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SUMMARY

This thesis focuses on possible platforms for a bottom-up approach towards realizing
and characterizing atomically assembled magnetic and electronic artificial lattices. For
this, we make use of the scanning tunneling microscope (STM), which provides a local
probe of the magnetic and electronic properties of the sample and allows for the atom-
by-atom construction of extended lattices. On the one hand, to address avenues for con-
structing extended spin lattices, we study single Fe atoms coordinated on the four-fold
symmetric nitrogen binding site of the Cu2N/Cu3Au surface—a system which permits
large-scale atomic assembly, and allows for independent access to both the orbital and
spin degrees of freedom. On the other hand, we investigate the viability of laterally con-
fined vacuum resonances on the chlorinated Cu(100) surface as a basis for constructing
electronic lattices. We atomically assemble dimers and trimers of various geometries to
determine the tight-binding parameters, and as a proof of concept, experimentally re-
alize a looped Su-Schrieffer–Heeger chain using this platform. These studies are made
possible by means of a low-temperature, ultra-high vacuum STM, which allows for atom
manipulation and, via spectroscopic techniques, permits us to locally probe the sample
density of states and detect inelastic excitations of the spin and orbital angular momen-
tum.

In chapter 1, we set the stage by sketching the subject matter of this thesis and con-
textualizing it in terms of existing literature. Similarly, chapter 2 outlines the theoret-
ical framework necessary for understanding single atom magnetism in the context of
effective Hamiltonians. This chapter also provides a brief overview of the tight binding
method for describing the electronic structure of lattices. In chapter 3, we shift gears to
focus on the experimental methods relevant to the work presented in this thesis, such
as the basic principles of scanning probe microscopy, as well as an overview of spectro-
scopic and atom manipulation techniques.

Chapter 4 presents a detailed look at nitrogen-bound Fe atoms on the Cu2N/Cu3Au
surface: the symmetry of this binding site engenders a nearly uniaxial crystal field that
preserves the orbital momentum of these magnetic adatoms in the out-of-plane direc-
tion. The unquenched orbital moment leads to an enhanced single ion anisotropy, which
carries direct consequences for the stability and lifetime of the atom’s magnetization.
Furthermore, a sufficiently weak spin-orbit coupling permits us to address the spin and
orbital degrees of freedom separately, inciting and probing independent excitation of
each magnetic moment. In addition to a conventional spin excitation, we observe an in-
elastic orbital excitation that corresponds to a full reversal of the atomic orbital
momentum. This process is facilitated by a charged virtual state, and leaves the atom’s
spin stated unaltered. These results, in conjunction with the easy atom manipulation
afforded by this platform, form a promising outlook for future studies on magnetic arti-
ficial lattices, in which the constituent building blocks can interact via both the spin and
orbital angular momentum.
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x SUMMARY

Chapter 5 is devoted to the study of laterally confined field-emission resonances,
which can be seen as artificial atoms in the context of atomically assembled electronic
lattices. In this chapter, we use atom manipulation of single chlorine vacancies on the
chlorinated Cu(100) surface to construct atomic-scale potential wells along the surface:
by assembling vacancies to reveal a square patch of the underlying metal, we can engi-
neer lateral confinement of the vacuum-localized electronic states, thereby generating
particle-in-a-box modes. We demonstrate that alterations of the confining potential—
which can either be implemented via a changing tip-sample distance or through atom
manipulation—can be used to carefully tune the electronic lifetime of these states. To
determine the lifetime-limiting processes, we model the transport through the confined
resonances: in doing so, we find the electron lifetime depends critically on bulk band
structure of the underlying structure. Demonstrating control over the electronic life-
time, and consequently the time-average state occupation, is a useful proof of concept
for studies focusing on simulating quantum many-body states with artificial lattices.

In chapter 6, we assess the feasibility of using laterally confined field emission res-
onances as a platform for artificial lattices. We begin by characterizing the coupling
between confined vacuum states in various dimer and trimer geometries. Our results
indicate that hybridization only occurs with the aid of a so-called bridging patch, which
constitutes an additional exposed metal patch connecting neighbouring patches. Within
this context, we find we can tune the hopping strength, the orbital overlap, and the on-
site energy of these artificial atoms by adjusting the structure geometry. We use this
platform to realize a looped dimerized chain; as expected from previous works, differ-
ential conductance measurements support the existence of a domain wall state in this
structure. We point to future avenues for exploring topological states in higher energy
bands, such as those found in a diamond chain lattice.

Chapter 7 addresses the more technical aspects of field-emission resonances. Namely,
we discuss a simple one-dimensional approach for modelling the out-of-plane potential
to reproduce the key features of laterally unconfined field-emission resonances, such as
their spatial extent and energy. Additionally, we propose a normalization scheme for ex-
tracting quantitative information about the local density of states from constant-height
or constant-current differential conductance measurements taken at applied bias volt-
ages exceeding the sample work function. Finally, we present a transport model for
estimating the electronic lifetimes of these vacuum-localized, discretized states from
height-dependent spectroscopic data. We benchmark this method for a bare Cu(100)
surface and recover a lifetime that is in fair agreement with previously reported values.



SAMENVATTING

Dit proefschrift richt zich op mogelijke platforms voor een bottom-up benadering voor
het realiseren van atomair opgebouwde magnetische en elektronische kunstmatige roos-
ters. Hiervoor maken we gebruik van de scanning tunneling microscoop (STM), die
lokaal inzicht biedt in de magnetische en elektronische eigenschappen van materia-
len en de atoom-voor-atoom constructie van verlengde roosters mogelijk maakt. Ener-
zijds bestuderen we afzonderlijke Fe-atomen geplaatst op de viervoudige symmetrische
stikstofbindingsplaats van het Cu2N/Cu3Au-oppervlak — een systeem dat atomaire op-
stellingen op grote schaal mogelijk maakt, en zorgt voor onafhankelijke toegang tot zo-
wel de orbitale als de spin-vrijheidsgraden—om methodes voor het bouwen van ver-
lengde spinroosters te vinden. Anderzijds onderzoeken we de haalbaarheid van lateraal
opgesloten vacuümresonanties op het gechloreerde Cu(100)-oppervlak als basis voor
het construeren van elektronische roosters. We creëren atomaire dimeren en trimeren
van verschillende geometrieën om de tight-binding parameters te bepalen en verwe-
zenlijken, als proof of concept, een lusvormige Su-Schrieffer–Heeger keten met dit plat-
form. Deze studies worden mogelijk gemaakt door middel van een lage-temperatuur,
ultrahoog vacuüm STM, die atoommanipulatie mogelijk maakt en, via spectroscopische
technieken, ons in staat stelt om lokaal de dichtheid van toestanden te onderzoeken en
inelastische excitaties van het spin en orbitale impuls moment te detecteren.

In Hoofdstuk 1 leggen we de basis door het onderwerp van dit proefschrift te schet-
sen en het in termen van bestaande literatuur te plaatsen. Op dezelfde manier schetst
Hoofdstuk 2 het theoretische raamwerk dat nodig is om het magnetisme van één atoom
te begrijpen in de context van effectieve Hamiltonianen. Dit hoofdstuk geeft ook een
kort overzicht van de tight-binding methode voor het beschrijven van de elektronische
structuur van roosters. In Hoofdstuk 3 verleggen we de focus naar de experimentele me-
thoden die relevant zijn voor het werk dat in dit proefschrift wordt gepresenteerd, zoals
de basisprincipes van scanning probe microscopie, evenals een overzicht van spectro-
scopische en atoommanipulatietechnieken.

Hoofdstuk 4 geeft een gedetailleerd overzicht van stikstofgebonden Fe-atomen op
het Cu2N/Cu3Au-oppervlak: de symmetrie van deze bindingsplaats veroorzaakt een bijna
uniaxiaal kristalveld dat het orbitale impulsmoment van deze magnetische adatoms in
de richting uit het vlak behoudt. Het niet-samengedrukte orbitale moment leidt tot een
versterkte enkel-ion-anisotropie, wat directe gevolgen heeft voor de stabiliteit en levens-
duur van de magnetisatie van het atoom. Bovendien stelt een voldoende zwakke spin-
baankoppeling ons in staat om de spin- en orbitale vrijheidsgraden afzonderlijk aan te
pakken, en onafhankelijke excitatie van beide magnetisch momenten op te wekken en te
onderzoeken. Naast een conventionele spin-excitatie, nemen we een inelastische orbi-
tale excitatie waar die overeenkomt met een volledige omkering van het atomaire orbi-
tale moment—dit proces wordt mogelijk gemaakt door een geladen virtuele toestand en
laat de spin van het atoom onveranderd. Deze resultaten, in combinatie met de gemak-

xi



xii SAMENVATTING

kelijke atoommanipulatie die dit platform biedt, vormen een veelbelovend vooruitzicht
voor toekomstige studies over magnetische kunstmatige roosters, waarin de bouwste-
nen kunnen interageren via zowel de spin als het orbitale impulsmoment.

Hoofdstuk 5 is gewijd aan de studie van lateraal begrensde veldemissieresonanties,
die gezien kunnen worden als kunstmatige atomen in de context van atomair opge-
bouwde elektronische roosters. In dit hoofdstuk gebruiken we atoommanipulatie van
enkelvoudige chloorvacancies op het gechloreerde Cu(100)-oppervlak om op atomaire
schaal potentiaalputten langs het oppervlak te construeren: door vacancies zo te ma-
nipuleren dat ze een vierkant stukje van het onderliggende metaal onthullen, maken
we laterale opsluiting van de vacuümgelokaliseerde elektronische toestanden mogelijk,
waardoor deeltjes-in-een-doos toestanden worden gecreëerd. We demonstreren dat ver-
anderingen van het beperkende potentiaal—die kunnen worden geïmplementeerd via
een veranderende tip-sample afstand of door atoommanipulatie—kunnen worden ge-
bruikt om de elektronische levensduur van deze toestanden zorgvuldig af te stellen. Om
de levensduurbeperkende processen te bepalen, modelleren we het transport door de
resonanties: hierbij ontdekken we dat de levensduur van het elektron in grote mate af-
hangt van de bulkbandstructuur van de onderliggende structuur. Het demonstreren van
controle over de levensduur van het elektron, en bijgevolg de tijdsgemiddelde toestands-
bezetting, is een nuttig proof of concept voor studies die zich richten op het simuleren
van kwantum veel-lichaam toestanden met kunstmatige roosters.

In Hoofdstuk 6 onderzoeken we de haalbaarheid van het gebruik van lateraal be-
grensde veldemissieresonanties als platform voor kunstmatige roosters. We beginnen
met het karakteriseren van de koppeling tussen beperkte vacuümtoestanden in verschil-
lende dimeer- en trimeergeometrieën. Onze resultaten geven aan dat hybridisatie alleen
plaatsvindt met behulp van een zogenaamd overbruggingsstuk, dat een extra blootge-
stelde stuk metaal vormt dat aangrenzende stukken verbindt. Binnen deze context vin-
den we dat we de hopsterkte, de orbitale overlap en de lokale energie van deze kunst-
matige atomen kunnen afstemmen door de geometrie van de structuur aan te passen.
We gebruiken dit platform om een lusvormige gedimeriseerde keten te realiseren; zoals
verwacht op basis van eerdere werken, ondersteunen differentiële geleidingsmetingen
het bestaan van een domeinwandtoestand in deze structuur. We wijzen op toekomstige
wegen voor het verkennen van topologische toestanden in hogere energiebanden, zoals
die gevonden zijn in een diamanten kettingrooster.

Hoofdstuk 7 behandelt de meer technische aspecten van veldemissieresonanties.
We bespreken namelijk een eenvoudige ééndimensionale benadering voor het modelle-
ren van het potentiaal in de normaalrichting van het vlak om de belangrijkste kenmerken
van lateraal onbeperkte veldemissieresonanties te reproduceren, zoals hun reikwijdte
en energie. Daarnaast dragen we een normalisatieschema’s aan voor het extraheren van
kwantitatieve informatie over de lokale dichtheid van toestanden uit differentiële ge-
leidingsmetingen met constante hoogte of constante stroom uitgevoerd bij aangelegde
spanningen die de werkfunctie van het materiaal overschrijden. Ten slotte presenteren
we een transportmodel voor het schatten van de elektronische levensduur van deze ge-
discretiseerde toestanden op basis van hoogteafhankelijke spectroscopische gegevens.
We benchmarken deze methode voor een kaal Cu(100)-oppervlak en vinden een levens-
duur die redelijk in overeenstemming is met eerder gerapporteerde waarden.



1
INTRODUCTION

We often describe materials in terms of their atomic constituents, casting the bulk mag-
netic and electrical properties as collective behaviour that emerges from the interactions
between these building blocks. Implicit to this framework are two entangled concepts:
the transition between the physics that governs single atoms to the principles dictating
the bulk behaviour of materials; as well as the nature and impact of the various inter-
atomic interactions at play. One avenue towards gaining understanding of these two
facets is via so-called artificial lattices, which take a bottom-up approach towards engi-
neering and studying novel states of matter [1–3]. These designer lattices can function
as model systems, lending insight into the evolution of material properties and allowing
for control over the symmetries and interactions responsible for specific electronic and
magnetic behaviour. Moreover, this approach circumvents the issues surrounding mate-
rial synthesis and allows for creating toy models for simulating physical systems that are
computationally intractable, such as those hosting many-body quantum states [4–11].

Although a range of experimental platforms have been used for the creation of artifi-
cial matter [6, 9–14], the low-temperature scanning probe framework is uniquely suited
to such studies as it provides a local measure of the sample density of states and en-
ables atom-by-atom assembly of extended architectures [1–3]. Unlike self-assembled
artificial lattices [15–17]—which allow for relative ease and rapidity in realizing large-
scale lattices—the freedom permitted by atom manipulation can be advantageous when
seeking a high degree of flexibility and precision. In this case, the lattice is constructed
by meticulously coordinating single atoms or molecules into the desired position. This
allows for complete customizability of the lattice architecture, including the deliberate
introduction of defects and impurities. Moreover, recent advances demonstrating au-
tomatable and large-scale atom manipulation renders this methodology well-suited to
the construction of lower-dimensional artificial matter [18].

To date, several studies have made use of the atom manipulation capabilities of-
fered by low-temperature scanning tunneling microscopy to realize a variety of artificial
lattices, and to study their designed electronic and magnetic properties using spectro-
scopic techniques [19–32]. Two distinct approaches are usually taken for investigating
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2 1. INTRODUCTION

artificial electronic and magnetic architectures: for the former, atomic or molecular im-
purities are positioned to realize a particular potential landscape through quantum con-
finement; whereas in the latter case, spin lattices are constructed by manipulating ad-
sorbates with a well-defined magnetic moment. In the following, we will detail common
approaches towards controlling and studying the electronic and spin degrees of freedom
in artificial lattices within a scanning probe framework.

The electronic structure and properties of model systems can be simulated with arti-
ficial electronic lattices, which provide a high degree of control over the lattice parame-
ters and are typically devoid of real-world complications, making their characterization
more straightforward. The ability to construct these systems from the bottom-up allows
us to closely trace the evolution of the electronic band structure, tune the interaction
strength of the constituent artificial atoms, and tailor the geometry of the overall lat-
tice. This freedom permits a detailed look at the effects of strain, reduced dimensional-
ity, symmetry and periodicity (or the lack thereof), defects, coupling, and topology [19–
28]. The constituents of artificial electronic lattices typically find their origin in quantum
confinement: the first demonstrations of engineered confinement of electronic states
through atomic assembly showed the emergence of quantum well states [33, 34]—a se-
ries of discretized states whose energy and spatial extent depend on the particulars of the
confining potential, analogous to the bounds states of an atom [19, 35–39]. Several av-
enues have been pursued for achieving this localization to engineer artificial atoms, such
as assembling adatom clusters to generate an attractive potential [35, 36], positioning
adsorbates to create a scattering potential [37, 38], and using atomic-scale defects, like
vacancies in a dielectric monolayer [19, 25–27] and dangling bonds [39]. A constraint in
the scope of such studies thus far is the limited coherent lifetime of the engineered elec-
tron states [40, 41], which prohibits investigations of many-body states and electronic
correlations.

A similar simulative approach can be applied to the study of magnetism—a collec-
tive phenomena that arises when individual atomic spins interact to form an ordered
array. In this case, local spins are manipulated in place to construct extended magnetic
architectures, and probed using spin-sensitive spectroscopic techniques. The choice of
surface can be critical to the atom manipulation possibilities, as well as to the lifetime
and nature of the spin states, with the most common substrates consisting of metal sur-
faces, such as Cu(111) [29] or Pt(111) [42], or ultra-thin insulators grown on bulk metallic
crystals, such as Cu2N on Cu(100) [30, 32, 43–45] or MgO on Ag(100) [46–48]. Equally
relevant is the choice of adsorbate: this determines the magnitude of the magnetic mo-
ment and the relevance of spin-orbit interactions, with transition metal atoms—such as
iron, manganese, and cobalt—constituting typical choices. Much like their electronic
analog, a certain degree of freedom is permitted in designing artificial magnetic lattices
through the choice of surface and adsorbate: in this case, the relevant parameters are the
magnet moment, the spin-spin interactions, the magnetic anisotropy, and the lifetime of
the magnetic states. In conjunction with control over the magnitude and direction of the
external magnetic field, these parameters allow for creating spin lattices that exist in dis-
tinct coupling regimes and exhibit, for instance, bistable magnetic states [44, 45, 49, 50],
frustrated spin textures [29], non-collinear spin states [51], and long-range spin correla-
tions [44, 52].
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Finding an appropriate and versatile platform is part of the challenge facing experi-
mental realizations of artificial electronic and magnetic lattices. In both cases, the scope
of study is largely limited by the characteristics of the individual building blocks, which
is in turn partly determined by the choice of material platform. This constitutes the main
focus of this thesis: exploring and addressing candidate building blocks for constructing
extended artificial lattices from the bottom-up.

Chapters 2 and 3 will address the relevant theoretical and experimental groundwork
necessary for descriptions of low-dimensional magnetism and the electronic structure
of lattices. From there, we will turn our focus to a promising spin system for the study of
magnetic lattices: an Fe atom coordinated atop the four-fold symmetric nitrogen bind-
ing site of the Cu2N/Cu(100) surface. Our findings, detailed in chapter 4, indicate that
the highly symmetric local environment preserves the free-atom value of the orbital mo-
mentum along the out-of-plane direction, which, in conjunction with a sufficiently weak
spin-orbit coupling, enables the decoupling of the spin and orbital angular momentum.
This forms a promising basis for constructing magnetic lattices that rely on interactions
mediated by both these magnetic degrees of freedom.

Subsequently, we shift gears to address a new avenue for building electronic artificial
lattices: laterally confined vacuum resonances. In chapter 5, we characterize the resul-
tant discretized states and model the transport through them to estimate the electronic
lifetime. Our results demonstrate that we can tune the average lifetime and occupation
of these states by changing the overall confining potential, be it through atomic assem-
bly or variations in the tip-sample distance. We more directly address the suitability
of using these confined vacuum resonances as a platform for artificial lattices in chap-
ter 6, where we characterize the coupling parameters for dimers and trimers of various
geometries. As a proof of principle, we construct a well-understood looped dimerized
chain and recover the expected behaviour. We additionally indicate possible routes for
studying topological states in higher energy bands with this platform. Finally, chapter
7 addresses the theoretical and experimental challenges in deriving quantitative infor-
mation from differential conductance measurements of these vacuum resonances, and
proposes solutions—such as a normalization method for extracting the local density of
states, and a simple transport model for deducing the lifetime—for overcoming such
hurdles.





2
THEORETICAL FRAMEWORK

The atom-by-atom realization of quantum states of matter generally relies on understand-
ing and controlling the interactions between electrons, orbitals, and spins. In this chapter,
we present two theoretical frameworks for treating the constituent building blocks of arti-
ficial spin and electronic lattices: first, we will discuss low-dimensional magnetism in the
context of an effective Hamiltonian that treats the relevant interactions at play—such as
the crystal field, spin-orbit coupling, and Zeeman interaction. Second, we will present a
basic overview of the tight-binding method for describing the electronic structure of cou-
pled spinless atoms in extended structures.

5
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2.1. DESCRIBING SINGLE ATOM MAGNETISM
The magnetic moment of an atom is typically determined by the orbital magnetic mo-
ment, whose origin lies in the orbital motion of the valence electrons in space, and the
spin magnetic moment, which arises from the valence electrons’ intrinsic angular mo-
mentum, i.e. their spin. These two contributions are usually of similar magnitude in
an isolated atom with full rotational symmetry. Accordingly, the state of an electron in
a free atom is defined—in the absence of strong spin-orbit coupling—by four quantum
numbers: the orbital momentum ℓ and its associated magnetic quantum number mℓ,
the magnetic spin quantum number ms , which specifies the component of the total spin
s along the quantization axis, and, the principal quantum number n. The spherical sym-
metry of the isolated atom preserves the degeneracy between the mℓ subshells that cor-
respond to a specific orbital momentum ℓ, which, in combination with the spin multi-
plicity, results in (2ℓ+1)(2s +1) states in the ground state multiplet [53, 54]. As such, the
electron configuration of the ground state can be trivially predicted by Hund’s rules [55].

However, the electron states can dramatically change when the atom is placed in a
crystal environment: in this case, the atom is subject to a static electric field generated by
the ions in the crystal, referred to as the crystal field. The crystal field violates the spher-
ical symmetry of the free atom, and imposes the local (point) symmetry of the crystal
structure. Interactions between the valence electrons of the central atom and the sur-
rounding ions (ligands) can raise or lower the energies of the valence atomic orbitals,
thereby breaking the degeneracy characteristic of an isolated atom. This crystal field
splitting can complicate predictions of the ground state multiplet and carry implications
for the magnetic moments of the central atom [53, 55, 56].

A common method for simplifying this problem is to condense the relevant interac-
tions at play into an effective Hamiltonian framework. This approach has been widely
used to predict and understand the magnetic properties of surface-adsorbed magnetic
atoms, where it is possible to only consider the magnetic degrees of freedom: the orbital
moment and the spin. We will discuss the interactions pertinent to surface-adsorbed
magnetic atoms—such as the crystal field (section 2.1.1), the spin-orbit coupling (sec-
tion 2.1.2), and the Zeeman interaction (section 2.1.3)—and how they are incorporated
into an effective Hamiltonian that solely accounts for the relevant magnetic degrees of
freedom.

2.1.1. THE ORIGIN AND EFFECTS OF CRYSTAL FIELDS
Crystal fields can have a significant impact on the magnetic properties and ground-state
multiplets of surface-adsorbed atoms—but the magnitude and nature of these effects
critically depends on the symmetry of the local environment and the degree of orbital
overlap between the central atom and the neighbouring ligands. To better elucidate the
role of the crystal field, we will initially restrict our focus to the point-charge contribution
to the crystal field splitting: in this case, the ions in the crystal can be simply represented
by point charges that interact with the valence electrons of the central atom.

Consider, for instance, an open-shell 3d transition metal atom in an octahedral en-
vironment comprised of negatively charged ligands (Fig. 2.1). Electrostatic repulsion be-
tween the valence d-electrons and the surrounding point-charges will result in a crystal
field splitting: for example, the dz2 and dx2−y2 orbitals will experience strong Coulomb
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Figure 2.1: Effects of a spherical or octahedral crystal field on a 3d transition metal. a The degenerate va-
lence d-orbitals of a free 3d transition metal. The degeneracy is preserved in a rotationally invariant crystal
field, but the levels are raised in energy; this is not the case for an octahedral coordination, in which a crystal
field splitting (∆) separates the |z2〉 and |x2 − y2〉 states from the |xz〉, and |y z〉 states. Adapted from [57]. b Il-
lustration of the electron densities associated with the d-orbitals of a free atom. The point-charge distribution
associated with an octahedral environment is schematically represented with grey circles.

repulsion, as the lobes of their corresponding wave functions directly point toward the
neighbouring anions in this environment (Fig. 2.1b). On the other hand, the dx y , dxz ,
and dy z states are characterized by electron densities directed away from the surround-
ing negative point-charges, meaning they experience significantly weaker repulsion. This
interaction acts to lower the energy of the dx y , dxz , and dy z orbitals relative to that of the
dz2 and dx2−y2 orbitals.

In addition to the point-charge contribution, the covalency between the d-electrons
and the neighbouring ligands can play an important role in understanding the effects
of the crystal environment. For such considerations, it is insufficient to regard the crys-
tal as merely comprised of point-charges—the particular valency and orbital nature of
the surrounding ligands becomes relevant in this framework, which is often referred to
as ligand field theory. For example, consider a scenario in which the neighbouring lig-
ands are characterized by 2p valence orbitals; in this case, the dx2−y2 orbital will strongly
overlap with the p orbitals oriented along the x or y axes, engendering a large hopping
matrix element between the two (see Fig. 2.2a). This hybridization between the p and
d orbitals results in the formation of bonding and antibonding states (Fig. 2.2c), with
an energy splitting determined by the degree of overlap between the valence orbitals.
Of course, this overlap depends on the symmetry and spatial orientation of the specific
d and p orbitals in question: for instance, the dx y orbital will form weak π bond with
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Figure 2.2: Simplified illustration of ligand field effects in an octahedral coordination. a, b Spatial orien-
tation of the |x2 − y2〉 (a) and |x y〉 (b) orbitals of a 3d metal, with the relevant p-orbitals of the surrounding
ligands illustrated. The overlap between the central atom and surrounding ligands will result in σ (a) or π (b)
hybridization. c Illustration of the ligand field splitting due hybridization between a single d and p level, and
the resultant bonding (B) and antibonding (AB) levels. Figure adapted from [55].

the orbitals shown in Fig. 2.2b, but will be orthogonal to the ligand orbitals shown in
Fig. 2.2a.

ORBITAL QUENCHING

A common consequence of crystal field splitting is orbital momentum quenching—an
effect in which the orbital moment of an atom tends to zero when it’s placed in a crys-
tal environment. Qualitatively, this occurs because the potential the atom experiences
in the crystal breaks rotational invariance. A more rigorous description can be given by
considering the five wave functions corresponding to the d-orbitals: these atomic or-
bitals are linear combinations of the orbital angular momentum eigenstates, also known
as the spherical harmonics Y mℓ

ℓ
, and take the form:

|x y〉 = ip
2

(|−2〉− |2〉) , |x2 − y2〉 = 1p
2

(|−2〉+ |2〉) ,

|xz〉 = 1p
2

(|−1〉− |1〉) , |y z〉 = ip
2

(|−1〉+ |1〉) ,

|z2〉 = |0〉,
where we have denoted the orbital angular momentum states with the associated mag-
netic number |mℓ〉. Note that the expectation value of the orbital momentum is strictly
zero for these atomic orbitals, as each one is a linear combinations of ±mℓ states. How-
ever, in a spherically symmetric environment—where the degeneracy of all the d-levels
is preserved—you can freely make a change of basis between the orbital angular mo-
mentum states and the atomic orbitals. In other words, the presence of rotational invari-
ance ensures that the Lz and L2 orbital angular momentum operators commute with the
Hamiltonian, i.e. [L2, H ] = 0, [Lz , H ] = 0, where the orbital angular momentum operator
is defined as L = (Lx ,Ly ,Lz ).

However, if this degeneracy is (partially) lifted, then such a change of basis may not
be allowed, possibly leading to a quenched orbital momentum (〈Lz〉 = 0) for the eigen-
states of the Hamiltonian. For instance, consider the splitting between the atomic d-
levels in an octahedral environment composed of point-charges (Fig. 2.1a): as we saw,
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this will result in two degenerate states |z2〉 and |x2−y2〉 that are higher in energy than the
three fold degenerate states, |x y〉, |xz〉, and |y z〉. In the lower energy states, the degener-
ate |xz〉 and |y z〉 states can be written in terms of the orbital momentum eigenstates:

|1〉 =− 1p
2

(|xz〉− i |y z〉) |−1〉 =− 1p
2

(|xz〉− i |y z〉),

meaning that the orbital moment is well-defined in this case, i.e. Lz |±1〉 =±ħ|±1〉 [55].
However, the energy splitting between |x y〉 and |x2 − y2〉 means that these states cannot
be written in terms of a single orbital angular momentum eigenstate—as such, 〈Lz〉 = 0
and the orbital momentum is said to be quenched. In other words, orbital states com-
posed of the same ±mℓ states contribute to the angular momentum only if the one such
orbital can rotationally transformed into the other (degenerate) orbital; however, if there
is an energy cost associated with this rotation (i.e. the orbitals are not degenerate), then
the orbital momentum is quenched on those states.

In general, crystal field effects can also lend the orbital moment a preferred direction.
For instance, in the simple octahedral coordination considered here, we saw that the
|x y〉, |xz〉, and |y z〉 states form an effective ℓ̃= 1 triplet (mℓ̃ = 0,±1), whereas the orbital
momentum of the higher energy doublet is quenched. As we will see in the following
section, the crystal field effects on the orbital momentum can carry consequences for the
spin momentum as well, since these two magnetic degrees of freedom may be coupled
via spin-orbit interaction.

2.1.2. SPIN-ORBIT INTERACTION
Spin-orbit coupling arises due to the relativistic interaction between the electron’s spin
and orbital momentum: in the inertial frame, the orbiting nucleus constitutes a current
that generates an effective magnetic field at the origin. This magnetic field interacts with
the electron spin at rest, which results in a coupling between the spin and orbital mo-
mentum. This interaction can be described by [53, 55, 56, 58]:

HSO =λL ·S, (2.1)

where L and S are the orbital momentum and spin operators, respectively, and λ is the
spin-orbit coupling constant. The above expression assumes that the individual electron
spins (si ) can be summed to form a total spin momentum

∑
i si = S; analogously, the

total orbital momentum is approximated by the sum of the individual orbital moments,
whereby

∑
i ℓi = L—this is the so-called Russell-Saunders scheme, which can be applied

to light atoms (atomic number Z < 30, where λ ∼ Z 2), where the spin-orbit interaction
is sufficiently weak [53, 55].

An important consequence of LS coupling is that it generates total angular momen-
tum states J = L+S, meaning that states with a specific orbital and spin momentum are
split in energy according to the total angular momentum. In other words, the spin and
orbital momentum are not separately conserved in the presence of the spin-orbit cou-
pling ([L, H ] ̸= 0, [S, H ] ̸= 0), whereas the total angular momentum is conserved ([J, H ] =
0). Often the spin-orbit interaction can be treated as a perturbation, which means one
can consider the magnitudes of the spin and orbital momentum to be conserved as well
[S2, H ] = 0, [L2, H ] = 0) [56].
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To better elucidate this, consider the square of the total angular momentum:

J2 = L2 +S2 +2L ·S, (2.2)

where J can take values from L +S to |L −S|, and the multiplicity of each level is given
by 2J +1. From Eq. 2.2, we can deduce the energy contribution of the spin-orbit term,
〈ψ|HSO|ψ〉:

〈λL ·S〉 = λ

2

[
J (J +1)−L(L+1)−S(S +1)

]
. (2.3)

This contribution to the multiplet structure is often treated using a perturbative approach—
or even neglected—when describing open-shell, isolated 3d transition metals, where
λ∼ 50 meV [59].

CRYSTAL-FIELD AND SPIN-ORBIT COUPLING

In the above description of the spin-orbit interaction, we implicitly assumed L and J to
be good quantum numbers—strictly speaking, this is not the case for an atom in a crys-
tal environment. This is a particularly relevant consideration for 3d transition metals,
where the spin-orbit coupling is typically much smaller than the crystal field splitting,
meaning the crystal field cannot be treated pertubatively. However, it is usually possi-
ble to define an effective orbital momentum in such cases, which allows for a straight-
forward understanding of spin-orbit interactions.

Consider the crystal-field split triplet and doublet states for an atom in a octahe-
dral coordination (Fig. 2.1a): the lower energy triplet has an effective orbital momentum
ℓ̃ = 1, whereas the orbital momentum is quenched in the higher energy doublet. The
spin-orbit interaction does not act on states with 〈Lz〉 = 0 to first order—higher-order
effects are still possible, and it is precisely these effects that typically generate single-site
magnetic anisotropy in atoms with a quenched orbital moment [58]. The spin-orbit in-
teraction is more important for the triplet states, where it can act to first order via λ̃L̃ ·S,
where λ̃ is an effective spin-orbit coupling and L̃ =∑

i ℓ̃i .

2.1.3. ZEEMAN SPLITTING
The Zeeman effect describes the energy level splitting experienced by an atom in a uni-
form external field B, which occurs due to the interaction between the atom’s net mag-
netic moment and the external magnetic field. For a single electron, this effect can
be described by accounting for the orbital magnetic moment (µℓ = −µBℓ, where µB is
the Bohr magneton) and the spin magnetic moment (µs = −geµB s, where ge ≈ 2 is the
anomalous gyromagnetic factor) in defining the total magnetic moment (µ = µℓ+µs ).
In the Russell-Saunders framework (L = ∑

i ℓi , S = ∑
i si ), this can be readily extended

for multi-electronic atoms to arrive at a general description of the Zeeman contribution
to the Hamiltonian:

HZ =−(µL +µS ) ·B =µB (L+2S) ·B. (2.4)

If this interaction term is smaller than the spin-orbit coupling, then the orbital and spin
momenta are not separately conserved and L and S do not commute with the Hamiltonian—
this is the so-called weak field limit. In this regime, the Zeeman correction to the energy
can be determined using first order perturbation theory:

EZ =µB 〈L+2S〉 ·B (2.5)
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Since the total momentum is conserved, it is helpful to reframe the expectation value
above in terms of J , such that L+2S = J+S, and consider the projection of of the spin
momentum onto the total angular momentum:

〈L+2S〉 =
〈(

1+ S · J

J 2

)
J

〉
=

[
1+ J (J +1)−L(L+1)+S(S +1)

2J (J +1)

]
〈J〉. (2.6)

The term in square brackets is known as the Landé g -factor, typically denoted by g J .
Thus, the Zeeman energy contribution in the weak-field limit can be written as:

EZ =µB g J m j B , (2.7)

where B is the magnitude of the external field along the quantization axis.

2.1.4. EFFECTIVE HAMILTONIANS
An effective Hamiltonian framework is often adopted to predict and understand the
magnetic properties of single atoms in a crystal environment: in this context, the rele-
vant degrees of the freedom are the spin and the orbital momentum—or, in the presence
of strong spin-orbit coupling, the total angular momentum. Here, we will restrict our fo-
cus to effective Hamiltonians specifically applied to surface-adsorbed magnetic atoms
with relatively weak spin-orbit coupling. We will initially consider the case in which the
orbital momentum of the adatom is quenched or largely diminished due to ligand field
effects [48, 60, 61]. In this scenario, an effective spin Hamiltonian that accounts for the
Zeeman splitting and the magnetic anisotropy induced by the surface is sufficient for
describing the ground state multiplet of the adatom.

However, it is possible that the binding site symmetry and ligand field preserve the
orbital moment—in which case the effects of the crystal field on the orbital moment and
the role of the spin-orbit coupling have to be explicitly accounted for in order to map
the ground state multiplet onto an effective Hamiltonian [46, 48, 62, 63]. We will first
address the effective spin Hamiltonian, and from there expand our view to account for
the effects of an unquenched orbital moment on the ground state multiplet.

EFFECTIVE SPIN HAMILTONIAN

One approach to describing the low energy physics of individual, surface-adsorbed atoms
is by means of an effective spin Hamiltonian that only considers the spin degree of free-
dom [61, 64–66]. This means the relevant interaction terms are described within the
subspace of the ground state spin [58]—a valid approach when the ligand field interac-
tion quenches the orbital momentum, as often happens for surface-adsorbed atoms [30,
46, 48, 59, 61].

Magnetic anisotropy is the directional dependence of the local spin, and is responsi-
ble for conferring the spin with a preferred orientation in space—as such, it is a critical
consideration in the description of an atom’s spin states. This anisotropy arises from the
interplay between the ligand field produced by the surface and the adatom’s intrisic spin-
orbit coupling: generally, the ligand field splitting lends the orbital moment a preferred
orientation relative to the crystallographic axes, and this directionality is translated to
the spin magnetic moment via higher-order spin-orbit interactions. In the context of
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Figure 2.3: Multiplet calculations using an effective spin Hamiltonian Energy levels obtained by diagonaliza-
tion of the effective spin Hamiltonian (S = 2), as a function of the uniaxial magnetic anisotropy strength D , the
transverse magnetic anisotropy E , and the external magnetic field Bz . The energy scale is defined relative to
the ground state energy. The uniaxial anisotropy breaks the degeneracy (2S+1) between the spin states accord-
ing to their ms quantum number: since D < 0, the lowest energy doublet corresponds to the |ms 〉 = |±2〉 states;
the second lowest energy doublet corresponds to the |±1〉 states; the highest energy level is the |0〉 state. The
energy splitting between the lowest and highest energy states is given by 4D . The transverse anisotropy mixes
the |ms 〉 states, and the resulting levels are no longer eigenstates of the Sz operator. The Zeeman interaction
splits the levels according to their net magnetic moment and the strength of the field.

an effective spin Hamiltonian, the combined role of the ligand field splitting and spin-
orbit interaction is condensed into descriptions of the magnetic anisotropy, which can
be written in terms of a complete set of high-order spin operators:

∑
k=2,4,6

k∑
q=−k

B q
k Oq

k (2.8)

where Oq
k are the hermitian Stevens operators applied to the spin eigenstates, and B q

k are
their associated real coefficients [53]. However, these anisotropy coefficients are gener-
ally difficult to determine, even from first principles calculations [67–69]. A simplified
approach towards describing the magnetic anisotropy is to solely consider the lowest
order uniaxial (B 0

2 O0
2) and in-plain (B 2

2 O2
2) anisotropy terms—the magnitudes of which

can be deduced from STM-based experimental techniques, such as inelastic electron
tunneling spectroscopy (see section 3.2.3).

This phenomenological approach towards the single spin Hamiltonian has been suc-
cessfully applied to describe the spin states of transition metals [61, 70–74], and in its
standard form is written as:

H =−gµB B ·S+DS2
z +E(S2

x −S2
y ), (2.9)

where g is the (isotropic) g -factor. The first term of this Hamiltonian describes the Zee-
man effect, whereas the second and third terms are phenomenological representations
of the uniaxial and transverse magnetic anisotropies, the strength of which is character-
ized by D and E , respectively [59, 64].

As shown in Fig. 2.3, the uniaxial magnetic anisotropy splits the zero-field degen-
eracy of the spin states according to spin’s projection along the quantization axis (z):
for instance, a negative uniaxial magnetic anisotropy (D < 0) means that states with a
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maximal projection along the quantization axis are preferred, thereby engendering a so-
called easy axis. Conversely, a positive uniaxial magnetic anisotropy (D > 0) indicates
that states with minimal projection along the z-axis lie lower in energy, resulting in an
easy-plane orthogonal to the quantization axis. The transverse term, on the other hand,
is typical of adsorption sites with C2v symmetry and acts to mix states with different ms

quantum numbers—this becomes evident when we rewrite this contribution in terms of
the raising and lowering operators, such that S2

x −S2
y = 1

2 (S2++S2−).

EFFECTIVE SPIN-ORBIT HAMILTONIAN

In the context of surface-adsorbed magnetic atoms with an unquenched orbital mo-
ment, the ligand field is incorporated into the effective Hamiltonian to reflect the sym-
metry of the adatom binding site via a set of effective ligand field parameters that are
applied to the orbital momentum eigenstates [46–48]. Furthermore, the spin-orbit term
is explicitly included—an important distinction, since this interaction can induce a split-
ting that is linear in λ, thereby engendering an enhanced magnetic anisotropy. The gen-
eral form of the effective spin-orbit Hamiltonian is given by:

H = HLF +λL ·S+µB (L+2S) ·B (2.10)

The ligand field contribution to the Hamiltonian, HLF, is specific to the surface and the
adsorption site in question; typically, however, it contains terms that account for the
axial and transverse contributions to the ligand field [46–48]:

HLF = B 0
2 O0

2 +B 0
4 O0

4 +B 4
4 O4

4. (2.11)

In this case, the Stevens operators are applied to the eigentates of the orbital momentum.
The effective Hamiltonian framework is a powerful conceptual tool, as it provides a

relatively simple framework for understand the magnetism of single atoms, and can be
readily extended to include spin-spin interactions. In the following, we will be shifting
gears away from magnetism: rather, we will discuss the tight-binding method, in which
we will consider the single-electron Hamiltonian for describing the electronic structure
of lattices.

2.2. DESCRIBING ELECTRONIC STRUCTURE: THE TIGHT-BINDING

METHOD
A quantitative description of the electronic structure of a solid can be obtained by view-
ing it as a structured array of weakly interacting atoms—this is the framework of the tight
binding method. In this case, the interaction (or overlap) between neighbouring sites is
sufficient to necessitate corrections to the description of isolated atoms, but not enough
to render the atomic wave functions extraneous [75]. This approximation is well-suited
to the description of insulators or to more localized electrons in metals, such as d-level
electrons in transition metal atoms.

We will outline the general framework of tight binding in its simplest form, neglect-
ing the effects of spin-orbit coupling and electron-electron interactions. This approach
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makes use of the single atom Hamiltonian as its starting point [75, 76]:

Hat =−ħ2∇2

2me
+Vat(r), (2.12)

where me is the electron mass and Vat is the one-electron atomic potential. The single
particle Hamiltonian of the solid can be phrased in terms of Hat:

Hs =−ħ2∇2

2me
+Vat(r)+ ∑

R̸=0
Vat(r−R), (2.13)

= Hat +ν(r), (2.14)

where we have considered that every point R of the Bravais lattice hosts an atom of the
same type. The first term in the Eq. 2.13 accounts for the kinetic energy of the single elec-
tron; the second term is the potential at the origin (R = 0); and the third term accounts
for the potential of the rest of the solid, ν(r) = ∑

R̸=0 Vat(r−R). Keeping in mind that the
single particle states must abide by Bloch’s theorem, we can approximate the wave func-
tion of the solid, ψnk(r), as a linear combination of the atomic wave functions on each
lattice site:

ψnk(r) = 1p
N

∑
R

e i k·Rφn(r−R), (2.15)

where the nth atomic wave function, φn(r), is an eigenstate of the single atom Hamilto-
nian, i.e. Hatφn(r) = Enφn(r); additionally, we have considered N lattice sites and nor-
malized the wave function accordingly. The coefficient e i k·R is determined by Bloch’s
condition, which necessitates that ψnk(r+R′) = e i k·R′

ψnk(r).
To calculate the band structure ε(k) arising from a single electronic level, we will

only consider the Bloch state constructed from the same orbital at each site, such that
ψk(r) = 1p

N

∑
R e i k·Rφ(r−R):

ε(k)
∫
ψ∗

k(r)ψk(r)dr =
∫
ψ∗

k(r)Hsψk(r)dr, (2.16)

= 1

N

∑
R,R′

e i k·(R−R′)
∫
φ∗(r−R′)Hsφ(r−R)dr, (2.17)

= 1

N

∑
R

e i k·R
∫
φ∗(r)Hsφ(r−R)dr, (2.18)

where we have made use of the arbitrariness of R′: namely, the particular choice of R′
does not affect the sum due to the assumed periodic boundary conditions of the solid—
this has two implications: first, we can remove the double sum by realizing the sum over
R′ simply gives a factor N ; second, we can arbitrarily set R′ = 0. This also applies to the
normalization integral:∫

ψ∗
k(r)ψk(r)dr = 1

N

∑
R,R′

e i k·(R−R′)
∫
φ∗(r−R′)φ(r−R)dr (2.19)

= 1+ ∑
R̸=0

e i k·R
∫
φ∗(r)φ(r−R)dr (2.20)
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Putting Eqs. 2.18 and 2.20 together, we arrive at [75]:

ε(k) =
∑

R e i k·R ∫
φ∗(r)Hsφ(r−R)dr

1+∑
R̸=0 e i k·R ∫

φ∗(r)φ(r−R)dr
, (2.21)

= En − β+∑
R̸=0 e i k·Rγ(R)(

1+∑
R̸=0 e i k·Rs(R)

) , (2.22)

which describes how the atomic levels form bands when the constituent atoms are placed
in a lattice. The above expression makes use of the following shorthands:

β=−
∫
φ∗(r)ν(r)φ(r)dr, (2.23)

s(R) =
∫
φ∗(r)φ(r−R)dr, (2.24)

γ(R) =−
∫
φ∗(r)ν(r)φ(r−R)dr. (2.25)

The first integral, β, describes the shift in the atomic energy caused by the potentials
of the surrounding atoms; the so-called overlap integral, s(R), quantifies the degree of
overlap between adjacent orbitals—this term is usually neglected for simplicity, and is
strictly zero for an orthogonal choice of basis; lastly, γ(R) is the interatomic Hamiltonian
matrix element, which corresponds to the hopping integral t in second-quantization
formalism.

2.2.1. APPLICATION TO AN s-VALENT DIMER
We will now apply the tight-binding description to a s-homovalent or s-heterovalent
diatomic molecule. In this case, the single-particle Hamiltonian can be approximated
by [77–79]:

Hd =− ħ2

2m
∇2 +VA +VB , (2.26)

where we have phrased the effective total potential in terms of VA and VB , the atomic-
centered potentials. We can write the molecular orbitalsψMO(r) as a linear combination
of the atomic orbitals:

ψMO(r) = cAφA(r)+ cBφB (r−R), (2.27)

where φA,B are eigenstates of the free-atom Hamiltonian for the two atomic centers. We
can determine the energies of the molecular states in the usual way:

Hd |ψMO〉 = ε|ψMO〉, (2.28)

which readily yields the so-called tight-binding secular equation:(
EA A γAB

γB A EBB

)(
cA

cB

)
= ε

(
1 s

s 1

)(
cA

cB

)
, (2.29)

where EA A,BB = ∫
φA,B (r)HdφA,B (r)dr is the on-site energy of site A or B . The inter-

site matrix element is γAB ,B A = ∫
φA,B (r)HdφB ,A(r)dr, and the overlap integral is s =∫

φAφB dr.
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In general, the eigenvalues ε can be determined by solving the determinant:∣∣∣∣∣ EA A −ε γAB −εs
γB A −εs EBB −ε

∣∣∣∣∣= 0. (2.30)

For the particular case of a homovalent dimer—in which the two atomic centers are
equivalent (EA A =EBB =E and γB A = γAB = γ)—the eigenenergies are simply given by:

ε± = E±γ
1± s

, (2.31)

corresponding to the energies of the bonding and anti-bonding molecular orbitals.



3
EXPERIMENTAL BACKGROUND AND

METHODS

The scanning tunneling microscope is a powerful tool for high resolution surface imag-
ing and characterization. When operated at sufficiently low temperatures, the probe tip
can be used to manipulate individual atoms and to coordinate them on various binding
sites or to construct atomic assemblies, the electronic and magnetic properties of which
can be locally probed with scanning tunneling spectroscopic techniques. In this chapter,
we will discuss the basics of this form of microscopy, such as obtaining spatially resolved
topographic maps, as well as the connection between the tunneling current and the dif-
ferential conductance to the local sample density of states. Furthermore, we will delin-
eate the experimental implementation and governing principles behind several spectro-
scopic methods used in this thesis—such as spin-polarized and inelastic electron tunnel-
ing spectroscopy—and explain the mechanisms behind vertical and lateral atom manip-
ulation.
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3.1. SCANNING TUNNELING MICROSCOPY

The spatial resolution of traditional optical microscopy methods is determined by the
diffraction limit, which is set by the wavelength of visible light; attempts to surpass
this constraint spurred the invention of different forms of microscopy, such as the elec-
tron microscope [80] and the field-ion microscope [81], the former of which led to the
first atomically resolved images in the early 1950s. The scanning tunneling microscope
(STM) was introduced some 30 years later [82], constituting a significant paradigm shift
in the study of matter at the smallest length scales [83–87].

The basic principle governing this type of microscopy is quantum tunneling of elec-
trons: a metal tip is brought sufficiently close to a sample surface, and the resultant wave
function overlap leads to a net measurable current under an applied bias voltage across
the tip-sample junction. More specifically: when, for instance, a positive bias voltage V
is applied to the sample with respect to the tip, the sample Fermi level is shifted down by
−eV with respect to the tip Fermi level, resulting in net directed electron tunneling from
occupied states on the tip side into empty states on the sample side (see section 3.2).

The tunneling current depends on several factors [88–92], such as the tip position,
the tip and sample electronic densities of states, and the transmission through the tunnel
barrier, which is itself determined by considerations such as the tip-sample distance,
tip shape, as well as the tip and sample work-functions [86, 93–95]. The atomic spatial
resolution afforded by STM is due to the exponential dependence of the tunnel current
on the tip-sample distance: a few angstroms change in tip-height can cause an order
of magnitude change in the tunnel current. Another key ingredient is the tip position
relative to the sample surface, which is finely controlled by piezoelectric elements: as
the tip is displaced across the sample surface, changes in the sample density of states or
surface height can be closely monitored by the accompanying variations in the tunnel
current.

In practice, the tip-sample distance is regulated by a feedback loop. As such, obtain-
ing topographic maps of a surface amounts to raster scanning the tip across the area of
interest, and recording the change in tip-height needed to maintain a constant current—
this type of scan is performed in so-called constant current mode. Conversely, if the tip-
sample distance is not regulated, the surface topography can be mapped by tracing the
variations in the measured current—this is referred to as constant height mode. Such
topographic maps can allow us to closely trace the surface corrugation and detect ad-
sorbed atoms or molecules. Finally, we note that it is usually preferable to obtain topo-
graphic maps in constant-current mode as the engagement of the feedback loop helps
to prevent tip crashes; on the other hand, constant-height mode can be advantageous
in scenarios in which it is necessary to remove the contribution of a varying tip height to
the current.

Aside from its imaging and resolution capabilities, scanning tunneling microscopy
can also provide spectroscopic information about the local density of states [89, 90, 92,
96, 97] (section 3.2), probe vibrational modes or spin excitations in single atoms [94,
98, 99] (sections 3.2.3 and 3.2.4), and allow for the controlled manipulation of surface-
bound adatoms or molecules [100–102] (section 3.3).
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3.2. SCANNING TUNNELING SPECTROSCOPY
There are several measurement techniques employed in STM-based spectroscopic stud-
ies, such as time-resolved spectroscopy [103–105], current-distance spectroscopy [96,
97, 106], single-electron tunneling spectroscopy [107], amongst others. Here, we will fo-
cus on current-voltage spectroscopy, which allows us to trace variations in the tunnel
current I and differential conductance dI /dV as a function of the applied bias voltage.
Usually, the most useful quantity here is not the current itself, but rather the differen-
tial conductance, which maps more directly to the local density of states [89, 92, 96, 97]
and can be used to detect the spin excitations in atoms, assembled atomic structures, or
molecules [30, 64, 98, 108–110].

To demonstrate the connection between the measured conductance and the sam-
ple density of states, we turn to a theoretical description of the tunnel current. This can
be obtained by considering the tip and sample wave functions to be independent en-
tities that describe two undisturbed systems. The wave function of the entire system
can be evaluated by treating the tip potential, Vt (τ), as a time-dependent perturbation,
namely [90]:

iħ∂ψν

∂τ
=

[
−ħ2

2m

∂2

∂x2 +Vs +Vt (τ)

]
ψν, (3.1)

where Vs denotes the sample potential and ψν is the wave function of the ν-th state.
In this framework, the rate of electron transfer can be determined from Fermi’s golden
rule [111], where the probability that an electron tunnels from a stateψµ to a stateψν is:

2π

ħ |Mµν|2δ(Eν−Eµ), (3.2)

where Eν (Eµ) is the energy of the ν-th (µ-th) state and Mµν is the transition probability
matrix element. We are implicitly only considering elastic tunneling in the above expres-
sion: the Dirac delta function indicates that tunneling can only occur between states at
the same energy.

An expression can be derived for the tunneling current by neglecting interactions
between tunneling electrons; in this case, the current flowing from the tip to sample
under an applied bias V can be expressed as [91]:

It→s = 4πe

ħ
∫ ∞

−∞
ρt (E −eV )ρs (E) ft (E −eV )(1− fs (E))|Mµν|2dE , (3.3)

where e is the electron charge, f (E) = (1+exp[(E −E f )/kB T )]−1 is the Fermi-Dirac dis-
tribution function (kB : Boltzmann constant; T : temperature; E f : Fermi energy), and ρs

and ρt are the sample and tip densities of states, respectively. Note that we have defined
the energies E relative to the Fermi energy. The current in Eq. 3.3 is determined by the
tip and sample densities of states, and only accounts for tunneling from the occupied
states on the tip side ( ft (E −eV )) to the unoccupied states on the sample side (1− fs (E)).

The total tunneling current I can be determined by accounting for the current in
both directions, i.e. I = It→s + Is→t , arriving at:

I = 4πe

ħ
∫ ∞

−∞
ρt (E −eV )ρs (E)

(
ft (E −eV )− fs (E)

) |Mµν|2dE . (3.4)
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Different frameworks have been developed for evaluating the tunneling matrix ele-
ment Mµν [88, 89, 92], with the simplest being the one-dimensional Wentzel-Kramer-
Brillouin approach where the transmission through the tunnel barrier determines Mµν:

|Mµν|2 = exp

[−2z

ħ
√

me (φt +φs −eV +2E

]
, (3.5)

where z is tip-sample distance, me is the electron mass, and φt and φs are the tip and
sample work functions, respectively. It should be noted that the above expression is only
valid in the low-bias regime, where the tunnel junction can be approximated by a rectan-
gular potential barrier—this will become relevant in chapter 7. Additionally, substituting
Eq. 3.5 into the expression for the overall current (Eq. 3.4), we can see that the states clos-
est to the tip (sample) Fermi energy contribute the most to the current under a positive
(negative) voltage applied to the tip—this is a particularly relevant consideration at high
applied bias voltages, as we will see in chapter 7.

While the current contains information about the local density of states, the differ-
ential conductance is a better direct measure of it. To demonstrate this, we will consider
the low temperature limit (T ≪ eV /kB ), where the Fermi-Dirac distributions can be ap-
proximated as step functions. In this case, Eq. 3.4 reduces to:

I ∝
∫ eV

0
ρt (E −eV )ρs (E)|Mµν|2dE . (3.6)

It follows from this expression that the differential conductance at an energy eV is:

dI

dV
∝ ρs (eV )ρt (0)|Mµν|2 +

∫ eV

0
ρt (E −eV )ρs (E)

d|Mµν|2
dV

+
∫ eV

0

dρt (E −eV )

dV
ρs (E)|Mµν|2

(3.7)

We will use two approximations to simplify the expression for the differential conduc-
tance further: firstly, we will assume the metal tip has a featureless density of states,
such that dV ρt = 0. Secondly, we will assume the tunneling matrix element (Eq. 3.5)
does not appreciably change in the interval of interest [90], meaning dV Mµν = 0; this is
a valid approximation when the applied bias is small compared to the tip and sample
work functions. With this, only the first term in the above expression remains:

dI

dV
∝ ρs (eV )ρt (0)|Mµν|2 (3.8)

As such, the differential conductance obtained at a given bias voltage V is a direct probe
of the local density of states of the sample at the energy eV .

3.2.1. LOCK-IN DETECTION & SPECTROSCOPIC MEASUREMENT MODES
The tunneling current and differential conductance can be measured concurrently by
means of a lock-in detection scheme. While it is possible to simply record the cur-
rent and numerically differentiate it to obtain the differential conductance, the lock-in
method offers a much better signal-to-noise ratio. This technique relies on adding a
small ac voltage (of amplitude Vm and frequency ωm) to the dc bias voltage (VDC), such
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that the total voltage is V =VDC+Vm sin(ωm t ). Typically, the frequency of the ac compo-
nent (ωm) is set to higher values than the regulation speed of the feedback loop, thereby
ensuring the modulation does not influence constant-current images or spectroscopy.

The resultant tunnel current can be Taylor expanded to obtain

I ∝ I
(
VDC

)+ I ′
(
VDC

)
Vm sin(ωm t )+O(V 2

m),

where I ′ denotes the derivative with respect to the voltage, i.e. dI /dV . The modula-
tion gives rise to a component of the total current that oscillates at the frequency ωm

and is proportional to the differential conductance I ′
(
VDC

)
. This contribution to the

current can be selectively measured via homodyne detection by means of a lock-in am-
plifier [112].

This technique makes use of phase-sensitive detection to recover the component of
the input at the frequency of interest; to achieve this, the lock-in performs a multiplica-
tion (demodulation) of its input with a phase-shifted reference signal Vr cos(ωr t +φr ).
The product of the multiplier is:

I
(
VDC

)
Vr cos(ωr t +φr )

+ 1

2
I ′

(
VDC

)
VmVr

(
cos

(
(ωm −ωr )t +φm −φr

)−cos
(
(ωm +ωr )t +φm +φr

))
,

where we have explicitly accounted for the phase of the modulation, φm . For homo-
dyne detection, the frequency of the input and reference signal are the same (ωr =ωm),
meaning that only the component of the input oscillating at the frequency of the refer-
ence is down-mixed to zero frequency. A low-pass filter applied to this product readily
isolates the phase-sensitive dc term that is proportional to the differential conductance,
1
2 I ′

(
VDC

)
VmVr cos

(
φm −φr

)
. This allows for parallel measurements of the tunneling

current and the differential conductance, while largely suppressing 1/ f Shottky noise
in the measurement of the latter [112].

The differential conductance can be measured in two spectroscopic modes: constant-
height or constant-current. For the former, tip-sample distance is held constant while
the bias voltage is swept, i.e. the feedback loop is opened, such that the height is not
regulated to maintain a constant current. Conversely, the feedback is always engaged
during constant-current measurements. Differential conductance spectra obtained at
constant tip-height are more closely related to the density of states [113], but are not al-
ways an experimentally feasible option, for instance when spanning a wide voltage range
(see chapter 7 for a more detailed discussion on the matter).

3.2.2. SPECTROSCOPIC MAPS
Heretofore, we have considered spectroscopy performed at a single point on the surface,
where the differential conductance is traced as the applied bias voltage is ramped—in
other words, we have considered the energy-dependent LDOS at one location. To gain
insight into the spatial evolution of the differential conductance, it can be preferential to
perform differential conductance maps, where we consider the spatial variation of the
LDOS at a given energy: this entails scanning the surface at a set bias and simultaneously
recording the differential conductance.



3

22 3. EXPERIMENTAL BACKGROUND AND METHODS

a b
I

V

-Vth Vth
EF, T

EF, S

Tip

Sample

z

eVth inelastic

elastic

Tip

eV

c
dI/dV

V

-Vth Vth

Figure 3.1: Schematic of inelastic tunneling spectroscopy. a Energy diagram of the STM junction, with the two
electrodes—the tip and sample—separated by a distance z, with a bias voltage eV applied to the sample side.
Electrons with sufficient energy (eV > eVth) have two tunneling paths available to them: an elastic one, which
occurs between two states at the same energy (green); or an inelastic one (yellow), in which the electrons
lose part of their energy to excite the system. A filled circle denotes an occupied state, an empty circle an
unoccupied one. b The elastic tunneling path (shaded, green) results in a linear increase in current with bias
voltage; at the threshold voltage, a new inelastic tunneling path (yellow) opens, causing an increase in the total
tunnel current. c This corresponds to steps in the differential conductance at the threshold voltage. Adapted
from [99].

Similar to topographic maps, these types of measurements can be performed while
maintaining a constant current or constant tip-sample distance; it is worth noting the
former is more removed from the local density of states due to effects of the tip displace-
ment during data acquisition [114–116]. Other measurement schemes, wherein maps
are obtained by regulating the feedback on the differential conductance itself, have been
proposed as a useful alternative when high surface corrugation renders constant-height
measurements impractical [116].

3.2.3. INELASTIC ELECTRON TUNNELING SPECTROSCOPY

Thus far, we have limited our discussion on scanning tunneling spectroscopy (section 3.2)
to elastic processes (Eq. 3.2), where tunneling occurs between states at the same energy.
However, it is possible for tunneling electron to lose part of their energy in an inelastic
tunneling event: for instance, the tunneling electron may couple to the spin or vibra-
tional degrees of freedom of an adsorbate, and through inelastic scattering processes
forfeit energy to induce excitations amongst these internal states [99, 117].

Inelastic electron tunneling spectroscopy (IETS) is a tool for detecting these inelas-
tic processes with high spatial and energy resolution [109, 118]. Developed in the mid-
1960s [119], IETS relies on the following basic principle: once tunneling electrons have
sufficient energy to overcome the threshold energy eVth associated with an inelastic
process—be it a spin excitation [109] or vibrational mode [98, 119, 120]—a new trans-
port channel opens, causing the overall tunneling probability to increase (see Fig. 3.1a,
b). This means that for applied bias voltages exceeding the threshold voltage, wherein
V ≫ Vth, two transport paths—involving elastic or inelastic processes—are available to
the tunneling electrons.
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Figure 3.2: Inelastic cotunneling mechanism for spin excitations. a Inelastic cotunneling process: the tun-
neling electron transfers ħ of spin angular momentum to the local spin (corresponding to∆σ= 1), inducing an
excitation of the local spin from the state |φi 〉 → |φ j 〉 (corresponding to ∆ms = −1). Adapted from [64]. b An
example of an inelastic cotunneling process for a surface-adsorbed spin experiencing a uniaxial crystal field,
with six valence d-electrons; the quantization axis is along the z-direction. In the initial configuration, the
expectation value of the spin along the quantization axis is 〈Sz 〉 = 2 (left). A spin-down electron tunnels from
the tip onto the dxz orbital of the surface-adsorbed spin, creating a short lived charged virtual state (middle).
A spin-up electron tunnels from the same orbital to the substrate, rendering 〈Sz 〉 = 1 in the final configura-
tion, thereby completing the∆ms =−1 transition (right). c Elastic cotunneling process: the tunneling electron
maintains the same spin state during the cotunneling process and so does the local spin, meaning that∆σ= 0,
∆ms = 0.

This new tunneling path leads to a kink in the overall tunnel current at the threshold
voltage Vth, which translates to an upward step in the corresponding differential conduc-
tance (see Fig. 3.1b, c). The step height is determined by the cross-section of the excita-
tion process [121], whereas the step width is determined by intrinsic lifetime broadening
and experimental conditions, such as the temperature and the amplitude of the lock-in
modulation voltage [122, 123].

It should be noted that the framework presented here is only valid in the regime in
which the lifetime of the excited states is shorter than the average time between two
tunneling events, e/I —higher-order excitations and dynamical effects that we have not
explicitly accounted for may occur otherwise [65, 124].

INELASTIC SPIN EXCITATIONS

Using inelastic spectroscopic methods to induce and detect species-specific spin exci-
tations can be a powerful tool for chemically identifying adsorbates, but further inter-
preting the measured spectra requires understanding the underlying processes govern-
ing the spin excitations. Here, we will consider the elastic and inelastic tunneling paths
through a local, surface-bound spin.

In general, tunneling processes through the local spin must conserve angular
momentum—a principle that imposes selection rules for the spin transitions: the spin
angular momentum of the local spin is allowed to change by −ħ, 0, or +ħ. To understand
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this, we can model the exchange interaction between the tunneling electron and the lo-
calized spin in the usual way, Ŝ · ς̂, where Ŝ and ς̂ are the spin vector operators for the
local spin and the tunneling electron spin, respectively [61, 64, 65]. Based on this inter-
action, the total transition intensity Y from the i th to j th eigenstate takes the form [61,
64, 65, 121]:

Y (φ j ,σ j ,φi ,σi ) =
∣∣∣∣∣
〈
φ j ,σ j

∣∣∣∣(Ŝ · ς̂+u Î
)∣∣∣∣φi ,σi

〉∣∣∣∣∣
2

, (3.9)

where u is a real constant that accounts for spin-independent elastic contributions (i.e.,
i = j ), and |φi ,σi 〉 denotes the product state of the local spin |φi 〉 and tunneling elec-
tron spin |σi 〉. The spin states are labelled by their ms value; for example, the tunneling
electron states are denoted by σi = 〈σi |ς̂z |σi 〉, rendering σi , j = +1/2 or −1/2 (here we
use ħ = 1 for ease, and we define the z-axis as the quantization direction). Expanding
the inner product and rewriting the Ŝx , Ŝy operators in terms of the lowering and raising
spin operators, Ŝ± = Ŝx ± i Ŝy , we find that:

Y (φ j ,σ j ,φi ,σi ) =
∣∣∣∣∣∣
〈
φ j ,σ j

∣∣∣∣∣
(

1

2

(
Ŝ+ς̂−+ Ŝ−ς̂+

)
+ Ŝz ς̂z +u

)∣∣∣∣∣φi ,σi

〉∣∣∣∣∣∣
2

. (3.10)

As such, the transition intensity is nonzero solely for transitions that conserve total an-
gular momentum: for a tunneling electron, the raising and lowering operators ς̂± can, at
most, cause a change of∆σ=±1 in the spin angular momentum between the i th and j th
state; consequently, the spin angular momentum of the local, surface-bound spin can in
turn change by a maximum value of ∆ms = ∓1. The remaining Ŝz ς̂z term accounts for
spin-dependent elastic tunneling paths.

The spin-dependent tunneling processes can be cast in the cotunneling framework,
wherein electrons from the tip and substrate tunnel off and on orbital states in the local,
surface-bound spin, possibly exchanging energy and orbital angular momentum in the
process. This is schematically depicted in Fig. 3.2: in an inelastic process, the tunneling
electron transfers ħ of angular momentum to the local spin, causing a change in the spin
state of the tunneling electron and that of the local spin; in an elastic process, the tun-
neling electron and the local spin remain in the same spin state through the tunneling
process.

3.2.4. SPIN POLARIZED MICROSCOPY

Spin-polarized microscopy [65, 95, 110, 125, 126] is a measurement technique in which a
spin-dependent density of states of the tip and/or sample results in a spin polarized tun-
neling current. This spin-sensitivity in the current makes it possible to probe magnetic
and spin-dependent physics in single spins [45, 65, 127, 128], measure spin relaxation
times [105], detect long-range spin order [129], and visualize novel spin structures [130,
131].

We can conventionally describe the polarization of the tip and sample, Pt and Ps ,
by considering their respective spin-resolved densities of state, η↑t ,s and η↓t ,s at the Fermi
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Figure 3.3: Schematic of the effects of a spin-polarized current. a, b A non-magnetic tip terminated with a
magnetic atom in an external magnetic field, Bext, resulting in the tip acquiring a spin-polarization parallel
to the field. Consequently, the tunnel current will vary depending on whether the spin on the tip and the
surface are aligned (a) or anti-aligned (b), resulting in a higher or lower net current, respectively. c Schematic
illustration of the tunnel current (black line) obtained as the tip is laterally displaced along the length of the
antiferromagnetically coupled chain (spin orientation of surface-bound atoms indicated by colored arrows):
at a constant tip-sample distance (grey line), the effects of the spin-polarized tip density of states translates
into variations in the tunnel current, which increases when the orientation of the tip and surface-bound spin
are the same, and decreases otherwise.

energy [64, 126, 132]:

Pt ,s =
η↑t ,s −η↓t ,s

η↑t ,s +η↓t ,s

. (3.11)

The tunnel current then depends on the relative orientation of the tip and sample polar-
ization (Fig 3.3), becoming spin polarized itself [132]:

Isp = I0(1+Pt Ps cosϕ), (3.12)

where Isp is the spin-polarized current, I0 is the non-polarized tunnel current, and ϕ is
the angle between the tip and sample magnetization directions.

Preparation of probe tips for spin-polarized spectroscopy can present a challenge,
as a suitable tip must concurrently offer spatial resolution down to the atomic scale
and adequate spin-polarization. There are several well-established routes for achieving
this [132]: it is possible to employ tips made from bulk magnetic material, use nonmag-
netic tips coated with a thin film of magnetic material, or take advantage of nonmagnetic
tips terminated by a cluster of magnetic atoms [20, 64]. Similarly, the sample polarization
may assume many forms—for instance, it is possible to study a bulk magnetic materials,
magnetic monolayers, or even single spins adsorbed onto a surface.

In this thesis, we will focus on the study of single spins probed by a nonmagnetic tip
that hosts a magnetic cluster at its apex (see chapter 4), as shown in Fig 3.3. In this case,
the tip preparation method typically entails picking up one or more magnetic atoms
from the surface (see section 3.3 for details on atom manipulation) which come to define
the tip apex, rendering it paramagnetic [20]. In an external magnetic field, the tip apex
will acquire a net magnetization that tends to follow the direction of the applied field.
This method of obtaining a spin-polarized tip offers many advantages, particularly in
the study of single spins: it is a controlled, reversible process that allows for some degree
of control over the orientation and strength of the tip magnetization [20, 64].
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Figure 3.4: Schematic of the effects of a spin-polarized current in inelastic electron tunneling spectroscopy.
a Schematic of an inelastic tunneling process considering a positive bias voltage applied to the sample. The
local spin can be excited from its ground state due to an exchange interaction with the tunneling electron, re-
sulting in a spin flip of ∆σ = +1 in the tunneling electron and an excitation of ∆ms = −1 in the local spin. b
An example schematic of the energy level diagram for the spin states of the surface-bound spin, considering
S = 2, a large uniaxial magnetic anisotropy, and finite magnetic field; states are labelled in order of increasing
energy. The inelastic ∆ms = −1 excitation (red arrow) changes the state of the local spin; other direct tun-
neling paths to higher energy states are forbidden (gray dotted line). c Schematic differential conductance
spectrum, with steps at the threshold voltage corresponding to the |0〉 → |2〉 transition. The different contri-
butions to the differential conductance are delineated by the shaded areas, showing the spin-dependent and
spin-independent elastic components (grey), as well as the inelastic contributions at negative (orange) and
positive (purple) voltage. d, e Spin-dependent densities of states D(E) of the tip (top) and substrate (bottom),
showing the spin-dependent inelastic (red) and elastic (grey) tunneling paths (relative strenght denoted by line
thickness) considering a negative (d) or positive (e) applied bias voltage. Adapted from [64].

Additionally, it is worth mentioning that the description of the spin-polarization of-
fered for the conventional case (Eq. 3.11) cannot be successfully applied to a local, surface-
bound spin. In this case, the spin dependence arises due to the exchange interaction be-
tween the local spin and the tunneling electrons, Ŝ · ς̂ (similar to section 3.2.3). As such,
the spin-polarization of the local spin ρs can be expressed in terms of the spin transition
intensities previously defined (Eq 3.9) [64]:

ρs =
∑
σ j

Y (φ j ,σ j ,φi ,+1/2)−Y (φ j ,σ j ,φi ,−1/2)∑
σi ,σ j

Y (φ j ,σ j ,φi ,σi )
. (3.13)

While this expression is analogous to Eq. 3.11, it is distinct in that it treats the local spin
quantum mechanically and thus negates the need to assign it a spin-polarized density
of states at the Fermi energy—a concept that breaks down in the face of quantum super-
positions of spin states [64].

SPIN POLARIZED ELASTIC AND INELASTIC TUNNELING

In general, the probability for an electron to tunnel to a local spin in a certain spin state
depends on the specific spin state of the tunneling electron—up (+1/2) or down (−1/2).
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In spin-polarized spectroscopy, where the spin-resolved densities of states are not equiv-
alent, this distinction in the tunneling probabilities can be resolved via the relative inten-
sity with which spin transitions occur.

To better understand this, we can consider the case of a surface-adsorbed S = 2 spin
with uniaxial magnetic anisotropy (defined as ẑ) in a finite external field applied along
the quantization axis (see Fig 3.4a and b). For simplicity, we will neglect any thermal pop-
ulation in the first excited state |1〉 (zero temperature limit) and only consider transitions
from the ground state. In this case, there are three tunneling paths contributing to the
overall conductance: spin-independent elastic processes; spin-dependent elastic pro-
cesses corresponding to the Ŝz ς̂z component of the exchange interaction (Eq. 3.10); and
spin-dependent inelastic processes corresponding to the Ŝ+ς̂−+ Ŝ−ς̂+ exchange term.

In both spin-dependent processes the tunneling electron interacts with the local
spin, but in an elastic process the local spin remains in the ground state (∆ms = 0),
whereas an inelastic tunneling event induces a transition to the excited state |2〉 (∆ms =
−1), as shown in Fig 3.4b. We note that transitions directly from the ground state to
higher energy spin states, such as from |0〉→ |4〉, are forbidden due to the selection rules;
additionally, higher order sequential excitations (e.g, from states |0〉→ |2〉→ |4〉) are ne-
glected for simplicity (low current regime).

The spin polarized density of states in the tip significantly impacts the intensity with
which the ∆ms = −1 transition is observed at positive or negative applied bias voltage,
as shown in Fig 3.4c. Considering there is a greater density of +1/2 states in the tip at the
Fermi energy (Pt > 0, Eq 3.11) and that the inelastic process here requires a spin-down
electron, we can see that the inelastic contribution at negative bias (Fig 3.4d) will occur
with a greater intensity than the same process occurring at positive bias (Fig 3.4e). This is
due to the asymmetry in the spin-resolved density of states of the tip: when current flows
from the tip (V > 0) the inelastic process involves the spin-down states in the positively
spin-polarized tip; conversely, when current flows from the sample (V < 0) the spin-
down states in the non-spin-polarized substrate and spin-up states in the spin-polarized
tip are relevant.

This picture becomes more involved once the time between tunneling events is com-
parable or even shorter than the inherent relaxation time of the excited state. This is pos-
sible at high currents, where the probability for a tunneling electron to meet a spin in an
excited state is sufficient to allow for excitations into higher energy spin states, resulting
in so-called spin pumping [65]. Such processes cause an overall change in the time-
average occupation of the spin states that is reflected in the conductance, and which
can give rise to novel current-voltage characteristics [124].

In fact, spin-pumping can be used to control the orientation of the local spin: a spin-
polarized current can cause a net spin transfer between the tunneling electrons and the
local spin via inelastic processes, wherein the sign and efficiency of the spin transfer is
determined by the direction and magnitude of the tunnel current, respectively [65, 127].
Consider the example depicted in Fig 3.4a and b, where the tip magnetic moment is par-
allel to the easy axis of the local spin and Pt > 0; and, assume that the first excited state |1〉
has some finite thermal occupation at equilibrium, meaning inelastic transitions from
|1〉 → |3〉 (∆ms = +1) can occur. At negative bias voltage, inelastic transitions induced
by the spin-down tunneling electrons from the substrate (∆σ= 1, ∆ms =−1) dominate,
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Figure 3.5: Schematic illustration of lateral and vertical atom manipulation procedures. a Lateral manipu-
lation scheme, wherein the tip approaches the adatom until the tip-atom interaction is sufficiently strong to
overcome the binding force to the surface (top). At this point, the tip is laterally displaced to the desired loca-
tion, dragging or pulling the atom along (middle); the process is completed, and the tip is retracted to normal
imaging heights (bottom). b Vertical manipulation scheme, with corresponding changes in the double-well
potential illustrated. Top to bottom: the tip approaches the adatom of interest, bringing the two wells (left
minima: represents adatom adsorption on the sample side; right minima: the same on the tip side) closer to-
gether. An applied electric field lowers the potential barrier between the two minima, allowing for the transfer
of the atom to the tip. The tip is retracted and laterally moved to the desired drop-off location, where it is once
again lowered toward the surface. Applying a bias voltage with opposite polarity flips the potential, allowing
for the transfer of the atom to the surface. Adapted from [133].

thereby driving the local spin out of equilibrium toward a spin-state distribution with
greater occupation in the excited states. At positive bias voltage, on the other hand, the
spin-split density of states of the tip renders these ∆ms = −1 transitions much less effi-
cient; in this case, the ∆σ = −1, ∆ms = +1 transitions prevail, thereby driving the spin
from the first excited state |1〉 into the ground state |0〉.

3.3. ATOM MANIPULATION
Atom-by-atom assembly allows for the construction of fully customizable atomic-scale
architectures: in this framework, the tip-sample interactions induced by the STM tip are
exerted on individual adsorbates in a systematic manner in order to precisely position
them on the sample surface [134–136]. Since the first demonstrations of atom manipula-
tion [100–102], significant progress has been made in the methodology and scale of this
technique, with more recent developments demonstrating fully automatable and large-
scale implementation of atomic assembly [18]. The ability to coordinate atoms at will



3.3. ATOM MANIPULATION

3

29

has enabled the study of artificial spin and electronic lattices [3], emergent phenomena
in quantum magnetism [29, 32, 45, 50], and spin dynamics in extended chains [43, 44].

There are two basic schemes for implementing atom manipulation: lateral manip-
ulation, wherein the adsorbate is pushed or pulled across the surface [137–140]; and
vertical manipulation, which entails picking up and dropping the adsorbate via tip dis-
placements along the surface normal.

Successful lateral manipulation (Fig. 3.5a) relies on the ability to tune the force of the
tip-adsorbate interaction such that it overcomes the surface binding force. To achieve
this, the tip is approached towards the atom until the attractive (repulsive) tip-adsorbate
interaction is strong enough that a lateral displacement of the tip will pull (push) the
atom across the surface. Once the adsorbate is coordinated into position, the tip is re-
tracted back to standard imaging heights. This method [18] is used for the manipulation
of single chlorine vacancies on the chlorinated Cu(100) surface in chapters 5 and 6.

On the other hand, vertical manipulation involves the transfer of the adsorbate from
the surface to the tip, and vice-versa (Fig. 3.5). To achieve this, the tip is lowered in a con-
trolled manner toward the surface until it makes—or nearly makes—mechanical contact
with the adsorbate of interest. The initial tip–atom system can be represented by a dou-
ble potential well: each minima corresponds to a stable configuration, where the ad-
sorbate is either bound to the surface or the tip. As the tip approaches the adsorbate,
the double potential well is increasingly distorted as the two minima are moved closer
together.

If direct contact is established, the two wells actually merge to create a single poten-
tial well, thereby allowing the atom to be readily transferred to the tip side. In lieu of
this, the two potential wells remain distinct, but the barrier between them can be low-
ered by applying an electric field (i.e., applying a bias voltage) [100], making it possible
to transfer the atom to the tip in this scenario as well.

From here, the tip is retracted back to typical scanning heights and laterally displaced
to the desired drop-off location. To deposit the atom, the tip is once again approached
towards the surface, and a bias voltage (with opposite polarity) is applied. Reversing the
bias voltage polarity causes the double potential well to flip, making it possible to ensure
that binding to the surface now represents the lowest energy configuration for the atom.
A vertical manipulation scheme [30] was used for positioning single Fe adatoms on the
Cu2 N/Cu3Au surface in chapter 4.





4
COMPLETE REVERSAL OF THE

ATOMIC UNQUENCHED ORBITAL

MOMENT

The orbital angular moment of magnetic atoms adsorbed on surfaces is often quenched
as a result of an anisotropic crystal field. Due to spin-orbit coupling, what remains of
the orbital moment typically delineates the orientation of the electron spin. These two
effects limit the scope of information processing based on these atoms to essentially only
one magnetic degree of freedom: the spin. In this work, we gain independent access to
both the spin and orbital degrees of freedom of a single atom, inciting and probing exci-
tations of each moment. By coordinating a single Fe atom atop the nitrogen site of the
Cu2N lattice, we realize a single-atom system with a large zero-field splitting—the largest
reported for Fe atoms on surfaces—and an unquenched uniaxial orbital moment that
closely approaches the free-atom value. We demonstrate a full reversal of the orbital mo-
ment through a single-electron tunneling event between the tip and Fe atom, a process
that is mediated by a charged virtual state and leaves the spin unchanged. These results,
which we corroborate using density functional theory and first-principles multiplet cal-
culations, demonstrate independent control over the spin and orbital degrees of freedom
in a single-atom system.

This chapter has been published in npj Quantum Materials 5, 60 (2020)[141]. Theoretical results supporting
this work were performed by J. W. González and F. Delgado.
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4.1. INTRODUCTION
Efforts to downscale information storage to the single-atom limit have largely focused
on readily probing, manipulating, and engineering the spin of magnetic atoms adsorbed
on surfaces [31, 45, 62, 142]. This is primarily a consequence of orbital quenching: the
orbital angular momentum L of these systems is often diminished due to the interaction
between the spin-orbit coupling and the crystal field generated by the surface [55, 60],
leaving the spin S as the only viable parameter for control. Even in the case of a partially
preserved orbital moment, the spin-orbit interaction can act to create superpositions of
the orbital angular momentum and spin states, meaning that only the total momentum
L + S is preserved. In that case, independent excitations of L and S cannot occur.

Quenching of the orbital angular momentum directly affects the stability and lifetime
of the atom’s magnetization [46, 48]. The viability of information processing applications
based on single atoms is, however, contingent on the spin stably maintaining its direc-
tion, and thus its magnetization, over time—which necessitates a large single-site mag-
netic anisotropy, as well as a slow relaxation of the magnetization. The energy barrier
to flip the magnetic moment is determined by the magnetic anisotropy energy (MAE),
which arises from the interplay between the crystal field and spin-orbit coupling. Specif-
ically, the Coulomb potential generated by the crystal breaks the spherical symmetry of
the free atom, thereby lending the orbital moment a certain orientation with respect to
the crystallographic axes [55]. However, in the case of an almost fully quenched L, the
spin-orbit coupling only acts to higher order to produce single-site magnetic anisotropy,
which leads to MAE values far below the atomic spin-orbit coupling strength. Conse-
quently, the crystal symmetry at the atomic site—and the overlap of the atomic orbitals
with the surrounding ligands—plays a crucial role in preserving the orbital angular mo-
mentum of the atom and enhancing the MAE.

Engineering the local environment of the single atom to produce an axial crystal field
can have significant consequences on preserving the free-atom orbital moment, and
consequently, increasing the magnetic anisotropy [46, 48]. 3d transition elements are
particularly appealing as the magnetic atoms of choice, as, in addition to their natural
abundance, they can be easily deposited on surfaces and probed locally by scanning
tunneling microscopy (STM) and spectroscopy. This is illustrated by STM experiments
performed on Fe and Co atoms bound to the oxygen site of the MgO/Ag(100) surface,
where the local symmetry ensures a nearly axial crystal field. The resultant orbital mo-
ment–which is nearly preserved in the out-of-plane direction for the Fe atoms, and fully
preserved for the Co atoms— gives rise to large zero-field splittings of, respectively, 14
meV [46] and 58 meV [48]. However, in both of these cases, the energy multiplets evolve
under the crystal field and spin-orbit coupling to become a mixture of S and L states, and
accordingly, the transitions probed by inelastic tunneling spectroscopy (IETS) show that
variations in L are associated with variations in S.

In this work, we present a single-atom spin system that combines a large MAE with
an orbital angular moment that remains fully unquenched along the uniaxial direction.
This situation is realized by placing Fe atoms atop the fourfold symmetric nitrogen bind-
ing site of the Cu2N/Cu3Au(100) surface, thus engendering a zero-field splitting of 18
meV. We demonstrate that we are able to fully rotate the preserved orbital moment via
a single-electron process between the tip and atom, without altering the spin state of
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a b

c

Figure 4.1: Fe atoms atop the nitrogen site of the Cu2N surface. a STM constant-current topography (30 mV,
20 pA) of Fe atoms on a Cu2N/Cu3Au(100) surface. To the bottom right, there are two Fe atoms bound to
copper sites, and at the top, three Fe atoms atop nitrogen sites with larger apparent heights. Scale bar: 2 nm. b
Side and top view of the binding geometry for the Fe atom (red) atop a N atom in the Cu2N network (Cu brown,
N blue) on a Cu3Au crystal (Cu grey, Au yellow). c Calculated positive (red) and negative (blue) electron spin
density.

the atom. Alternatively, we observe a distinct spin excitation, which does not affect the
orbital moment. These finding are understood in terms of first-principles density func-
tional theory (DFT) and electronic multiplet calculations.

4.2. ORIGIN OF THE UNQUENCHED ORBITAL MOMENT

The Cu2N surface [74], in addition to providing protection to magnetic moments from
electronic scattering, enables reliable and large-scale atom manipulation [30, 43, 61, 65,
71, 72]. Fe atoms on the Cu2N lattice preferentially bind to the Cu-site, where the local
C2v symmetry produces a partially unquenched orbital moment resulting in in-plane
uniaxial magnetic anisotropy energies of ∼ 5 meV [61, 71]. A higher symmetry can be
achieved, however, by coordinating the Fe atom atop the N-site instead, which, in prin-
ciple, could preserve the orbital moment even more, and thus lead to larger anisotropy
values. N-site adsorption on Cu2N is also preferable over Cu-site adsorption, in that
placing an Fe atom on an N-site requires one less atom manipulation procedure [50],
vastly improving possibilities for building extended spin arrays. However, previous stud-
ies reported that no spin-flip excitations could be resolved for Fe atoms bound to N-
sites [74].

We use a low-temperature STM to perform controlled single-atom manipulation and
inelastic tunneling spectroscopy. We coordinate Fe atoms, deposited on an insulating
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layer of Cu2N that is grown on a Cu3Au(100) substrate [143], atop the N and Cu sites of
the lattice (Fig. Fig. 4.1a). The apparent height of the Fe atoms atop the N-sites is ∼
3.1 Å, roughly 0.4 Å higher than those on Cu sites. The N binding site is fourfold sym-
metric (C4v), with four Cu atoms as nearest neighbours, a lateral distance of 1.77 Å away
(Fig. 4.1b). DFT calculations indicate that the N atom atop which the magnetic atom is
bound is displaced upwards by 0.3 Åwith respect to the pristine surface configuration.
The calculated magnetic moment for the spin of the Fe atom, considering an on-site
Coulomb interactions U = 5 eV, is µS ≈ 4.36µB, with µB the Bohr magneton; this in-
dicates a local spin S = 2. The DFT-calculated valence electron spin density (Fig. 4.1c)
shows that the axial symmetry is largely intact. Thus, we can expect the orbital moment
to be preserved in the out-of-plane direction, while it is quenched in-plane. The typi-
cal overestimation of the orbital momentum quenching by DFT calculations precludes
a quantitative description of L, and thus, of the resulting MAE [144, 145].

Instead, here we adopt an alternative strategy: we carry out an electronic multiplet
calculation based on a point-charge model (PCM) description of the crystal field, where
electron-electron repulsion between Fe d-electrons, spin-orbit coupling, and Zeeman
contributions are considered explicitly [66, 146]. The atomic positions and charges are
extracted from the DFT calculations. A similar method was applied successfully to study
the spin excitations of Fe on MgO [46].

4.3. DESCRIBING THE ELECTRONIC MULTIPLET
The lowest energy levels derived from the multiplet calculations are shown in Fig. 4.2a.
The crystal field (CF) contribution is separated into its axial and transverse components:
the former splits off a tenfold ground state degeneracy, while the latter splits this into
two spin quintuplets. The spin-orbit coupling—–where we used λ = −9.60 meV for the
PCM, and −9.41 meV for the spin-orbit model—–partially lifts the degeneracy within the
two quintuplets. Finally, the magnetic field Bz along the out-of-plane direction breaks all
remaining degeneracies. At a non-zero field in the out-of-plane direction, the lowest two
states have orbital moments Lz =±1.98, closely approaching the free-atom value. Below,
we will approximate these two states as Lz =±2. Notably, the multiplets evolve under the
crystal field and spin-orbit coupling to become nearly pure product states of the Sz , Lz

eigenstates. This separation of the spin and orbital degrees of freedom is permitted by
the relative dominance of the magnetic anisotropy energy over the strength of the spin-
orbit coupling. In fact, use of the total angular momentum basis is not adequate here,
since the magnetic anisotropy terms do not commute with the total angular momentum
( Ĵ2 and Ĵz ).

When interpreting spin excitation spectroscopy on individual magnetic atoms, it is
convenient to employ an effective spin Hamiltonian [61, 72, 147]. However, in this situa-
tion the unquenched orbital moment makes the effective spin framework incomplete [53].
Instead, we use the following anisotropic spin-orbit Hamiltonian [53]

Ĥ= B 0
2Ô0

2 +B 0
4Ô0

4 +λSO(L̂+2Ŝ) ·B, (4.1)

where Ôq
k are the Stevens operators, which in this case are applied to the eigenstates of

the orbital moment, and B q
p are their associated coefficients, respectively. The last term
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Figure 4.2: Energy spectra and IETS measurements. a Energy spectra derived using both the PCM (solid
lines) and the spin-orbit model (dots). The expectation values of Sz and Lz are indicated for each state. The
transverse crystal field generates two distinct spin quintuplets (blue and green). The energy scale is defined
relative to the ground state energy, except in the rightmost panel where the Zeeman splitting is considered,
in which case the absolute energies are plotted. b Differential conductance (dI /dV ) spectroscopy performed
with a functionalized tip on a single Fe atom (magenta) and on bare Cu2N (gray) (T = 0.3 K, Bz = 4 T, 400µV
modulation, taken at -90 mV, 8 nA). c Co-tunneling mechanism for inelastic excitations of the spin (top) and
orbital (bottom) momenta. Each rectangle represents the energy levels of the five ℓz orbitals as follows: ℓz =±2
(bottom), ℓz = ±1 (middle), ℓz = 0 (top). In the case of a spin-excitation, the electrons are free to tunnel on
and off the same singly-occupied orbital. d Schematic representation of the two lowest quintuplets, with the
spin and orbital transitions probed by IETS marked with arrows.

represents the Zeeman energy due to an external field B. As we consider both the spin
S and orbital moment L, there is no need to invoke the Landé g -factor. The results of
this model, implemented with optimal fitting parameters, are also depicted in Fig. 4.2a.
Note that there is perfect agreement between the PCM and the spin-orbit model pre-
sented in Eq. 4.1. We additionally confirm these results using electronic multiplet cal-
culations derived using the Wannier Hamiltonian to approximate the crystal and ligand
fields produced by the surface atoms. This approach provides a more accurate quantita-
tive description, and additionally accounts for charge transfer and surface polarization.

4.4. INDEPENDENT SPIN AND ORBITAL EXCITATIONS
We perform an IETS measurement with an out-of-plane field of 4 T, revealing a splitting
of the zero-field spin excitation, with threshold voltages at 17.9 ± 0.7 meV and 19.4 ±
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Figure 4.3: Magnetic field dependence of the spin and orbital excitations. a Differential conductance spec-
troscopy for different values of the external magnetic field, with the dotted lines denoting threshold voltages
V02 and V13 at 1 T. b Color map of dI /dV spectroscopy as a function of magnetic field. c Differential con-
ductance spectroscopy (conductance set-point of -90 mV, 8 nA) showing a transition at ∼74 meV, for various
magnetic fields, normalized and shifted vertically (with respect to the 5 T spectrum) for clarity. Overlaid are
the corresponding transport calculations (grey) derived from the point charge model, horizontally shifted by
−1.4 meV to match the experimentally derived threshold voltage. d The measured threshold voltages V02 and
V08 as a function of the external magnetic field. The error bars here only account for the uncertainty in the fit
of the step position. Dashed lines are linear fits, indicating a shift of 0.23±0.04 meV/T for the V02 transition
and 0.31±0.05 meV/T for the V08 transition

0.7 meV, as shown in Fig. 4.2b. These transitions can only be probed with a tip that
is functionalized by picking up individual Fe atoms from the surface. The results of
Fig. 4.2a allow us to uniquely assign the observed transitions to excitations between spe-
cific states. When describing these states, we choose to use product state notation since
Sz and Lz are approximately good quantum numbers here. The lower energy excitations
are spin-only transitions (∆Sz = ±1, ∆Lz = 0) corresponding to an excitation from the
ground state |Sz〉|Lz〉 = |−2〉|−2〉 ≡ |0〉 to |−1〉|−2〉 ≡ |2〉, corresponding to an excitation
threshold voltage V02, as well as from the | + 2〉| +2〉 ≡ |1〉 state to | + 1〉| +2〉 ≡ |3〉, with
threshold V13 (Fig. 4.2d). At zero field, |V02| = |V13| = 18.4±0.6 meV.

In addition, we observe a higher energy excitation at 73.9±0.8 meV (see Fig. 4.2b),
which we denote by the threshold voltage V08. This feature corresponds to an excitation
from the ground state |0〉 to the excited state | −2〉|+2〉 ≡ |8〉; i.e., going from the lower
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spin quintuplet to the upper spin quintuplet (see Fig. 4.2d). An analysis of the calculated
transition strengths confirms that an excitation from |0〉→ |8〉 occurs with a much larger
amplitude than from other possible paths, such as transitions from |0〉→ |6〉 or |2〉→ |8〉.
Additionally, the energy at which this transition occurs quantitatively agrees with the
energy difference between the states |0〉 and |8〉 across the various models we implement,
namely the point-charge and Wannier models.

Unlike a conventional spin excitation—in which the tunneling electron spin only in-
teracts with the atom’s spin (∆Ss ≤ 1), leaving the orbital moment unchanged—–we ob-
serve an independent excitation of only the orbital moment, with ∆Lz = 4. Although
orbital excitations have been previously reported [148, 149], here we observe a full, in-
dependent rotation of an unquenched orbital moment. These transitions are not ac-
counted for by the usual spin exchange terms JS ·σ [59, 150], even when the orbital and
spin degrees of freedom are accounted for, as in Eq. 4.1.

Rather, this orbital transition can be understood via a co-tunneling path that takes
into account both the spin and the orbital momentum of the initial, intermediate and
final states, as depicted in Fig. 4.2c [151, 152]. Since the transition is expected to oc-
cur with similar amplitude for the hole and electron charged states, we will focus on
the latter for the following discussion. In this case, the dominant channel is mediated
through the negatively charged intermediate state |Sz = −3/2〉|Lz = 0〉. Accordingly, the
co-tunneling transition amplitude between the ground state |0〉 and the excited state |8〉
can be understood by introducing the creation and annihilation operators, d̂ †

σz ,ℓz
and

d̂σz ,ℓz , for an electron with spin σz in an orbital with angular momentum ℓz (centered
on the atom). The dominant transition amplitude between states |0〉 and |8〉 is thus pro-
portional to [151, 152]

〈
+2

∣∣∣〈−2

∣∣∣∣d̂+ 1
2 ,−2

∣∣∣∣−3/2
〉∣∣∣0〉〈

0
∣∣∣〈−3/2

∣∣∣d̂ †
+ 1

2 ,+2

∣∣∣−2
〉∣∣∣−2

〉
. (4.2)

This co-tunneling path corresponds to a spin-up electron tunneling onto the ℓz =
+2 orbital, thus creating a charged virtual state with a net spin Sz = −3/2 and orbital
moment Lz = 0. An electron then tunnels off the ℓz = −2 orbital, restoring the net spin
to Sz =−2 and changing the orbital moment to Lz =+2, thereby completing the∆Sz = 0,
∆Lz = 4 transition. Thus, we show independent transitions of the spin and unquenched
orbital angular momenta, where we can rotate one of these atomic degrees of freedom
without affecting the other.

At first sight, a ∆Lz = 4 transition may seem to violate conservation of total angular
momentum. However, we point out that the orbital moment of a freely propagating elec-
tron is defined relative to an arbitrary origin, and can therefore, unlike the spin, assume
an arbitrary value. An electron tunneling from the tip is thus free to carry an orbital
moment, and inelastically excite the atomic orbital moment. Within this framework,
conservation of total momentum can be understood in terms of the Einstein-de Haas
effect, wherein the angular momentum of the tunnelling electron is translated into an
infinitesimal rotation of the macroscopic lattice [153, 154].

We trace the evolution of the magnetic behavior of the single atom as a function of ex-
ternal field: in Fig. 4.3a, b, and c we show IETS measurements of the spin and orbital ex-
citations, performed for a range of discrete fields up to 5 T. In both cases, we observe the
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Figure 4.4: Conductance dependence of non-equilibrium electron transport. a Differential conductance
spectroscopy for different conductance values. b Color map of conductance-dependent dI /dV spectroscopy.
The same experimental parameters (Bz = 4 T, T = 0.3 K, 150 µV modulation) apply for both a and b. c Spec-
troscopy measurement at Bz = 2 T (magenta), taken at a conductance set-point of -90 mV, 8 nA, compared to
normalized transport calculations derived from the point-charge (grey) and spin-orbit (pink) models. d Calcu-
lated voltage-dependent occupation of the two lowest energy states using the point-charge model (PT =−0.3).

Zeeman effect as a shift towards higher threshold voltages at higher field. The measure-
ments indicate a shift in the threshold voltage of 0.23±0.04 meV/T and 0.31±0.05 meV/T
for the spin and orbital transitions, respectively (Fig. 4.3d). When expressed in terms of
an effective S = 2 spin model in the absence of orbital angular momentum, [61] the shift
for the spin excitation would correspond to a Landé factor of ∼3, on par with previously
reported large values [46, 48, 155].

Additionally, we expect the orbital excitation to correspond to two transitions: |0〉→
|8〉 and |1〉→ |9〉, which should split as a function of magnetic field due to the Zeeman ef-
fect. We observe that the step is broadened as the field is increased, which is compatible
with a splitting of V08 and V19. We note that V19 is marked by a step down in the differ-
ential conductance, which is due to spin-polarized elastic conductance, combined with
a reconfiguration of the occupation of states |0〉 and |1〉 around the threshold voltages.

The observed behavior is well reproduced by the transport calculations derived from
the point-charge model. In fact, the high degree of agreement between the experimen-
tally and theoretically derived results here is remarkable, as the point-charge calcula-
tions are based solely on DFT results, and thereby don’t have any additional fitting pa-
rameters, except for a screening factor applied to the free-atom spin-orbit coupling (ad-
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justed only to reproduce the energy of the spin excitation). However, the threshold volt-
age corresponding to the orbital excitation is off by ∼1.4 meV when comparing the trans-
port calculations to the experimental data. In order to properly compare the evolution
of the step, we correct for this shift in Fig. 4.3c. We note that the measurements shown in
panels a and b are obtained on different atoms, using a different functionalized tip, than
measurements shown in c and d—–this causes a slight offset in the measured threshold
voltages, presumably due to the tip field or variations in the local environment. We try to
account for these variations, and the ambiguity in defining the threshold energy due to
the unusual lineshape of the spin excitations, in the error associated with V02, V13, and
V08.

The field dependence of the threshold voltages confirm our assignation of the ob-
served transitions to those belonging to independent excitations of the spin and orbital
momentum. The ratio between the rate of change of the V08 and V02 transitions, amongst
the various models we implement, is consistently between 1.6 to 2; experimentally, we
observe a ratio of 1.3±0.3. In contrast, the V06 and V17 transitions, which corresponds to
full rotations of the orbital moment along with a partial rotation of the spin, are expected
to shift much faster under the effect of external field, with a rate of change 3 times that
of V02.

In the absence of non-equilibrium effects, inelastic spin excitations (∆Sz = ±1) are
characterized by approximately square steps in the differential conductance [110], which
originate from co-tunneling events [59, 150]. However, additional nonlinearities may
appear at the threshold voltage due to changes in the instantaneous spin state of the
atom, which modify the magnetoresistance of the junction, and thus, the dI /dV line-
shapes [65, 124]. The dynamical effects that we observe at the inelastic tunneling thresh-
old voltage for the spin excitation (Fig. 4.4a) are indicative of relaxation times from state
|1〉 longer than the average time between two tunneling electrons (∼200 ps at 1 nA).

As the presence of non-equilibrium features is attributed to dynamic processes linked
to the inelastic electron transport, they are expected to be conductance-dependent. We
investigate this dependence by performing dI /dV measurements as a function of cur-
rent set-point, as shown in Fig. 4.4a and b. For this range of conductance values, we ob-
serve a decrease in the strength of the non-linearity with increasing tunnel current [124,
156] and a shift in the inelastic steps, both of which are due to the local field from the
exchange interaction between the Fe atom and the tip [157].

Further insight can be obtained by simulating the non-equilibrium dynamics of the
local spin (Fig. 4.4c). This is done on two fronts: on one hand, starting from the point-
charge model calculation, we calculate the transition rates and the non-equilibrium oc-
cupations in the weak coupling limit using a co-tunneling description of transport [151,
152]. On the other, we use the spin-orbit model Eq. 4.1 exchange coupled to the itin-
erant electrons. In both cases, the evolution of the occupation is accounted for by a
Pauli master equation [59, 150]. Tracing the occupation of the two lowest spin states as
a function of voltage (Fig. 4.4d) delineates that below the inelastic threshold voltage, the
ground state occupation exceeds 90%. Once the applied voltage reaches the excitation
threshold, spin-flip excitations cause a significant drop in the occupation of |0〉.
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4.5. DISCUSSION
By coordinating a magnetic atom atop the fourfold symmetric nitrogen binding of the
Cu2N lattice, we have realized a single atom system with a large magnetic anisotropy,
which follows from a preserved orbital angular momentum, an ingredient that is essen-
tial to the application of magnetic atoms in magnetic storage and information process-
ing. In this system, under the effects of the crystal field and spin-orbit coupling, the mul-
tiplets emerge as nearly pure L and S product states, which allows us to treat these pa-
rameters as two independent degrees of freedom. We demonstrate independent control
over both the spin and orbital moment, showing a full inversion of the orbital moment
by means of a single electron, without affecting the spin.

As control over the orbital angular momentum shows many parallels to that of the
spin momentum, we believe that this development adds a new dimension to studies on
single-atom magnetism. Moreover, as Fe atoms bound to N-sites are easily manipulable,
these results form a promising basis for future research on extended lattices, that can
interact through both the spin and orbital angular momentum.

4.6. METHODS

4.6.1. MULTIPLET CALCULATIONS FOR FE/CU2N/CU3AU(100) SYSTEM
For the multiplet calculations of Fe atoms, we used an archetypal value of the Hubbard
repulsion U = 5.208 eV (U − J = 5 eV) [69, 158]. We have taken the atomic values of
〈r 2〉 = 1.393 and 〈r 4〉 = 4.496 atomic units [53]. Instead of correcting the 〈r 2〉 and 〈r 4〉
parameters due to covalency and other known limitations of the point charges, we have
taken the spin-orbit coupling λ as a fitting parameter to reproduce the 18 meV step. The
optimal fitting is found when the spin-orbit coupling is screened by a factor 0.738, which
translates into a (many-body) effective spin orbit coupling of -9.60 meV. The transport
calculations under the co-tunneling regime were carried out assuming electron-hole
symmetry, i.e., E0−−E0−EF = EF −E0+E0+. For the surface hybridization constants, we
take VkF ,S = 0.562 eV, and for the tip-hybridization VkF ,T,dz2 = 0.183 eV= 6VkF ,T,dx2−y2 =
6VkF ,T,dx y .

4.6.2. PARAMETERS OF THE ANISOTROPIC SPIN-ORBIT HAMILTONIAN

The parameters B q
p and λSO of the spin-orbit Hamiltonian (Eq. 4.1) were obtained by fit-

ting the corresponding energy spectrum to the results of the multiorbital electronic mul-
tiplet Hamiltonian at zero magnetic field. The best fit was obtained for B 0

2 = −1.404 eV,
B 0

4 = 0.188 eV, and B 4
4 = 0.16 meV, which indicates an almost pure uniaxial easy axis sys-

tem. The value obtained for the spin-orbit coupling is λSO = 9.41 meV. In addition, the
coupling to the surface was taken to be (ρ JK ,S ) = 0.25, where ρ is the density of states
at the Fermi energy and JK ,S is the Kondo exchange coupling with the surface, while
(ρ JK ,T ) = 0.0484 for the tip. In addition, a direct tunnelling term of (ρT ) = 0.25 was also
assumed (we have assumed the same density of states for the surface and the tip).
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CONFINED VACUUM RESONANCES

AS ARTIFICIAL ATOMS WITH

TUNABLE LIFETIME

Atomically engineered artificial lattices are a useful tool for simulating complex quantum
phenomena, but have so far been limited to the study of Hamiltonians where electron-
electron interactions do not play a role—but it’s precisely the regime in which these inter-
actions do matter where computational times lend simulations a critical advantage over
numerical methods. Here, we propose a new platform for constructing artificial matter
that relies on the confinement of field-emission resonances, a class of vacuum-localized
discretized electronic states. We use atom manipulation of surface vacancies in a chlorine-
terminated Cu(100) surface to reveal square patches of the underlying metal, thereby cre-
ating atomically-precise potential wells that host particle-in-a-box modes. By adjusting
the shape and size of the confining potential, we can access states with different quantum
numbers, making these patches attractive candidates as quantum dots or artificial atoms.
We demonstrate that the lifetime of electrons in these engineered states can be extended
and tuned through modification of the confining potential, either via atomic assembly or
by changing the tip-sample distance. We also demonstrate control over a finite range of
state-filling, a parameter which plays a key role in the evolution of quantum many-body
states. We model the transport through the localized state to disentangle and quantify the
lifetime-limiting processes, illustrating the critical dependency of the electron lifetime on
the properties of the underlying bulk band structure. The interplay with the bulk bands
also gives rise to negative differential resistance, opening possible avenues for engineering
custom atomic-scale resonant tunnelling diodes, which exhibit similar current-voltage
characteristics.

This chapter has been published in ACS Nano 16, 11251–11258 (2022) by R. Rejali, L. Farinacci, D. Coffey, R.
Broekhoven, J. Gobeil, Y. M. Blanter, and A. F. Otte [159].

41



5

42 5. CONFINED VACUUM RESONANCES AS ARTIFICIAL ATOMS WITH TUNABLE LIFETIME

Artificial lattices serve as quantum simulators for realizing and studying fundamen-
tal properties of real materials, with the advantage that the relevant interactions can be
precisely controlled. While different experimental approaches, such as using ultra-cold
atoms [9], optical lattices [6, 14], or trapped ions [12], have been successfully imple-
mented in the study of artificially constructed systems, atom manipulation casts the
scanning tunneling microscope (STM) as a particularly appealing platform: the scan-
ning probe framework uniquely allows for creating and characterizing the electronic
properties of 2D artificial matter on the atomic scale [3]. Typically, atomic impurities
are patterned to construct a potential landscape that mimics a specific physical system,
with the aim of studying model Hamiltonians. This approach has led to the realization
of a wide range of novel states in, for instance, Dirac materials, like the Lieb lattice [19,
20] and artificial graphene [21, 22], as well as higher order topological insulators [23, 24],
among others [25–28, 160]. These studies offer rare insight into the parameters that gov-
ern the electronic behaviour of these systems, but are restricted by the short electron
lifetime of the constituent artificial atoms to the limiting case in which electron-electron
interactions do not play a role. Additionally, short electron lifetimes limit the available
energy resolution; the most popular STM approach so far, which relies on confining sur-
face states, lacks flexibility in tuning this parameter [161–163].

Here, we explore a new platform for realizing artificial lattices, based on confining
field-emission resonances (FERs): a class of quantized electronic states localized in the
vacuum, between the surface and the probe tip, that arise in the high bias regime, i.e. ex-
ceeding the sample work function. We show that confining potentials can be engineered
to enable the study of states with different orbital character [22, 164, 165], with precise
control over the energy and quantum numbers of the states. We study the electron life-
time of these states, and demonstrate that we can finely tune it—and consequently, to
some extent, the average occupation—by adjusting the tip-height or patch dimensions.
The ability to tune the lifetime and occupation of artificial atoms is a critical first step to-
wards simulating many-body quantum states driven by electron-electron interactions.
We also observe specific voltage-current characteristics, namely negative differential re-
sistance, which are analogous to those of resonant tunneling diodes [166], making the
confined FERs also suitable to possible applications in creating customizable, atomic
scale diodes.

5.1. ENGINEERING LATERAL CONFINEMENT OF VACUUM STATES
We use atom manipulation of single vacancies in the chlorine-terminated Cu(100) sur-
face to engineer lateral confinement of field emission resonances. By coordinating chlo-
rine vacancies— which are easily manipulable and thus suited to large scale atomic as-
sembly [18, 19, 25–27]—adjacent to each other, we construct patches of exposed cop-
per, surrounded by areas of homogeneous, monolayer chlorine coverage (figure 5.1a).
The bare and chlorinated Cu(100) surfaces host FERs at bias voltages exceeding the local
work function, at 4.6 V [167] and 5.7 V [168], respectively. These resonances can be read-
ily modelled with a one-dimensional potential in the out-of-plane direction (figure 5.1,
see supplementary for details). The work function difference between the two surfaces
results in a shift in the measured resonance energies (figure 5.1c), in accordance with
previous studies [169–172].
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Figure 5.1: Confinement of field-emission resonances. a STM constant-current topography (600 mV, 300 pA)
of square, atomically assembled patches of Cl vacancies, with sizes indicated in unit cells. b Potential land-
scape (blue) between sample (left) and tip (right) for a finite bias voltage V . Amongst the wave functions (grey)
calculated for this potential, are the first three field-emission resonances (red). Inset: schematic of the tip-
sample junction. c Constant-current differential conductance spectra acquired for bare Cu(100) (grey, 250 pA
current setpoint), the chlorine monolayer (turquoise, 100 pA), and the center of the 7× 7 patch (dark green,
100 pA). The first peak on the chlorine monolayer (3.5 V), being below the surface work function, corresponds
to an image-potential state. d Stacked constant-current (100 pA) differential conductance spectra taken along
a line crossing the center of each patch (shown in inset), with the corresponding patch size indicated (top). A
correction is applied to the data to rectify the asymmetry of the tip electric field (see supplementary). White
lines indicate the patch boundaries. e Calculated LDOS of the particle-in-a-box states (|Ψ|2), obtained using a
finite well model (top row). Normalized constant-current (100 pA) differential conductance maps acquired for
the 7×7 patch at the resonance energies of the first principal FER (nz = 1, (nx ,ny ) = (1,1)) and the following
sub-resonances. White squares delineate the spatial extent of the simulated potential well (top row) and the
physical patch (bottom row).

Spectroscopy acquired at the center of the 7× 7 patch (dimensions defined in unit
cells of the chlorine lattice) exhibits additional resonances, in comparison to the bare
and chlorinated Cu(100) surfaces (figure 5.1c). As shown in figure 5.1d, these additional
resonances belong to a series of sub-resonances following each primary FER, and can
in fact be resolved for each primary FER, up to and including the the fourth primary
resonance. We use the principal quantum number nz for the primary FERs. Note that the
additional modes are only observed above the energy of the first resonance (nz = 1) on
bare Cu(100) (figure 5.1c). The full in-plane structure of the confined modes for the larger
patches is best visualised by constant-current differential conductance maps taken at
voltages corresponding to the sub-resonances of the first FER on the 7×7 patch, as shown
in figure 5.1e. The observed states can be recognised as two-dimensional particle-in-a-
box modes, with quantum numbers nx and ny , and can be accurately reproduced by the
eigenstates of a finite potential well (see supplementary for details). Similar to previous
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works [165], the nodal patterns of the first three modes are analogous to the orbitals of
an two-dimensional atom, with the first state corresponding to the s-like state, and the
second to the p-like, and subsequently the d-like state. Finally, we note that the energy of
the FERs depends on the patch size: as the patch size is increased, the FER energy shifts
down, tending toward the limit of bare Cu(100). All in all, the assembled patches can be
seen as atomically precise potential wells, wherein the energy, spacing, and order of the
states can be tuned by adjusting the shape and size of the confining potential. We note
that the single vacancy [19, 25–27] stands out as an exception, as the necessary change
in the local work function cannot take place on such small length-scales: as such, the
vacancy acts as a scattering center, rather than a confinement potential.

5.2. RESONANT TRANSPORT THROUGH A BOUND STATE
In order to characterize the electron lifetime, we consider the transport through these
confined states: two electron baths, one on the tip side and another on the sample side,
act as decoherent sources, the contributions of which we can disentangle by investigat-
ing the evolution of the differential conductance spectra as a function of conductance
setpoint, as shown in figure 5.2a. With increasing conductance setpoint, we observe a
slight shift in the energy of the FERs, which is explained by the increased out-of-plane
confinement (figure 5.1b), as well as the appearance of negative differential resistance
(NDR). The appearance of NDR at high conductance setpoints gives us qualitative in-
sight into the coupling of the resonances with the substrate and tip.

We consider a transport model describing the resonant tunneling of independent
electrons from (to) the tip and sample through a level localized between the two poten-
tial barriers (2a, inset, see chapter 7). In this framework, the current through a single
resonance is given by:

Ii =
2GQħ

e

Γi
t (z,V )Γi

s (z,V )

Γi
t (z,V )+Γi

s (z,V )

π
2
+ tan−1

(
2(eV −Ei (z,V ))

ħ(Γi
t (z,V )+Γi

s (z,V ))

) , (5.1)

where the quantum of conductance is GQ = e2/(π×), Γi
t and Γi

s are, respectively, the tip
and sample decay rates for the i th resonance, and Ei its energy, whose shift with bias
voltage we will initially neglect for simplicity. In general, the tip and sample decay rates
are both distance and voltage dependent. For the former, this dependence is derived by
considering the transmission through the tunnel barrier. The sample decay rate, how-
ever, encapsulates an effective barrier that depends on the surface band-structure, and
the relationship between Γs and V is non-trivial; we approximate this dependence as ei-
ther constant or linear, depending on the width of the voltage window we consider. The
differential conductance, in turn, can be obtained by differentiating the current with re-
spect to voltage, and contains terms that scale with the derivatives of the decay rates and
the energy of the resonance (see chapter 7 for the full expression).

5.3. ESTIMATING AND TUNING THE ELECTRON LIFETIME
We can gain quantitative insight into the tip and sample decay rates by focusing strictly
on the first principal FER (figure 5.2b inset): this allows us to drastically reduce the num-
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Figure 5.2: Extracting tip and sample decay rates. a Constant-height differential conductance spectra ob-
tained at the center of the 5× 5 patch for a range of conductance setpoints ((250 pA → 32 nA), 6.2 V). Inset:
schematic of the double-barrier potential (dotted line) implemented in the rate equations, with the decay
rates to the tip and sample, Γt and Γs , indicated. b Inset: constant-height differential conductance (light blue,
shaded) acquired at the center of the 5×5 patch (32 nA, 6.2 V). Calculated dI /dV using a resonant tunneling
model for a single level (navy, dotted line) or several, independent levels (green solid line). b, c Sample (b,
yellow circles) and tip (c, green circles) decay rates extracted for the first principal resonance as a function of
conductance setpoint, fitted (solid grey line) to an inverse natural logarithm and a line, respectively. The tip
decay rate is evaluated at the energy of the peak of the first principal field emission resonance. c Average oc-
cupation versus conductance setpoint (orange circles), and the corresponding linear fit (solid grey line).

ber of free variables to a single resonance (i = 0), and consequently to meaningfully ac-
count for the effects of the changing level E0; additionally, we simplifyΓs (V ) to a constant
in the narrow voltage range around the resonance. By fitting the measured differential
conductance at each conductance setpoint to our model, we can extract a value for the
tip and sample decay rates as function of conductance setpoint (figure 5.2b and c).

In figure 5.2b, we see that Γs increases with conductance setpoint, which can be re-
lated to the FER wave function: in general, decay to the bulk is governed by the over-
lap of the vacuum-localized state to the substrate, which is in turn determined via the
penetration of the state into the bulk, the evanescent tail of the bulk states into the vac-
uum, and the diminished electronic screening in the area between the surface and the
vacuum [173, 174]. Bringing the tip closer causes a redistribution of the weight of the
wave function toward the surface, rendering the scattering channels to the bulk more
efficient [175], leading to an increase in Γs . More precisely, we consider that the sam-
ple decay rate should scale linearly with the wave function overlap of the FER with the
sample [173], and for simplicity we assume its increase to be inversely proportional to
the tip-sample distance. Given the exponential dependence of current with distance, we
thus expect an inverse logarithmic dependence of the sample decay rate on the conduc-
tance setpoint. The fit in figure 5.2b shows this simple relation describes the change in
Γs appropriately.

The evolution of the tip decay rate with conductance setpoint is straightforward: this
rate should scale exponentially with the tip-sample distance, meaning it should be linear
with the conductance setpoint and intercept with the origin, as we see in figure 5.2c.
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Importantly, the changes in the decay rates impact the overall occupation of the state.
The occupation is determined by the ratio of the tip decay rate to total decay rate Γs +Γt ,
meaning that the occupation of the state can be tuned via the tip-height, as shown in
figure 5.2c: the occupation linearly increases with the conductance setpoint. In effect,
this means that the competing factors determining the time-average occupation—the
rate of tunneling electrons versus the increase in the lifetime-limiting rate, Γs —results
in the state filling increasing as the tip is brought closer.

We now extend our scope to account for transport through the higher energy states—
around 5.6 V ((nx ,ny ) = (2,1), (1,2)) and 6 V ((3,1), (1,3)), respectively. To do so, we as-
sume the resonances are independent, i.e. that the total current is determined by the
sum of the currents Ii through each resonance; additionally, we explicitly account for
the voltage-dependence of Γs (V ) as linear to first approximation. As seen in figure 5.2b
(inset), our model successfully reproduces the key features of the measured differential
conductance over the entire voltage range, with, in particular, the presence of NDR be-
tween ∼ 5.6 to 6 V. In this window, we find dΓs/dV < 0. In fact, we find it is necessary
to have a decreasing sample decay rate with increasing voltage to engender NDR, indi-
cating once again that the decay path to the sample crucially depends on the electronic
wave function of the FER.

While the decay rates can be tuned by changing the out-of-plane confinement of the
wave function, the in-plane confinement plays the dominant role in setting an upper
bound on the lifetime. Typically, field-emission resonances are delocalized (Bloch-like)
in the directions parallel to the surface and thus form bands [176]. In that case, the elec-
tron lifetime is affected by interband scattering, wherein the excited electron escapes
into the metal (sample or tip), or scatters with an electron in a different band; and in-
traband scattering, in which case the electron changes velocity [40, 173]. We can expect
the introduction of lateral localization to affect decay through these channels in two op-
posing ways: the increased confinement causes the bands to split into quantized states,
strongly attenuating intraband decay, while the simultaneous broadening of the k-space
distribution increases the available interband decay paths to the bulk. We assess the de-
gree to which the in-plane confinement precisely affects the lifetime by investigating the
transport characteristics of different sized patches.

Performing the same conductance-dependent measurements (see supplementary),
we see a marked change in the relative strength of the NDR based on the dimensions of
the confining patch, as shown in figure 5.3a. The relative NDR strength, which we define
as the ratio of negative area to the total area under the differential conductance spec-
trum, stays fairly constant as a function of conductance setpoint for patches of larger
size, such as the 7×7 and 5×5. In contrast, the smallest patch (2×2) does not exhibit
any NDR at low conductance setpoints; at a conductance setpoint of ∼0.5 nS, the rela-
tive NDR strength becomes non-zero and monotonically increases thereafter. The same
general trend holds for the 3×3: exponentially increasing NDR strength with increasing
conductance setpoint. In fact, the NDR is directly related to the change in the sample
decay rate as a function of voltage, and we can see this variance in Γs in the strength and
conductance-dependent behaviour of the NDR for the different patches.

As before, to quantify the change in the sample decay rate, we extract Γs by fitting
equation (5.1) to the first principal FER of each patch, for a discrete range of conductance
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a b c

Figure 5.3: Tuning the lifetime. a Relative strength of the negative differential resistance as a function of con-
ductance setpoint, for patches of various size. Colors correspond to illustration in the inset. Dotted lines are
guides to the eye. b Conductance-dependence of the sample decay rate for corresponding patch sizes, fitted to
an inverse natural logarithmic function (grey solid lines). c Extrapolated value of the sample decay rate for zero
setpoint conductance (blue circles), and the corresponding lifetime (green circles) for each patch size. Dotted
lines are guides to eye.

setpoints (figure 5.3b). We see that both the magnitude of the sample decay rate, and
its rate of change over this conductance setpoint range, vary according to patch size.
The electrons localized above the smallest patch experience the largest sample decay
rates, meaning scattering to the bulk becomes more efficient due to the increased spatial
confinement.

The lifetime of these localized electrons, τ, is determined by the tip and sample de-
cay rates, such that τ−1 = Γ−1

s +Γ−1
t . The tip contribution exponentially tends to zero as a

function of the tip-sample distance, meaning the intrinsic lifetime (at zero conductance
setpoint, namely when the tip is infinitely far away) is determined by the sample decay
rate at zero conductance. Approximating the lifetime by the linewidth of the resonance
is not valid here, as the potential in the out-of-plane direction changes as we perform
spectroscopy, leading to a changing resonance energy as a function of the applied volt-
age that artificially broadens the peak.

As shown in figure 5.3c, the extracted lifetimes monotonically increase as a function
of patch size up to N = 7, the maximum patch dimension studied in this work. Notably,
the lifetime for the confined states is roughly 2-4 times longer than the lifetime of the
first resonance on bare Cu(100), extracted using the same method and in fair agreement
with previously reported values (see chapter 7). This also indicates that there must be
a patch size with an optimally long lifetime, after which τ begins decreasing with patch
size, tending toward the freely-propagating Cu(100) limit. Indeed, the degree to which
the confinement prohibits the different decay paths at play is ultimately a delicate bal-
ance: the smaller the patch, the fewer states available for scattering between different
resonances, but the larger the k-space overlap with the bulk states. Notably, the lifetime-
limiting rate for all the patches shown here isΓs , which in our case is approximately three
orders of magnitude larger than the tip decay rate Γt (figure 5.2c).

To better determine the role of the in- and out-of-plane confinement on the lifetime,
we investigate the spectral weight of the localized resonances in k-space and compare
this to the bulk band structure of copper. We calculate the wave functionΨ, which we as-
sume to be separable, in the directions parallel and perpendicular to the (100) direction
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Figure 5.4: Distribution in k-space. a Calculated out-of-plane component of the real space wave function∣∣ψ(z)
∣∣ for the first principal FER nz = 0 (left), and the corresponding Fourier transform (right), at tip-sample

distance z = 2.4 nm. b, c Calculated in-plane component of the real space wave function (left) for the (b)
3×3 (c) and 7×7 patches, showing the first (nx ,ny ) = (1,1) (b, red; c, pink) and second (1,2), (2,1) (c, purple)
modes, with the corresponding Fourier transforms (right). Dotted lines indicate ±π/a bounds. d Bulk band
structure of Cu along high symmetry lines, with the experimental resonance energy of the (1,1) state for the
3×3 (red) and 7×7 (pink), as well as the (1,2)/(2,1) state of the latter (purple), denoted by solid lines. Inset:
schematic of the first Brillouin zone of Cu. e, f Intensity of the 3×3 wave function in k-space across Brillouin
zone slices indicated in inset of d. Solid contour lines delineate an order of magnitude change in the intensity.
Corresponding DFT-calculated constant-energy isolines shown for bulk Cu bands, taken 5 V (black line) and
6 V (red line) above the Fermi level. g Calculated sample decay rate as a function of bias voltage, shown for the
first three resonances probed in the center of a 5×5 patch, corresponding to the (1,1) (mauve line), (2,1)/(1,2)
(brown line), and (3,1)/(1,3) (grey line) modes. The shaded areas correspond to the voltage range in which the
respective modes are typically measured, delineating Γs in that range.

to obtain the corresponding k-space distribution. First, we consider the out-of-plane di-
rection, where the confinement is set by the tip-sample distance and the applied voltage.
We restrict our focus to the calculated wave-function, Ψ(z), for the first principal FER
and the resulting Fourier transform, Ψ(k⊥), shown in figure 5.4a. The k⊥ values with a
significant spectral weight span the entirety of the first Brillouin zone (BZ) (±1.75 Å).

Along the in-plane directions, we consider the wave functions Ψ(x) and Ψ(y) cor-
responding to the first ((1,1)) particle-in-a-box mode for the 3 × 3 and 7 × 7 patches
(figure 5.4b and c). As expected, the k∥-space distribution widens as the patch size de-
creases. Furthermore, as shown in figure 5.4c, this broadening also takes place when the
quantum numbers (nx ,ny ) of the in-plane mode increase. This is due to changes in the
apparent barrier height: compare, for instance, the first and second particle-in-a-box
modes—since the latter lies at higher energy than the former, it experiences a shallower
finite well. Such considerations allow us to visualize how the factors considered so far—
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such as the tip-sample distance, the lateral extent of the patch, the apparent height of
the in-plane barrier—impact the distribution of the state in k-space, and consequently
its overlap with the bulk states.

To better illustrate this, we consider the band structure of bulk copper along the high
symmetry lines [177], specifically at the experimental energies of the particle-in-a-box
modes (figure 5.4d). The lifetime of the confined electrons depends directly on, and is
limited by, the number of bulk states available for direct tunneling—the more bands we
cross at the energy of the resonance, with k-values falling within Ψ(k), the shorter the
lifetime to first order. In this energy range, we cross several bulk bands along the high
symmetry lines (X → W, W → L, L → Γ, Γ→ K); however, the efficiency of these decay
paths is scaled by the spectral weight of Ψ(k) at the crossing points. In other words, the
efficiency of the decay paths is scaled by the probability of having an electron with the
right momentum for direct tunneling into that bulk state.

Accordingly, in figures 5.4e and f, we consider the intensity of the k-space wave func-
tion along various cross-sections of the first BZ (figure 5.4d, inset). Interestingly, the
highest spectral weight is along the Γ→ X direction—across both the lateral (figure 5.4e)
and vertical (figure 5.4f) cross-sections—relative to the other high symmetry lines; how-
ever, this direction does not present any band crossing along the high symmetry lines
at the energy of the resonances. In fact, Ψ(k) carries little, if any, spectral weight along
the other directions where it does cross the bulk bands. This is illustrated in figures 5.4e
and f, where we see thatΨ(k) has practically zero intensity along the energy isosurfaces
(at 5 V and 6 V) of bulk Cu, calculated using density functional theory (DFT). This is
quite remarkable: although the lateral confinement of the states introduces direct tun-
neling paths to the bulk that are not present for the laterally freely-propagating case, we
can consider the contribution to be minimal in this case. Additionally, the added con-
finement acts to largely hinder the role of intraband inelastic scattering, as the available
states for scattering are substantially reduced: the FERs no longer form bands, but are
rather quantized and well-separated in energy, according to the physical dimensions of
the patch. These two effects ultimately amount to a considerable enhancement of the
lifetime of the confined states.

These considerations also shed light on the dependence of the sample decay rate
Γs with bias voltage—which, as we previously found, is critical in engendering NDR.
Namely: with increasing voltage, the localized resonance is pushed to higher energies,
causing a shift in the crossing points with the bulk bands. In turn, this shift translates
into the decay channels being scaled by a slightly different spectral weight. To illustrate
this effect, we can consider the crossing along the Γ→ K direction: as the bias increases,
the FER shifts up in energy, meaning that the crossing point for the lower band moves
away from the Γ point, closer to the K point. Figures 5.4e and f show that this shift is
accompanied by a decrease in the spectral weight of Ψ(k), meaning the total overlap
between the localized state and the bulk bands decreases. The emergence of the upper
band around ∼4.5V, however, further complicates the picture, illustrating that the overall
rate of change of the decay rate is hard to estimate. However, by qualitatively considering
the evolution of the k-space overlap, we can already grasp the complexity of the depen-
dence of Γs on the bias voltage.

To get a quantitative estimate of the change in the sample decay rate, we calcu-



5

50 5. CONFINED VACUUM RESONANCES AS ARTIFICIAL ATOMS WITH TUNABLE LIFETIME

late the weighted k-space wave function overlap for each DFT-calculated crossing point
throughout the entire BZ, and relate that to a dimensionless sample-decay rate via Fermi’s
golden rule (figure 5.4g). For this, we consider the calculated k-space wave function of
the 5×5 patch for the first (1,1), second (2,1), (1,2), and fourth (3,1), (1,3) particle-in-
a-box modes—the only states with non-zero intensity at the center of the patch (see fig-
ures 5.1d and 5.2a). As shown in figure 5.4g, we see that the calculated sample decay rate
for all three states monotonically decreases, i.e. that the overlap of Ψ(k) with the bulk
bands decreases with increasing voltage, so that dΓs/dV is negative—the ratio of this
rate of change to the intercept is in good agreement with our quantitative results from
the double barrier model (figure 5.2). The sample decay rate associated with each state
is strictly only applicable in the voltage range in which that state is measured, roughly
delineated in figure 5.4g by the shaded areas. All in all, we can confidently attribute the
NDR to the effects of the bulk band structure. Additionally, we should also note that the
NDR is consistently observed with different tips, and is not observed for laterally propa-
gating FERs (see supplementary) [178, 179], which do not have direct tunneling paths to
the bulk available to them.

5.4. CONCLUSIONS
By laterally confining field-emission resonances through atomic assembly of single chlo-
rine vacancies, we present a new platform for creating artificial atoms. We demonstrate
control over the lifetime and occupation of these artificial atoms by adjusting the con-
fining potential, implemented via modification of the tip-sample distance or the lateral
dimensions of the patch. The ability to tune the occupation is a key parameter of con-
trol in the study of quantum many-body states that evolve as a function of the state fill-
ing. We show that the lifetime of field-emission resonances, unlike that of surface states,
can be prolonged via lateral confinement, up to nearly four times the freely-propagating
case. This extension of the lifetime enhances the available energy resolution, and, in
conjunction with control over the state filling, is a first step towards studying electron-
electron interactions with artificial lattices. Further prolonging the lifetime to approach
a state occupation of 1 for reasonable setpoint currents can be pursued via several av-
enues: such as finding an underlying bulk crystal that hosts FER bands closer to the
Fermi energy, or one that is semi-conducting or even insulating. These considerations
make confined vacuum resonances a promising platform for creating and studying arti-
ficial lattices.

5.5. METHODS
Sample preparation and experimentation were performed in ultrahigh vacuum systems
with a base pressure of 10−10 mbar (Unisoku USM1300s, SPECS Joule-Thompson-SPM).
The Cu(100) crystal was cleaned via repeated cycles of argon sputter at 1 kV and an-
nealing to 600◦ C. The chlorinated copper surface was prepared by thermal evaporation
(2-3 minutes) of anhydrous CuCl2 powder heated to 300◦ C onto a warm Cu(100) crystal.
The crystal was heated to 150◦ C for ∼ 10 minutes before and after deposition [18]. The
coverage and sample quality were verified via LEED (where possible) and STM. Atom
manipulation of chlorine vacancies was implemented using a procedure previously out-
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lined [18]. Differential conductance measurements were performed using standard lock-
in detection techniques.

5.5.1. DENSITY FUNCTIONAL THEORY (DFT) CALCULATIONS

To calculate the bulk band structure of Cu, we use plane-wave density-functional theory
with a standard ultrasoft scalar relativistic pseudopotential and PBE exchange correla-
tion functional, as implemented in the Quantum ESPRESSO package [180]. Plane wave
energy cutoffs were set to 120/1080 Ry (wave function/density). We initialised the atoms
on a FCC lattice with lattice constant 3.61 Å. Self-consistent calculation was done on a
4×4×4 k-point grid and followed by non self-consistent Gamma-point Brillouin zone
sampling on a 32×32×32 k-point grid. The visualization of constant-energy surface cuts
was done with FermiSurfer [181].
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5.6. SUPPLEMENTARY MATERIALS

5.6.1. CORRECTION APPLIED TO STACKED dI/dV
The raw constant-height spectroscopy acquired over each patch (Fig. 5.5) shows a gen-
eral shift of the spectroscopic features to the right as the bias voltage is increased. We
attribute this shift to the asymmetric geometry of the tip, which consequently gives rise
to an asymmetric tip electric field. To correct for this, we assume that for a given bias
voltage, the acquired spectrum should be symmetric and centered. We achieve this by
applying a second-order polynomial fit to each constant-voltage line for each patch, and
use the global maximum along each slice to set the center point.

5.6.2. MODELLING THE IN-PLANE CONFINEMENT

The engineered lateral confinement of the field emission resonances, which physically
arises from the work function difference between the bare and chlorinated Cu(100) sur-
faces, can be simply modelled using a finite, slanted square potential well. The depth of
the potential well is set by the work function difference ∆φ = 1.1± 0.1 eV between the
two surfaces [168]. It is also possible to estimate ∆φ from the energy shift of the first
field-emission resonance on each surface [171, 172]; this method also yields a difference
of roughly 1 V (see figure 1c of the main manuscript). Since the work function change
cannot occur with an infinitely sharp slope, we assume the potential well is slanted: we
consider that the slope is set by ∆φ, as well as by the Fermi wavelength of the tunneling
electrons, which is roughly 1.5 units cells at 5V.

We calculate the expected energy of the observed resonances by numerically solv-
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Figure 5.5: Raw, uncorrected stacked constant-current differential conductance spectra obtained at a setpoint
of 100 pA, taken along a line crossing the center of each patch, with the respective size indicated at the top.

ing the Schrödinger equation [182] for this potential; this gives us the energy spacing
between the main and sub resonances. The total potential landscape, which also has
an out-of-plane component, described by the trapezoidal potential barrier at the tip-
sample junction, is separable, meaning the eigenenergies for each direction can be sim-
ply added. For ease of comparison between the energies calculated for the in-plane con-
finement and those measured, we subtract the out-of-plane component by defining the
energy axis relative to the energy of the first field-emission resonance. As shown in fig-
ure 5.6, the comparison between the energies extracted from the measured constant-
height dI /dV to those obtained numerically is fair. Note that the third in-plane con-
finement mode is absent in the measured dI /dV spectrum obtained at the center of
the patch, as this point corresponds to the intersection of the two nodal planes for the
(nx ,ny ) = (2,2) state. As such, we also compare the results of the calculations to the en-
ergies of the constant-current dI /dV maps shown in figure 5.1e—again, we have good
agreement.

5.6.3. CONDUCTANCE-DEPENDENT SPECTROSCOPY FOR PATCHES OF DIF-
FERENT SIZE

We perform conductance-dependent spectroscopy at the center of the 2×2, 3×3, and
7× 7 patches (Fig.5.7), in addition to those performed on the 5× 5 (Fig. 5.2). In each
case, we fit the first resonance using our transport model to extract the sample decay
rate shown in Fig 5.3b. We also use these spectra to quantify the relative NDR strength as
a function of the conductance setpoint (Fig 5.3a).
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7x7

a b

Figure 5.6: Comparison of calculated and measured eigenenergies of the particle-in-a-box states of the later-
ally confined field-emission resonances. (a) Constant-height differential conductance spectrum (conductance
set-point at 250 pA/6.2 V) acquired at the center of the 7×7 patch, as indicated in the inset. Dotted lines indi-
cate the energy of the first main resonance (5.02V) and the following sub-resonances. (b) Resonance energies
extracted from point spectroscopy performed at the center of the 7×7 patch (green circles); we compare this to
the energies of the constant-current (100 pA) differential conductance maps (red squares) shown in figure 5.1e,
as well as the energy calculated for each state using a finite potential well model (orange circles). In each case,
we define the energy axis relative to the energy of the first field-emission resonance.

a b c

Figure 5.7: Constant-height differential conductance spectra for patches of various size. Spectra obtained
at the center of the 2×2 (a), 3×3 (b), and 7×7 (c) patches for a range of conductance setpoints ((250 pA →
32 nA),6.2 V) (exact values indicated in the discretized colorbar).





6
COUPLING CONFINED VACUUM

RESONANCES

Laterally confined vacuum resonances can be cast as artificial atoms used in the atom-
by-atom construction of artificial matter. Here, we address the suitability of this platform
to such applications by characterizing the coupling between artificial atoms based on the
confinement of these resonances. To achieve this, we construct dimers and trimers of var-
ious geometries and deduce the tight binding parameters: our findings indicate that we
can span a wide region of parameter space—demonstrating control over the on-site en-
ergy, the orbital overlap, and the hopping amplitude—by adjusting the size of the patches,
as well as that of the bridging patch connecting them. To determine the feasibility of using
these patches as sites in extended architectures, we turn to a well-known and previously
studied system: a looped dimerized chain. Our measurements support the existence of a
topological domain wall state in the constructed lattice, in agreement with previous stud-
ies. Finally, we look to using this platform to study topological edge states in higher energy
bands in a diamond chain geometry. We realize such a lattice, and present preliminary re-
sults that evidences the presence of an edge state in the p-like manifold. Since the existence
of this topological state relies on the constituent sites carrying a non-zero orbital angular
momentum, a conclusive measurement of it could experimentally determine whether sites
that lack rotational symmetry can be considered to have orbital angular momentum.
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Quantum simulation via atomically assembled artificial lattices permits a high de-
gree of control over the relevant interactions and geometries at play, making it pos-
sible to realize a number of model Hamiltonians that are otherwise difficult to study
in real materials. There are a few popular platforms for realizing atom-by-atom con-
struction of artificial matter, such as surface states that are confined [33] by coordinated
molecules [21] or single atoms [36], and single chlorine vacancies on the chlorinated
Cu(100) surface [18, 19, 27]. In chapter 5, we presented laterally confined field emis-
sion resonances as a viable new basis for constructing extended artificial lattices, noting
the particular advantages this platform presents: a tunable lifetime and easy access to
higher energy states that host nodal patters reminiscent of atomic orbitals.

In this chapter, we assess how well-suited this platform is to the study of artificial
matter. As a first step, we construct and investigate dimers and trimers composed of
vacancy patches on the chlorinated Cu(100) surface. We find we can enable and tune
the coupling between two patches via a connecting patch of exposed metal. Following
previous works [165], we extract the tight binding parameters, such as the on-site en-
ergy, the orbital overlap, and the hopping amplitude, additionally quantifying the cou-
pling strength for various dimer geometries. As a proof of concept, we use this platform
to realize a well-characterized system—a looped, dimerized chain that is predicted to
host domain wall states [19]—and recover the expected behaviour. Having ascertained
that confined vacuum resonances behave as expected in larger architectures, we point
to potential avenues of interest to explore further, such as a diamond chain lattice that
is expected to host topological edge states when the orbital angular momentum of the
constituent sites is non-zero.

6.1. HYBRIDIZATION OF CONFINED VACUUM RESONANCES IN

A DIMER GEOMETRY
In the context of artificial matter, a lone N × N patch of assembled chlorine vacancies
constitutes a site in the lattice—a role that it is justified in serving on the basis that each
patch hosts discretized energy levels, with the corresponding eigenstates resembling the
two-dimensional analog of atomic orbitals. However, this semblance is not completely
robust in that the notion of orbital angular momentum is not well-defined in the ab-
sence of rotational symmetry. As such, an orbital angular momentum quantum number
cannot be strictly assigned to these states—yet, the relationship between the rotation op-
erator and orbital angular momentum operator makes it possible to define, in a limited
sense, an orbital angular momentum in systems with reduced symmetry (see section 6.5
for details). As such, we will refer to the particle-in-a-box states by their atomic analog,
wherein the (1,1) state is referred to as s-like, the (2,1), (1,2) states as px -like and py -
like, respectively, the (2,2) state as dx y -like, and the linear combination (3,1)− (1,3) as
dx2−y2 -like.

To determine whether dimers constructed from vacancy patches exhibit signs of cou-
pling, we atomically assemble two 5 × 5 patches (dimensions defined in unit cells of
the chlorine lattice) that are connected via a 2×3 (width × length) bridging patch that
enhances the intrinsic coupling strength, as shown in Fig. 6.1. We perform constant-
current differential conductance spectroscopy (normalized via the procedure outlined
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Figure 6.1: Coupling confined vacuum resonances in a dimer geometry. a Normalized constant-current dif-
ferential conductance spectroscopy obtained at a current setpoint of 50 pA, acquired at different positions atop
a dimer composed of two 5×5 patches (indicated in unit cells), connected via a 3×2 (width × length) bridging
patch. b Topography of the dimer (acquired at 600 mV, 1 nA); the locations at which the spectra are obtained
is indicated via dots with the corresponding color; scale bar: 2 nm. c Extracted experimental resonance ener-
gies (green), and corresponding calculated energies (orange) offset by 4.78 V to account for the out-of-plane
confinement energy. In-plane mode index refers to the states in d, labelled in order of increasing energy. d
Top row: normalized constant-current differential conductance maps obtained at the indicated energies, the
values of which correspond to the approximate locations of the peaks detected in point-spectroscopy. Middle
row: Calculated LDOS of the particle-in-a-box states (|Ψ|2), obtained for a finite well with the same geometric
configuration as the assembled dimer. Bottom row: schematic of the relevant s, p, and d bonding and anti-
bonding states generated by hybridization between two identical orbitals in each case; position of the nuclei
indicated by black circles. The sign of the wavefunction corresponds to its color (positive: green, negative:
red).

in chapter 7) at three different points along the dimer (Fig. 6.1a, b). Notably, we ob-
serve the emergence of peaks that are engendered by hybridization between the two
patches. To trace the full spatial evolution of these states, we perform differential con-
ductance maps at energies corresponding to the peak locations in point-spectroscopy
(Fig. 6.1d, top row). The two lowest energy states are reminiscent of the s bonding (σs )
and antibonding (σ∗

s ) states, respectively. Namely, the lowest energy state is character-
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ized by an electron probability density that has significant intensity along the whole
structure, peaking in the very center (symmetric), whereas the second state exhibits a
distinct nodal plane between the two patches (antisymmetric).

This analogy to the orbitals of a diatomic molecule continues into the higher energy
states (p-like and d-like), where we observe probability distributions corresponding to
the px bonding (σp , at ∼ 5.010 V) and antibonding (σ∗

p , at ∼ 5.125 V) states. The hy-
bridization of the py orbitals (πpx and π∗

px
) results in a very small energy splitting, mak-

ing the two states indistinguishable, as we see in the differential conductance map at
∼ 5.185 V. This minimal energy splitting is expected: the py bonding and antibonding
states are nearly degenerate according to our calculations (Fig. 6.1c, in-plane mode in-
dex of 5). At even higher energies, we observe electron probability distributions that have
the same nodal pattern as the d-like σ (at ∼ 5.280 V) and π (at ∼ 5.350 V) bonding states,
as well as the π∗ antibonding state (at ∼ 5.410 V). Additionally, we can reproduce the
spatial distributions of all the measured states, as well as their energy spacing, with the
calculated eigenstates and energies of a finite potential well that has the same geometry
as the constructed dimer, as shown in Fig. 6.1c and d. The well depth here is set by the
work function differences between the chlorinated and bare Cu surfaces (∼ 1.1 V ) [168].

6.2. EXTRACTING THE TIGHT-BINDING PARAMETERS

We follow the same procedure previously outlined [165] for extracting the tight bind-
ing parameters for artificial atoms that are coupled via a bridging patch. This connect-
ing bridge introduces certain complications, for instance that coupled patches do not
have the same on-site energy as independent ones [165]. Thus, to determine the on-site
energies—in addition to the other tight-binding parameters, such as overlap integral, s,
as well as the nearest (t1) and next-nearest (t2) hopping terms—we atomically assem-
ble and probe dimers and trimers with a given bridging patch geometry (see Fig. 6.2).
Furthermore, we restrict our focus to the effects of hybridization on the lowest energy
(s-like) states, and assume that the orbital overlap s is equivalent for dimers and trimers.

With this, the energies of the bonding (E+) and antibonding (E−) states arising from
the hybridization of s-orbitals in a dimer geometry (see inset of Fig. 6.2a) are given by [165]:

E+ = ϵ1 + t1

1+ s
, (6.1)

E− = ϵ1 − t1

1− s
, (6.2)

where ϵ1 is the onsite energy of each patch comprising the dimer.

Similarly, hybridization in a trimer geometry is expected to give rise to three states
with distinct spatial distributions, as schematically illustrated in Fig. 6.2b (inset): the
bonding state, at energy E1, carries intensity across most of the structure; the nonbond-
ing state (E2) is characterized by zero intensity at the center site; and the antibonding
state (E3) hosts two nodal planes between the inner and outer sites. The energies of
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Figure 6.2: Deducing the tight-binding parameters for dimer and trimer geometries. a, c Normalized
constant-current point spectroscopy (circles, shaded), obtained at 100 pA, acquired at various locations atop
each dimer (indicated in inset by colored dots; topography recorded at 600 mV, 1 nA; scale bar: 2 nm), com-
posed of two 4× 4 patches, connected via a 2×1 (a) or 2×2 (c) bridging patch. Solid lines are fits of each
spectrum to the sum of two Lorentzian functions. Inset (a): schematic of the bonding and antibonding or-
bitals formed (at energies E+ and E−, respectively) by hybridization of two identical 1s orbitals. The sign of the
wavefunction corresponds to its color: positive is denoted by green, and negative by red. b, d The same as a
and c, but considering a trimer geometry. Inset (b): schematic of the bonding, nonbonding, and antibonding
orbitals (at energies E1, E2, and E3, respectively) formed by the hybridization of three identical 1s orbitals.

these states are given by:

E1 =
ϵ1 +ϵ2 −4st1 + t2 −

√
(−ϵ1 −ϵ2 +4st1 − t2)2 −4(1−2s2)(ϵ1ϵ2 −2t 2

1 +ϵ2t2)

2(1−2s2)
, (6.3)

E2 = ϵ1 − t2, (6.4)

E3 =
ϵ1 +ϵ2 −4st1 + t2 +

√
(−ϵ1 −ϵ2 +4st1 − t2)2 −4(1−2s2)(ϵ1ϵ2 −2t 2

1 +ϵ2t2)

2(1−2s2)
, (6.5)

where ϵ1 is the on-site energy of the outermost sites comprising the trimer, and ϵ2 that
of the center site.

We can experimentally deduce these energies (E+,E− and E1,E2,E3) using differen-
tial conductance spectroscopy performed atop the respective structures. First, we focus
on two 4×4 patches strongly coupled by a bridging patch of dimension 2×1 (Fig. 6.2a):
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ϵ1 (eV) ϵ2 (eV) t1(eV) t2(eV) s

2×1 bridge 5.28±0.03 5.25±0.03 2.8±0.6 0±0.1 0.5±0.1
2×2 bridge 5.30±0.03 5.27±0.03 2.3±0.5 0±0.1 0.4±0.2

Table 6.1: Tight binding parameters extracted for different bridging geometries.

due to the spatial extent of the bonding and antibonding states (as schematically shown
in the inset), we can expect to mainly probe the antibonding state atop the outer patches,
and conversely, to dominantly probe the bonding state in the very center. Differential
conductance spectroscopy performed at various points along the dimer confirm this,
and we are able to clearly resolve two peaks at approximately 5.27 V and 5.33 V (Fig. 6.2a).

Analogously, the distinctive spatial distributions of the bonding, nonbonding, and
antibonding states in a trimer geometry allow us to identify their contributions to the dif-
ferential conductance and extract the energies at which they occur. For instance, differ-
ential conductance measurements performed atop the outer patches should mainly be
a probe of the nonbonding and antibonding states, as we see in Fig. 6.2b. Similarly, point
spectroscopy acquired atop the center patch should mostly carry information about the
bonding and antibonding states. By performing measurements at these locations along
the trimer, we can indeed resolve these three states at roughly 5.25 V, 5.27 V, and 5.30 V,
respectively.

To precisely determine the peak locations, we fit each spectrum acquired atop the
dimer (trimer) to the sum of two (three) Lorentzian functions (Fig. 6.2), and use the
extracted values to solve the system of equations outlined in Eqs. 6.1-6.5. The resul-
tant tight-binding parameters (Table 6.1) are quite insightful: first off, we can conclu-
sively state that the bridging patches (and the extra area they afford the confined elec-
trons) change the on-site energy according to the coordination number of that site (i.e.,
ϵ2 < ϵ1); secondly, we can neglect next-nearest neighbour hopping as t2 ∼ 0; and most
importantly, the dimensional orbital overlap s is quite large (0 ≤ s< 1) and cannot be ne-
glected. The magnitude of s directly affects the degree to which the energies of the bond-
ing and antibonding states are asymmetrically displaced from ϵ1 (see insets in Fig. 6.2).
Additionally, a non-negligible orbital overlap introduces off-diagonal matrix elements in
the Hamiltonian, which means that analytically determining the eigenvalues and eigen-
states would require solving a generalized eigenvalue problem—a process that can be
carried out by using the Löwdin transformation [183, 184].

6.3. TUNING THE COUPLING STRENGTH
Generally speaking, there are three parameters that we can adjust in order to modify
the dimer coupling strength: the size of the constituent patches, as well as the length
and width of the bridging patch. To deduce the effects of the bridging length on the
tight binding parameters, we investigate the coupling between 4×4 patches connected
via a 2× 2 bridging patch, as shown in Fig. 6.2c and d. As shown in Table 6.1, a direct
comparison between the tight binding parameters extracted for the two geometries—
namely, considering a 2×1 (Fig. 6.2a, c) or 2×2 bridging patch (Fig. 6.2b, d)—reveals a
decrease in the best estimate of the hopping parameter and the orbital overlap for an
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a b

Figure 6.3: The coupling strength in a dimer geometry, as a function of the patch dimensions. a Normalized
constant-current point spectroscopy (circles, shaded) obtained at 50 pA, acquired atop dimers composed of
two 6×6 (top row, red), 5×5 (second row, blue), 4×4 (third row, green), and 3×3 (bottom row, orange) patches,
respectively. Solid lines are fits of each spectrum to the sum of three (for the 3× 3 dimer) or five (for the re-
maining dimer geometries) Lorentzian functions. Dotted vertical lines correspond to the extracted positions
of theσs andσ∗

s states (yellow), as well as theσp andσ∗
p states (grey), in order of increasing bias voltage. Spec-

troscopy positions indicated in topography (right column; setpoint of 600 mV, 1 nA; scale bar: 2 nm) by circles
with the corresponding color. Spectroscopy performed with different microscopic tips, resulting in an overall
shift in the resonance energies—but relative differences are unperturbed. b Extracted energy splitting of the
s-like (yellow) and px -like (grey) bonding and antibonding states, for dimers constructed from two patches of
dimension N ×N , bridged via a connecting patch of dimension (N −2)×1, as shown in the topographies in
a, right column. Dotted lines are guides to the eye. Error bars account for uncertainty in the fit parameters
only. Inset: change in the on-site energy ϵ for a single patch, relative to the on-site energy for a 7×7 patch, as a
function of the patch dimensions N .

increased bridging length, but the associated errors undermine any robust quantitative
conclusion.

As such, we take a qualitative approach for estimating the role of the dimer geometry
on the coupling, where we take the energy spacing between the bonding and antibond-
ing states as a first-order approximation of the coupling strength; this approximation ne-
glects variations in the orbital overlap, which also impacts the energy spacing and should
be taken into account for a more accurate analysis. First, we focus on isolating the effects
of the patch size on the coupling by constructing a series of dimers comprised of two
patches of dimension N ×N , connected via a bridging patch of dimension (N −2)×1, as
shown in Fig. 6.3a. Based on the spatial distribution of the hybridized states (Fig. 6.1d),
we perform differential conductance spectroscopy in the top right quadrant of the left
N ×N patch to ensure we can simultaneously probe every state—this amounts to avoid-
ing the nodal lines, where the spectral intensity goes to zero. We perform Lorentzian fits
to the normalized spectra to extract the positions of the bonding and antibonding states;
we confirm the expected spatial distribution of these states via differential conductance
maps taken at the corresponding energies, as in Fig. 6.1.

As we see in Fig. 6.3b, the energy splitting between the hybridized states monotoni-
cally decreases with patch size. Since the on-site energy of an individual patch decreases
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Figure 6.4: The coupling strength of the s-like and px -like states of a dimer, as a function of the bridging
geometry. a, b Normalized constant-current point spectroscopy (circles) acquired at 50 pA, performed atop
dimers composed of two 5×5 patches, connected via bridging patches of varying length (a; 3x1 (orange), 3x2
(green)), or width (b; 5x1 (blue), 1x1 (red)). Solid lines are fits of each spectrum to the sum of m Lorentzian
functions, where m corresponds to the number of peaks detected in this voltage range; dotted vertical lines are
the energies of the σs , σ∗

s , σp , and σ∗
p states (in order of increasing energy), as extracted from the Lorentzian

fits. Right column: corresponding topographic maps (recorded at 600 mV, 1 nA; scale bar: 2 nm) with spectro-
scopic locations indicated by the color-coordinated circles. c, d Extracted energy splitting of the s-like (brown)
and px -like (gray) bonding and antibonding states as a function of the bridging patch length (c) or width (d), as
shown in inset schematics. c Values extracted for distinct dimer geometries composed of two patches, either
of dimension 4×4 (square markers) or 5×5 (circular markers), connected by a bridging patch of fixed width
(2 or 3 unit cells, respectively). d Now considering a dimer geometry composed of two 5×5 patches (circular
markers) connected via a bridging patch of fixed length (1 unit cell). Dotted lines in c and d are guides for the
eye. Error bars only account for uncertainty in the fit parameters.

with the patch dimension N (see Fig. 6.3b, inset), it follows that the coupling strength
decreases as well. One way to understand this is by considering that the effective depth
of the potential well generated by a lone patch is deepened as N is increased (see chap-
ter 5), meaning that the lowest energy state (s-like) experiences an increasingly height-
ened potential barrier, which in turn decreases the extent of the wave-function outside
the well. Additionally, the energy difference between the σp and σ∗

p states is larger than
for the s-like states, a finding that can be rationalized in the same way: the hybridized
px -like states, which are at higher energies than the hybridized s-like states, experience
an effectively lower potential barrier. Finally, the overall dimensions of the dimer can
cause a reordering of the states when comparing structures of various size—this occurs
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for the 4×4 dimer (Fig. 6.3a, green), where the py -like bonding/antibonding states (ef-
fectively degenerate, at ∼ 5.47 V) are lower in energy than the px antibonding state (at
∼ 5.62 V), in line with our LDOS calculations for this dimer.

In order to elucidate the role of the bridging patch dimensions in determining the
coupling strength, we restrict our attention to dimers composed of two 5×5 patches, as
shown in Fig. 6.4. We either keep the bridge width (Fig. 6.4a) or length (Fig. 6.4b) fixed,
in order to trace the effects of changing the other dimension. As before, we extract the
energy of the states from fitting normalized differential conductance spectra obtained
for each dimer geometry to a sum of Lorentzians.

As expected, bringing the two patches further apart (i.e., increasing the bridge length)
or decreasing the bridge width have a similar effect: an overall decrease in the energy
splitting between both the s-like and px -like bonding and antibonding states (Fig. 6.4c
and d, circular markers). That said, the energy difference between the σp and σ∗

p states
decreases at a much faster rate (with respect to a changing bridge width or length) than
for the s-like states. We can understand this by again considering the increased spa-
tial extent of the px -like states outside of the patch, as compared to the s-like. Notably,
two 5×5 patches one lattice site apart—without a bridging patch to connect them—do
not exhibit any measurable coupling within the experimental energy resolution; in this
case, we can only set an upper limit to the splitting (≤ 8 mV), which is determined by
the energy broadening caused by the lock-in modulation voltage and the measurement
temperature (Fig. 6.4d).

The same analysis performed for dimers composed of 4×4 patches (Fig. 6.4c, square
markers) with a fixed bridge width (two unit cells) and variable bridge length shows the
same monotonic decrease in the energy splitting between the bonding and antibonding
states. However, as the overall length of the dimer is increased (by increasing the bridge
length), the decrease in Eσ∗

p
−Eσp is much larger, and accompanied by a change in the

order of the hybridized states: for bridge lengths of more than two unit cells, the py

bonding/antibonding state is raised in energy above the px antibonding state.

6.4. COUPLING CONFINED VACUUM RESONANCES IN EXTENDED

LATTICES

Having demonstrated and characterized the hybridization of confined field emission
resonances in dimer and trimer geometries, we now turn our focus to their study in
extended architectures. Due to the nature of field-emission resonances, and particu-
larly their critical dependence on the out-of-plane confinement, their hybridization in
larger lattices is not necessarily implied. Consider an extended one-dimensional chain
comprised of vacancy patches: when the tip is above a given patch, the out-of-plane
confinement experienced by any of the subsequent patches varies laterally due to the
tip shape [178]. This change in confinement means that the resonance energies shift
laterally, perhaps negating the possibility of hybridization in larger lattices that exist on
length scales comparable to the tip radius. Thereby, we test our platform against a well
studied system: a dimerized chain of atoms.
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Figure 6.5: Domain walls in a dimerized looped chain. a Schematic of the looped SSH chain realized experi-
mentally. Alternating weak (t1) and strong (t2) coupling between the dimerized sites, with sublattices A (dark
purple) and B (light purple) denoted. The two types of unit cell gives rise to two distinct phases, denoted by
shaded areas (yellow and blue), engendering a domain wall at their boundary. b Topographic map (600 mV,
1 nA) of the assembled SSH loop, composed of artificial atoms of dimension 2× 2, connected via a bridging
patch of dimension 1× 2 (t1) or 1× 1 (t2). c–e Normalized constant-current differential conductance maps
obtained at 50 pA, at the indicated bias voltage.

6.4.1. SU–SCHRIEFFER–HEEGER (SSH) CHAIN

One of the simplest frameworks to support topological states is the Su–Schrieffer –Heeger
(SSH) model, which takes a tight-binding approach towards describing a one-dimensional
dimerized lattice characterized by its staggered hopping amplitudes, t1 and t2 [185].
The alternating strong and weak bonds lead to an energy gap opening—the width of
which scales with the difference of the two hopping amplitudes—that separates the bulk
bands [186]. Notably, this dimerization can occur in solid state systems naturally; the
most relevant example being polyacetylene, which experiences staggered hopping am-
plitudes due to the Peierl’s instability [187], and is the molecule for which the SSH model
was originally developed [185, 188].

While the gap opens whenever t1 ̸= t2, it their relative amplitude that determines
whether the boundaries of a finite dimerized chain are trivial or topological: if the intra-
cell hopping is larger than that of the intercell, all the energy eigenstates of the chain are
the same as those of the bulk. However, if the reverse is true, then the ends of the chain
host a single eigenstate at zero energy, in the middle of the bulk gap—these are topo-
logically protected edge states. The same principle can lead to domain wall states in a
looped SSH chain (see Fig. 6.5a), where the relative strength of the hopping amplitudes
is switched mid lattice to create an isolated state at the boundary.

The isolated end state is topologically protected by the chiral (or sublattice) sym-
metry of the system. This kind of symmetry entails that the Hamiltonian only induces
transitions between the two sublattices (not within the same sublattice), thereby lend-
ing the Hamiltonian a strictly block off-diagonal form in the chiral basis. Consequently,
a topological end state on one sublattice is robust against variations in the other sublat-
tice, such as fluctuations in the on-site energy.

SSH chains have been realized and studied across different experimental platforms [16,
17, 189], including via atomic assembly in the STM-based approach towards artificial
lattices [2, 19, 25, 26]. These STM studies have experimentally realized and ascertained
various aspects of the SSH model—such as the existence of the topological end state for a
prototypical dimerized chain [19], and different extensions involving trimer and coupled
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dimer chains that aim at tuning the energy of the topological states [25]. Here, we recre-
ate the looped SSH chain previously studied [19] using 2×2 patches (see section 6.7.1),
and perform differential conductance maps to determine whether the expected domain
walls can be observed with an artificial lattice based on coupling confined field emission
resonances.

As shown in Fig. 6.5, a differential conductance map obtained at 5.5 V reveals a height-
ened intensity localized at the domain wall sites; dI /dV maps obtained at bias voltages
above and below this value (∼5.46 V and ∼ 5.55 V) are instead characterized by a mostly
even intensity across all sites, as expected. However, while the domain walls host a lo-
cally pronounced LDOS at 5.5 V, this is accompanied by a non-negligible intensity across
the other sites as well—for a true in-gap state, we expect this intensity to be strictly zero.
Three considerations can help make sense of this: firstly, the linewidth of the confined
resonances (∼ 150 mV) is larger than the energy spacing between these states; secondly,
a non-negligible orbital overlap can cause hybridization between the in-gap states and
the bulk states; and thirdly, the addition of the bridging patches causes a slight decrease
in the on-site energy of the isolated sites as compared to the bulk, which is not accounted
for by the normal SSH model (where the on-site energies are all assumed to be equiva-
lent).

In order to evaluate how significant this variation in the on-site energy is, we can
make use of the tight binding parameters extracted for 5× 5 dimers—although we can
expect the exact values for the hopping and on-site energies to change for dimers con-
structed from 2×2 patches, this should suffice for a rough estimation. From Table 6.1,
we can estimate the change in the on-site energy of the end sites to be roughly 1% of the
hopping strength—a minimal shift, that when accounted for does not notably impact
the expected eigenstates and energies of a typical SSH chain (see Fig. 6.8, section 6.7.2).
With these considerations in mind, our results indicate that hybridization of confined
vacuum resonances does occur as expected in extended structures.

6.5. OUTLOOK: SIMULATING TOPOLOGICAL STATES IN HIGHER

ENERGY BANDS
Artificial lattices are an experimental tool for the realization and study of exotic states of
matter [3], and have been applied in this context to topological states across various ar-
chitectures [28, 160, 164], such as the Lieb [19, 20], Kagomé [23], and Kekulé lattices [21,
24], as well as quasi-one-dimensional chains [25, 26, 190]—but it is worth noting that
these works have mostly focused on the lowest energy (s-like) bands. Here, lateral con-
finement of field-emission resonances allows us to readily access states with p-like char-
acter, making the study of topological states in higher energy bands an interesting av-
enue for exploration.

A possible system for such study is a so-called diamond chain constructed from sites
with non-zero orbital angular momentum, which is expected to host a topologically
nontrivial band structure as well as protected edge states [191]. In this geometry (see
Fig. 6.6a), the unit cell is comprised of a central site A and two equidistant neighbouring
sites B and C , with an angle θ = π/2 between them; all sites have orbital moment given
by mℓ = ±1. We note that the orbital angular momentum is only defined in the out-
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Figure 6.6: Experimental realization of a diamond chain. a Schematic of the diamond chain lattice. The unit
cell is comprised of three sites with an angle θ =π/2 between them, where the distance between the central site
A and the two neighbouring sites (B and C ) is the same. Each site carries orbital angular momentum, resulting
in the two mℓ =±1 states. The double-arrow solid lines indicate directions in which all the hopping amplitudes
are purely real, whereas the dashed lines denote the directions along which a change in helicity results in a
complex hopping phase factor. b Topography of the assembled diamond chain lattice, comprised of 4 × 4
patches connected by 2×1 bridging patches (600 mV, 40 pA). c–g Constant-current differential conductance
maps obtained at a current setpoint of 50 pA, at the indicated bias voltage.

of-plane direction, such that Lz |ψ〉 = ħmℓ|ψ〉, where mℓ = 0,±1,±2, . . . [192, 193]. This
means there are two states to occupy at each site, denoted by | ji ,±〉, where j = A, B , C , i
is the index of each unit cell, and ± refers to helicity of the state.

Consequently, hopping from one site to another can be accompanied by a change in
helicity, which in general introduces a relative phase in the hopping [194] that is given
by e iφ0∆mℓ , where ∆mℓ quantifies the change in helicity (∆mℓ = 0,±2 here) and φ0 is
the azimuthal phase origin [191]. In a two-site unit cell, the phase origin can always be
defined along the line connecting the two sites, such thatφ0 = 0 and the relative hopping
phase is equal to one [194]. In a three-site unit cell, however, the relative phase factor
assumes a complex value: in this case, the choice of phase origin will always leave a
relative angle between at least one of the neighbouring sites and the central site [191,
194]. If, for instance, the phase origin is chosen along the line connecting A to B , then
a relative phase of e±2iθ is incurred when hopping between states of different helicity
in sites A and C [191, 194]. These phases are a natural consequence of the azimuthal
component of the wavefunctions for states with non-zero orbital angular momentum,
and can be adjusted via geometric modifications of the three-site unit cell [191, 194].

A consequence of this complex hopping in the three-site unit cell is a topologically
non-trivial band structure, characterized by a flat band at zero energy (considering a
zero on-site energy) and an energy gap that scales with the amplitude of the hopping; if
the sites have no orbital angular momentum, the flat, zero energy band persists, but the
two remaining bands close at k =±π/a [191]. Additionally, the mℓ =±1 case is expected
to host topologically protected edge states [191, 195] that vanishes in the mℓ = 0 case (in
the absence of an external magnetic field) [196].
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We construct such a lattice from 4×4 vacancy patches connected by a 2×1 patch (see
Fig. 6.6b). We try to account for the shift in the on-site energy induced by the bridging
patches by slightly modifying the geometry of the lattice to have the same number of
bridging patches per site; however, due to the width of the bridging patch used here, it is
not possible to make each site completely identical. Another factor here is whether the
p-like states observed for the lone patches can be considered to host a non-zero orbital
angular momentum, which is an essential ingredient in the proposed model. Strictly
speaking, the orbital angular momentum operator does not have well-defined eigenval-
ues in the absence of rotational symmetry; however, systems with n-fold symmetry can
be considered to have an effective, non-zero orbital angular momentum up to (but not
including) n−1, given the relation between the orbital angular momentum operator and
the rotation operator [197, 198].

The most general definition of the orbital angular momentum operator is as a gen-
erator of rotations, a role which we can deduce from its definition Lη̂ = iħ∂φR(η̂,φ)

∣∣
φ=0,

where R(η̂,φ) is the rotation operator acting about an axis η̂ by an angleφ [197, 198]. The
rotation operator is itself defined by R(η̂,φ) = exp(−iφLη̂/ħ), meaning that in general,
the orbital angular momentum operator and rotation operator share eigenstates. While
the four-fold symmetry of the confining potentials precludes a general, well-defined
concept of the orbital angular momentum operator, let us focus solely on the (2,1),
(1,2) particle-in-a-box states (see chapter 5), which correspond to the px -like and py -
like states: here, R(ẑ,π)|ψ〉 = −|ψ〉 which supports the solutions Lz |ψ〉 = ±ħ|ψ〉, where ẑ
is the out-of-plane direction. The same thinking can be applied to other states, but the
four-fold symmetry of the patch means that eigenstates of the potential are also eigen-
states of the rotation operator for a maximum rotation of π/2. In this limited scope, we
can think of these states as having a non-zero orbital angular momentum up to the sym-
metry permitted by the confining potential.

Preliminary differential conductance maps obtained at energies corresponding to
the s-like states (Fig. 6.6c and d) are either characterized by a roughly even intensity
across all sites (5.110 V) or at the sites along the lattice boundary (5.165 V), presumably
corresponding to the bulk and flat bands in the infinite chain limit. At higher energies,
we probe the p-like states: the maps obtained at 5.3 V (Fig. 6.6e) and 5.405 V (Fig. 6.6g)
are quite analogous to the s-like states (at 5.110 V and 5.165 V, respectively), in that the
former is characterized by an increased intensity across the bulk and the latter by a pro-
nounced intensity along the edges. However, the p-like manifold has an additional state
at 5.355 V (Fig. 6.6f) that is absent at lower energies, and which features a localized and
increased intensity at the end of the chain, as expected from the topological edge state.
It is worth repeating that this state should only appear in the p-like manifold, as it relies
on each site carrying a non-zero orbital angular momentum—as such, it is promising
that we do not seem to observe it when probing the s-like manifold.

Another point of consideration is the role of the orbital overlap: since the overlap is
not negligible (section 6.2), we can expect it to induce some hybridization between the
edge state and the bulk states. Future experimental realizations would benefit from mak-
ing use of a smaller bridging patch (of dimension 1×1, for instance), which should de-
crease the strength of the orbital overlap. Indeed, additional measurements performed
at constant tip-sample distance and further theoretical checks are necessary to conclu-
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sively comment on any of the observed behaviour here, but we believe this is a promising
first step toward realizing and studying topological states in higher energy bands using
confined field emission resonances.

6.6. CONCLUSIONS
In this chapter, we demonstrate that confined field emission resonances are well-suited
to the study of artificial lattices. Specifically, we show that vacancy patches assembled
into dimer geometries hybridize to engender s-like and p-like bonding and antibonding
states. We characterize the coupling strength across various dimer architectures and
extract the tight binding parameters, such as the on-site energy, the orbital overlap, and
the hopping amplitude, where applicable.

Having ascertained that the patches hybridize, we implement them in a well-studied
lattice as a proof of concept; to this end, we construct a looped SSH chain that is expected
to host topological domain wall states. Differential conductance measurements atop the
structure corroborate the existence of such states, indicating that this platform can be
used to realize and study artificial lattices. Finally, we point to interesting avenues to
explore further, such as the diamond chain, where the different orbital character of the
states is exploited in an effort to probe topological states in higher energy bands.
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6.7. SUPPLEMENTARY MATERIALS

6.7.1. CHARACTERIZING DIMERS COMPRISED OF 2×2 PATCHES
In order to characterize the building blocks used to construct the looped SSH chain (see
section 6.4.1), we construct and investigate dimers comprised of two 2×2 patches, con-
nected via an off-center bridging patch of dimension 1×1 or 1×2 (see Fig. 6.7). Point
spectroscopy performed atop the 1×1 bridged dimer reveals a double peak (Fig. 6.7b),
and differential conductance maps obtained at the peak locations indicate that the spa-
tial distribution of these states correspond to the s-like bonding (5.33 V) and antibonding
(5.64 V) states (Fig. 6.7c). Point-spectroscopy performed atop the 1×2 bridged dimer is
much the same (Fig. 6.7e), with the distinction that the bonding and antibonding states
here are closer in energy due to the weaker effective coupling.

6.7.2. VARYING THE ON-SITE ENERGY IN THE SSH MODEL
To closely examine how variations in the on-site energy take shape in the SSH model,
we calculate [182] the eigenergies and eigenstates of a finite one-dimensional dimerized
chain, where t1 = 0.5 and t2 = 1. To mimic the experimental conditions, we vary the
on-site energy of the isolated end sites (setting this parameter equal to 0 eV, -0.1 eV, or
-0.3 eV), while keeping all other on-site energies equal to zero. As shown in Fig. 6.8a, this
change in the on-site energies of the end sites causes the states in the gap to shift down-
ward in energy, away from zero energy point. The corresponding calculated eigenstates
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do not appreciably change, despite these variations (Fig. 6.8b).

5.33 V
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Figure 6.7: Hybridization of s-like states in dimers constructed from 2×2 patches. a, d Topography (600 mV,
1 nA) of the assembled dimers, comprised of two 2× 2 patches connected via an off-center bridging patch
of dimension 1× 1 (a) or 1× 2 (d). b, e Normalized constant-current differential conductance spectroscopy
obtained atop the 1×1 bridged dimer (b) and the 1×2 bridged dimer (e)) at a current setpoint of 50 pA; location
of each spectrum indicated on the topographic maps by circles with the corresponding color. Solid lines are fits
to the sum of two Lorentzian functions. Dotted lines (panel b) correspond to 5.33 V and 5.64 V. c Normalized
constant-current differential conductance maps of the 1×1 bridged dimer, obtained at 50 pA.
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Figure 6.8: Varying the on-site energy of the end sites in the SSH model. a Top: schematic of a finite SSH
chain (N = 40 sites) for which calculations were performed; hopping amplitudes given by t1 = 0.5 eV (dotted
line) and t2 = 1 eV (solid line); sublattices A (dark purple) and B (light purple) indicated. Calculated energies
versus the spectral index (nλ) for the illustrated dimerized chain. Calculations performed for three distinct
scenarios: all on-site energies are taken to be equal to zero (red); or, on-site energies of the end-sites are set
to -0.1 eV (yellow) or -0.3 eV (grey), with all other on-site energies still equal to zero. b |Ψ|2 corresponding to
the indicated eigenvalue number, calculated considering zero on-site energy for all sites (red), or by setting the
on-site energies of the end sites to -0.3 eV (grey).





7
NUMERICAL SIMULATIONS OF

FIELD-EMISSION RESONANCES

Field-emission resonances are sensitive to the electronic structure and morphology of sur-
faces, making them useful probes of the local surface work function, scattering proper-
ties of surfaces, and notably, electron dynamics of unoccupied states. However, scanning
tunneling spectroscopy performed in this regime—which entails applying bias voltages
exceeding the sample work function—suffers from experimental and theoretical compli-
cations pertaining to the resonances’ sensitivity to the tunnel barrier: changes in the tip-
sample distance or the applied voltage are necessarily accompanied by a redistribution of
the wave function and a shift in the resonance energy. As such, the wave functions contin-
uously evolve during spectroscopy, yielding a measurement that is a convolution of these
effects with the local electronic density of states. This prevents direct quantitative analysis
of differential conductance spectra for determining the properties of these states, such as
the electronic lifetime. Here, we present several numerical avenues for the treatment of
field-emission resonances, aimed at extracting quantitative information from their spec-
troscopic features. By accounting for the tunnel barrier in the high bias regime, we sim-
ulate the wave functions and energies of the resonances to quantify their evolution as
the potential across the tunnel junction is varied. Furthermore, we estimate the trans-
mission through the tunnel barrier to derive how the local density of states and experi-
mentally obtained differential conductance spectra are related to each other, proposing a
general normalization procedure for extracting the local density of states from high-bias
spectroscopy. Finally, by modelling the transport through the vacuum-localized state, we
present a method for determining electronic lifetimes from spectroscopic data. We use this
procedure to extract the lifetime of the first field-emission resonance on bare Cu(100), ob-
taining a value of 8±3 fs, consistent with previously reported results.

Parts of this chapter have been published in ACS Nano 16, 11251–11258 (2022) by R. Rejali, L. Farinacci, D.
Coffey, R. Broekhoven, J. Gobeil, Y. M. Blanter, and A. F. Otte [159]; parts of this chapter are in preparation for
journal submission by R. Rejali, L. Farinacci, and A. F. Otte.

71



7

72 7. NUMERICAL SIMULATIONS OF FIELD-EMISSION RESONANCES

Field-emission resonances are quantized electronic states localized in the vacuum,
between the surface and the probe tip: the linear potential drop across the junction due
to the applied bias voltage elevates the potential barrier above the vacuum level of the
sample, thereby giving rise to a new class of confined states. In this high electric field
regime, tunneling electrons will be reflected both by the sample surface and the rising
potential barrier generated by the applied voltage, thus creating standing waves in front
of the sample surface. These resonances depend critically on the electronic properties
of the sample–such as the surface-projected band structure, which alters the surface re-
flectivity. As such, they are useful in obtaining information about the surface, such as
local work function changes [169–172] or scattering properties at interfaces [199], and
even allow for atomically resolved images of insulators [200] and spin-textures [201] far
from the surface.

These states also depend on the exact shape of the tunneling barrier: variations in the
either tip-sample distance, the tip shape, or the bias voltage cause a change in the con-
fining potential, and consequently alter the energy and probability distribution of the lo-
calized states. This presents a challenge in terms of extracting quantitative information
from the resonances, as any differential conductance measurement—whether it’s per-
formed in constant-height or -current mode—necessarily induces a continual change in
the state being probed. In fact, spectroscopy performed in the field-emission regime is,
by definition, taken at voltages exceeding the sample work-function and often spanning
a wide energy range; as such, the tip is usually nanometers away from the surface, and
the tunneling current can easily vary by several orders of magnitude across the energy
range of interest. These experimental considerations can make constant-height mea-
surements in this regime highly impractical: the alternative choice of constant-current
spectroscopy presents its own challenges, as the measured dI /dV in this mode is a poor
reflection of the local density of states [113, 114, 202]. Furthermore, the changing level of
the localized state during measurement artificially broadens the linewidth of the dI /dV
peaks, which both limits the available energy resolution and renders the linewidth an
inaccurate reflection of the state lifetime.

Here, we address the difficulties in extracting quantitative information from field-
emission resonances on three fronts: first, we model the potential landscape across the
tip-sample junction to calculate the wave functions and energies of these states, an es-
sential tool in simulating their evolution as the sample properties or tunneling barrier
change. Second, we propose and verify a normalization routine for extracting the local
density of states from the measured differential conductance in the high-bias regime,
for both spectroscopic modes. Finally, we develop a transport model that quantitatively
extracts information about the state lifetime from conductance-dependent dI /dV mea-
surements, and benchmark our model using a well-known surface, such as Cu(100).

7.1. FIELD-EMISSION RESONANCES: BINDING ENERGIES AND

WAVE FUNCTIONS
In general, metal surfaces can host electron states that are absent in the bulk, and which
can be categorized according to their spatial probability distribution relative to the sur-
face: intrinsic surface states [203] and image potential states[204, 205]. Intrinsic surface
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Figure 7.1: Energy landscape at the tip-sample junction, in the direction perpendicular to the sample sur-
face. a A positive bias voltage applied to the sample shifts the sample Fermi level (EF,S ) by −eV relative to the
tip Fermi level (EF,T ), creating a trapezoidal potential barrier. This barrier, which depends on the tip-sample
distance z, and the work functions of the tip (φt ) and sample (φs ), has an associated transmission factor T (E),
which indicates the exponentially decreasing probability that an electron with a certain energy tunnels through
the barrier. The Fermi-Dirac distributions of the sample and tip (green and blue rectangles, respectively) are
schematically shown for zero temperature. Electrons from the occupied states of the tip tunnel to the empty
states on the sample side. The tip density of states (blue line) is assumed to be a constant, while the sample
density of states can be expected to vary with energy (schematically illustrated by the green line); both are
filled below the respective Fermi levels. b The potential used to calculate the energies and wave functions of
the field-emission resonances, with the model parameters used to reproduce the bulk band gap (A1, A10, ã)
and the experimental binding energies (A2 and ztip) defined.

states, also known as Tamm [206] or Shockley states [207], are localized at the surface,
whereas image potential states are localized by the Coulomb-like image potential barrier
to the region in front of the surface. One way to conceptualize field-emission resonances
is as image potential states that are shifted to higher energies by the addition of the linear
potential between the tip and sample [175, 208].

While field-emission resonances are particular to the scanning probe geometry, im-
age states are ubiquitous and have been extensively studied using techniques such as
inverse photoemission [209] and (time-resolved) two-photon photoemission [173, 210–
212]. These works provide reference points for image state binding energies and life-
times for many noble and transition metals, and have been used to develop one-dimensional
models [40, 205] for calculating the energies and wave functions of image states in ac-
cordance with these experimental findings. The model used here incorporates the linear
potential across the junction and the image potential at the tip side [208], into this ex-
isting framework [205] to calculate the wave functions and energies of field-emission
resonances.

The total one-dimensional potential across the tip-sample junction accounts for the
properties of the bulk, the tunneling barrier, and the work-functions of the tip and sam-
ple (see Fig. 7.1) [205, 208]. More specifically, the sample potential (z ≤ 0) is taken to be
periodic in the bulk, with a periodicity set by a/2, the distance between two atomic lay-



7

74 7. NUMERICAL SIMULATIONS OF FIELD-EMISSION RESONANCES

ers in the out-of-plane direction, where a is the lattice constant. The potential beyond
the surface atomic layer is simulated with a potential well (0 ≤ z ≤ z1), followed by an
exponential decay of the potential towards the tip vacuum level (z1 ≤ z ≤ zim). To ac-
count for the tip (at ztip) [208], we add the linear potential Vlin(z) between the tip and
sample (z1 ≤ z ≤ ztip), which arises due to the applied voltage and the contact potential.
The contact potential is also explicitly accounted for by including the tip (φt ) and sam-
ple work functions (φs ). The long-range image potential, Vim(z), which accommodates
multiple images in both tip and sample, is also considered, which, all in all, gives rise to
the following total potential:

V (z) =


A10 + A1 cos

(
2π
ã

)
z ≤ 0

A20 + A2 cos(βz) 0 ≤ z ≤ z1

Vlin(z)+ A3 exp(−α(z − z1)) z1 ≤ z ≤ zim

Vlin(z)−Vim(z) zim ≤ z ≤ ztip,

(7.1)

where
Vlin(z) = E f ,s + s(eV +φt )+ (1− s)φs , (7.2)

where E f ,s is the sample Fermi energy, and s = (z − z1)/(ztip − z1). We chose to define
the potential relative to the tip Fermi level, meaning E f ,s =−eVbias. Additionally, we can
define the image potential as [208]:

Vim(z) = (
1−exp(−λ(z − zim)

) e2
(
2Ψ(1)−Ψ(η)−Ψ(1−η)

)
16πϵ0

(
ztip

im − zim

) , (7.3)

where η= (z − zim)/(ztip
im − zim), e is the electron charge, ϵ0 the vacuum permittivity, and

Ψ the digamma function.
For a terminated metal surface, the parameters A1 and A10 determine the width and

position of the surface-projected gap, respectively, whereas the parameters A2 and β re-
produce the experimental values of the binding energies of the image states [205]. We set
A10 =−eVbias−A1, as we chose the tip vacuum level as our reference, and assign A1, A20,
A2, β, and z1 = 5π/(4β) to their corresponding values previously determined for a termi-
nated Cu(100) surface [205]. By forcing the potential and its derivative to be continuous
everything (except at the tip position, ztip), we can analytically determine the values for
the remaining parameters (A3, α, λ, zim) in terms of already known parameters, using
the following analytical relations.

A20 = A10 + A1 − A2,

A3 = A20 + A2 cos(βz1)−Vlin(z1),

α= eVbias +φt −φs

A3(ztip − z1)
+ βA2

A3
sin(βz1),

λ= 2α,

zim = −1

α
ln

(
−λe2

16πϵ0 A3

)
+ z1.
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We note that the tip image plane is not well defined in the above potential (and hard
to estimate from experiment); luckily, this parameter has little bearing on the calcu-
lated wave functions, and can be easily estimated within an acceptable degree (we as-

sign ztip
im ≈ ztip −0.3 Å.). Solving the time-independent Schrödinger equation [182] using

this potential (equation 7.1) results in the calculated wave functions shown in chapter 5.

7.2. OBTAINING THE LOCAL DENSITY OF STATES FROM FIELD-
EMISSION SPECTROSCOPY

Scanning tunneling spectroscopy is a tool for obtaining atomically resolved information
about the surface-projected electronic density of states as a function of energy. However,
the measured differential conductance directly depends on a number of parameters—
such as the transmission through the tunnel barrier, the tip density of states, the tip-
sample distance, and the finite temperature—which renders it a poor direct measure of
the local density of states (LDOS). Several schemes have been proposed for extracting
quantitative information from the tunnel current, for instance by considering the static
conductance dln I /dlnV [96], fitting the differential conductance to a tunneling proba-
bility function [213], or normalizing the differential conductance by both the tunnel cur-
rent and the transmission coefficient [214, 215]. However, these approaches are solely
suited for treatment of spectroscopic data obtained at a constant tip-sample distance,
for electron energies well below the sample and tip work-functions.

Performing constant-current spectroscopy can be an advantageous choice when, for
example, covering large voltage ranges, or when the change in the apparent height of the
surface varies drastically–both scenarios necessitate a severe dynamic range of current
if the tip-sample distance is held constant. Also, high currents during spectroscopy can
sometimes alter or damage molecules or the atomic structure at the surface, as well as
induce tip instabilities, in which case it can be preferable to maintain a low and con-
stant current. Unfortunately, constant-current spectra are even further removed from
the LDOS than constant-height measurements [113, 114, 202], in part due to the chang-
ing transmission through the tunnel barrier, as well as the effects of the tip displace-
ment during data acquisition: for instance, the energy, relative amplitude, and spatial
extent of spectroscopic features are significantly affected by changes in tip height [114,
202]. As such, it is even more critical to normalize constant-current spectra to reliably ex-
tract quantitative information from the measured differential conductance. While such
schemes have been proposed [114, 115, 202, 216], they are limited to low voltage ranges,
well below the sample work-function—even though constant-current measurements are
most severely needed in the high bias regime.

Here, we present a normalization scheme for extracting the local density of states
from spectroscopic data obtained at either constant current or constant tip-sample dis-
tance in the field-emission regime. In this approach, we describe the total tunneling
current I using the one-dimensional Wenzel-Kramers-Brillouin (WKB) theory, wherein
the tunneling barrier is defined by a transmission coefficient, T(z,V ,E), that is both
energy- and distance-dependent. In the low temperature limit (where the temperature
T ≪ eV /kB , and e is the electron charge and kB the Boltzmann constant), applying a
bias voltage V across the barrier leads to a tunneling current at a tip-sample distance z
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that is determined by [92, 213, 217]:

I (z,V ) =
∫ eV

0
ρs (E)ρt (E −eV )T(z,V ,E)dE , (7.4)

where ρs and ρt are the tip and sample densities of states, respectively, and the propor-
tionality constant relating the current to the integral is set to one. In the above expres-
sion, the windowing function determined by the difference of the Fermi-Dirac distribu-
tions f of the tip and sample, f (E −eV )− f (E), sets the bounds of integration. Following
the expression for the current, the differential conductance can in turn be written as:

∂V I (z,V ) = ∂V

∫ eV

0
ρs (E)ρt (E −eV )T(z,V ,E)dE (7.5)

= eρs (eV )ρt (0)T(z,V ,eV )+
∫ eV

0
ρs (E)ρt (E −eV )∂V T(z,V ,E)dE , (7.6)

where we apply the Leibniz rule to differentiate the argument of the integral, and ap-
proximate the tip density of states be constant with voltage, such that ∂V ρt = 0 [115,
214]. To further evaluate the differential conductance, we need an analytical form for
the transmission factor in the field emission regime. In this case, the applied voltage is
necessarily greater than the sample work function, and we can approximate the tunnel
barrier to be triangular, in the region where eV >φs , with a transmission factor given by
the WKB approximation, wherein the transmission factor T in related to the integral of

the momentum p via T(z,V ,E) = exp
(
−2
ħ

∫ |p(z ′)|d z
)
:

− 2

ħ
∫ z

ztp

|p(z ′)|d z ′ =− 2

ħ
∫ z

ztp

√
2me

(
φs + φt −φs +eV

z
z ′−E

)
d z ′, (7.7)

where the classical turning point is denoted by ztp and the electron mass by me [111].
The width of the barrier is given by the tip-sample distance z, and φs and φt are the
tip and sample work functions, respectively (see Fig. 7.1a). From this we can derive a
transmission [111, 218]:

T(z,V ,E) = exp

(
−4

p
2me

3ħ
z

φt −φs +eV
(φt +eV −E)3/2

)
. (7.8)

Here, we note a key and convenient relation [214] between the transmission factorT(z,V ,E)
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through the tunnel barrier, and its partial derivative with respect to the applied voltage:

∂V T(z,V ,E) = ∂V exp

(
−4

p
2me

3ħ
z

φt −φs +eV
(φt +eV −E)3/2

)
(7.9)

=T(z,V ,E)×
(

4e
p

2me

3ħ
z

(φt −φs +eV )2 (φt +eV −E)3/2

− 2e
p

2me

ħ
z

φt −φs +eV
(φt +eV −E)1/2

)
(7.10)

= 2e
p

2me

ħ
z

(φt −φs +eV )

(
2(φt +eV −E)3/2

3(φt −φs +eV )
− (φt +eV −E)1/2

)
T(z,V ,E).

(7.11)

By substitution of the above in Eq. 7.6, we arrive at:

∂V I (z,V ) = eρs (eV )ρt (0)T(z,V ,eV )+
∫ eV

0
ρs (E)ρt (E −eV )T(z,V ,E)

× 2e
p

2me

ħ
z

(φt −φs +eV )

(
2(φt +eV −E)3/2

3(φt −φs +eV )
− (φt +eV −E)1/2

)
dE .

(7.12)

The arguments of the integrals in Eq. 7.12 and Eq 7.4 are the same, except for the addi-
tional factors that relate the transmission to its partial derivative. By noting that these
factors are slowly varying in the energy range of interest, and that the transmission it-
self exponentially peaks at an energy eV , we can set the mean value of these factors to
4e

p
2me

3ħ
z

(φt−φs+eV )2φ
3/2
t and − 2e

p
2me
ħ

z
φt−φs+eV φ

1/2
t , respectively. We use the generalized

mean value theorem [214] to evaluate the integral according to:

∂V I (z,V ) = eρs (eV )T(z,V ,eV )+ 4
p

2me

3ħ
z

φt −φs +eV

(
φ3/2

t

φt −φs +eV
− 3

2
φ1/2

t

)
eI (z,V ),

(7.13)

where we have additionally set the ρt (0) equal to unity [214]. Using this expression, we
can isolate the density of states from a constant-height differential conductance mea-
surement, performed a distance z0 from the surface according to:

ρs (eV ) = 1

eT(z0,V ,eV )

×
dV I (z0,V )− 4

p
2me

3ħ
z0

φt −φs +eV

(
φ3/2

t

φt −φs +eV
− 3

2
φ1/2

t

)
eI (z0,V )

 .

(7.14)

If instead we keep the current set-point constant and allow the tip-sample distance to
vary, such that I = I (z(V )), then the transmission becomes voltage dependent through
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z(V ) as well. Namely:

dV T(z(V ),V ,E) = ∂V T(z(V ),V ,E)+dV z(V )∂zT(z(V ),V ,E), (7.15)

whereby the differential conductance assumes the form:

dV I (z(V )) = eρs (eV )ρt (0)T(z(V ),V ,eV )

+
∫ eV

0
ρs (E)ρt (E −V )

[
∂V T(z(V ),V ,E)+dV z(V )∂zT(z(V ),V ,E)

]
dE .

(7.16)

The partial derivative of the transmission with respect to the tip-sample distance z(V ) is
readily evaluated:

∂zT(z(V ),V ,E) =−4
p

2me

3ħ
(φt +eV −E)3/2

φt −φs +eV
T(z(V ),V ,E). (7.17)

Noting once more that the factors that relate the transmission to its partial derivative
with respect to z(V ) are slowly varying, we can again apply the mean value theorem to
evaluate the integral in Eq. 7.6:

dV I (z(V )) = eρs (eV )T(z(V ),V ,eV )

+ 4
p

2me

3ħ
z(V )

φt −φs +eV

(
φ3/2

t

φt −φs +eV
− 3

2
φ1/2

t

)
eI0

− 4
p

2me

3ħ
φ3/2

t

φt −φs +eV
I0dV z(V ),

(7.18)

= eρs (eV )T(z(V ),V ,eV )

+ 4
p

2me

3ħ
φ3/2

t

φt −φs +eV

ez(V )

(
1

φt −φs +eV
− 3

2φt

)
−dV z(V )

 I0,

(7.19)

where I0 is the current set-point. Here, we should note that a measurement of the dI /dV
at a specific dc-bias amounts to tracking the change in the current caused by the applied
bias modulation; correspondingly, the dV z(V ) term corresponds to the change in the tip-
sample separation due to the same ac component of the applied bias. If the frequency of
the ac-bias is sufficiently high compared to the cut-off frequency of the feedback, which
is normally the case, then dV z(V ) is negligible [114, 115]. In this case, the density of
states can be extracted from the measured differential conductance via:

ρs (eV ) = 1

eT(z(V ),V ,eV )

dV I (z(V ))− 4
p

2me

3ħ
z(V )

φt −φs +eV

(
φ3/2

t

φt −φs +eV
− 3

2
φ1/2

t

)
eI0

 .

(7.20)
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The relations in Eq. 7.14 and 7.20 can be used to normalize constant-height and
constant-current differential conductance spectra, respectively, to obtain the local den-
sity of states, in the case where the applied voltage is greater than the sample work-
function. This approach relies on recording the differential conductance dV I (z,V ), the
relative tip-displacement ∆z, and the current-voltage behaviour I (V ) simultaneously.
While this is easily and commonly implemented, gaining experimental information about
the absolute distance z =∆z + z0 requires additional I (z) measurements to estimate the
point of contact between the tip and sample.

However, it is in general possible to make a reasonable estimate of this parame-
ter [114]; and in the particular case of field-emission resonances, it is possible to estimate
the absolute distance by modelling the out-of-plane potential to match the experimental
and calculated energies of the resonances (see section 7.1). In either case, the exact value
of z0 does not dramatically affect the spectral shape of the differential conductance: for
a wide range of z0 values, the peak positions and widths remain roughly constant, while
the relative height of the peaks are subject to variation (see Fig 7.2) [114].

7.2.1. EFFECTS OF k-SELECTIVITY IN THE TUNNELING CURRENT

In general, the total tunneling current depends not only on the tunneling barrier, but
also on the in-plane momentum k∥ of the probed state [88, 89]. In fact, scanning tunnel-
ing spectroscopy is mostly sensitive to states with a small in-plane momentum, meaning
the total contribution to the current dies off as the k∥ of the state increases [219]. This
effect has been previously accounted for in the Tersoff and Hamann description of the
tunneling current: there, k∥ is incorporated into the decay constant that defines the cur-

rent. Namely, I ∝ exp(−2κz), where κ =
√

2mφ/ħ2 +k2
∥ , and φ is the potential barrier

for tunneling [88, 89, 219].
Analogously, the effects of the in-plane momentum can be accounted for in the WKB

approach via the transmission factor, namely:

T(z,V ,E ,k∥) = exp

(−2

ħ
∫ z

0

√
2me (φ(z ′)−E)+ħ2k2

∥d z ′
)

. (7.21)

In the simplest case, where the tunneling barrier is approximated by a rectangular poten-
tial (eV <φs ,φt , necessarily), with an effective tunneling barrier heightφeff = (φt +φs )/2,

the transmission reduces to T(z,V ,E) = exp

(
−2
ħ z

√
2me (φeff −E)+ħ2k2

∥

)
. The tunneling

current in this case is proportional to this transmission:

I (V ) ∝T(z,V ,E = EF ,k∥)
∫ eV

0
ρs (E)dE (7.22)

= exp

(−2

ħ z
√

2meφeff +ħ2k2
∥

)∫ eV

0
ρs (E)dE , (7.23)

as in the Bardeen approach. In the above, we consider T(z,V ,E ,k∥) ∼T(z,V ,E = EF ,k∥),
a common approximation when eV <φs ,φt , and we set the tip-density of states to unity.

In the field-emission regime, we can similarly incorporate the effects of the in-plane
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momentum of the probed state, leading to a transmission factor that depends on k∥:

T(z,V ,E ,k∥) = exp

(
− 2

3meħ
z

φt −φs +eV

((
2me (φt +eV −E)+ħ2k2

∥
)3/2 − ∣∣ħk∥

∣∣3
))

,

(7.24)
where the partial derivative with respect to the voltage is:

∂V T(z,V ,E ,k∥) =T(z,V ,E ,k∥)

×
(

2e

3meħ
z

(φt −φs +eV )2

((
2me (φt +eV −E)+ħ2k2

∥
)3/2 − ∣∣ħk∥

∣∣3
)

− 2e

ħ
z

φt −φs +eV

(
2me (φt +eV −E)+ħ2k2

∥
)1/2

)
.

(7.25)

Following the same procedure outlined in section 7.2, we can obtain an analytical form
for the differential conductance that is analogous to Eq. 7.13:

∂V I (z,V ) = eρs (eV )T(z,V ,eV )

+ 2e

ħ
z

φt −φs +eV


(
2meφt +ħ2k2

∥
)3/2 − ∣∣ħk∥

∣∣3

3me (φt −φs +eV )
−

(
2meφt +ħ2k2

∥
)1/2

 I (V ),

(7.26)

from which we can isolate the local density of states.

7.2.2. APPLICATION OF NORMALIZATION PROCEDURE TO PEAK-SHAPED SPEC-
TROSCOPIC FEATURES

To test the validity of the proposed normalization schemes, we apply them to constant-
current and constant-height spectroscopic data obtained for laterally confined field-
emission resonances (chapter 5). As we saw in chapter 5, these particle-in-a-box states
carry some finite k∥. We can understand this in analogy to the simple case of a one-
dimensional infinite potential well, wherein the angular wave number for each state, de-
scribed by principle quantum number nPW, is given by nPWπ/L, where nPW is a positive
integer and L is the width of the well. This allows us to test both normalization schemes
for a system in which k∥ is relevant, in addition to inspecting how it compares for open-
or closed-feedback measurements.

Ideally, differential conductance measurements performed in either spectroscopic
mode—constant-current or constant-height—should yield, via the proposed normal-
ization procedures, identical local densities of states. In Fig 7.2, we show dI /dV mea-
surements performed in both modes, and normalize each according to Eqs. 7.14, 7.20
and 7.26 to obtain the local density of states. The extracted LDOS is remarkably simi-
lar for the two measurement modes, for both of the normalization schemes proposed
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Figure 7.2: Local density of states extracted from constant-height and constant-current spectroscopic data.
a Constant-height (light green) and constant-current (dark blue) differential conductance spectroscopy ob-
tained at the center of the 7×7 patch, at current set-point of 250pA. b, c The raw dI /dV is normalized to obtain
the local density of states, with (c) and without (b) considering the in-plane momentum of the probed state, for
both the constant-height (light gray) and constant-current (maroon) measurements. Simultaneously acquired
tip-sample distance, offset by z0 to obtain the absolute distance (b, inset), and current-voltage curve (c, in-
set), measured during both constant-height (light green, z0 ≈ 0.2 nm) and constant-current (grey, z0 ≈ 0.6 nm)
spectroscopy. d Local density of states obtained from normalizing the constant-height spectrum, for a range
of z0 (exact values indicated in the color-bar), as schematically illustrated (inset). Dotted lines are Lorentzian
profiles fitted to the first peak. e, f Effects of a changing z0 on the relative peak width Γ (e) and energy E0 (f) of
the first peak in the LDOS, extracted from both constant-current (dark blue) and constant-height (light green)
spectra.

here—which either neglect (Fig 7.2b, Eqs. 7.14 and 7.20) or consider (Fig 7.2c, Eq. 7.26)
the effects of k-selectivity on the tunnel current. In both cases, the position, relative
amplitude, and width of the peaks in the extracted LDOS are quite consistent, although
the first peak appears sharper and slightly shifted for the constant-current normalized
spectrum; this is likely due to the drastic change in the tip-sample distance around this
resonance, a feedback response that cannot be completely rectified by the normalization
scheme.

Explicitly considering the in-plane momentum of the probed states k∥ (Fig 7.2c) only
affects the relative amplitudes of the resonances, as expected. Since the tunneling cur-
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Figure 7.3: Spatially dependent comparison of raw constant-current spectra, and the corresponding ex-
tracted and calculated local density of states. a, b LDOS extracted (red) from constant-current dI /dV spec-
troscopy obtained at a set-point 0f 50 pA (insets), compared to the calculated LDOS (blue), obtained for the
center (a) and edge (b) of the 7×7 patch (the relative position is schematically illustrated, inset). Experimental
LDOS is normalized by its maximum value, and re-scaled by the maximum value of the calculated LDOS. c
Raw, stacked constant-current differential conductance spectra obtained at a set-point of 50 pA, taken along a
line crossing the center of the 7×7 patch (schematically illustrated to the right). d The corresponding LDOS,
extracted from the experimental data using the k∥ sensitive normalization scheme, and e the calculated LDOS.

rent is increasingly less sensitive to states with increasing k∥, it follows that the relative
amplitude of the higher energy peaks are increasingly underestimated if this effect is not
accounted for.

As previously mentioned, the schemes proposed here rely on the absolute tip-sample
distance, while only the relative tip displacement ∆z is readily available and easily mea-
sured. The value of z0, which converts the measured relative change into an absolute
distance z =∆z + z0, can be reasonably estimated by several means—such as additional
I (z) measurements—but is hard to pin-point precisely. As such, any normalization pro-
cedure that cannot tolerate small variations in z0 cannot be widely implemented.

First, we note that the experimental conditions for each spectroscopic mode help us
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set some limits on the value of z0 for comparing constant-current and constant-height
measurements. Constant-height measurements, for instance, require regulating at a
bias voltage of interest Vstpt (at a current of choice) before opening the feedback for mea-
surement. This is not the case for constant-current measurements, as the feedback is
always engaged—but in either case, the tip-sample distance at Vstpt should be the same
for both measurement modes, given measurements are performed with the same mi-
croscopic tip and at the same set-point current. Here, we chose Vstpt to be the highest
bias voltage of interest (6.2 V, see Fig 7.2a), to ensure the tip-sample distance is set to
its maximum value over the course of spectroscopy, thereby minimizing the risk of tip
crashes. This means that the value of z0, while different for each mode, should result in
the same absolute distance z at the highest bias voltage, as we see in Fig 7.2b (inset). This
condition allows us to compare the extracted LDOS for the two measurements, knowing
that the parameter z0 does not skew one curve relative to the other.

To more concretely trace the effects of a changing z0, we focus on dI /dV spectroscopy
normalized for a range of z0 values, as shown in Fig 7.2d—we can see by eye that this pa-
rameter mainly determines the overall intensity of the peaks. To quantify this, we fit
the first peak in the experimental LDOS with a Lorentzian lineshape ((Fig 7.2d) to ex-
tract its width and position. Carrying out this procedure for LDOS extracted from both
constant-current and -height measurements (Fig 7.2e, f), we see that in both cases the
width, Γ, and position, E0, of the peak are not significantly altered over a z0 range of
nearly 1 nm—to put this value in context, a few angstroms displacement of the tip can
cause the tunneling current to change by an order of magnitude. In fact, we observe a
maximum variation of ∆E0 ∼ 0.02% in the peak position (∼ 5.05 V at 0.26 nm), which, in
this case, is smaller than the broadening associated with the lock-in modulation (10 mV).
The change in the peak width∆Γ is greater, but still negligible over such a broad range of
z0: we observe a maximum variation of ∼ 13% and ∼ 10% in the peak width, for constant-
current and constant-height extracted LDOS, respectively. As we can see, the exact value
of z0 can impact the overall intensity of the experimentally derived LDOS, but it’s the
relative change ∆z—which is easily measured during spectroscopy—that plays a criti-
cal role in determining the relevant peak features, such as relative intensity, width, and
position.

Having ascertained that our normalization procedure is robust for different spec-
troscopic modes, and yields consistent results against a varying z0, we now focus on
how it fares compared to the expected (calculated) local density of states. To calcu-
late the local density of states, we model the potential landscape of the laterally con-
fined field-emission resonances using a finite, slanted well (see chapter 5 for more de-
tails). From this, we can calculate the expected eigenstates and energies to determine the
LDOS, which is simply given by |Ψ|2. To mimic the state broadening—which is primarily
lifetime-limited, but also affected by experimental considerations, such as the lock-in
modulation and temperature—we generate Lorentzians centered at each eigenenergy,
with the linewidth set to match the experiment. More precisely, the lifetime of the reso-
nances decreases as the principle quantum number of the in-plane mode increases [175,
179], leading to a corresponding increase in the linewidth, which is echoed in the theo-
retical LDOS.

Fig. 7.3 shows the experimental LDOS retrieved from constant-current dI /dV mea-
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Figure 7.4: Local density of states extracted from constant-current differential conductance maps. a Exper-
imental constant-current differential conductance maps, taken at a current-set point of 100 pA over the 7×7
patch, at the energies indicated above. Scale bar: 2 nm. b LDOS obtained from normalizing the differential
conductance maps compared to c the theoretically derived LDOS.

surements performed at the center and edge of 7×7 patch, compared to the correspond-
ing calculated LDOS. The agreement between the experimentally derived and expected
local density of states is remarkable, especially in light of the raw dI /dV spectra. The
effects of the feedback, which are most pronounced at the energy of the first resonance,
are well-distinguished in the raw spectrum obtained at the patch edge (Fig. 7.3b): here,
the tip displacement artificially lends the first resonance an asymmetric line-shape and
heightened relative intensity, which is remedied by the normalization procedure. To
probe the spatial evolution of the experimentally derived and calculated LDOS, we per-
form dI /dV spectroscopy along a line crossing the center of the patch (Fig. 7.3c); the
raw data is normalized to obtain the LDOS (Fig. 7.3d), which we find is in fair agreement
with the calculated LDOS (Fig. 7.3e). This comparison makes it clear that the tip dis-
placement during data acquisition dramatically broadens the spatial extent of the states
well beyond the confines of the patch, and changes the line-shape of the spectroscopic
features, in agreement with previous findings [114, 115, 216].

Another experimental approach towards probing the full spatial evolution and ex-
tent of the local density of states is performing differential conductance maps. To do so
in constant-current mode (i.e. with the feedback loop closed) complicates the matter, as
the local topographic features will induce significant cross-talk between the tip-sample
displacement and the measured differential conductance, convoluting data interpreta-
tion [93, 114, 220]. In Fig. 7.4, we apply our normalization procedure to constant-current
maps obtained over a 7 × 7 patch, and compare it to the theoretically derived LDOS:
again, we see a reduction in the spatial extent of the patch, and an increased sharpness
in the spectroscopic features that allows us to better distinguish the nodal planes at each
energy.



7.3. QUANTIFYING THE ELECTRONIC LIFETIMES OF UNOCCUPIED STATES

7

85

7.3. QUANTIFYING THE ELECTRONIC LIFETIMES OF UNOCCU-
PIED STATES

The spatial resolution provided by the scanning probe framework enables the study
of surface and (Stark-shifted) image states in the limit of a completely defect-free sur-
face, and further permits the measurement of spatially-resolved electronic lifetimes. The
most common approaches towards deducing the lifetime of such states using differen-
tial conductance spectroscopy rely on the linewidth of the spectroscopic feature associ-
ated with the state [162, 163, 221, 222], or the phase-relaxation length, which is extracted
from interference patterns near step edges or other scattering centers [161, 176, 223].
The latter method can only be used if the states are laterally unconfined (or approach
this limit), and the former cannot be reliably used for empty states, i.e. well above the
Fermi level. This limitation is due to the potential across the tunnel barrier, which varies
with the applied bias voltage or tip-sample distance—which, in turn, causes the state to
shift in energy during spectroscopy, artificially broadening the linewidth.

Here, we propose a method for extracting the lifetime of image states, which is based
on modelling the conductance-dependent transport through the localized state. We
consider two electron baths—namely, the tip and sample—coupled to this state with
two corresponding decay rates, Γt and Γs . We largely simplify the potential across the
tunnel junction by approximating it as a double barrier potential (Fig. 7.5a, inset), where
the barrier on the sample side is an effective one meant to mimic the surface-projected
electronic properties.

Transport through the double potential barrier is dictated by the voltage and height-
dependent tip and sample decay rates. The transmission coefficient for resonant tun-
neling through a single level localized between the barriers at an energy En is given by
the Breit-Wigner formula [224]:

TBW(E , z,V ) = Γt (E , z,V )Γs (E , z,V )(
(Γt (E , z,V )+Γs (E , z,V ))/2

)2 + ((E −En(z,V ))/ħ)2
. (7.27)

As previously mentioned, the energy of the level En is strictly a function of voltage: the
state shifts higher in energy with increasing bias voltage. We can account for this change
using the Bohr-Sommerfield quantization condition in the WKB approximation of a tri-
angular potential well

∮
p(z ′)d z ′ = 2πħ(n + 3/4), where p(z ′) = p

(2m(E −V (z ′)), and
V (z ′) = (φt −φs + eV )z ′/z, where z is the total width of the barrier (the tip-sample sep-
aration). We note that here, as above, we define our parameters relative to the sample
vacuum level. By integrating the absolute value of the momentum from the start of the
well (z ′ = 0) to the classical turning point ztp, we find the analytical form for the discrete
levels:

En(z,V ) =
(

3πħ
2

eV +φt −φs

z

(
n + 3

4

))2/3

(2m)−1/3. (7.28)

Furthermore, we can relate the tip decay rate to the WKB transmission factor through
the tunnel barrier (Eq. 7.8) via a proportionality constant λ:

Γt (z,V ,E = En(z,V )) =λexp

(
−4

p
2me

3ħ
z

φt −φs +eV
(φt +eV −En(z,V ))3/2

)
, (7.29)
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where, for simplicity, we consider the tip decay rate only at the energy of the bound state.
By using Eq. 7.28 and focusing only on the first bound state (n = 0), we can determine

the energy E0 =
(

9πħ
8

eV +φt−φs

z
p

2m

)2/3

. The explicit form of the tip decay rate in this case is:

Γt (z,V ,E = E0(z,V )) =λexp

−4
p

2me

3ħ
z

φt −φs +eV

φt +eV −
(

9πħ
8

eV +φt −φs

z
p

2m

)2/3
3/2

 .

(7.30)
To determine the current, we integrate the Breit-Wigner transmission, assuming the
zero-temperature limit and positioning the chemical potentials of the sample and the
tip at 0 and eV , respectively:

I = GQ

e

∫ eV

0
TBW(E , z,V )dE (7.31)

= 2GQħ
e

Γt (z,V )Γs (z,V )

(Γt (z,V )+Γs (z,V ))

(
tan−1

(
2(eV −En(z,V ))

ħ(Γt (z,V )+Γs (z,V ))

)

+ tan−1
(

2En(z,V )

ħ(Γt (z,V )+Γs (z,V ))

))
,

(7.32)

here GQ is the conductance quantum e2/(πħ), where the spin degeneracy has been ac-
counted for. If the levels are resolvable, namely that En ≫ Γt (z,V )+Γs (z,V ), then the
expression for the current simplifies to:

I = 2GQħ
e

Γt (z,V )Γs (z,V )

Γt (z,V )+Γs (z,V )

(
π

2
+ tan−1

(
2(eV −En(z,V ))

ħ(Γt (z,V )+Γs (z,V ))

))
, (7.33)

In general, the differential conductance depends on the partial derivatives of Γt (z,V ),
Γs (z,V ), and En(z,V ) with respect to voltage; for ease of notation, we will refer to these
partial derivatives as Γ̇t , Γ̇s , and Ėn , and drop the explicit reference to their dependence
on z and V . The differential conductance can be evaluated accordingly:

dI

dV
= 2GQħ

e

[(
Γ̇tΓs +Γt Γ̇s

Γt +Γs
− ΓtΓs (Γ̇t + Γ̇s )

(Γt +Γs )2

)(
π

2
+arctan

eV −En

Γt +Γs

)

+ 2ħΓtΓs

Γt +Γs

(En −eV )(Γ̇t + Γ̇s )− (Γt +Γs )Ėn +e(Γs +Γt )

ħ2(Γt +Γs )2 +4(En −eV )2

]
.

(7.34)

The second term in the sum in the above expression corresponds to a Lorentzian line-
shape centered at En , with width and amplitude determined by Γt and Γs . In some
cases, it sufficient to only consider the explicit derivative of the current with respect to
the voltage V , rendering a simplified expression for the differential conductance (see
section 7.5.1). Otherwise, we can use the analytical forms of the tip decay rate and the



7.3. QUANTIFYING THE ELECTRONIC LIFETIMES OF UNOCCUPIED STATES

7

87

Tip Sample

Evac

EF, T

EF, S

E
nergy

ФT

ФS

Γt

Γs

a b

Figure 7.5: Determining the lifetime of the first field emission resonance of Cu(100). a Constant-height dif-
ferential conductance measurements acquired for bare Cu(100) for a range of conductance set-points, from
0.04 nS to 5.6 nS, at 4 K. Inset: double barrier potential (dotted line) and potential across the STM junction,
with the tip (Γt ) and sample decay rates (Γs ). b Inset: modelled dI /dV derived from the simplified (Eq. 7.38,
blue line) and full (Eq. 7.34, grey line) expressions for the differential conductance, compared to a constant-
height measurement (purple, filled), obtained at a conductance set-point of 32 nA, 5.8 V. The sample decay
rate derived from the (simplified) modelled dI /dV as a function of conductance set-point, at 4 K (pink circles).
An inverse logarithmic fit to the sample decay rate (dark grey) yields a lifetime of 8±3 fs. The error bars here
only account for the error associated with the fit.

changing level of the resonance to explicitly evaluate the respective derivatives:

∂Γt (z,V )

∂V
= 4

p
2me

3ħ
z(φt +eV −En(V ))1/2

φt −φs +eV

(
e(φt +eV −En(V ))

φt −φs +eV
−3

2

(
e − ∂En(V )

∂V

))
Γt (z,V ),

(7.35)
and

∂En(z,V )

∂V
= πħep

2mz

(
n + 3

4

)(
3πħ

2

eV +φt −φs

z
p

2m

(
n + 3

4

))−1/3

. (7.36)

In this framework, the time-average occupation p of the confined level is given by:

p = Γt (z,V )

Γs (z,V )+Γt (z,V )
. (7.37)

We benchmark this model by applying it to the first field-emission resonance mea-
sured on Cu(100) (Fig. 7.5), whose lifetime has been previously determined via phase-
coherence length measurements [176, 225]. We perform conductance-dependent constant-
height dI /dV spectroscopy over the energy range of the first resonance (Fig. 7.5) at 4 K.
By putting together equations 7.28, 7.29, and 7.34we can model the measured differen-
tial conductance using our analytical framework.

We implement the dependence of the level on the applied voltage and tip-sample
distance (equation 7.28) according to En = βn(eV /z)2/3, where βn is a fit parameter; for
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simplicity, we assume the work functions of the tip and sample are the same. This as-
sumption is justified on two fronts: first, the work functions of the copper crystal and
tungsten tip are similar (∼4.6 eV and ∼4.5 eV, respectively); second, our tip preparation
methods, which involve dipping the tip into the surface (meaning it is likely partially cov-
ered in copper), bring them even closer. We apply the same assumption to equation 7.29,
and we take λ as a fit parameter in defining the tip decay rate. The tip-sample distance
z is fixed according to the relative displacement of the z-piezo at each conductance set-
points, with a universal offset parameter (to transform the relative displacement to a
total tip-sample separation) that is obtained by fitting the spectrum taken at closest tip-
sample distance. We have confirmed that large variations (±1 nm) in this universal offset
do not impact the extracted lifetime values. Finally, we estimate Γs as a constant, and we
take this as a fit parameter.

With this, we use our transport model to obtain fits to each measured dI /dV spec-
trum, with one such fit shown as an illustrative example in Fig. 7.5b (inset). From each
fit, we extract the sample decay rate, Γs , as function of the conductance set-point, shown
in Fig. 7.5b. An inverse logarithmic fit (see chapter 5) to the sample decay rate allows
us to extract Γs at zero conductance set-point (i.e., when the tip is fully retracted), Γs0 ,
which we can relate to the lifetime via τ = ħ/Γs0 . This yields a lifetime of 8±3 fs, in fair
agreement with previously measured lifetimes obtained at 6 K [176, 225].

As such, our approach to model the transport through the localized state provides a
fair estimate of the lifetime, and furthermore allows us to disentangle and quantitatively
assess the tip and sample decay rates, tracing their evolution as the tip displacement
is varied. The simplicity of the transport model also renders it widely applicable to the
study of any type of electronic state above the Fermi level.

7.4. CONCLUSIONS

In this chapter, we presented a three-pronged approach towards quantitatively and nu-
merically addressing field-emission resonances: we proposed a one-dimensional model
for calculating the wave functions and energies of vacuum-localized states; derived a
normalized procedure to extract the local density of states from constant-height and
constant-current differential conductance measurements performed in the high bias
regime; and finally, offered a simple transport model for estimating the electronic life-
time of these unoccupied states. We benchmark the aforementioned theoretical models
with experimental results, and find good agreement in all cases.

7.5. SUPPLEMENTARY MATERIALS

7.5.1. SIMPLIFICATION OF THE DIFFERENTIAL CONDUCTANCE

The full expression of the differential conductance accounts for the voltage-dependence
of Γt , Γs , and En (Eq. 7.34), but can be simplified further if we only consider a limited
voltage-range—namely around the resonance itself. In this case, we can neglect the con-
tributions of the terms containing Γ̇t , Γ̇s , and Ėn , thereby only accounting for the explicit
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derivative of the current with respect to V :

dI

dV
≈ 4ħ2GQΓtΓs

ħ2(Γt +Γs )2 +4(En −eV )2 . (7.38)

To evaluate the robustness of this assumption, we again consider the first field-emission
resonance on a bare Cu(100) surface, and model the measured differential conductance
with the full and simplified expressions (see Fig. 7.5b, inset). The fit parameters of the
simplified model vary minimally compared to those derived from the full expression (by
< 4%), and the qualitative features of both are in good agreement around the peak. Thus,
we justify using Eq. 7.38 to fit a single resonance. We note here that the full expression
(Eq. 7.34) must be used for fitting differential conductance spectrum spanning a broad
voltage range, as the additional terms cannot be neglected beyond the limited scope of
the peak itself.
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CONCLUSION & OUTLOOK

The content of this thesis is primarily dedicated to investigating candidate building
blocks for constructing artificial magnetic and electronic lattices atom-by-atom. We
present nitrogen-bound Fe atoms on the Cu2N/Cu(100) surface as viable candidates for
assembling extended magnetic architectures: this spin system boasts a sizeable total
magnetic moment—with a nearly unquenched orbital angular moment in the out-of-
plane direction—and the largest magnetic anisotropy energy reported for Fe atoms on
surfaces. A weak spin-orbit coupling allows us to probe and excite the spin and orbital
angular momentum independently. Specifically, we demonstrate an orbital excitation,
in which the orbital moment is fully reversed via a co-tunneling process that leaves the
spin unaltered. As nitrogen-bound Fe atoms are easily manipulable, this lays the foun-
dation for future work on larger spin lattices, in which the individual atoms can interact
through both magnetic degrees of freedom.

Our preliminary work is promising in this regard: we are able to construct lattices
comprised of tens of atoms reliably and quickly. This is a notable advantage, as atom ma-
nipulation is often the most time-consuming process in realizing artificial spin lattices.
Furthermore, we find that nitrogen-bound Fe atoms placed two lattice sites apart are
weakly exchange coupled, and that this gives rise to complicated magnetic behaviour in
extended lattices, possibly due to some competition between the exchange interaction,
magnetic anisotropy, and external magnetic field. We also observe an overall decrease in
the energy of the orbital excitation with increasing number of nearest neighbours. Fu-
ture work, which aims at quantitatively characterizing the exchange interaction between
two such atoms, could clarify the precise applicability of this system for studying larger
magnetic structures.

For studies of electronic artificial lattices, we present laterally confined vacuum res-
onances on the chlorinated Cu(100) surface. For this, we use atom manipulation to ar-
range single chlorine vacancies into square patches: due to the work function differ-
ence between the chlorine monolayer and bulk Cu crystal, this amounts to patterning a
potential well on the surface. Accordingly, we observe particle-in-a-box modes, whose
energy and spatial extent vary according to the specifications of the atomically assem-
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bled patch. We find we can tune and extend the average lifetime of electrons in these
engineered states by modifying the overall confining potential. Furthermore, we con-
struct small structures comprised of these vacancy patches, such as dimers and trimers,
to characterize their coupling parameters. We can exert some degree of control over
the coupling strength by modifying the dimensions of the patches themselves, or that of
the bridging patch connecting them. We use this platform to study a well-characterized
artificial lattice: a looped dimerized chain that is expected to host domain wall states,
as confirmed by our measurements. Our analysis of these results is aided in part by
the methods presented in the final chapter, which detail various schemes for extracting
quantitative information from high bias differential conductance spectra.

Future studies on this platform would benefit from a more detailed look at the di-
amond chain, particularly with a focus on verifying the nature of the end state via ad-
ditional constant-height measurements. The effects of the orbital overlap may be an
interesting avenue to explore as well: specifically, since the degree of orbital overlap may
be tuned by the changing the bridging patch dimensions, it should be possible to closely
trace how this parameter impacts the topology of the in-gap state.

Additionally, several routes can be explored to enhance the baseline coherent life-
time of the confined vacuum states in order to achieve reasonable occupation values for
the study of many-body states and electron-electron correlations. One approach would
be to create an inverse lattice: instead of confining the resonances to the metal patch,
single vacancies can be arranged as scattering centers that trace the perimeter of the ar-
tificial atom and confine the resonances to the chlorine monolayer. We can expect this
approach to enhance the lifetime of the confined states dramatically, as previous stud-
ies found that a decoupling monolayer largely suppresses the interband and intraband
scattering paths to the bulk, resulting in a 3–4 times increase in the lifetime of the vac-
uum states [210]. Furthermore, the first vacuum state on the chlorine monolayer occurs
around 3.5 V—significantly closer to the Fermi level than the first resonance observed on
the Cu substrate. This should also carry significant consequences for the state lifetime,
which scales with 1/(E −E f )2, where E is the energy of the state and E f is the Fermi en-
ergy [223, 225]. Suppressing the decay paths to the bulk can also be achieved by consid-
ering a different choice of substrate: perhaps one that is insulating or semiconducting,
for instance.
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