware blocks for most of the regularly-used radar
signal processing algorithms, that can be used on FPGAs as well as on CPUs or in MATLAB. Additionally,
further optimizations can be made for specific applications, yielding a modular and reusable, yet efficient
and optimized package.

As a first step to achieve this, range compression can be joined with backprojection, connecting them
together and running them both simultaneously. In this work, they were seen as separate projects – also
because the ONR system uses Intel FPGAs, and the actual goal in TNO is to implement everything for Xilinx
FPGAs.

Suggestions for other algorithms to add to the package are:

• Beamforming
• (G)MTI: (Ground) moving target indication
• Wire detection

The last suggestion, is investigating CλaSH (or other HDLs) as a possible language to develop further
algorithms in, as introduced in Section 4.1. This enables complete platform independence, making it possible
to run the code on any FPGA, or even CPUs with reasonable efficiency.

7.3.2. Space-based radar
Apart from expanding forward, from the current path, a side path can be taken, and developing a similar
solution as presented in this work for space-based radar. This type of radar has different power and weight



50 7. Conclusions

requirements than airborne radar. Whereas we determined that FPGA power usage is not an issue for air-
borne applications (Section 6.3), in space, this could be a large issue. The same holds for weight, which is of
somewhat smaller importance in airborne radar.

Space-based radar has the focus on the following algorithms, that will need to be especially optimized:

• FFT (range and doppler)
• 2/3-element beamforming



A
Large pixel errors in backprojected image

In Fig. A.1, the same image as in Fig. 5.1 is shown, but here the pixels with the largest errors are highlighted. It
can be seen, that the pixels with the largest relative error are mostly in the darkest area. This is not unexpected,
because small absolute errors have a larger impact there.

Most of largest absolute errors are in the brightest area, where larger deviations are expected because
the energy is high (note the dB scale of the image). However, something interesting can be seen: a part of the
black crosses are on a circle in the middle of the image. Since the drone with the radar is flying to the left of the
image, that means that those crosses are at an equal distance to the drone. Since every FFT bin corresponds
to a distance, if one of them has a large error, this could result in similar error patterns. This hypothesis was
tested, by manually setting one of the FFT bins to 0, and generating a backprojected image. When subtracting
this image from the original, it can be seen that indeed, a similar arc is generated (Fig. A.2).

100 200 300 400 500 600

meters

50

100

150

200

250

300

350

400

450

m
et

er
s

0

10

20

30

40

50

60

70

80

90

dB
 w

.r
.t.

 d
ar

ke
st

 p
ix

el
 in

 im
ag

e

errors above 6 dB (power)
100 largest absolute errors

Figure A.1: A single backprojected image. The largest errors
are marked and darkest area is highlighted as a black square.

0 100 200 300 400 500 600 700

meters

0

50

100

150

200

250

300

350

400

450

m
et

er
s

Figure A.2: The image made full-precision FFT was sub-
tracted from a version where 1 FFT bin was set to 0. In to-
tal the image is made up from 768 sweeps with length 16384.
The dots in this figure are pixels where the absolute value of
the difference is 2. It can be seen that this single point of er-
ror, that is introduced, gives a similar arc in the image as in
Fig. A.1.

51





B
Backprojection development setup

In Chapter 4, the design and implementation of backprojection in HLS was discussed. This appendix will go
into practical detail of how the framework was built, and how the results from Chapter 6 can be reproduced.

Initially, the radar signal processing algorithms are designed and implemented in MATLAB by the radar
engineers. By the hardware engineer, the resulting algorithm then has to be reimplemented on an FPGA.
To accomplish this, a lot of extra communication between the radar engineer and the hardware engineer is
required, and the hardware engineer has to understand some details about the workings of the algorithm
itself in order to optimize the numerical precision. To aid in this process, the framework shown in Fig. B.1
was developed.

In the MATLAB domain, the radar engineer initially develops the algorithm using for-loops. Conse-
quently, the code can be manually vectorized (converting the loops in to matrix operations), instrumented
with fixed point arithmetic, or compiled to a MEX file for faster execution. Another way to arrive at a MEX file,
is to use the wrapper around the HLS code and the compile_hls_mex.m script to compile the HLS C++
code to a MATLAB MEX.

The script that is instrumented with fixed-point code is used in order to aid the hardware developer with
the bitwidths of the intermediate variables. For more on this, refer to Section 4.5.2.

The testbench of the HLS code reads and writes binary data files, where the raw complex data samples are
stored in sequence. Two scripts are provided that convert to and from the MATLAB format, in order to input
the data, and extract the final image for examination in MATLAB.

Finally, after it is optimized and functionally correct, the HLS code can be compiled to VHDL to make it
ready for synthesis on real hardware.

53



54 B. Backprojection development setup

MATLAB Vivado FPGA

vectorized

for loops

bitwidths of variables

fixed point

VHDL

compile_hls_mex.m

HLS

MEX

data.bin
generate_bin.m

data.mat

load_bin_image.m

image.bin

image.mat

Figure B.1: Overview of the three different domains where backprojection can be executed, and the conversions between those domains.



C
Backprojection HLS code listings

The block diagram from Fig. 4.5 shows the structure of the HLS toplevel function in Listing C.1.

Additionally, in Listing C.2, the image generation function is shown. In this code, the number of integer
and fraction bits per intermediate variable can be seen, as mentioned in Section 6.1.

Listing C.1: Toplevel function

1 void backprojection(hls::stream<RC_interface> &rc_stream,
2 #ifndef RC_HALF_FLOAT
3 hls::stream<RC_shift> &rc_shift_stream,
4 #endif
5 hls::stream<Flightpath_axis> &fp_stream,
6 hls::stream<Rotmat_axis> &rotmat_stream,
7 hls::stream<BP_grid> (&bp_gridX_stream)[PARALLEL_INSTANCES],
8 hls::stream<BP_grid> (&bp_gridY_stream)[PARALLEL_INSTANCES],
9 hls::stream<Px_interface> (&image_stream)[PARALLEL_INSTANCES])

10 {
11 loop_sweep1: for (int sweep_i = 0; sweep_i < NSWEEPS; ++sweep_i) {
12 #pragma HLS dataflow
13 RC_ram rc_ram[PARALLEL_INSTANCES];
14 Flightpath_ram fp_ram[PARALLEL_INSTANCES];
15 #pragma HLS array_partition variable=rc_ram complete dim=1
16 #pragma HLS array_partition variable=fp_ram complete dim=0
17 Xyzrel xyzrel_mul[NCHAN][3][3];
18 Complex<RC_shift> rc_shift;
19

20 stream_in(rc_ram, fp_ram, rc_stream, fp_stream
21 #ifndef RC_HALF_FLOAT
22 , rc_shift_stream, rc_shift
23 #endif
24 );
25 xyzrel_mult(xyzrel_mul, rotmat_stream);
26

27 Xyzrel_ram xyzrel;
28 // all elements of xyzrel have to be read every clock cycle in generate_image
29 #pragma HLS array_partition variable=xyzrel complete dim=0
30

31 xyzrel_accumulate(xyzrel_mul, xyzrel);
32

33 for (int i = 0; i < PARALLEL_INSTANCES; ++i) {
34 #pragma HLS unroll
35 generate_image(i, rc_ram[i],
36 #ifndef RC_HALF_FLOAT
37 rc_shift,

55



56 C. Backprojection HLS code listings

38 #endif
39 fp_ram[i], xyzrel, bp_gridX_stream[i],
40 bp_gridY_stream[i], image_stream[i]);
41 }
42 }
43 }

Listing C.2: Image generation core

1 void generate_image(int instance, const RC_ram &rc_ram,
2 #ifndef RC_HALF_FLOAT
3 Complex<RC_shift> &rc_shift,
4 #endif
5 const Flightpath_ram &fp_ram,
6 const Xyzrel_ram &xyzrel,
7 hls::stream<BP_grid> &bp_gridX_stream,
8 hls::stream<BP_grid> &bp_gridY_stream,
9 hls::stream<Px_interface> &image_stream)

10 {
11 loop_img: for (int img_i = instance * PIXELS_PER_INSTANCE;
12 img_i < (instance+1) * PIXELS_PER_INSTANCE; ++img_i) {
13 #pragma HLS pipeline II=1
14

15 BP_grid bp_gridX, bp_gridY;
16 bp_gridX_stream >> bp_gridX;
17 bp_gridY_stream >> bp_gridY;
18

19 complex<float> pixel(0, 0);
20

21 ap_ufixed<24, 7> R_tx;
22 {
23 ap_fixed<24, 6> a = fp_ram[0] + xyzrel[0][0] - bp_gridX;
24 ap_fixed<24, 8> b = fp_ram[1] + xyzrel[0][1] - bp_gridY;
25 ap_ufixed<24, 5> c = fp_ram[2] + xyzrel[0][2];
26 #ifdef LOOKUP_SQRT
27 R_tx = lookup_sqrt(ap_ufixed<24, 13>(a * a + b * b + c * c));
28 #else
29 R_tx = MATH::sqrtf(a * a + b * b + c * c);
30 #endif
31 }
32

33 loop_ch2: for (int ch = 0; ch < NCHAN; ++ch) {
34 #pragma HLS unroll
35

36 ap_ufixed<24, 7> R_tr;
37 {
38 // range from image pixel to receiver antenna
39 ap_fixed<24, 6> a = fp_ram[0] + xyzrel[ch][0] - bp_gridX;
40 ap_fixed<24, 8> b = fp_ram[1] + xyzrel[ch][1] - bp_gridY;
41 ap_ufixed<24, 5> c = fp_ram[2] + xyzrel[ch][2];
42

43 ap_ufixed<24, 7> R_rx;
44 #ifdef LOOKUP_SQRT
45 R_rx = lookup_sqrt(ap_ufixed<24, 13>(a * a + b * b + c * c));
46 #else
47 R_rx = MATH::sqrtf(a * a + b * b + c * c);
48 #endif
49 // the division is automatically optimized to a right shift
50 R_tr = (R_tx + R_rx) / 2;
51 }
52 #ifdef LOOKUP_TRIG



57

53 ap_ufixed<10, 10, AP_RND> minus_phase = minus_k_1024 * R_tr;
54 complex<float> fact(
55 lookup_cos(minus_phase),
56 lookup_sin(minus_phase)
57 );
58 #else
59 float minus_phase = minus_k * R_tr;
60 complex<float> fact(
61 MATH::cosf(minus_phase),
62 MATH::sinf(minus_phase)
63 );
64 #endif
65

66 // ceil(log2(2995+1)) = 12 (uint so don’t add sign bit)
67 ap_uint<12> index_r = ap_ufixed<13, 13, AP_RND>(R_tr * Rsample_inv)
68 - ri_offset;
69

70 if (index_r < NBINS) {
71 auto *rc = &(rc_ram[index_r][ch]);
72 #ifdef RC_HALF_FLOAT
73 complex<float> rc2(rc->real, rc->imag);
74 #else
75 // convert int16 to floating point
76 union convert {
77 float fl;
78 uint32_t in;
79 };
80 Complex<convert> shifted;
81 shifted.real.fl = rc->real;
82 shifted.imag.fl = rc->imag;
83

84 // efficient way of dividing by a power of two
85 // (subtracting from the exponent)
86 // in order to scale the RC data back
87 if (shifted.real.in != 0) {
88 shifted.real.in =
89 (shifted.real.in & 0b10000000011111111111111111111111)
90 | ((shifted.real.in >> 23) - rc_shift.real << 23);
91 }
92 if (shifted.imag.in != 0) {
93 shifted.imag.in =
94 (shifted.imag.in & 0b10000000011111111111111111111111)
95 | ((shifted.imag.in >> 23) - rc_shift.imag << 23);
96 }
97

98 complex<float> rc2(shifted.real.fl, shifted.imag.fl);
99 #endif

100 pixel += fact * rc2;
101 }
102 }
103

104 image_stream << pixel;
105

106 }
107 }





Bibliography

[1] C.P.R. Baaij. Digital circuits in CλaSH: functional specifications and type-directed synthesis. PhD thesis,
University of Twente, January 2015. doi: 10.3990/1.9789036538039.

[2] Hui Bi, Guoan Bi, Lu Wang, and Xianpeng Wang. Airborne FMCW SAR sparse imaging: Initial results.
February 2019. doi: 10.1109/ICDSP.2018.8631544.

[3] F. Cholewa, M. Wielage, P. Pirsch, and H. Blume. An FPGA architecture for velocity independent back-
projection in FMCW-based SAR systems. In 2016 IEEE International Symposium on Signal Processing
and Information Technology (ISSPIT), pages 252–257, 2016. doi: 10.1109/ISSPIT.2016.7886044.

[4] F. Cholewa, M. Wielage, P. Pirsch, and H. Blume. Synthetic aperture radar with fast factorized back-
projection: A scalable, platform independent architecture for exhaustive FPGA resource utilization. In
International Conference on Radar Systems (Radar 2017), pages 1–6, 2017. doi: 10.1049/cp.2017.0494.

[5] I. G. Cumming, Y. L. Neo, and F. H. Wong. Interpretations of the omega-K algorithm and comparisons
with other algorithms. In IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Sympo-
sium. Proceedings (IEEE Cat. No.03CH37477), volume 3, pages 1455–1458, 2003. doi: 10.1109/IGARSS.
2003.1294142.

[6] David Elam and Cesar Iovescu. A block floating point implementation for an N-point FFT on the
TMS320C55x DSP. TMS320C5000 Software Applications, SPRA948, Sep 2003. URL https://www.
ti.com/lit/an/spra948/spra948.pdf.

[7] Giorgio Franceschetti and Riccardo Lanari. Synthetic aperture radar processing, page 66. CRC press,
1999.

[8] Dan Gisselquist. Double clocked FFT core, 2018. URL https://opencores.org/projects/
dblclockfft.

[9] LeRoy A. Gorham and Linda J. Moore. SAR image formation toolbox for MATLAB. In Edmund G. Zelnio
and Frederick D. Garber, editors, Algorithms for Synthetic Aperture Radar Imagery XVII, volume 7699,
pages 46 – 58. International Society for Optics and Photonics, SPIE, 2010. doi: 10.1117/12.855375.

[10] M. Hofstra. Comparing hardware description languages. University of Twente, 2012.

[11] Intel. Devices: 28 nm device portfolio; Cyclone V FPGA features. URL https://www.
intel.com/content/dam/www/programmable/us/en/pdfs/literature/pt/
cyclone-v-product-table.pdf.

[12] Intel. FFT IP core: User guide, November 2017. URL https://www.intel.com/content/dam/
www/programmable/us/en/pdfs/literature/ug/ug_fft.pdf.

[13] Intel. Cyclone V Device Handbook, volume 1: Device Interfaces and Integration. October
2019. URL https://www.intel.com/content/dam/www/programmable/us/en/pdfs/
literature/hb/cyclone-v/cv_5v2.pdf.

[14] J. J. L. Kant. Development of a FMCW SAR pre-processing interface. Internship report, De Haagse
Hogeschool, May 2019.

[15] Martin Kirscht and Carsten Rinke. 3D reconstruction of buildings and vegetation from synthetic aper-
ture radar (SAR) images. MWA, 1998.

[16] Ronald Kwok and William T. K. Johnson. Block adaptive quantization of Magellan SAR data. IEEE Trans-
actions on Geoscience and Remote Sensing, 27:375–383, Jul 1989. doi: 10.1109/36.29557.

59

https://www.ti.com/lit/an/spra948/spra948.pdf
https://www.ti.com/lit/an/spra948/spra948.pdf
https://opencores.org/projects/dblclockfft
https://opencores.org/projects/dblclockfft
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/pt/cyclone-v-product-table.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/pt/cyclone-v-product-table.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/pt/cyclone-v-product-table.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_fft.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_fft.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_5v2.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_5v2.pdf


60 Bibliography

[17] B.P. Lathi and Z. Ding. Modern Digital and Analog Communication Systems. Oxf Ser Elec Series. Oxford
University Press, 2010. ISBN 9780195384932.

[18] Miriam Leeser, Srdjan Coric, Eric Miller, Haiqian Yu, and Marc Trepanier. Parallel-beam backprojection:
An FPGA implementation optimized for medical imaging. Journal of VLSI signal processing systems for
signal, image and video technology, 39, 2005. doi: 10.1007/s11265-005-4846-5.

[19] Jiaguo Lu. Design Technology of Synthetic Aperture Radar. Wiley, 2019. ISBN 9781119564546.

[20] Maged Marghany. Chapter 8 - principle theories of synthetic aperture radar. In Maged Marghany, editor,
Synthetic Aperture Radar Imaging Mechanism for Oil Spills, pages 127 – 150. Gulf Professional Publish-
ing, 2020. ISBN 978-0-12-818111-9. doi: https://doi.org/10.1016/B978-0-12-818111-9.00008-2.

[21] M. Martone, M. Villano, M. Younis, and G. Krieger. Efficient onboard quantization for multichannel SAR
systems. IEEE Geoscience and Remote Sensing Letters, 16(12):1859–1863, Dec 2019. ISSN 1558-0571. doi:
10.1109/LGRS.2019.2913214.

[22] A. Moreira, P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, and K. P. Papathanassiou. A tutorial on
synthetic aperture radar. IEEE Geoscience and Remote Sensing Magazine, 1(1):6–43, 2013. doi: 10.1109/
MGRS.2013.2248301.

[23] Rikin J. Nayak and Jaiminkumar B. Chavda. Comparison of accelerator coherency port (ACP) and high
performance port (HP) for data transfer in DDR memory using Xilinx ZYNQ SoC. In Suresh Chandra
Satapathy and Amit Joshi, editors, Information and Communication Technology for Intelligent Systems
(ICTIS 2017) - Volume 1, pages 94–102, Cham, 2018. Springer International Publishing. ISBN 978-3-319-
63673-3.

[24] M. Otten, W. Vlothuizen, H. Spreeuw, and A. Varbanescu. Real-time processing of multi-channel SAR
data with GPUs. In 2016 European Radar Conference (EuRAD), pages 65–68, 2016.

[25] M. Otten, N. Maas, R. Bolt, M. Caro-Cuenca, and H. Medenblik. Circular micro-SAR for mini-UAV.
In 2018 15th European Radar Conference (EuRAD), pages 321–324, 2018. doi: 10.23919/EuRAD.2018.
8546633.

[26] M. P. G. Otten, J. S. Groot, and H. C. Wouters. Development of a generic SAR processor in The Nether-
lands. In Proceedings of IGARSS ’94 - 1994 IEEE International Geoscience and Remote Sensing Symposium,
volume 2, pages 903–905 vol.2, 1994. doi: 10.1109/IGARSS.1994.399295.

[27] J. J. Pimentel, A. Stillmaker, B. Bohnenstiehl, and B. M. Baas. Area efficient backprojection computation
with reduced floating-point word width for SAR image formation. In 2015 49th Asilomar Conference on
Signals, Systems and Computers, pages 732–726, 2015. doi: 10.1109/ACSSC.2015.7421230.

[28] G. Pinitas. Towards real-time SAR. MSc thesis, TU Delft, July 2014.

[29] Merrill I. Skolnik. Pulse radar. Encyclopædia Britannica, March 2019.

[30] T. Truong, I. Reed, R. Lipes, A. Rubin, and S. Butman. Digital SAR processing using a fast polynomial
transform. IEEE Transactions on Acoustics, Speech, and Signal Processing, 32(2):419–425, 1984. doi:
10.1109/TASSP.1984.1164307.

[31] L. M. H. Ulander, H. Hellsten, and G. Stenstrom. Synthetic-aperture radar processing using fast factor-
ized back-projection. IEEE Transactions on Aerospace and Electronic Systems, 39(3):760–776, 2003. doi:
10.1109/TAES.2003.1238734.

[32] Wouter Vlothuizen and Maarten Ditzel. Real-time brute force SAR processing. IEEE Radar Conference,
Pasadena, CA, USA, May 2009.

[33] M. Wielage, F. Cholewa, C. Fahnemann, P. Pirsch, and H. Blume. High performance and low power
architectures: GPU vs. FPGA for fast factorized backprojection. In 2017 Fifth International Symposium
on Computing and Networking (CANDAR), pages 351–357, 2017. doi: 10.1109/CANDAR.2017.101.

[34] Christian Wolff. Frequency-modulated continuous-wave radar (FMCW radar). radartutorial.eu, 2018.
URL https://www.radartutorial.eu/02.basics/pubs/FMCW-Radar.en.pdf.

https://www.radartutorial.eu/02.basics/pubs/FMCW-Radar.en.pdf


Bibliography 61

[35] Xilinx. Power Estimator (XPE) 2019.1.2. URL https://www.xilinx.com/products/
technology/power/xpe.html.

[36] Xilinx. UG1270: Vivado HLS optimization methodology guide, Apr 2018. v2018.1.

[37] Xilinx. UG902: Vivado design suite user guide, Jan 2019. v2019.2.

[38] Xilinx. Zynq-7000 SoC product selection guide, 2019. URL https://www.xilinx.com/support/
documentation/selection-guides/zynq-7000-product-selection-guide.pdf.

[39] Xilinx. UG871: Vivado design suite tutorial, August 2020. v2020.1.

[40] Y. Zhang, D. Zhu, X. Mao, X. Yu, J. Zhang, and Y. Li. Multirotors video synthetic aperture radar: System
development and signal processing. IEEE Aerospace and Electronic Systems Magazine, 35(12):32–43,
2020. doi: 10.1109/MAES.2020.3000318.

[41] Zhou Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality assessment: from error visibility
to structural similarity. IEEE Transactions on Image Processing, 13(4):600–612, 2004. doi: 10.1109/TIP.
2003.819861.

https://www.xilinx.com/products/technology/power/xpe.html
https://www.xilinx.com/products/technology/power/xpe.html
https://www.xilinx.com/support/documentation/selection-guides/zynq-7000-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/selection-guides/zynq-7000-product-selection-guide.pdf

	Introduction
	Problem statement
	Research questions
	Focus and methodology
	Thesis outline

	Background
	Synthetic Aperture Radar
	FMCW
	Why SAR?
	Processing platforms: motivation for using FPGAs

	SAR systems and parameters
	ONR SAR system on drone
	Expansion to other systems

	Beamforming
	Range compression
	Determining the range of the observed objects
	Finding the maximum range

	Backprojection
	Algorithm
	Making it real-time

	Conclusions

	Range compression in hardware
	Introduction
	Motivation for performing full onboard real-time processing
	Radar systems
	Onboard FPGA

	Intel FFT IP core parameters
	Twiddle factors
	Types of latency
	Matching the latency prediction with measurements

	Numerical precision
	Evaluation of precision
	Input scaling
	Quantization increases the noise floor of the backprojected image
	Block floating point
	Fixed point (for FFT lengths > 65536)
	Block-adaptive quantization

	Throughput
	Processing in parallel with multiple FFT cores
	Processing time budget
	Saving cycles in Burst mode

	Latency
	Finding the optimal configuration
	How to determine FPGA area usage
	Algorithm

	Conclusions

	Backprojection in hardware
	Platform
	Parameters and requirements
	Parameters
	Design requirements

	HLS theory
	HLS stream
	Loop unrolling
	Pipelining
	Task-level parallelism: dataflow

	Implementation
	Approach
	Block diagram
	Lookup tables for trigonometry and square root
	Range compressed data format
	HLS C++ to MATLAB MEX

	Numerical precision
	Dynamic range of image
	Fixed-point simulation in MATLAB
	Dynamic range of range compressed sweeps
	Image quality metrics

	Performance comparison with previous work
	Conclusions

	Range compression results
	Accuracy and errors
	FFT
	Backprojected image

	Area-latency tradeoff
	Optimal configurations for SAR and GMTI modes
	Twiddle factors
	Multipliers and DSP blocks
	Pareto plot

	Conclusions

	Backprojection results
	Accuracy and errors
	Area and latency
	Overview
	Performance w.r.t. previous work
	Verification of paralellization
	Comparison

	Power
	Testing on real hardware
	Conclusions

	Conclusions
	Summary
	Main contributions
	Future work
	Unification and expansion
	Space-based radar


	Appendices
	Large pixel errors in backprojected image
	Backprojection development setup
	Backprojection HLS code listings
	Bibliography

