

Delft University of Technology

Context Is King: The Developer Perspective on the Usage of Static Analysis Tools

Vassalo, Carmine; Panichella, Sebastiano; Palomba, Fabio; Proksch, Sebastian; Zaidman, Andy; Gall,
Harald C.
DOI
10.1109/SANER.2018.8330195
Publication date
2018
Document Version
Final published version
Published in
Proceedings of the 25th International Conference on Software Analysis, Evolution and Reengineering
(SANER),

Citation (APA)
Vassalo, C., Panichella, S., Palomba, F., Proksch, S., Zaidman, A., & Gall, H. C. (2018). Context Is King:
The Developer Perspective on the Usage of Static Analysis Tools. In Proceedings of the 25th International
Conference on Software Analysis, Evolution and Reengineering (SANER), (pp. 38-49). IEEE.
https://doi.org/10.1109/SANER.2018.8330195
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/SANER.2018.8330195
https://doi.org/10.1109/SANER.2018.8330195

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Context Is King: The Developer Perspective on the
Usage of Static Analysis Tools

Carmine Vassallo∗, Sebastiano Panichella∗, Fabio Palomba∗ †,
Sebastian Proksch∗, Andy Zaidman†, Harald C. Gall∗

∗University of Zurich, Switzerland, †Delft University of Technology, The Netherlands

Abstract—Automatic static analysis tools (ASATs) are tools that
support automatic code quality evaluation of software systems
with the aim of (i) avoiding and/or removing bugs and (ii) spotting
design issues. Hindering their wide-spread acceptance are their
(i) high false positive rates and (ii) low comprehensibility of
the generated warnings. Researchers and ASATs vendors have
proposed solutions to prioritize such warnings with the aim of
guiding developers toward the most severe ones. However, none
of the proposed solutions considers the development context in
which an ASAT is being used to further improve the selection of
relevant warnings. To shed light on the impact of such contexts
on the warnings configuration, usage and adopted prioritization
strategies, we surveyed 42 developers (69% in industry and
31% in open source projects) and interviewed 11 industrial
experts that integrate ASATs in their workflow. While we can
confirm previous findings on the reluctance of developers to
configure ASATs, our study highlights that (i) 71% of developers
do pay attention to different warning categories depending
on the development context, and (ii) 63% of our respondents
rely on specific factors (e.g., team policies and composition)
when prioritizing warnings to fix during their programming.
Our results clearly indicate ways to better assist developers by
improving existing warning selection and prioritization strategies.

Index Terms—Static Analysis, Development Context, Continuous
Integration, Code Review, Empirical Study

I. INTRODUCTION

Developers face many challenges in their daily work on
evolving software systems [26]. Their job is not only very
creative; at the same time, developers also need to avoid,
for instance, bugs and security issues. The ever-increasing
complexity of source code and constant change make this
hard [26]. A means for improving the quality of source code
and to reduce bugs are code reviews, in which other developers
review changes [13]. However, it does not matter if developers
validate their changes themselves or rely on the feedback
of others through code reviews, both cases require human
inspection. This human component introduces considerable
manual effort and is also very error-prone, because identifying
the bad cases in a pool of changes requires programming
experience. Hard and tedious tasks, such as source code
analysis, quality assessment, and debugging [22], provide an
excellent opportunity for tool support that does not only make
life of developers easier, but that also improves the quality of
the result. Such Automatic Static Analysis Tools (ASATs), i.e.,
tools that analyze code without executing it, can be integrated
in the development process.

Over the years, many such ASATs have been proposed.
They can automatically check code style [23], support formal

verification [11], detect bugs and vulnerabilities [20], [21],
or alert about more general actionable warnings [18], [37].
Previous work has shown that ASATs can help in detecting
software defects faster and cheaper than human inspection or
testing would [22], [5]. Nowadays, ASATs are regularly being
used in both open source [4] and industrial [39], [45] projects.
The domain has already matured enough that also industrial
grade tools exist by now [12].

Despite their advantages, people struggle in proficiently
using ASATs due to (i) the high rate of false positives (i.e.,
alerts that are not actual issues), (ii) low understandability
of the alerts, and (iii) lack of effectively implemented quick
fixes [22]. So far, related work was mainly concerned with
improving the selection strategies to better prioritize the warn-
ings. However, previous studies have shown that there is no
golden bullet. Indeed, Zampetti et al. [47] found that ASATs
related build failures are mainly caused by coding standard
violations. In contrast, the most frequently fixed ASAT warn-
ings during code review are related to coding structure (e.g.,
imports, regular expressions, and type resolution) [31]. These
results suggest that developers tend to fix different warnings
in different stages. We argue that the development contexts
(or stages) of usage of ASATs is a strong factor to consider to
further improve the prioritization of warnings, which can allow
the filtering of the irrelevant ones for the current development
activity or context. For this reason, in this paper we analyze
the following research questions:

RQ1 In which development contexts do developers use
ASATs?

RQ2 How do developers configure ASATs in different
development contexts?

RQ3 Do developers pay attention to the same warnings in
different development contexts?

We have conducted two studies to answer these questions.
We have first explored the adoption of ASATs in practice
through a survey. The survey has involved 42 developers (69%
working in industry and 31% open source contributors) that
integrate ASATs in their software release pipeline. We have
then enforced our findings through semi-structured interviews
with 11 industrial developers.

In our studies, we could validate that the prevalent devel-
opment contexts in which our participants use ASATs are
continuous integration, code review, and local programming.
In contrast to existing work that proposed global solutions for

978-1-5386-4969-5/18/$31.00 c© 2018 IEEE SANER 2018, Campobasso, Italy
Technical Research Papers

38

better prioritization of warnings [24], [38], we observed in our
study that both the selection of ASATs as well as the reaction
to specific kinds of warnings, depends on the different de-
velopment activities and thus, development contexts in which
the tools are being applied. While developers say that they
do not configure ASATs differently in the emerged contexts,
the current context actually has an impact on the categories
of warnings that are being considered by the developer. This
main finding represents the starting point for a more context-
based configuration of ASATs, guiding future research in the
area of automated warnings configuration and prioritization.

In summary, the contributions of this paper are as follows:
• We present a survey with 42 participants to explore the

practical usage of ASATs.
• We have conducted semi-structured interviews with 11

participants to validate our findings from the questionaire.
• We are the first to show the concrete value of considering

the development context in ASATs.
• We provide insights and potential implications for both

ASATs vendors and researchers interested in improving
techniques for the automated configuration and warning
prioritization of ASATs.

II. OVERVIEW OF THE RESEARCH METHODOLOGY

Originating from the agile coding movement, modern soft-
ware development processes are typically structured around
three established contexts, i.e., local programming (LP), con-
tinuous integration (CI), and code review (CR).

Local programming takes place in the IDEs and text editors
in which developers write code. ASATs are typically added to
those environments in the form of plugins and point developers
to immediate problems of the written source code, like coding
style violations, potential bugs in the data flow, or dead code.
Developers change the point-of-view in code reviews, when
they inspect source code written by others to improve its
quality. This task is often supported through defect check-
lists, coding standards, and by analyzing warnings raised by
ASATs [31]. The typical workflow in continuous integration is
different. Committed source code is automatically compiled,
tested, and analyzed [6], [19]. ASATs are typically used in
the analysis stage to assess whether the new software version
follows predefined quality standards [47].

In this paper, we conjecture that the development context
plays an important role in the adoption and configuration
of ASATs, and on the way that the actionable warnings are
selected. Figure 1 shows an overview over our methodology
that we have used to analyze our conjecture. We have con-
ducted two studies to analyze the impact of the development
context and apply two empirical activities, a survey and semi-
structured interviews, to generate the required data. We discuss
the details of both activities in the following.

A. Survey of ASAT Usage in Open Source and Industry

To explore the usage of ASATs in open-source and in-
dustrial projects, we designed a questionnaire. Our survey

Questionnaire

Extended
Questionnaire Interviews

First
Study

Second Study

Fig. 1. Overview of the Research Methodology

was implemented using Google Forms1. In a first step, we
relied on advertising the study on social media channels
to acquire study participants. To address more participants
outside academia, we also applied opportunistic sampling [15]
to find open source contributors (OSS) that adopt ASATs in
their development process. To this end, we analyzed OSS
projects in the TRAVISTORRENT dataset [7] that integrate
ASATs in their development process. We could identify these
projects from their corresponding source-code repositories by
extracting ASATs related options from their configuration files.
To avoid sending unsolicited mass emails, we only asked a
random sample of 52 developers for their participation.

The survey was available for three months to maximize the
amount of collected answers. In the course of this work, we
realized that we needed to ask additional questions to make
sense of the data, so we extended the initial set of questions
of the survey. We kept the original questions untouched and
continued collecting data. For this reason, the initial questions
were answered by all participants, but the extended question-
naire was only answered by the later participants.

In total we received 44 responses but we had to discard 2 of
them because the corresponding respondents declared that they
do not use ASATs. 17 of the remaining 42 participants that
completed our survey were developers from our list of personal
contacts, achieving a return rate of 33%. We announced the
extended version of the survey only over the same social
media channels as the first part and we found 25 additional
participants that answered these further questions. For the
latter group, we cannot establish the return rate.

Table I lists demographic information about our survey
participants. We had 29 (69%) industrial and 13 (31%)
open-source developers. Our participants have a very diverse
background. A dominant group does neither exist when split
by team size, nor when split by project size. Most of our
participants are experienced developers. When asked for a self-
estimation of their own development experience, most of them
would rate themselves as “very good” (49%) or “excellent”
(36%) developers. Furthermore, 79% of them have more than
5 years development experience, and 43% even more than 10.

We were also interested in profiling the tools our par-
ticipants use during development. Maven (38%) and Gradle
(29%) are the (CI) build tools most commonly used by our
participants. However, some participants rely on build tools

1https://gsuite.google.com/products/forms/

39

TABLE I
DEMOGRAPHIC INFORMATION ABOUT OUR SURVEY PARTICIPANTS

Team Size Projects Size [LoC]

1-5 24% 1,000-300,000 57%
5-10 37% 300,000-1,000,000 20%
10-15 18% >1,000,000 5%
>15 21%

Experience (Years) Experience (Rate)

1-5 21% Poor 0%
5-10 36% Fair 0%
>10 43% Good 15%

Very Good 49%
Excellent 36%

like SBT (4%), that is mostly used in Scala development, or
Bundler (2%), the most common build tool for Ruby. Only
2% of participants combine command line scripts to build the
project.

Pull requests form a well known method for collaborating
and sharing opinions [16], [17]. The largest part of our
respondents declare to be supported by distributed version
control systems as GitHub (25%), Gitlab (19%) or Bitbucket
(9%) during the code review process. Nevertheless, some
participants still tend to rely on a dedicated code review tool,
i.e., Gerrit (19%), or to use an informal process (16%).

B. Semi-Structured Interviews with Professional Developers

We have interviewed industrial experts that use ASATs
daily. This has helped us to overcome the typical limita-
tions of a survey, e.g., the lack of conscientious responses.
The interviews complement the survey. They provide another
perspective on the previous results and can possible explain
observations from the questionnaire.

We have defined a guideline for the interviews, but decided
to adopt a semi-structured interview format [36] that allows the
interviewees to guide the discussion, which possibly leads to
unexplored areas. We were prepared to conduct the interviews
both in person or remotely (using Skype) depending on the
preference of the participant. While we took notes in the
personal interviews, each remote interview has been recorded
and transcribed. Through reaching out to personal contacts,
we found 11 professional developers for our interviews.

Our interviewees work in 6 different companies and, as
shown in Table II, they cover different domains. 4 of them
are classic software engineers, while the other 7 lead the
development team where they are working or design the
overall architecture of a project. Thus we have participants
from both perspectives: (i) developers that are actually us-
ing ASATs and (ii) developers that have to “negotiate” the
expected product quality with the stakeholders and configure
their ASATs accordingly. Moreover, all of them use ASATs
during several activities. The majority (82%) include ASATs
in their CI build. A popular choice among our interviewees
is SonarQube (40%), a result that is in line with previous

TABLE II
DEMOGRAPHIC INFORMATION ABOUT INTERVIEWEES

Organization

Subject Years Role Domain Size

S1 20 Software Engineer IT consultancy 100,000
S2 8 Team Lead Financial Services 800
S3 35 Software Architect IT consultancy 5,000
S4 8 Product Owner Financial Services 800
S5 10 Team Lead Financial Services 800
S6 8 Solution and Technical Architect Financial Services 800
S7 26 Team Lead Content Management 100
S8 11 Technology Team Lead Financial Services 800
S9 10 Software Engineer Services and Innovation 70,000
S10 7 Software Engineer Financial Services 100
S11 12 Software Engineer Financial Services 70

work conducted in industry [44]. The other ASATs that are
most-employed in our participants’ companies are Findbugs
(13.6%), Checkstyle (9.1%) and IDE plugins, e.g., CodePro
(9.1%).

C. Data Analysis

We have used the data of both the survey and the interviews
to conduct two studies that are highlighted in Figure 1 with the
dotted circles2. The goal of the first study was to (i) assess the
contexts in which developers use ASATs and (ii) understand
whether they modify ASATs configuration. We have used
the initial set of questions that were answered by all survey
participants (see Section III).

The goal of the second study was to understand how the
context influences their selections of warnings to which they
react. This study is based on the extended questionnaire and
on the semi-structured interviews (see Section IV). The overall
findings of this work are then discussed in Section V.

III. THE DEVELOPMENT CONTEXTS INTEGRATING ASATS

The goal of this preliminary study is to understand (i)
what the development contexts are in which developers adopt
ASATs and (ii) how they configure them in the various
contexts, by surveying people that use ASATs either in open
source or industrial projects. Hence, the context of our study
includes (i) as subjects the participants of our survey (more
details about them in the next sub-sections) and (ii) objects,
that are the specific ASATs used by our respondents.

A. Survey Design

Our initial questionnaire consisted of 19 questions, which
include 8 multiple choice (MC), 4 checkboxes (C) and 7 open
(O) questions. Furthermore, we asked our participants to rate
the validity of 4 statements (S) and also provided them with an
opportunity to leave further comments. We have grouped our
various questions in Table III into three topics: (i) Background,
(ii) Adoption of ASATs, and (iii) Configuration of ASATs.

2The surveys’ responses, relevant statements form interviews and fur-
ther data analyses can be found at http://www.ifi.uzh.ch/seal/people/vassallo/
VassalloSANER18.zip.

40

TABLE III
SURVEY QUESTIONS. (MC: MULTIPLE CHOICE, S: STATEMENTS, C: CHECKBOXES, O: OPEN ANSWER)

Section ID Summarized Question Type # Resp.

Adoption

Q1.1 To what extent do you use ASATs during your activities? MC 42
Q1.2 During which activities do you use ASATs? O 34
Q1.3 Which ASATs do you usually work with? C 41
Q1.4 If you use more than one ASAT, why you’re adopting more than one ASAT and in which context? O 24
Q1.5 In which step of software development do you usually rely on the suggestions provided by ASATs? C 41

Configuration

Q2.1 To what extent do you change configuration of ASATs? MC 41
Q2.2 Do you use different configurations when working (i) in CI, (ii) Code Review, (iii) locally? If so, why? O 28
Q2.3 While configuring, do you pay attention to different warnings (i) in CI, (ii) Code Review, (iii) locally? O 11
Q2.4 Even if you don’t configure them, do you pay attention to different warnings (i) in CI, (ii) Code Review, (iii) locally? O 23
Q2.5 To what extent do you integrate warnings suggested by ASATs during CI? MC 40
Q2.6 To what extent do you integrate warnings suggested by ASATs during Code Review? MC 38
Q2.7 To what extent do you integrate warnings suggested by ASATs locally? MC 36

The BACKGROUND questions provided us with the de-
mographic information that we have reported in Section II.
However, for brevity, we omit these questions in the table.

The questions in the other two sections, ADOPTION and
CONFIGURATION, present the core part of the survey and
aim at understanding ASAT usage in practice. Specifically,
the ADOPTION OF ASATS section was aimed at assessing the
degree of integration of ASATs in the daily development. To
reach this goal, we initially asked participants how frequently
they use ASATs (Q1.1), verifying whether there were some of
them that never use static analysis tools during their activities.
Then, we surveyed them about the development activities
where they usually rely on ASATs (Q1.2), specifying the
mostly used types of ASATs (e.g., PMD, Findbugs, etc.)
(Q1.3). Furthermore, we wanted to understand whether they
used multiple ASATs (Q1.4) and in which development con-
texts (Q1.5).

The CONFIGURATION OF ASATS section (Q2.1-Q2.7) was
focused on confirming/rejecting previous results reporting how
developers usually avoid the modification of the ASATs default
configuration (e.g., the ones reported by Beller et al. [4]). For
this reason, we asked our participants when and which are the
contexts where they change the configuration of ASATs. Then
we asked them how frequently they fix warnings suggested by
ASATs in the different considered contexts.

B. Adoption of ASATs
Most of the respondents (38%) declared to use ASATs

multiple times per day, while 31% use them on average once
per day. As shown in Figure 2 the most used ASATs are
Findbugs (19%), Checkstyle (18%) and PMD (14%). Then,
SonarQube and ESLint are preferred respectively by 11% and
7% of our respondents. Few participants mention other tools,
e.g., Pylint, JSHint, Flake8, Checkmarx. The participants who
regularly use ASATs (i.e., multiple times per day, or once per
day) also indicated the development activities during which
they usually adopt the tools (Q1.2). This information allows
us to answer RQ1.

To verify the contexts in which developers use ASATs, two
of the authors (sorters) performed a closed card sorting [40] of

AS
AT

s

FindBugs

Checkstyle

PMD

SonarQube

ESLint

RuboCop

Pylint

JSHint

Flake8

Checkmarx

% Respondents
0 5 10 15 20

2

2

3

4

4

7

11

14

18

19

Fig. 2. Top-10 ASATs used by our participants.

the described development activities where the participants use
the ASATs tools. Thus to compute the development contexts
in which developers use ASATs we followed three steps.

1) The two sorters assigned independently each develop-
ment activity provided by the participants, (i.e., the
cards) to one of the proposed development contexts or
(if possible) to a new context. The sorters also had the
opportunity to say whether a provided activity was not
valid (e.g., it was too general to be treated as a real
development activity).

2) We computed Krippendorff’s alpha [25] to determine the
interrater reliability of the results of the first independent
card sorting.

3) We involved a third author to resolve the conflicts
(i.e., the cases where the two sorters partially agree or
disagree) and to avoid any bias related to the subjectivity
of the sorting.

The results of card sorting are shown in Table IV. Our
sorters discarded (i.e., marked as not valid) four activities
they considered as too generic (e.g., “before a deadline”) or
not as real activities (e.g., “checkstyle”). Out of the reported
13 activities, the sorters fully agreed on 9, partially agreed
on 5, and they never completely disagreed. We computed

41

TABLE IV
DEVELOMPENT ACTIVIES WHERE ASATS ARE INTEGRATED.

Activity Name # Resp. Development Context Agreement
LP CR CI

Code Maintenance 4 X X X Full
Code Reviewing 17 X Full
CI Build 8 X Full
In-Editor typing 1 X Full
Pre-commit 2 X X Partially
Pre-push 2 X Full
Build cycle 1 X Full
Refactoring 4 X X Partially
Jenkins stage 1 X Full
Debugging 2 X Partially
Documentation 1 X Partially
Quality Check 1 X X X Full
In-IDE Typing 1 X Full

Krippendorffs alpha coefficient to assess the reliability of the
performed sorting. With a score of 0.68, it shows an acceptable
agreement [25]. To summarize, the reported activities could be
completely mapped to our initial set of development contexts
and it was not necessary to add a new entry in the development
contexts we considered in Section II. Moreover, from the
results of Q1.5 we found that 37% of our participants rely
on them in CI, 33% in CR and 30% in LP.

Finding 1: Developers use ASATs in three different contexts:
Local Programming, Code Review and Continuous Integration.

To gain further insights into the adoption of ASATs in
various contexts, we asked the participants for the reasons
of using ASATs individually or in combination (Q1.4). An
important reason to combine several ASATs seems to be
that they “cover different areas”, i.e., different rulesets. For
instance “Checkstyle helps to detect general coding style
issues, while with PMD we can detect error-prone coding
practices (including custom rules). FindBugs helps to detect
problems which are more visible at bytecode level, like non-
optimal operations & resources leaks.”. Another reason is that
“ASATs are language-specific and developers sometimes deal
with multiple programming languages in the same project”.

Interestingly, several participants reported as main motiva-
tion for using multiple ASATs the fact that different types of
ASATs are needed in different contexts. Specifically:

“[we choose an ASAT] depending on the context. For
instance in CR I mainly use Findbugs and PMD.”.

In particular, they seem to need ASATs covering different rule
sets, as reported by one of the respondents:

“[We install different ASATs] because more tools give more
warnings and we can filter these warnings based on style

problems (mainly in code reviews) or bugs and other
problems possibly breaking compilability (mainly in CI)”.

Based on the answers reported above, we formulated a first
hypothesis to be validated:

Fr
eq

ue
nc

y

Kick-off

Monthly

Never

Weekly

% Respondents
0 15 30 45 60

7

20

22

51

Fig. 3. When ASATs are configured.

Hypothesis 1: Developers intend to enable different warnings in
different contexts.

C. Configuration of ASATs

Beller et al. [4] have shown that developers tend to adopt
ASATs as-is, without evolving or modifying their default
configurations. While they have mined this result from soft-
ware repositories, our RQ2 was focused on analyzing ASATs
configuration from a qualitative point of view.

The results of such analysis are shown in Figure 3. The
general findings by Beller et al. [4] are confirmed: indeed, in
more than half of the participants (51%) report that ASATs are
configured only during the project kick-off. However, a small
but not negligible percentage declared to evolve the tools’
configurations on a monthly basis (22%).

To better investigate the motivations behind the update
of the configuration, we asked whether developers tend to
configure ASATs with the aim of adapting them to a specific
development context. Most of the respondents (75%) do not
use different configurations and they “forbid configuring static
analysis tools as much as possible” because developers “want
to work with the end-state in mind” or because it is “time-
consuming to enable/configure them”. Thus, developers do not
use development context for configuring ASATs differently.

Finding 2: Most of the developers do not configure ASATs
depending on the development context.

Despite this general trend, a considerable portion (25%) of
our respondents configure ASATs differently depending on the
context. Specifically, some of the reasons are:

“When reviewing I want to check the quality of code, when
working on my own laptop I want to avoid committing bugs,

while style and error checks during CI”

and

“Locally I do not apply any particular configuration, while I
like specialized version of the configuration file for

continuous integration and code reviews (they require more
quality assessment).”

This 25% of our participants claiming to configure ASATs
were also surveyed to ask whether they pay attention to
different warnings while setting up the tools in different
contexts. Some respondents found it hard to answer even

42

though they provided us with some initial insights going in
the direction of monitoring different warnings (“for instance
in CI we check translations for issues, check images for being
consistent et cetera.”).

On the other hand, we asked participants that do not config-
ure ASATs to think about the types of warnings they usually
pay attention to in different contexts (Q2.4). Interestingly,
some of the participants said that “Style warnings are checked
during CR, warnings about possible bugs during CI”, they
are “less worried about pure style issues when developing
locally”, and “warnings might be not useful in different
circumstances [or development contexts]”. Thus, even though
they do not configure ASATs, they tend to use them differently
in the various contexts.

From these insights we learned that, even though the
practice is not wide-spread (as indicated by 75% of our
respondents), some developers might need or want to configure
ASATs differently depending on the development context.
Thus, we defined a second hypothesis:

Hypothesis 2: Despite their tendency to not configure ASATs,
developers pay attention to different types of warnings depending
on the context in which ASATs are integrated.

Finally, from the results of Q2.5-Q2.7 it is important to
remark that in all the three development contexts developers
rarely ignore the suggestions provided by the ASATs.

IV. THE IMPACT OF DEVELOPMENT CONTEXTS IN THE
ASATS CONFIGURATION

From the answers the developers provided in the context
of RQ1 we came up with two hypotheses that suggest how
context-aware ASATs might be useful for developers. The goal
of this second study is to verify these hypotheses. To this end,
we studied the developers’ opinions on the usage of ASATs
and on relevant warnings in different development contexts.
The context of the second study consists of (i) subjects, i.e.,
the participants to our extended questionnaire, as well as
the industrial practitioners interviewed, and (ii) objects i.e.,
the ASATs used in the analyzed development contexts. The
interviewees are numbered S1 to S11. In the next sections,
we describe the overall design of this second study and the
results achieved for the two investigated aspects, i.e., factors
influencing ASATs usage and relevant warnings in different
contexts.

A. Study Design

1) Extended Questionnaire Design: As described in Sec-
tion II, we extended our initial survey by including additional
questions about CONTEXT-BASED USAGE that are listed in
Table V. More specifically, we focused on two main types of
questions: (i) what are the factors driving developers’ decisions
to the selection of the warnings in the three considered
contexts (Q3.1, Q3.3, Q3.5) and (ii) what are the warnings
they pay more attention to in such contexts (Q3.2, Q3.4, Q3.6).

We have presented an initial list of likely reasons for
the usage of ASATs in different contexts to our participants

to encourage them to brain-storm about the actual motiva-
tions. Dillman et al. [10] have shown that this methodology
stimulates an active discussion and reasoning, thus helping
researchers during the investigation of a certain phenomenon.
Our proposed list consisted of five factors, i.e., (i) severity
of the warnings, (ii) internal policies of the development
team, (iii) application domain, (iv) team composition, and (v)
tool reputation. These factors have been selected from related
literature [24], [37] and from the popular question and answer
sites STACKOVERFLOW (e.g., [41], [42]) and REDDIT (e.g.,
[34], [35]), which are among the top discussion forums for
developers [8]. In the latter case, two of the authors of this
paper manually went over the developers’ discussions look-
ing for possible indicators expressing the likely motivations
pushing developers into using ASATs in different ways.

2) Semi-Structured Interviews: We created an interview
guide for our semi-structured interviews to make it easy to
keep track of our participants current and past experience
with ASATs and to allow them to disclose their viewpoints
about context based warnings. The guide was split into three
sections. In the first section, BACKGROUND, we asked years of
experience, study degree, programming languages used, role in
the company together with its size/domain and development
contexts where our interviewees adopt ASATs. The second
section called CONTEXTS’ UNDERSTANDING was about the
development contexts put in place in the organization the
participant belonged to. On one hand, we wanted to understand
their process to review and build new software. Different
to local programming, this process is usually regulated and
followed by all developers. On the other hand, we needed to
know how they use ASATs. In the last section, USAGE OF
ASATS IN EACH CONTEXT, we let our interviewees think
about the differences in the usage of ASATs in different
contexts. Furthermore, we intended to extract the factors (e.g.,
size of the change) they take into account while deciding the
warnings to look at in each context.

B. Main Factors Affecting the Warning Selection

Figure 4 shows the main factors for warning selection as
answered by the interviewed developers. The bars show how
often a warning type was stated (in percentage) for each
development context. The first thing that leaps to the eye
is represented by the importance given to the Severity of
the Warnings. This result confirms that developers mainly
rely on the prioritization proposed by the ASATs, and in
particular to the proposed levels of severity (e.g., crucial,
major, minor) for the selection of the warnings. Developers
seem to select the warnings on the basis of their severity, for
example postponing the warnings that represent “minor issues”
that can be postponed (S9). Our respondents also highlight that
it is vital for tools vendors to establish a clear strategy to assign
severity because developers “need to trust the tool in terms of
severity” (S3) and “it’s important to assign the right severity
to the rules/warnings” (S4). In CI the entire build process can
fail because of the severity assigned to a warning, “If there
are critical violations, the build fails” (S2).

43

TABLE V
ADDED SURVEY QUESTIONS RELATED TO THE CONTEXT-BASED USAGE OF ASATS. (O: OPEN QUESTION, S: STATEMENT)

Section ID Summarized Question Type # Resp.

Context-Based Usage

Q3.1 Which are the main factors you consider when deciding the set of warnings to look at during Continuous Integration? O 25
Q3.2 Which are the warning types that are more likely to be fixed during Continuous Integration? O 25
Q3.3 Which are the main factors you consider when deciding the set of warnings to look at during Code Review? S 25
Q3.4 Which are the warning types that are more likely to be fixed during Code Review? S 25
Q3.5 Which are the main factors you consider when deciding the set of warnings to look while working locally? S 25
Q3.6 Which are the warning types that are more likely to be fixed while working locally?” S 25

Fa
ct

or

Sev
eri

ty
of

the
 W

arn
ing

s

Polic
ies

 of
 th

e D
ev

elo
pm

en
t T

ea
m

App
lica

tio
n D

om
ain

Te
am

 Com
po

siti
on

Non
e o

f th
e a

bo
ve

To
ol

Rep
uta

tio
n

% Respondents
0 15 30 45 60

0

6.1

6.1

12.1

24.2

51.5

2.4

2.4

9.9

19.5

31.7

34.1

2.3

7

11.6

18.6

27.9

32.6

CI Code Review Local

Fig. 4. Main Factors while selecting warnings in different contexts.

While the severity assigned by ASATs plays the most
relevant role in the decision process, it is also important
to highlight that the surveyed developers pointed out other
factors contributing to it. For instance, they highlight that
the policies of the development team notably influence the
way they use ASATs. More specifically, monitoring specific
warnings might enforce the introduction of new policies in
a team. Indeed, as reported by S7, using ASATs seems to
be a “social factor”. For example, when a development
team decides to adopt a strict policy regarding the naming
conventions, it is better that a third party entity reminds a
team member when she is not following the established policy.
Before starting a project, it is crucial to define a policy in
terms of programming standards that should be followed by
the entire development team. As pointed out by S10 and
S11, ASATs support young team members to follow them.
However, as confirmed by S1 it is almost impossible to impose
the adoption of specific warnings to developers. Rather, the
warnings to monitor have to be somehow “negotiated with
developers” in the development team, even though in some
cases they are erroneously established by the stakeholders, as
reported by S2 and S5.

Application Type is the third factor used by our survey
participants to select warnings along the different contexts.
In particular, an application could be categorized according to

its destination, e.g., web service, mobile app, or its lifetime
expectation, e.g., long/short term project. According to S1
and S2, the choice of the monitored warnings depends on the
application type, which is definitely a key factor to consider.
Moreover, S3 also said that “short-term application does not
need to follow strict rules as the ones related to code structure
because they do not need to be maintained for a long time”.

Still, Team Composition represents another factor to take
into account. As explained by S3 it “affects the selection
of the warnings because a certain degree of knowledge is
needed to understand specific warnings such as SQL injection
flaw”. In other words, some respondents find such warnings
hard to integrate in case they do not have teammates having
enough expertise for fixing them. However, those warnings
can be easily understood if the ASATs provide exhaustive
descriptions [22] and possibly propose quick fixes. Thus,
Team Composition is not so popular among our participants
because if the chosen ASAT provides enough support in terms
of understandability, every kind of warning can be selected
independently from the expertise of the team.

Only a minority of our respondents see the Tool Reputation
as a crucial factor for warning selection. However, one of our
interviewees (S3) considered it very important since “develop-
ers sometimes do not trust ASATs, because there are no other
people that sponsored them”. It seems that developers need to
build up trust and confidence in specific ASATs, but it is not
perceived as a key factor for the warning selection.

Finally, one of our respondents highlights the presence of
a factor different from the proposed ones. Specifically, he
pointed out that “cost of fixing” is a key factor for the warn-
ing selecting. Indeed, the expected time/effort is important
because, when a deadline is approaching, developers might
want to postpone issues that do not have a strong impact in
the short-term (e.g., style conventions).

Finding 3: Severity is still the most important factor to take
into account during the selection of the warnings, even tough
other factors, e.g., policies of the development team and team
composition, play a non-marginal role in the decisional process.

C. Different Warnings in Different Contexts

With the aim of comparing the importance developers
give to warnings in the different development contexts, our
respondents were asked (Q3.2, Q3.4, Q3.6) to indicate which
warnings types they usually focus on. To make our results as

44

Resource
Interface
Metric

Regular	Expression
Concurrency

Object	Oriented	Design
Documentation	Convention

Code	Structure
Simplifications
Error	Handling

Logic
Naming	Conventions

Redundancies
Style	Convention

0 1

W
ar
ni
ng
	T
yp
e

%	Respondents	(norm.)

CI

CR

LP

W
ar

ni
ng

 T
yp

e

Resource
Interface

Metric
Regular Expression

Concurrency
Object Oriented Design

Documentation Conventions
Code Structure
Simplifications
Error Handling

Logic
Naming Conventions

Redundancies
Style Conventions

% Respondents
(norm.)

0 1 2 3 4

Resource
Interface
Metric

Regular	Expression
Concurrency

Object	Oriented	Design
Documentation	Convention

Code	Structure
Simplifications
Error	Handling

Logic
Naming	Conventions

Redundancies
Style	Convention

0 1

W
ar
ni
ng
	T
yp
e

%	Respondents	(norm.)

CI

CR

LPW
ar

ni
ng

 T
yp

e

Resource
Interface

Metric
Regular Expression

Concurrency
Object Oriented Design

Documentation Conventions
Code Structure
Simplifications
Error Handling

Logic
Naming Conventions

Redundancies
Style Conventions

% Respondents (norm.)
0 1 2 3 4

W
ar

ni
ng

 T
yp

e

Resource
Interface

Metric
Regular Expression

Concurrency
Object Oriented Design

Documentation Conventions
Code Structure
Simplifications
Error Handling

Logic
Naming Conventions

Redundancies
Style Conventions

% Respondents (norm.)
0 1 2 3 4

Fig. 5. Normalized Actionability of Different Warning Types

W
ar

ni
ng

 T
yp

e

Error Handling

Logic

Style Convention

Concurrency

Code Structure

% Respondents
0 4.75 9.5 14.25 19

9.5

9.5

11.1

12.7

19

Fig. 6. Top-5 warnings that are likely to be fixed in CI.

independent as possible from specific ASATs, we adopted the
General Defect Classification (GDC) proposed by Beller et
al. [4] as the list of warnings types.

Figure 5 illustrates warning types that our respondents
selected from the GDC in the different contexts. Note that
we normalized the data according to the min-max algorithm
[1] in order to better explain to what extent each warning type
is monitored in each context by our participants. Moreover, to
point out the warning types that are mostly checked in each
development context we factor out the top 5 warnings for CI
(Figure 6), Code Review (Figure 7) and Local Programming
(Figure 8). In the following, we describe the most relevant
categories our participants reported us.

Style Convention is the category concerning typical code
style defects such as bad code indentation, missing spaces or
tabs. Generally it is an important category of warnings both
in CI (third most selected in Figure 6) and locally (fourth
in Figure 8), but specifically during code review: it is the
warning type selected by the majority of our respondents, as
shown in Figure 7. This result confirms findings of previous
work [3], [31] that showed that modern code reviews mainly
fix design-related issues rather than functional problems. In-
deed, S7 reported that the first goal of code review is to
verify the adherence to code standards improving the code
understandability. S9 and S10 confirm during the interviews
that style-related issues are crucial points to address during

W
ar

ni
ng

 T
yp

e

Style Convention

Redundancies

Naming Conventions

Simplifications

Error Handling

% Respondents
0 4.25 8.5 12.75 17

7.8

7.8

11.7

14.3

16.9

Fig. 7. Top-5 warnings that are likely to be fixed in Code Review.

W
ar

ni
ng

 T
yp

e

Code Structure

Logic

Error Handling

Style Convention

Redundancies

% Respondents
0 3.5 7 10.5 14

10.3

10.3

12.2

13.8

13.8

Fig. 8. Top-5 warnings that are likely to be fixed locally.

code review. Furthermore, S9 considered it also very valuable
while working locally.

The importance of Simplifications differs along the contexts
as shown in Figure 5. Warnings in this category highlight
code that could be simplified to improve readability and
understandability. It is only among the top-5 warnings for code
review (Figure 7), confirming again previous findings in the
field [3]. However, overall, we observe that respondents mostly
select this type during local programming, where S9 states to
use ASATs to make the code easier to comprehend.

Redundancies concern redundant pieces of code or artifacts
that can be safely removed. It is perceived as a very important
issue during code review (the second among the most selected
warnings) but also locally although if in a lower extent.
Nevertheless it is sometimes selected also during CI as S1
usually does.

Our respondents also pointed out that they mainly look at
Naming Conventions during code reviews (third most selected
warnings in Figure 7), while the Logic warnings that are
concerned with comparisons, control flow and algorithms
are widespread in CI and local programming. Indeed, they
received the same number of votes in Figure 5. Thus, this result
highlights that developers have different goals in different
contexts, thus leading to a different usage in each of them.

Error Handling is the most selected warning in CI, i.e.,
occupies the first position among the chosen warnings. It is
quite popular locally (the third most voted in Figure 8) and less
important but still in the top-5 in code review. Indeed only S1
and S3 monitor this warning type during code reviews, while
mostly relying on the CI server to spot such issues.

45

Concurrency refers to defects that appear while sharing
resources among multiple interactive users or application
programs at the same time is the fourth warning type selected
in CI (Figure 6), meaning that developers are interested in
performing such checks that are usually time consuming by
enacting a new build.

Code Structure shares the first position with Logic in the
warnings that are likely to be fixed locally (Figure 8). This
category concerns rules aiming at checking the structure,
in terms of the file system or the coupling, for violations
of common conventions. Usually, developers organize the
structure of a project locally, so the code structure category
is not surprisingly very important for our respondents while
working locally. The same percentage of respondents indicate
the errors pertaining to program Logic as warning type usually
selected locally.

Finding 4: Developers consider important different warning types
in different contexts. When programming in the IDE, they observe
warnings related to code structure and logic; when performing
code reviews they mainly look at style conventions and redun-
dancies; during CI, they watch handling errors and homogenize
code logic and concurrency.

V. DISCUSSION

In this section we discuss the main findings of our study
and their implications for researchers and practitioners.

For the RQ1 we found that developers adopt ASATs while
working in the IDE, reviewing code made by other developers
or simply building new software releases. All those tasks flow
into three main development contexts, i.e., local programming
(LP), code review (CR) and continuous integration (CI). The
usage of ASATs is almost equally distributed along the con-
texts: 37% of our survey participants rely on ASATs while
integrating code changes in an existing project, 33% while
reviewing code and 30% while working locally.

ASATs are adopted in three main development contexts, i.e., local
environment, code review and continuous integration.

In RQ2, we discovered that 51% of the respondents to
our survey configure ASATs at least once before starting a
new project. This result generally confirms previous findings
reported by Beller et al. [4], who showed that developers did
not change ASATs configuration often. Despite its usage in
these three different contexts, the majority of developers (75%
of our participants) declared to not make a distinction while
using ASATs in CI, CR, or LP. The main motivation for which
ASATs users do not enable different warnings when switching
from one context to another is that they perceive not working
“with the end-state in mind” as harmful.

Developers do not enable different warnings in different devel-
opment contexts.

When analyzing the factors taken into account by developers
to select the enabled warnings, we found that severity is highly
relevant. However, it represents only a part of the whole

story and other factors also play a role. For instance, internal
policies of the development team (e.g., the enforcement of
specific programming standards or style conventions) or the
life expectation of an application.

Severity of the warnings is the main factor when selecting
warnings, however there are other factors to take into account.

In RQ3, we observed that developers usually pay attention
to different categories of defects while working locally, in code
review or rather in CI. Specifically, they mainly look at Error
Handling in CI, at Style Convention in Code Review, and
at Code Structure locally. These warnings are not mutually
exclusive though and some categories appear in different
contexts with different weights.

The actual ASATs’ configurations do not reflect the developers’
perception of warnings to monitor in each development context.

Our findings have important implications for both re-
searchers and ASATs vendors:

Biased Perception: We have seen a contrast between what
developers think about ASATs’ configuration and what they
pay attention to in practice. This suggests the need for future
research of novel techniques that can estimate the actual
factors that influence the warnings selection, e.g., metrics
that quantify developers’ team composition and experience,
while ASATs vendors need to provide or integrate additional
information besides the severity of warnings to developers.

Holistic Analysis of the Developers’ Behavior: Our study
revealed that there is not a mutually exclusive set of warnings
developers focused on in different contexts, even though such
warnings have a different relative “weight”. Moreover, we
found that it is almost impossible to impose the adoption of
specific warnings to developers. These results suggest the need
of future research devoted to the implementation of novel tools
that are able to estimate goods weights for the context specific
warning selection of ASATs. To this end, telemetry data about
developer activities (e.g., [32], [9]) might provide useful input
for personalized ASATs suggestions and, thus, improve the
usability of these tools in practice.

Towards Context-Awareness: A clear implication of our
results is the need for a new generation of ASATs that
are able to improve the user experience of developers using
them, by selecting the warnings to fix in a more context-
dependent manner. This includes (i) the adoption of novel
methodologies able to automatically understand the context
in which a developer is working in at a certain moment; (ii)
the definition of smart filters/prioritization mechanisms able to
learn from context-based historical information how to proper
support the adoption of ASATs in each context.

VI. THREATS TO VALIDITY

Threats to construct validity concern the way in which
we set up our study. Most of the participants performed the
two surveys in a remote setting: thus, we could not avoid
the lack of conscientious responses or oversee their actual

46

behavior in the various development contexts. Furthermore, the
metadata sent to us from study participants could be affected
by imprecisions: in some cases not all questions have been
answered or some of them were answered superficially. To
mitigate these threats we firstly shared the surveys using an
online survey platform and forced participants to fill the main
questions. Secondly, we complemented the questionnaires by
involving 11 industrial experts that use ASATs on a daily
basis. We plan to conduct a mining software repository study
to confirm the current qualitative findings in our future work.

A further threat relates to the relationship between theory
and experimentation. These are mainly due to imprecision
in our measurements. As for the survey, we used a 5-level
Likert scale [30] to collect perceived relevance of some
ASATs practices. To limit random answers, we provided to
the participants the opportunity to explain the answers with
free comment fields.

Threats to internal validity are related to confounding
factors that might have affected our results. In the context
of RQ1, the card sorting [40] matching ASAT usage to the
correct development contexts was firstly performed by two
authors independently, and then a discussion to solve conflicts
took place. A third evaluator participated in the discussion to
mitigate threats due to the subjectivity of the classification.

Threats to external validity concern the generalizability
of our findings. In our surveys, we involved both industrial
and open-source developers: they also had a very diverse
background and come from projects pretty different in terms of
domain and size. As for the developers involved in the semi-
structured interviews, they had a solid development experi-
ence. Clearly, it is possible that some of our results partially
generalize to other organizations and open source companies.

VII. RELATED WORK

In past and recent years, ASATs have captured the attention
of researchers under different perspectives. Flanagan et al. [14]
investigated the usefulness of two ASATs, i.e., ESC-Java and
CodeSonar, discovering that they have reliable performance.
Wagner et al. [46] evaluated the usefulness of FindBugs, PMD
and QJ Pro by analyzing four small Java projects. They found
that the tools results varied across different projects and their
effectiveness strictly depend on the developers programming
style. At the same time, Ayewah et al. [2] showed that the
defects reported by FindBugs are issues that developers are
actually interested in to fix. Zheng et al. [48] evaluated the
types of errors that are detected by bug finder tools and their
effectiveness in an industrial setting. Results of their study
show that the detected defects can be effective for identi-
fying problematic modules. Rahman et al. [33] statistically
compared defect prediction tools with bug finder tools and
demonstrated that the former achieve better results than PMD,
but worse than FindBugs. Instead, Nagappan et al. [27] found
that the warning density of static analysis tools is correlated
with pre-release defect density.

Kim and Ernst [24] studied how warnings detected by JLint,
FindBugs, and PMD tools are removed during the project

evolution history. Their results show that warning prioritization
done by such tools tends to be ineffective. Indeed, only 10%
of them are removed during bug fixing, whereas the others
are removed in other circumstances or are false positives. In
addition, Thung et al. [43] and Nanda et al. [28] evaluated
the precision and recall of static analysis tools by manually
examining the source code of open source and industrial
projects. Their results highlight that static analysis tools are
able to detect many defects even tough a substantial proportion
of them is still not captured.

Beller et al. [4] analyzed nine ASATs, finding that their
default configurations are almost never changed and that
developers tend to not add new custom analyses. Our work
acts as triangulation of these findings: indeed, we could
qualitatively confirm that developers tend to modify the default
configurations only at the beginning of the project.

The work by Zampetti et al. [47] and Panichella et al. [31]
were conducted in the context of continuous integration and
code review, respectively. The former showed that a small
percentage of the broken builds are caused by problems caught
by ASATs and that missing adherence to coding standards
is the main cause behind those failures. The latter showed
that during code review the most frequently fixed warnings
are related to imports, regular expression, and type resolution.
Nurolahzade et al. [29] confirmed the findings by Panichella et
al. and showed that reviewers not only try to improve the code
quality, but they also try to identify and eliminate immature
patches. Our study can be considered complementary to these
papers: while Panichella et al. [31] and Zampetti et al. [47]
focused on single contexts, we propose a more holistic analysis
of the developers’ behavior over different development stages
in order to understand which are the warning types that are
most relevant in the different contexts.

VIII. CONCLUSION

This paper has presented the developers’ perspective on the
usage of Automatic Static Analysis Tools (ASATs) in practice.
We have conducted two studies among developers working
in industry or contributing to open source projects. We have
first explored the adoption of ASATs in practice through a
survey and have then enforced our findings in semi-structured
interviews with industrial experts. Our findings show that (i)
developers mainly use ASATs in three different development
contexts, i.e., local environment, code review and continuous
integration, (ii) developers configure ASATs at least once
during a project, and (iii) although developers do not change
configuration when working in different contexts, they assign
different priorities to different warnings along the contexts.

ACKNOWLEDGMENTS

The authors would like to thank all the open-source and
industrial developers who responded to our survey, as well as
the 11 industrial experts that participated to the semi-structured
interviews. This research was partially supported by the Swiss
National Science Foundation through the SNF Projects Nos.
200021-166275 and PP00P2 170529.

47

REFERENCES

[1] L. Al Shalabi, Z. Shaaban, and B. Kasasbeh. Data mining: A prepro-
cessing engine. Journal of Computer Science, 2(9):735–739, 2006.

[2] N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix, and Y. Zhou.
Evaluating static analysis defect warnings on production software.
In M. Das and D. Grossman, editors, Proceedings of the 7th ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools
and Engineering, PASTE’07, San Diego, California, USA, June 13-14,
2007, pages 1–8. ACM, 2007.

[3] M. Beller, A. Bacchelli, A. Zaidman, and E. Juergens. Modern
code reviews in open-source projects: Which problems do they fix?
In Proceedings of the 11th working conference on mining software
repositories, pages 202–211. ACM, 2014.

[4] M. Beller, R. Bholanath, S. McIntosh, and A. Zaidman. Analyzing the
state of static analysis: A large-scale evaluation in open source software.
In IEEE 23rd International Conference on Software Analysis, Evolution,
and Reengineering, SANER 2016, Suita, Osaka, Japan, March 14-18,
2016 - Volume 1, pages 470–481. IEEE Computer Society, 2016.

[5] M. Beller, G. Gousios, and A. Zaidman. How (much) do developers test?
In 37th IEEE/ACM International Conference on Software Engineering
(ICSE 2015), pages 559–562. IEEE Computer Society, 2015.

[6] M. Beller, G. Gousios, and A. Zaidman. Oops, my tests broke the build:
an explorative analysis of travis CI with github. In Proceedings of the
14th International Conference on Mining Software Repositories, MSR
2017, Buenos Aires, Argentina, May 20-28, 2017, pages 356–367. IEEE
Computer Society, 2017.

[7] M. Beller, G. Gousios, and A. Zaidman. TravisTorrent: Synthesizing
Travis CI and GitHub for full-stack research on continuous integration.
In Proceedings of the 14th working conference on mining software
repositories, 2017.

[8] CryptLife. Top ten forums for programmers. https://www.cryptlife.com/
designing/programming/10-best-active-forums-for-programmers, 2017.

[9] M. Dias, D. Cassou, and S. Ducasse. Representing Code History
with Development Environment Events. In International Workshop on
Smalltalk Technologies, 2013.

[10] D. A. Dillman, J. D. Smyth, and L. M. Christian. Internet, phone, mail,
and mixed-mode surveys: the tailored design method. John Wiley &
Sons, 2014.

[11] V. D’silva, D. Kroening, and G. Weissenbacher. A survey of automated
techniques for formal software verification. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 27(7):1165–
1178, 2008.

[12] P. Emanuelsson and U. Nilsson. A comparative study of industrial static
analysis tools. Electronic notes in theoretical computer science, 217:5–
21, 2008.

[13] M. E. Fagan. Advances in software inspections. IEEE Trans. Software
Eng., 12(7):744–751, 1986.

[14] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe,
and R. Stata. Extended static checking for java. In Proceedings of
the ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), pages 234–245, 2002.

[15] L. Gibbs, M. Kealy, K. Willis, J. Green, N. Welch, and J. Daly. What
have sampling and data collection got to do with good qualitative
research? Australian and New Zealand journal of public health,
31(6):540–544, 2007.

[16] G. Gousios, M. Pinzger, and A. van Deursen. An exploratory study of
the pull-based software development model. In Proceedings of the 36th
International Conference on Software Engineering, ICSE 2014, pages
345–355, New York, NY, USA, 2014. ACM.

[17] G. Gousios, A. Zaidman, M.-A. D. Storey, and A. van Deursen. Work
practices and challenges in pull-based development: The integrator’s
perspective. In 37th IEEE/ACM International Conference on Software
Engineering (ICSE 2015, pages 358–368. IEEE Computer Society, 2015.

[18] S. Heckman and L. Williams. A systematic literature review of action-
able alert identification techniques for automated static code analysis.
Information and Software Technology, 53(4):363–387, 2011.

[19] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig. Usage,
costs, and benefits of continuous integration in open-source projects.
In Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering (ASE 2016), pages 426–437. ACM,
2016.

[20] D. Hovemeyer and W. Pugh. Finding bugs is easy. ACM Sigplan Notices,
39(12):92–106, 2004.

[21] C. Inc. Effective management of static analysis vulnerabilities and
defects. 2009.

[22] B. Johnson, Y. Song, E. R. Murphy-Hill, and R. W. Bowdidge. Why
don’t software developers use static analysis tools to find bugs? In
D. Notkin, B. H. C. Cheng, and K. Pohl, editors, 35th International
Conference on Software Engineering, ICSE ’13, San Francisco, CA,
USA, May 18-26, 2013, pages 672–681. IEEE Computer Society, 2013.

[23] S. C. Johnson. Lint, a C program checker. Bell Telephone Laboratories
Murray Hill, 1977.

[24] S. Kim and M. D. Ernst. Which warnings should I fix first? In
Proceedings of the the 6th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on The
Foundations of Software Engineering, ESEC-FSE ’07, pages 45–54.
ACM, 2007.

[25] K. Krippendorff. Content analysis: An introduction to its methodology.
Sage, London, 2nd edition, 2004.

[26] M. M. Lehman. On understanding laws, evolution, and conservation in
the large-program life cycle. Journal of Systems and Software, 1:213–
221, 1980.

[27] N. Nagappan and T. Ball. Static analysis tools as early indicators of pre-
release defect density. In Proceedings of the International Conference
on Software Engineering (ICSE), pages 580–586, 2005.

[28] M. G. Nanda, M. Gupta, S. Sinha, S. Chandra, D. Schmidt, and P. Bal-
achandran. Making defect-finding tools work for you. In Proceedings of
the International Conference on Software Engineering (ASE) - Volume
2, pages 99–108, 2010.

[29] M. Nurolahzade, S. M. Nasehi, S. H. Khandkar, and S. Rawal. The
role of patch review in software evolution: An analysis of the mozilla
firefox. In Proceedings of the Joint International and Annual ERCIM
Workshops on Principles of Software Evolution (IWPSE) and Software
Evolution (Evol) Workshops, pages 9–18, 2009.

[30] B. Oppenheim. Questionnaire Design, Interviewing and Attitude Mea-
surement. Pinter Publishers, 1992.

[31] S. Panichella, V. Arnaoudova, M. Di Penta, and G. Antoniol. Would
static analysis tools help developers with code reviews? In 22nd
IEEE International Conference on Software Analysis, Evolution, and
Reengineering, SANER 2015, Montreal, QC, Canada, March 2-6, 2015,
pages 161–170, 2015.

[32] S. Proksch, S. Nadi, S. Amann, and M. Mezini. Enriching in-ide process
information with fine-grained source code history. In International
Conference on Software Analysis, Evolution, and Reengineering, 2017.

[33] F. Rahman, S. Khatri, E. T. Barr, and P. T. Devanbu. Comparing static
bug finders and statistical prediction. In Proceedings of the International
Conference on Software Engineering (ICSE), pages 424–434, 2014.

[34] Reddit. Php static analysis tools. https://www.reddit.com/r/PHP/
comments/5d4ptt/static code analysis tools veracode/, 2017.

[35] Reddit. Static analysis tools. https://www.reddit.com/r/programming/
comments/3087rz/static code analysis/, 2017.

[36] P. Runeson and M. Höst. Guidelines for conducting and reporting
case study research in software engineering. Empirical Softw. Engg.,
14(2):131–164, Apr. 2009.

[37] J. R. Ruthruff, J. Penix, J. D. Morgenthaler, S. Elbaum, and G. Rother-
mel. Predicting accurate and actionable static analysis warnings:
an experimental approach. In Proceedings of the 30th international
conference on Software engineering, pages 341–350. ACM, 2008.

[38] J. R. Ruthruff, J. Penix, J. D. Morgenthaler, S. G. Elbaum, and
G. Rothermel. Predicting accurate and actionable static analysis warn-
ings: an experimental approach. In 30th International Conference on
Software Engineering (ICSE 2008), Leipzig, Germany, May 10-18, 2008,
pages 341–350, 2008.

[39] C. Sadowski, J. van Gogh, C. Jaspan, E. Söderberg, and C. Winter.
Tricorder: Building a program analysis ecosystem. In A. Bertolino,
G. Canfora, and S. G. Elbaum, editors, 37th IEEE/ACM International
Conference on Software Engineering, ICSE 2015, Florence, Italy, May
16-24, 2015, Volume 1, pages 598–608. IEEE Computer Society, 2015.

[40] D. Spencer. Card sorting: Designing usable categories. Rosenfeld
Media, 2009.

[41] StackOverflow. Static analysis tool customatiza-
tion. https://stackoverflow.com/questions/2825261/
static-analysis-tool-customization-for-any-language, 2017.

[42] StackOverflow. Static analysis tools.
https://stackoverflow.com/questions/22617713/
whats-the-current-state-of-static-analysis-tools-for-scala, 2017.

48

[43] F. Thung, Lucia, D. Lo, L. Jiang, F. Rahman, and P. T. Devanbu. To
what extent could we detect field defects? an empirical study of false
negatives in static bug finding tools. In Proceedings of the International
Conference on Automated Software Engineering (ASE), pages 50–59,
2012.

[44] C. Vassallo, G. Schermann, F. Zampetti, D. Romano, P. Leitner, A. Zaid-
man, M. D. Penta, and S. Panichella. A tale of CI build failures:
An open source and a financial organization perspective. In 2017
IEEE International Conference on Software Maintenance and Evolution,
ICSME 2017, Shanghai, China, September 17-22, 2017, pages 183–193.
IEEE Computer Society, 2017.

[45] C. Vassallo, F. Zampetti, D. Romano, M. Beller, A. Panichella, M. Di
Penta, and A. Zaidman. Continuous delivery practices in a large financial
organization. In 32nd IEEE International Conference on Software

Maintenance and Evolution (ICSME), pages 41–50, 2016.
[46] S. Wagner, J. Jürjens, C. Koller, and P. Trischberger. Comparing bug

finding tools with reviews and tests. In Proceedings of the 17th IFIP
TC6/WG 6.1 International Conference on Testing of Communicating
Systems, pages 40–55, 2005.

[47] F. Zampetti, S. Scalabrino, R. Oliveto, G. Canfora, and M. Di Penta.
How open source projects use static code analysis tools in continuous in-
tegration pipelines. In Proceedings of the 14th International Conference
on Mining Software Repositories, pages 334–344. IEEE Press, 2017.

[48] J. Zheng, L. Williams, N. Nagappan, W. Snipes, J. Hudepohl, and
M. Vouk. On the value of static analysis for fault detection in software.
IEEE Transactions on Software Engineering (TSE), 32(4):240–253,
2006.

49

