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Summary

Satellite radar altimetry is often considered to be the most succesful spaceborne
remote sensing technique ever. Satellite radar altimeters were designed for static
geodetic and ocean dynamics applications. The goal of the geodetic mission phases,
which have a dense ground-track spacing, is primarily to acquire information about
the marine gravity field. This enables the estimation of mean dynamic topography
(geographical sea surface height patterns due to ocean currents) and deep-ocean
bathymetry. The primary goal of the oceanographic mission phases is to gain infor-
mation about time-varying currents and ocean dynamics. TOPEX/Poseidon is the first
altimetry mission to reveal sea surface height variations related to ocean dynamics
as the El Niño Southern Oscillation (ENSO). During the mission it became clear that
secular changes in sea level could also be monitored. Already in 1995, Nerem (1995)
computed a Global Mean Sea Level (GMSL) time series from the TOPEX/Poseidon
data. Currently, the GMSL record spans 26 years, in which TOPEX/Poseidon time
series is extended with the Jason-1&2&3 observations. The estimated secular trend
of GMSL over the altimetry era is approximately 3 mm yr−1.

The succes of the TOPEX/Poseidon mission spawned the Argo project with the
deployment of the first floats in the year 2000. One argued that Argo would support
the future Jason missions in separating changes into the two components (density
and mass) of sea level. The Argo project aims to estimate temperature and salinity
over a depth of 2000 meter using floats, which enable the estimation of density or
steric sea level changes. By subtracting the steric signal from the absolute sea level
measured by Jason (steric-corrected altimetry), the second component of sea level
changes, mass, is estimated. The launch of the Gravity Recovery And Climate Exper-
iment (GRACE) satellites in 2002 made it possible to independently validate oceanic
mass variations. If the sum of the mass and steric components equals total sea level
within the uncertainties, the sea level is said to be closed. Besides these two oceanic
components, ocean bottom deformation or Vertical Land Motion (VLM) also affects
the sea level observed by altimeters. Over the open ocean VLM signals are generally
small after a correction for Glacial Isostatic Adjustment (GIA), but near large mass
variations they might become significant. Additionally, tide-gauge records are af-
fected by VLM changes, because they are connected to land. Therefore they measure
sea level relative to the sea floor, while the satellite altimeters observe the abso-
lute variations. To bring tide gauges in the same reference frame as the altimeters,
corrections for VLM have to be applied, which is usually done with nearby Global
Navigation Satellite System (GNSS) data.

This thesis investigates the consistency of satellite radar altimetry and other
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(geodetic) data from two perspectives on various spatial scales. From a sea level
budget perspective, altimetry is used in combination with GRACE and Argo floats to
contrain steric, mass and absolute sea level change on unprecedented small scales
over the open ocean. The budgets are further investigated over complicated coastal
regions, where no Argo floats are present and therefore temperature and salinity es-
timates from ocean reanalyses are used. From a VLM perspective, altimetry is used
in combination with tide gauges and GNSS, to contrain absolute sea level and VLM
trends near tide gauges. We focus on consistency in terms of VLM over the whole
altimetry era and aim to detect and correct drifts in the altimetry record of one of
the missions (TOPEX).

Sub-basin-scale sea level budgets in the North Atlantic Ocean

For the first time an attempt is made to close sea level budgets over the open ocean
on a scale of 1/10th of the North Atlantic Ocean using Jason-1&2, GRACE and Argo.
For ten regions, the GRACE mass component is summed with the Argo steric com-
ponent after which the resulting time series are compared to the altimetry-derived
mean sea levels. The size of the averaging regions is chosen such that the uncertainty
of the trends is smaller than 1 mm yr−1. The consistency of the three observation sys-
tems is investigated in terms of a secular trend, the amplitude of the annual cycle and
residual signals. State-of-the-art processing methods are used to compute regionally-
averaged absolute sea level time series for altimetry. Argo steric sea levels are first
objectively interpolated and then averaged over the region. Variance-covariance ma-
trices, using well-known ocean correlation scales, are computed to estimate the un-
certainties for the steric and absolute sea level time series. Four (filtered) GRACE
gravity solutions are used to estimate the mass time series of sea level: Wiener filtered
degree-90 Institute of Theoretical geodesy and Satellite Geodesy (ITSG90-W) gravity
fields, Wiener filtered degree-60 and degree-96 Center for Space Research (CSR60-W
and CSR96-W) and DDK-filtered degree-96 CSR (CSR96-DDK) solutions. Their un-
certainties are propagated from the accompanying variance-covariance matrices. We
determine that the best sea level budget closure is obtained using ITSG90-W gravity
fields. In terms of trends, the results with ITSG90-W, CSR96-W and CSR96-DDK close
nine-out-of-ten budgets if a GIA correction uncertainty of 10-20% is assumed. For
the amplitudes of the annual cycle, ITSG-W and CSR96-DDK solutions outperform
the other two solutions. Argo summed with ITSG90-W explains the largest part of
the residual signal, after removing the annual cycles and the trend. The choice of
gravity fields is not important for interannual variability studies in the North Atlantic
Ocean, because it is primarily a steric signal.

Separation of mass and steric sea level in the Tropical Asian Seas

In GMSL budgets the Tropical Asian Seas (TAS) are often omitted, because of poten-
tial hydrological signal leakage in GRACE mass estimates and the lack of Argo floats
in the region. We have separated the mass and steric components of sea level changes
in the TAS using a combination of Jason satellite altimetry, GRACE satellite gravime-
try and ocean reanalyses. Using observational uncertainties, statistically-weighted



Summary vii

time series for both components have been computed in four regions within the TAS
over the period January 2005 - December 2012. Studies have already shown that
absolute sea level variations in the TAS correlate strongly with the Pacific equatorial
wind stress, which is related to the ENSO and the Pacific Decadal Oscillation (PDO).
By regression of the first two principal components (PC1&2) of Pacific equatorial
wind stress and the Dipole Mode Index (DMI) through the time series, the drivers of
mass and steric sea level in different parts of the TAS are determined. Sea level in the
northernmost region, the South China Sea is not affected by any of the atmosphere-
ocean dynamics considered. Steric variability in the TAS is largest in the deep Banda
and Celebes seas and is affected by both PCs and the DMI, while mass variability is
largest on the shallow continental shelves, which is primarily controlled by PC1. We
argue that a water flux from the Western Tropical Pacific Ocean is the cause for mass
increase during La Niña events. Parts of the TAS experience sea level trends in excess
of 10 mm yr−1. The largest contribution comes from the steric trend, which is about
2 mm yr−1 larger than the mass trend in the TAS. A significant part of the mass trend
can be explained by the aforementioned indices and the nodal cycle. Trends obtained
from modelled mass redistribution are statistically equal to the residual mass trends
(approximately 2 mm yr−1) when the nodal cycle and the indices are taken into ac-
count. The large trends in the TAS have also a substantial effect on the global sea
level budget. The effect of omitting the TAS in global sea level budgets is estimated
to be 0.3 mm yr−1, which is primarily of steric origin.

Improving altimetry-tide gauge and GNSS vertical land motion trend estimates

Estimates of VLM trends are required to convert tide-gauge-derived sea level trends
into an geocentric reference frame. The goal is to improve the quality and increase
the number of VLM estimates at tide gauges. Since only a few tide gauges are equiped
with a GNSS antenna, (multiple) neighbouring antennas are used to estimate VLM
at the tide-gauge location. Eight approaches, that combine the GNSS trends to es-
timate VLM at tide gauges, have been compared against differenced altimetry-tide
gauge (ALT-TG) trends. The range between the eight approaches is similar in size as
the formal uncertainties of the GNSS trends. The best agreement with ALT-TG trends
is obtained by taking the median of the GNSS trends within the considered radius of
50 km. An attempt is also made to improve VLM trends from differenced ALT-TG time
series. By only using highly correlated along-track altimetry and tide-gauge time se-
ries, we aim to eliminate residual ocean signals in ALT-TG time series or time series
containing discontinuities due to for example earthquakes. This technique reduces
the standard deviation of ALT-TG time series up to 10% and as a consequence there
are spatially coherent changes in the trends. The reduction in the RMS of differences
between ALT-TG and GNSS trends is insignificant, but correlation thresholds also acts
like a filter to remove problematic tide-gauge time series. Compared to other studies,
we reduce the RMS of differences between the GNSS and ALT-TG trends (from 1.47
to 1.22 mm yr−1), while we increase the number of locations (from 109 to 155). De-
pending on the methods, the mean of differences between ALT-TG and GNSS trends
varies between 0.1-0.2 mm yr−1. The mean is further reduced by modelling and
correcting for non-linear effects of elastic deformation due to present-day mass re-



viii Summary

distribution.

Calibration of the TOPEX global mean sea level record

Several recent studies claim that issues in the processing and internal calibration of
the TOPEX measurements are the cause for the absence of an acceleration in the
GMSL record. The issues are related to the degradating performance of the TOPEX-
A side altimeter near the end of its lifetime and its effect on the internal calibration,
referred to as ’cal-1’. Other studies have corrected the TOPEX GMSL time series by
a calibration with tide gauges or by not applying the cal-1. After the cal-1 removal,
a significant acceleration becomes detectable in GMSL time series derived from the
TOPEX and Jason satellites. For the calibration with tide gauges, separate drifts
for the redundant TOPEX-A (1992-1999) and TOPEX-B (1999-2002) sides and an
TOPEX-A/B intramission bias are estimated. We argue that this calibration is likely
biased, because the time span is short enough for residual interannual ocean signals
in ALT-TG time series to affect the result. Additionally, the intramission bias appears
to be geographically varying, which makes the heterogenous tide-gauge network in-
adequate to determine an accurate intramission bias. Therefore we performed an
additional crossover analysis with European Remote sensing Satellite (ERS)1&2 sea
surface heights. The comparison confirms that not applying cal-1 is justified, so it is
removed. It also reveals that the magnitude of the intramission bias depends on the
applied Sea State Bias (SSB) correction and whether cal-1 is removed from TOPEX-A
or from the whole TOPEX time series. By estimating a single drift over the whole
TOPEX time series and a TOPEX-A/B intramission bias, consistent negative drifts for
TOPEX GMSL are found of approximately 1.1±0.3 mm jr−1 with respect to ERS, in-
dependent of the applied SSB correction. By using the ’old’ SSB correction of Gaspar

et al. (1994) and removing only cal-1 over TOPEX-A, no intramission bias estimate is
required and a statistically equivalent drift is obtained. The latter is confirmed by a
validation using tide-gauge data records. Therefore we suggest to calibrate TOPEX,
after unapplying cal-1, based on the crossovers. This eventually yields a statistically
insignificant acceleration in the TOPEX/Jason-1/Jason-2 GMSL time series, contrast-
ing other recent studies.



Samenvatting

Satellietradaraltimetrie wordt vaak gezien als de meest succesvolle aardobservati-
etechniek vanuit de ruimte ooit. Altimetersatellieten zijn ontworpen voor geodetis-
che en oceaandynamische applicaties. Het belangrijkste doel van geodetische missiefases,
die een dichte bemonsteringsdichtheid hebben loodrecht op de vliegrichting, is het
vergaren van informatie over het gravitatieveld op zee. Hiermee is het mogelijk om
de gemiddelde dynamische topografie (zeespiegelvariaties veroorzaakt door oceaanstro-
mingen) en de bathymetrie in de diepe oceaan te schatten. Het belangrijkste doel
van de oceanografische missiefases is het vergaren van informatie over veranderende
oceaanstromingen en oceaandynamica. TOPEX/Poseidon is de eerste radaraltime-
triesatelliet die zeespiegelveranderingen veroorzaakt door oceaandynamica, zoals de
El Niño Southern Oscillation (ENSO), meette. Tijdens de operationele fase van deze
missie werd duidelijk dat het ook mogelijk was om trends in de zeespiegel te meten.
In 1995 was Nerem (1995) al in staat om een Globale Gemiddelde Zeespiegel (GGZ)
tijdreeks te maken. Tegenwoordig spant de GGZ tijdreeks 26 jaar en zijn Jason-
1&2&3 metingen gebruikt om de tijdreeks te verlengen. De geschatte trend van de
GGZ over de altimetrieperiode bedraagt ongeveer 3 mm jr−1.

Het succes van de TOPEX/Poseidonmissie leidde tot het Argo project, waarbij
de eerste boeien te water werden gelaten in het jaar 2000. Argo zou de toekomstige
Jasonmissies kunnen ondersteunen in het scheiden van de twee belangrijkste compo-
nenten (dichtheid en massa) van zeespiegelstijging. Het Argo project heeft als doel-
stelling de temperatuur en het zoutgehalte over een diepte van 2000 meter te meten,
wat het mogelijk maakt om de dichtheidveranderingen of sterische zeespiegelveran-
deringen te kunnen schatten. Door het sterische signaal van de absolute zeespiegel-
stijging af te trekken, kan er een schatting gemaakt worden van de massacomponent.
De lancering van de Gravity Recovery And Climate Experiment (GRACE) satellieten
in 2002, maakte het mogelijk om de geschatte massavariaties onafhankelijk te kun-
nen valideren. Het zeespiegelbudget is gesloten op het moment dat de som van de
massacomponent en de sterische component de absolute zeespiegel benadert tot bin-
nen de onzekerheidsniveaus. Naast de twee oceanische componenten, heeft oceaan-
bodemdeformatie of Vertical LandBeweging (VLB) ook nog een effect op absolute
zeespiegel gemeten door altimeters. Over de open oceaan zijn deze bewegingen
over het algemeen klein nadat er gecorrigeerd is voor Postglaciale Opheffing (PO),
maar ze kunnen significant worden in de buurt van grote massavariaties. Daarnaast
worden metingen van peilmeetstations beïnvloed door VLB, omdat ze vastzitten aan
het land. Ze meten dus de zeespiegel ten opzichte van de zeebodem, terwijl satel-
lietaltimeters absolute zeespiegelveranderingen meten. Om peilmeetstations in het-
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zelfde referentiesysteem te brengen als de altimeters moeten er correcties voor de
VLB worden toegepast, die meestal geschat worden uit Global Navigation Satellite
System (GNSS) data.

Dit proefschrift onderzoekt de consistentie van satellietradaraltimetrie en an-
dere (geodetische) datasets vanuit twee perspectieven op verschillende schalen. Va-
nuit een zeespiegelbudgetperspectief zal altimetrie gebruikt worden in combinatie
met GRACE en Argo om massaveranderingen, sterische veranderingen en absolute
zeespiegelveranderingen te bepalen op ongeëvenaard kleine schalen over de open
oceaan. De budgetten worden verder onderzocht in gecompliceerde kustgebieden
waar geen Argoboeien aanwezig zijn en waarvoor temperatuur- en zoutgehalteschat-
tingen uit oceaanheranalyses gebruikt moeten worden. Vanuit een landbewegingsper-
spectief zal altimetrie gebruikt worden in combinatie met peilmeetstations en GNSS
om de absolute zeespiegel- en VLB-trends in de buurt van peilmeetstations te bepalen.
We richten ons hierbij op de consistentie van VLB over de gehele altimetrieperiode
en we proberen drifts in een van de altimeters (TOPEX) te detecteren en te corrigeren.

Zeespiegelbudgetten op deelgebieden van de Noord-Atlantische Oceaan

Voor het eerst is er een poging gedaan om zeespiegelbudgetten te sluiten op de open
oceaan op een schaal van 1/10e van de Noord-Atlantische Oceaan met behulp van
Jason-1&2, GRACE en Argo. Voor tien regio’s zijn de massacomponent van GRACE en
de sterische component van Argo berekend en opgeteld, om vervolgens vergeleken
te worden met de gemiddelde zeespiegels berekend uit altimetriedata. De grootte
van de regio’s is zo gekozen, dat de onzekerheid van de trends niet groter is dan
1 mm jr−1. De consistentie van de drie observatiesystemen is onderzocht op basis
van trends, amplitudes van het seizoenssignaal en de overgebleven residuën. Om de
gemiddelde zeespiegelstijging in de gebieden te bepalen zijn de modernste verwerk-
ingstechnieken voor altimetrie data gebruikt. De sterische zeespiegelschattingen van
Argo zijn eerst objectief geïnterpoleerd en vervolgens gemiddeld over de gebieden.
Variantie-covariantiematrices, gebaseerd op alom bekende oceaancorrelatieschalen,
zijn gebruikt om de onzekerheden in de sterische en absolute zeespiegelgemiddelde
te schatten. Vier GRACE gravitatieveldoplossingen zijn gebruikt om de masscom-
ponent te berekenen: de Wiener filters zijn toegepast op de graad-90 Institute of
Theoretical geodesy and Satellite Geodesy (ITSG90-W) en de graad-60 en graad-90
Center for Space Research (CSR60-W and CSR96-W) gravitatievelden en het Dichte
DeKorrelation-5 filter is toegepast op het graad-96 CSR gravitatieveld (CSR96-DDK).
De onzekerheden van de gemiddelde massavariaties zijn berekend met behulp van de
meegeleverde variantie-covariantiematrices. We bepalen dat de beste budgetsluiting
wordt verkregen als de ITSG90-W-oplossingen worden gebruikt. Met betrekking tot
de trend worden de budget gesloten in negen van de tien regio’s met de ITSG90-
W-, de CSR96-W- of de CSR96-DDK-oplossingen onder de aanname dat de correctie
voor PO een onderzekerheid van 10-20% heeft. ITSG90-W en CSR96-DDK zorgen
voor de beste budgetsluiting met betrekking tot de amplitude van de seizoenscyclus.
Na het verwijderen van de trend en de seizoenscycli wordt het grootste deel van
het residu in de altimetrietijdreeksen verklaard met behulp van Argo in combinatie
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met de ITSG90-W-oplossing. De keuze voor de gravitatievelden is minder belangrijk
wanneer er wordt gekeken naar interjaarlijkse veranderingen van de zeespiegel in
de Noord-Atlantisch Oceaan, omdat dit voornamelijk een sterisch signaal is.

Scheiden van de massa- en sterische zeespiegelveranderingen in de Tropische

Aziatische Zeëen

In GGZ-budgetten worden de Tropische Aziatische Zeëen (TAZ) vaak buiten beschouwing
gelaten, vanwege mogelijke lekkage van hydrologische signalen in de GRACE mas-
sacomponent en de afwezigheid van Argoboeien. Wij hebben de massacomponent
van de sterische component gescheiden met behulp van Jason-1&2 satellietaltime-
trie, GRACE satellietgravimetrie en oceaanheranalyses. Door gebruik te maken van
de observatieonzekerheden zijn statistisch gewogen tijdreeksen berekend voor beide
componenten in vier regio’s in de TAZ over de period januari 2005 - december 2012.
Andere studies hebben al laten zien dat zeespiegelvariaties sterk correleren met de
Pacifische equatoriale windbelasting, die gerelateerd is aan de ENSO en de Pacifis-
che Decadale Oscillatie (PDO). Door de regressie van de eerste twee HoofdCompo-
nenten (HC1&2) van de Pacifische equatoriale windbelasting en Dipole Mode Index
(DMI) met de tijdreeksen, laten we zien waardoor massavariaties en sterische vari-
aties worden gedreven. In de noordelijkste regio, de Zuid-Chinese Zee, kan geen
correlatie worden gevonden tussen de bovengenoemde indices en de componenten.
De sterische variabiliteit is het grootst in de diepere Banda-Celebesregio en die wordt
gedreven door beide HCs en de DMI, terwijl de massavariaties het grootste zijn in de
twee minder diepe regio’s, waar de massavariaties voornamelijk correleren met PC1.
Wij redeneren dat een waterverplaatsing vanuit de westerlijke tropische Pacifische
Oceaan tijdens La Niña’s de oorzaak is voor de massa veranderingen. Delen van de
de TAZ hebben zeespiegeltrends van meer dan 10 mm jr−1. Het grootste deel hier-
van wordt veroorzaakt door sterische expansie, die ongeveer 2 mm jr−1 groter is dan
de massatrend. Een groot deel van de massatoename kan worden verklaard met de
voorgenoemde indices en de knopencyclus. Trends berekend uit modellen gebaseerd
op globale massaverplaatsingen zijn statistisch gelijk aan de massatrends (ongeveer
2 mm jr−1) als de indices en knopencyclus worden meegenomen in de regressie. De
grote trends in de TAZ hebben ook een substantieel effect op het globale zeespiegel-
budget. Het weglaten van de TAZ in globale zeespiegelbudgetten heeft een effect
van 0.3 mm yr−1 op de globale trend. Deze trend heeft hoofdzakelijk een sterische
oorzaak.

Het verbeteren van verticale landbewegingschattingen uit altimetrie, peilmeet-

stations en GNSS

Schattingen van VLB zijn nodig om zeespiegeltrends geschat uit data van peilmeet-
stations om te zetten naar geocentrisch referentiesysteem. Het doel is om de kwaliteit
en het aantal VLB-schattingen bij peilmeetstations te verhogen. Omdat slechts enkele
peilmeetstations beschikken over een GNSS-antenne, worden (meerdere) antennes
in de buurt gebruikt om de VLB te schatten. Voor het combineren van meerdere
GNSS-trends zijn acht verschillende methodes gebruikt, die vergeleken worden met
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gedifferentiëerde ALTimeter-PeilMeetStation (ATL-PMS)-trends. De verschillen tussen
de acht methodes zijn van vergelijkbare grootte als de formele onzekerheden van
de GNSS trends. Door de mediaan te nemen van de GNSS-trends binnen een ra-
dius van 50 km van het peilmeetstation, wordt de beste overeenkomst gevonden
met de ALT-PMS-trends. Er is ook een poging ondernomen om VLB-trends geschat
uit gedifferentiëerde ALT-PMS-tijdreeksen te verbeteren. Door alleen sterkgecor-
releerde altimetrie- en peilmeetstationtijdreeksen te gebruiken, pogen we het residuë
oceaansignaal in ALT-PMS-tijdreeksen te verwijderen en daarbij ook tijdreeksen te
verwijderen die discontinuïteiten bevatten door bijvoorbeeld aardbevingen. Deze
techniek reduceert de standaarddeviatie van ALT-PMS-tijdreeksen met ongeveer 10%
en veroorzaakt daarbij een geografisch coherente verandering in de VLB trends. Hi-
ermee wordt het kwadratisch gemiddelde van de verschillen tussen de ALT-PMS- en
GNSS-trends niet significant gereduceerd, maar de correlatiedrempels filteren wel
problematische peilmeetstationtijdreeksen. Vergeleken met andere onderzoeken ver-
lagen we het kwadratisch gemiddelde tussen ALT-PMS- en GNSS-trends (van 1.47
mm jr−1 naar 1.22 mm jr−1), terwijl we het aantal locaties waarbij de trends zijn
vergeleken verhogen (van 109 naar 155). Afhankelijk van de methodes, wordt er
een gemiddeld verschil tussen ALT-PSM- en GNSS-trends gevonden van 0.1-0.2 mm
jr−1. Dit gemiddelde wordt verder gereduceerd door het modelleren en corrigeren
van nonlineaire effecten van elastisch deformatie door de huidige geografische mas-
saverplaatsingen.

De kalibratie van de global zeespiegeltijdreeks van TOPEX

Verscheidene recente onderzoeken claimen dat problemen met de verwerking en de
interne kalibratie van TOPEX-metingen de oorzaak zijn voor de afwezigheid van een
acceleratie in de GGZ-tijdreeks. De problemen zijn gerelateerd aan de verminderde
prestaties van de TOPEX-A-altimeter aan het einde van zijn operationele periode en
de effecten daarvan op de interne calibratie genaamd ’cal-1’. Andere onderzoeken
hebben de GGZ-tijdreeks van TOPEX gecorrigeerd door middel van een kalibratie
met peilmeetstations of door het niet toepassen van cal-1. Na het verwijderen van
cal-1 is er een significante acceleratie meetbaar in de GGZ-tijdreeksen gebaseerd op
TOPEX- en Jasonsatellieten. Voor de kalibratie met peilmeetstations worden er twee
verschillende drifts bepaald voor TOPEX-A (1992-1999) en TOPEX-B (1999-2002) en
daarnaast wordt er een TOPEX-A/B intramissieverschil geschat. We beargumenteren
dat deze manier van kalibreren fouten oplevert, omdat de tijdreeksen kort genoeg
zijn om de resultaten te laten beïnvloeden door overgebleven oceaansignalen in
ALT-PMS-tijdreeksen. Daarnaast blijkt het intramissieverschil tussen TOPEX-A&B ge-
ografisch te variëren, wat het heterogene peilmeetstationnetwerk ongeschikt maakt
voor het schatten van een nauwkeurig intramissieverschil. Daarom voeren wij een
extra crossoveranalyse met zeespiegelmetingen van de European Remote Sensing
(ERS)1&2-satellieten uit. De verlijking laat zien dat het verwijderen van cal-1 verdedig-
baar is, dus passen we deze niet toe. Met de crossovers wordt het ook duidelijk
dat de grootte van het intramissieverschil afhangt van de toegepaste Sea State Bias
(SSB) correctie en het hangt ook af of cal-1 verwijderd wordt van de hele TOPEX
tijdreeks of slecht van TOPEX-A. Door het tegelijktijdig schatten van een enkele drift
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door TOPEX-A/B en een intramissieverschil wordt er een consistente negatieve drift
gevonden van 1.1±0.3 mm jr−1, die onafhankelijk is van de toegepaste SSB-correctie.
Als cal-1 alleen van TOPEX-A wordt verwijderd en de oude SSB-correctie van Gas-

par et al. (1994) wordt gebruikt, hoeft er geen intramissieverschil te worden geschat
en wordt er weer een statistisch equivalente drift gevonden. Deze laatste bewer-
ing wordt ondersteund door een validatie met peilmeetstationdata. Daarom stellen
we voor om TOPEX te kalibreren, na het verwijderen van cal-1, gebaseerd op de
crossovers. Door deze kalibratie wordt de acceleratie in de GGZ-tijdreeks van TOPEX,
Jason-1 en Jason-2 insignificant, in tegenstelling tot recente onderzoeken.
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Chapter 1

Introduction

1.1 Multi-timescale sea-level variations

Although sea-level rise is commonly associated with the ongoing discussion about
climate change, large variations in sea level have occurred before the industrial rev-
olution. Since the peak of the last glacial period (22,000 years before present) Global
Mean Sea Level (GMSL) has risen approximately 120 meters, due to meltwater from
massive ice sheets entering the ocean. Before the glacial period, in the last inter-
glacial maximum (125,000 years before present), when temperatures were about 1◦

above pre-industrial levels, GMSL reached a peak value of 6-9 meter above the cur-
rent level (Dutton et al., 2015). In the late Holocene (the last 3000 years) before the
industrial revolution (1850), however, GMSL was relatively stable and fluctuated up
to a decimeter (Kopp et al., 2016). The fluctuations in sea level over the past 3000
years are primarily driven by global temperature changes. After 1850 global temper-
atures started increasing and currently reach the level of the last interglacial max-
imum. Around 1900 GMSL started to increase unabatedly, with rates unprecented
in the late Holocene (Fig. 1.1) (Kopp et al., 2016). The increase is often attributed
to the change in global temperature and believed to be of human origin. As GMSL
is closely linked to global temperature, but the response of oceans and ice sheets to
temperature changes is very slow, it is argued that the Earth is already committed
to a sea-level rise of 1.0-10.8 (Levermann et al, 2013). In addition, sudden rapid
increases (Mercer, 1978) are expected due to the instability of the West Antarctic ice
sheet (Hulbe, 2017). Recent studies demonstrate an increase in the rate of sea-level
rise in the 22th century up to 5 cm yr−1 in a high-emission scenario (DeConto and

Pollard, 2016).

From around 1900 enough tide-gauge records with sufficient length became
available to estimate the 20th century GMSL. Due to the sparsity and the poor ge-
ographical distribution of the tide gauges in the first half of the century and differ-
ences in reconstruction techniques, the estimates of the 20th century sea-level trend
vary between 1-2 mm yr−1 (Church and White, 2011; Dangendorf et al., 2017). The
reconstructed GMSL sea-level curves are characterised by decadal variability (Fig.
1.1), i.e. fluctuations in the 20-year trends between 0-3 mm yr−1 (Dangendorf et

al., 2017). Despite the decadal variations, a significant acceleration is detectable in
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Figure 1.1: Time series of estimation GMSL variations over three periods. The top figure shows
the reconstruction from Kopp et al. (2016), in the middle the reconstruction from Frederikse

et al. (2018) and in the bottom the altimetry-derived GMSL curve based on Radar Altimetry
Database Data (RADS) data (Scharroo et al., 2012).

reconstructed GMSL (Jevrejeva et al., 2014). Both trends and acceleration estimates
are required to give insight into current and future changes in sea level. Interpret-
ing trends from individual tide-gauge records is non-trivial and requires knowledge
about interannual and decadal variability as well as estimates of Vertical Land Motion
(VLM) at the tide-gauge location (Santamaría-Gómez et al., 2014; Frederikse et al.,
2016; Santamaría-Gómez et al., 2017). In addition, the estimated accelerations from
stand-alone records are not evident due to large interannual and decadal variability
(Haigh et al., 2014).

During the satellite era (1992-2018), which is the focus of this thesis, an even
larger trend is estimated using satellite radar altimetry, ranging between 3.1-3.4 mm
yr−1. The uncertainty of this trend is believed to be at the 0.4 mm/yr level based on
a validation with tide-gauge records (Mitchum, 1998, 2000). The short altimetry-
derived GMSL time series exhibit significant interannual variability of which the
most prominent signals are associated with the El Niño Southern Oscillation (ENSO)
(Boening et al., 2012; Piecuch and Quinn, 2016). Interannual signals make it difficult
to detect a climate-related acceleration in the altimetry-derived GMSL time series.
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Nevertheless, recent studies claim to have found an acceleration in the 25-year long
time series by reprocessing the altimetry data and/or correcting for interannual sig-
nals (Beckley et al., 2017; Nerem et al., 2018).

1.2 Regional variations and causes of sea-level change

Besides temporal variability in sea level there are strong geographic variations. The
trends computed over the period 1993-2015 show clear evidence of ocean dynamics
(Fig. 1.2). Trend maps highlight decadal variability in the ocean, while more subtile
contributions, barely visible in the maps, are of more importance in the long term.
Therefore care should always be taken when interpreting regional sea-level trends
and especially accelerations.

Under the assumption that vertical ocean floor motion is negligible, sea-level
changes are often separated into two contributions: mass and steric signals. The
steric signal represents density changes and comprises a halosteric component, due
to salinity changes, and a thermosteric component, due to temperature changes. If
the temperature of the ocean increases, the water column expands causing the sea
level to rise. The opposite happens when the ocean gets more saline; the density
increases and sea level will drop. On the long term and on large scales, temperature
changes are the main driver of steric sea level (Ishii et al., 2006). The contribution
of salinity changes to global mean steric sea level is close to zero, but regionally the
effects can be significant (Llovel and Lee, 2015; Wang et al., 2017). Over the Argo
era (2005-2015) the contribution of the steric component to GMSL is estimated to be
approximately 1 mm yr−1 (Wei and Zhong, 2015; Chambers et al., 2017). Therefore
steric changes contribute to about 1/3th of GMSL. The strong geographical variations
in the altimetry plot are mostly of steric origin, except on the continental shelves.
On an interannual scale, ocean-atmosphere dynamics like ENSO change sea level by
several decimeters, primarily around the equator (Philander, 1983). On a decadal
scale, similar dynamics exist, like the Pacific Decadal Oscillation (PDO) (Mantua and

Hare, 2002), which is the primary cause for the large sea-level trends in the Western
Tropical Pacific Ocean (Fig. 1.2). Estimated steric trends therefore require careful
interpretation and should not be extrapolated.

The mass component is currently the largest contributor to the GMSL trend,
with approximately 2 mm yr−1 (Leuliette and Willis, 2011; Chambers et al., 2017).
Long-term secular rates in sea level, regional and global, are primarily caused by
water exchange between ocean and land. The main contribution comes from the
ice sheets (Greenland and Antarctica), glaciers, land hydrology and dam retention.
Greenland’s melting ice sheet contributes most to the rising sea levels, while dam
retention has a small negative effect (Frederikse et al., 2016). Interannual changes in
global ocean mass are often associated with ENSO phases, during which precipita-
tion change could influence groundwater storage (Boening et al., 2012; Piecuch and

Quinn, 2016). The contribution of mass to GMSL is referred to as barystatic sea level
(Gregory et al., 2013). Regionally, deviations from barystatic sea level occur due to
ocean dynamics or gravitational effects (Farrell and Clark, 1976). For example, large
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Figure 1.2: Sea surface height trends (mm yr−1) over the period 1993-2015 based on
Ssalto/Duacs gridded satellite altimetry data downloaded from AVISO (Pujol et al., 2016).

mass changes can occur on continental shelves as the ocean dynamically responds to
steric changes in the nearby deep ocean (Hughes and Meridith, 2006; Landerer et al.,
2007). The largest gravitational effects occur near the Greenland and West-Antarctic
ice sheets (Bamber and Riva, 2010). Near the point of mass loss the sea level drops,
because the shrinking mass reduces the gravitational pull on the water. This drop
extends over several thousands of kilometer, so that the melt of Greenland will not
lead to large sea-level rise at the Dutch coast. On the other side of the world, sea
level increases slightly more than barystatic.

Two indirect effects occur due to mass redistribution. First, it causes a change in
the spatial loading pattern. The load changes deform the ocean floor and so the sea
level observed with an altimeter will differ from the sum of the steric and mass com-
ponents. Changes with respect to the ocean floor are referred to as relative sea level,
while the altimeter measures geocentric, or absolute sea level. In most regions this
effect is small and can be ignored, but in the vicinity of ice sheets and on continental
shelves the ocean floor deformation is significant. Second, mass redistribution causes
a change in the Earth’s rotation (Milne and Mitrovica, 1998). As a consequence, the
centrifugal force will change, which affects sea level.

1.3 Sea-level observations in the satellite era

Chapters 2 and 3 focus on the consistent estimation of total sea level and its steric
and mass components. Since 1992 satellite radar altimeters have continuously mea-
sured geocentric sea level, i.e. the sea level with respect to the center-of-mass of the
Earth. GMSL time series are commonly constructed using the data collected during
the repeat-mission periods of the Jason series of dedicated altimetry satellites, which
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consist of TOPEX/Poseidon (TP) (1992-2002), Jason-1 (J1) (2002-2008), Jason-2
(J2) (2008-2017) and Jason-3 (2016-present). These satellites orbit the Earth in a
10-day repeat orbit at a 66◦ inclination, which leaves a large gap a the poles and a
315 km track spacing at the equator. Based on comparisons with tide gauges, the
uncertainty of the trend in altimetry-derived GMSL is estimated to be 0.4 mm yr−1

(Mitchum, 2000). Due to the length of the GMSL time series, some studies sug-
gest that it is possible to estimate a statistically significant acceleration (Beckley et

al., 2017; Nerem et al., 2018). It depends strongly on the processing techniques or
calibrations of the TOPEX altimeter, which monitored sea level over the TOPEX-A
(1992-1999) and TOPEX-B (1999-2002) periods. Especially TOPEX-A is a concern,
because the intstrument deteriorated at the end of the period, which increased the
uncertainty of the altimeter calibration parameters.

Statistically interpolated grids of altimetry data, which are used as input for Fig.
1.2, also involve data from the ERS-1&2, Envisat and SARAL missions (Envisat se-
ries), which orbit the Earth in a 35-day repeat orbit (Pujol et al., 2016). Besides
denser ground-tracks at the equator, these missions ensure a better coverage at the
poles, because their orbits have an inclination of 98◦. However, the mean sea-level
time series from the Envisat series is not continuous and is therefore often omitted
in long-term sea-level studies. In regional sea-level studies where spatially denser
coverage is required, these missions are often incorporated next to the standard Ja-
son series. Standard altimetry products are often not accurate in the coastal zone
(within several 10s of kilometers from the shore), due to land signals that contami-
nate the observations and due to uncertain geophysical corrections in coastal areas.
With the use of new processing techniques, e.g., Delay/Doppler which gives a better
along-track resolution, satellite altimeters like Cryosat-2 and Sentinel-3 make it pos-
sible to measure coastal areas. Unfortunately, these type of altimeters have only been
flown for the last eight years and are not used so far in sea-level trend estimation.
Some improvements have been obtained by the use of dedicated coastal altimetry
algorithms, like the Adaptive Leading Edge Subwaveform (ALES) retracker (Passaro

et al., 2014).

In 2002 the Gravity Recovery And Climate Experiment (GRACE) satellites were
launched into a polar low Earth orbit. The satellites utilized low-low satellite-to-
satellite tracking to measure differential accelerations. From the acceleration dif-
ferences the gravity field is estimated. Under the assumption that gravity changes
are driven by mass redistribution at the Earth’s surface, they can be expressed in
terms of surface mass anomalies, which (after correcting for the GIA signal) are pri-
marily linked to the redistribution of water. For ocean applications the surface mass
anomalies are expressed in Equivalent Water Height (EWH). The resolution of mass
variations obtained from GRACE is typically 250-300 km (Siemes et al., 2013) and to
minimize signal leakage from land the coastal zones are therefore often omitted in
sea-level studies. The conversion to surface mass anomalies takes the deformation of
the solid Earth due to loading into account. Therefore it is also possible to estimate
the deformation of the sea floor from GRACE (Fenoglio-Marc et al., 2012), however
this is often neglected because the signal is small in most oceanic regions.



6 Chapter 1. Introduction

The Argo program became operational in 2000 with the deployment of the first
floats. Currently, more than 3000 floats measure temperature and salinity up to a
depth of 2000 meters every ten days. The Argo floats complement the Jason altime-
try satellites in observing sea-level variability in the ocean, because they enable to es-
timate steric sea level. Steric sea level is usually computed with the Thermodynamic
Equation Of Seawater 10 (TEOS-10) software package (Pawlowicz et al., 2012). In
2007 the target of 3000 floats was reached (Canabes et al., 2013), i.e. one float per
3◦× 3◦ box, but it is often assumed that the coverage since 2004 or 2005 is enough to
accurately estimate global mean steric sea level (Leuliette and Miller, 2009). Due to
their ability to freely drift, the distribution of Argo floats is non-homogeneous. The
temperature and salinity measurements are therefore often statistically interpolated
to a equiangular grid (Ishii et al., 2006; Roemmich and Gilson, 2009). This, how-
ever, still leads to problematic regions around the poles and on continental shelves
where no Argo floats are present (Roemmich and Gilson, 2009; Von Schuckmann et al.,
2014). For the estimation of steric sea level in these regions it is better to use ocean
reanalysis products (Dieng et al., 2015), which assimilate Argo data, and physically
propagate signals over the continental shelves.

The simultaneous presence of the three observing systems: satellite altimetry,
satellite gravimetry and Argo, makes it possible to construct sea-level budgets. Leuli-

ette and Miller (2009) were the first to close the sea-level budget on a global scale.
With these type of budgets, it is shown that the mass trend in GMSL became larger
than the the steric trend after 2005. Several other studies used the three systems on
the scale of large basins to either close the budget or to constrain the mass or steric
component (Chambers and Willis, 2010; Marcos et al., 2011; Von Schuckmann et al.,
2014). Similar studies have been performed in marginal seas, like the Red Sea (Feng

et al., 2014; Wahr et al., 2014) or the Mediterranean (García et al., 2006; Fenoglio-

Marc et al., 2006; Calafat et al., 2010), where mass variations are large. However,
sub-basin-scale budget closures over the open ocean have never been attempted, nor
at continental shelves such as the Tropical Asian Seas.

1.4 Vertical land motion in the satellite era

As mentioned before, absolute sea level, or geocentric sea level, is affected by VLM.
On large scales (>1000 km), the largest VLM signals are caused by Glacial Isostatic
Adjustment (GIA), which is the visco-elastic response of the Earth due to loading and
unloading during glacial cycles. A GIA correction of 0.3 mm yr−1 is often applied to
altimetry-derived GMSL to compensate for the expansion of ocean basins, but locally
this can reach 15 mm yr−1 (Gutenberg et al., 1941; Peltier et al., 2015). The largest
positive GIA VLM signals are found at the locations of former ice sheets, like Canada
and Scandinavia, while the largest negative signals are found at the collapsing fore-
bulges, for example at the coasts of North America (Peltier et al., 2015). Present-day
mass redistribution also causes the sea floor to move vertically (Riva et al., 2017).
Greenland and Antarctica, for example, loose mass, which causes the solid Earth in
the vicinity of the ice sheets to respond elasticly and move upwards. The melting of
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ice, however, increases the ocean mass and as a consequence the sea floor will drop
slightly far away from the ice sheets. While the melting of ice sheets and glaciers
is the primary source for a secular trend or even an acceleration (Riva et al., 2017),
interannual variability in surface loading is mostly caused by atmosphere and ocean
dynamics and land hydrology storage changes (Boening et al., 2012; Pfeffer et al.,
2017). These large-scale processes can be modelled using (visco-)elastic models that
require estimated loads as inputs. Over the open ocean, altimetry-derived sea level
is often only corrected for secular GIA trends, but not for VLM due to present-day
loading, because the signals are small in most regions.

Superimposed on the large-scale effects are the regional processes, which are
primarily affecting regional tide-gauge records. Since tide gauges are connected to
land, they measure local relative sea level, so when the land moves upward, a falling
sea level is measured. Earthquakes induce sudden discontinuities in tide-gauge time
series and sometimes a substantial post-seismic signal(Broerse et al., 2015). Correc-
tions are non-trivial and often the only solution is to discard the tide gauge from the
analysis (Watson et al., 2015). Changes in local groundwater storage exhibit inter-
annual and decadal signals, which move the soil. Groundwater related signals are
highly spatially variable and to eliminate them from the tide-gauge records, VLM esti-
mates in the close vicinity of the tide gauge are required. In large cities, like Jakarta,
Bangkok and Manila, the VLM signal reaches the decimeter-per-year level, due to
groundwater extraction (Rodolfo and Siringan, 2006). Several other local effects oc-
cur, which are primarily anthropogenic, like mining and construction. At present, no
accurate modelling exist for regional VLM.

For sea-level studies, VLM estimates at tide gauges are required to convert be-
tween geocentric and relative sea level in order to compare those records with al-
timetry records. Using the Global positioning System (GPS) is one of the techniques
to measure local VLM (Wöppelmann et al., 2007). When referring to GPS, we will
use the more general term Global Navigation Satellite Systems (GNSS), which also
includes other satellite positioning systems available nowadays. Typical formal un-
certainties on the GNSS trends are 0.5 mm yr−1 for a time series of 12 years (Wöp-

pelmann et al., 2009; Wöppelmann and Marcos, 2016) based on a power-law noise
model. A more realistic uncertainty is for most GNSS trends closer to 1 mm yr−1,
because the results strongly depend on the applied discontinuity detection methods
(Gazeaux et al., 2013). Unbiased VLM corrections for tide gauges also require knowl-
edge of the relative motion between the tide gauge and the GNSS antenna. This is
either achieved by co-locating the GNSS antenna with the tide gauge or by regular
levelling campaigns. Unfortunately, for only a few tide gauges this is done. There-
fore the nearest GNSS station is often assumed to be exposed to similar VLM as the
tide gauge. In practice the VLM trends vary several millimeters per year over several
tens of kilometers (Santamaría-Gómez et al., 2017) and therefore the VLM estimates
are biased. Another issue is the geographical distribution of tide gauges for which
accurate GNSS trends are available (Fig. 1.3). Most of them are located in Australia,
Europe or North-America. As a consequence, calibration and validation of altimeters
and sea-level reconstructions based on tide gauges might be biased.
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Figure 1.3: VLM (mm yr−1) at tide gauges derived from NGL GNSS (triangles) and ALT-TG
(circles) time series. Clear uplift signals are visible in the regions of former ice sheets (Canada,
Alaska and Scandinavia).

To reduce the issue of non-homogeneously spaced VLM trends, a second indirect
method is used to estimate VLM near tide gauges (Nerem and Mitchum, 2002; Ostan-

ciaux et al., 2012; Wöppelmann and Marcos, 2016; Pfeffer and Allemand, 2016). VLM
is then estimated by subtracting relative sea level, as measured by tide gauges, from
geocentric sea level, as measured by altimetry satellites. Preferably, the altimetry
measurements are made at the same location as the tide gauge, but this is practically
not possible. Therefore residual oceanic signals in the differenced altimetry - tide-
gauge (ALT-TG) time series might bias trends estimated with this method. If those
biases are characterised by regional patterns that cannot be easily removed, they
could lead to biases in altimetry validations and calibrations. Since residual oceanic
signals are most prominent on interannual scales, validations and calibrations over
short time spans (<10 years) are most likely to be biased. When the whole altime-
try record is used the uncertainties of ALT-TG trends are of the same order as those
obtained with GNSS, due to the relatively long time span compared to most GNSS
stations. A comparison between the GNSS and ALT-TG trends at more than 100 sta-
tions yields an RMS of differences of 1.47 mm yr−1 (Wöppelmann and Marcos, 2016).
This is not yet at the required level of 1 mm yr−1 for regional sea-level studies.

1.5 Research objectives

This thesis focusses on two main topics in sea-level research: sea-level budgets and
VLM. Both are entangled and can therefore never be considered completely sepa-
rately. The sea-level budget related chapters focus on consistent estimates of abso-
lute sea level from satellite altimetry, the mass component from GRACE and steric sea
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level using either Argo floats or ocean reanalyses on regional scales. With consistent
estimates, we imply that the sea-level budget should be closed to within a certain
confidence interval. Chapters 4 and 5 of this thesis focus on improving the consis-
tency between GNSS, tide gauge and altimetry observations. Firstly, to constrain VLM
trends at tide gauges and secondly to use tide-gauge time series and VLM trends to
detect drifts in altimeters. The following research questions will be answered:

Can the sea-level budget be closed on a regional scale in the North Atlantic

Ocean using satellite altimetry, satellite gravimetry and Argo float observations?

The density of Argo floats in the North Atlantic provides the possibility to constrain
sub-basin-scale steric sea-level variability. Summed with monthly ocean mass time
series estimated from monthly GRACE gravity fields they should be approximately
equal to the total sea-level observations from Jason-1&2 altimeters. We use estab-
lished ocean dynamics correlation scales to estimate uncertainties for the altimetry
and Argo total and steric sea-level time series. Several GRACE solutions are used and
their uncertainties are propagated from the associated variance-covariance matrices.
The budget is closed in terms of trend and annual cycle, if the sum of the components
matches the total sea level to within a 95% confidence interval. After removal of the
trend and annual cycles, it is investigated whether the residuals explain remaining
interannual variability.

How can we consistently separate the mass and the steric component of sea

level on continental shelves and in coastal regions?

Due to the lack of Argo floats above continental shelves and the limited resolution
of GRACE, which causes land hydrology signal leakage into the ocean mass esti-
mates in coastal zones, these areas are often omitted in sea-level budgets. We use
the Tropical Asian Seas to demonstrate how mass and steric sea level can be sepa-
rated using Jason-1&2, GRACE and ocean reanalysis by statistically weighting their
observations and estimates. No statistical information is provided with the ocean
reanalyses, so the mean of the steric sea levels derived from eight reanalyses is taken
and the spread between them is used in the weighting process. After separating the
components, the interannual variability and trends are linked to atmosphere-ocean
dynamics and present-day mass redistribution processes. Eventually, the effect of
omitting the Tropical Asian Seas in GMSL budgets is quantified.

Can we improve the ALT-TG-derived and GNSS-derived VLM estimates at tide

gauges?

Since altimeter validations and tide-gauge reconstructions require accurate VLM es-
timates at tide gauges, we aim to show an improvement with a cross-validation be-
tween the ALT-TG and GNSS techniques. First, it is determined whether the GNSS
station closest to a tide gauge should be used or if another combination/weighting
method provides more reliable results. The dependence on a single GNSS per tide
gauge makes the method prone to outliers and therefore we compare this commonly-
used approach to seven other approaches involving multiple tide gauges. Second,
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correlations between the tide gauge and the altimetry sea levels are exploited to
reduce the oceanic signals in the ALT-TG time series. In addition, we introduce a
correlation threshold that should act as a filter to remove eratic and unreliable ALT-
TG time series e.g., contaminated by earthquakes or by (unregistered) equipment
changes. Finally, discrepancies between the two methods are further reduced by cor-
recting for non-linear VLM caused by present-day mass redistribution.

How to process and calibrate GMSL derived from the TOPEX altimeter using

crossovers, tide gauges and VLM estimates?

This question focusses on the processing and calibration of the problematic TOPEX
GMSL time series. Watson et al. (2015) and Beckley et al. (2017) showed that TOPEX-
A is drifting with respect to tide gauges. Additionally, an intramission bias between
TOPEX-A&B has to be removed to obtain a continuous GMSL time series. Both meth-
ods to cope with these drifts rely on tide-gauge comparisons. By comparing sea
surface heights of TOPEX, to those of two other altimeters on board of ERS1&2 at
crossovers, we aim to estimate a more accurate intramission bias and TOPEX-A&B
drifts. The robustness and the geographical effects of the tide-gauge comparison are
validated with respect to drift and intramission bias estimations, by applying vari-
ous averaging strategies. Then, we suggest a calibration procedure for the TOPEX
altimeter based on crossovers and validated with tide gauges. Eventually, the effect
of the calibration on the GMSL record is quantified.

1.6 Outline

In chapter 2 we aim to close the sea-level budget on sub-basin scales in the North
Atlantic Ocean. Research objective 1 is answered by summing the steric sea level and
mass time series from Argo and GRACE and comparing it to the sea level observed
by Jason. The focus is on the processing of the three datasets, but primarily on the
GRACE solution used. Budget closure is investigated based on the secular trend, the
annual cycle and the interannual signals. Potential reasons for non-closure in several
regions are discussed. Furthermore, the effects of the GIA corrections for GRACE and
Jason are addressed.

Research question 2 is addressed in chapter 3. This region requires however
several adaptations to the processing procedures and ocean reanalyses, due to the
absence of Argo floats. A statistical weighting procedure between the observations
is applied to consistently separate steric and mass signals. Effects of earthquakes,
ocean signals and mass redistribution are investigated to either correct or to explain
the trends and interannual signals observed. We also apply a correction for ocean
bottom deformation due to loading, because the mass signals over the continental
shelves are large compared to the open ocean.

Chapter 4 focusses on the estimation of vertical land motion trends at tide gauges
and therefore deals with research question 3. We try to increase the number of GNSS
trends, while at the same time the accuracy is improved. To achieve this, the larger
Nevada Geodetic Laboratory (NGL) dataset (Blewitt et al., 2016) instead of the Uni-
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versity of La Rochelle (ULR) dataset (Wöppelmann and Marcos, 2016) is used for
GNSS trends. We compare several approaches to combine nearby GNSS trends into
a single VLM trend estimate at the tide gauges. Additionally, the VLM trends ob-
tained from ALT-TG differenced time series are investigated. Correlation thresholds
and weights are applied to mitigate the influence of uncorrelated ocean signals be-
tween the altimeter and the tide gauge on the VLM trends. Cross validation between
the GNSS and ALT-TG trends is applied to determine the best configuration for both
techniques.

In chapter 5 the last research question is answered. We correct the tide-gauge
time series for the GNSS trends and compare the resulting absolute sea levels to
those of the TOPEX, to detect drifts an biases in the altimeter. The results are com-
pared to a crossover analysis between TOPEX and ERS1&2. By different weighting
schemes the stability of the VLM corrected tide-gauge results are investigated. Addi-
tionally, we investigated whether the tide-gauge network is suitable for detecting an
intramission bias between TOPEX-A&B and separate drifts for both periods. A con-
sistent processing and calibration approach for TOPEX is eventually suggested and
the consequences for the GMSL acceleration are discussed.

Chapter 6 lists the conclusions and summarizes the answers to the research ques-
tions. Several recommendations on how to improve or continue this work are also
provided.





Chapter 2

Sub-basin-scale sea level budgets from satellite altime-

try, Argo floats and satellite gravimetry: a case study

in the North Atlantic Ocean

2.1 Introduction

If the sum of individual components is statistically consistent to the total sea level
variations the budget is closed. Total sea level variations and its components are
observed by in-situ and satellite measurements, but can also be modelled. Several
studies have attempted to close the sea level budget by using satellite altimetry, satel-
lite gravimetry and observations or reanalyses of ocean temperature and salinity on
a global scale. Closure of the budgets is required to get a consistent division between
the Mass Component (MC) and steric-related sea level changes. This helps us to
identify the contributors to present day sea level changes. Contributors that affect
the MC are glacier and ice sheet melt and land water storage, while heat fluxes be-
tween ocean and atmosphere contribute to steric changes. Note that heat fluxes also
drive ocean dynamics, which have an effect on both the regional MC and the steric
change in sea level.

One of the first attempts to close the sea level budget compared time series of to-
tal sea level from satellite altimetry with the sum of the MC from satellite gravimetry
and the steric component from Argo floats (Willis et al., 2008). That study showed
that between the middle of the years 2003 and 2007 the sum and the total sea level
have comparable seasonal and interannual sea level variability, however, the 4-year
trends did not agree. Cazenave et al. (2008) found comparable estimates of steric
sea level estimated from Argo and from the difference between altimetry and the
Gravity Recovery And Climate Experiment (GRACE) observations over 2003-2008.
Using the same methods as Willis et al. (2008) the global sea level budget was closed
within error bars by Leuliette and Miller (2009) over the period 2004-2008 and by

Parts of this chapter have been published as: Kleinherenbrink, M., Riva, R., & Sun, Y. (2016). Sub-
basin-scale sea level budgets from satellite altimetry, Argo floats and satellite gravimetry: a case study in
the North Atlantic Ocean, Ocean Science, doi:10.5194/os-12-1179-2016.

http://dx.doi.org/10.5194/os-12-1179-2016


14 Chapter 2. Sub-basin-scale sea level budgets from satellite altimetry, Argo floats
and satellite gravimetry: a case study in the North Atlantic Ocean

Leuliette and Willis (2011) over the period 2005-2010.5. All of the aforementioned
studies used a form of reduced space objective interpolation (Bretherton et al., 1976)
to create grids of Argo data. Li et al. (2013) attempted to close the global budget
using temperature and salinity grids from Ishii et al. (2006).

While time series of satellite gravimetry and Argo observations became longer
and the processing of satellite gravity data improved, it became possible to look at
basin-scale budgets and patterns. Several studies focussed on Ocean Bottom Pres-
sure (OBP), which can be seen as the integrated mass of the ocean and the atmo-
sphere pushing on the ocean floor. Chambers and Willis (2010) compared global
gravimetry-derived maps of OBP to those obtained with steric-corrected altimetry,
whereas Marcos et al. (2011) investigated the distribution of steric and OBP contri-
butions to sea level changes and looked at differences in the Atlantic, Indian and Pa-
cific Oceans. Purkey et al. (2014) analysed differences between basin-scale OBP from
satellite gravimetry and steric-corrected altimetry using Conductivity-Temperature-
Depth (CTD) profiles over the period 1992-2013. They showed that both methods
captured the large-scale OBP change patterns, but that differences occur when deep-
steric contributions below 1000 m are not considered. Over the North Atlantic Ocean
the OBP trends from satellite gravimetry and steric-corrected altimetry were found
to be statistically equal, but with large error bars for the steric-corrected altimetry
trends. Von Schuckmann et al. (2014) found global and large-scale regional (a third
of the total ocean) consistency in sea level trends of the three systems (e.g., satel-
lite altimetry, satellite gravimetry and Argo) in the Tropics as long as areas like the
Tropical Asian Archipelago are not considered, but they did not manage to close the
budget between 30-60 N. They argued that the unability of Argo to resolve eddies in
the western intensifications caused the difference in trends.

Some other studies focussed on sea level budgets in small basins. García et al.

(2006); Calafat et al. (2010); Fenoglio-Marc et al. (2006) compared sea level trends
in the Mediterranean from satellite altimetry, satellite gravimetry and the ECCO (Es-
timating the Circulation and Climate of the Ocean) model (Menemenlis et al., 2005).
ECCO is also used by Feng et al. (2012) to determine trends in the South China Sea.
Time series of sea level budgets have been investigated in the Red Sea using Ishii
grids (Feng et al., 2014).

Compared to previous studies, we improve the treatment of each dataset, in par-
ticular with respect to an accurate description of the uncertainties. We avoid using
precomputed grids for Argo and altimetry, because no covariances between nodal
values are provided, and we use full variance-covariance matrices of the GRACE
gravity field solutions. Secondly, we address the effect of several processing steps
particularly on gravimetry data in terms of trend, annual amplitude and (residual)
time series. For altimetry, we briefly discuss the effect of different averaging meth-
ods and analyse the effect on the trends of having a latitude dependent intermission
bias (Ablain et al., 2015). For GRACE, DDK5-filtered solutions (Kusche, 2007; Kusche

et al., 2009) are compared with the anisotropic Wiener-filtered (Klees et al., 2008)
solutions. Finally, basin and sub-basin scale budgets are created, problematic areas
are identified and potential causes for non-closure are discussed.
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We apply our method to the North Atlantic basin, because the coverage of Argo
is sufficient to computed mean steric sea levels on sub-basin scales during the 2004-
2014 period, which allows the construction of budgets over a 10-year time span.
Secondly, for both steric sea level and the MC different regimes are present in terms
of trend, annual cycle and interannual variability, which allows us to investigate the
performance of the method under various conditions. Additionally, we are able to
address the effect of the Glacial Isostatic Adjustment (GIA) on the trends, which is
a large contributor in the northwest of the North Atlantic basin and therefore also a
potentially large source of error.

The dataset used in this study is briefly described in Chapter 2.2. Secondly, the
processing of the three datasets is discussed in the methodology section. In Chapter
2.4 the processed datasets are compared to existing products. The resulting basin and
sub-basin scale budgets are described in Chapter 2.5. In the final section conclusions
are drawn based on the results.

2.2 Data description

This section shortly discusses the data from the three observing systems that are used
to determine the sea level budgets.

For the determination of the sum of the steric and the mass components of sea
level satellite altimetry data are used. The altimetry data are obtained from the
Radar Altimetry Database System (RADS) (Scharroo et al., 2012). RADS contains
1 Hz along-track data, which corresponds to an along-track separation of sea level
measurements of approximately 6 km. The files contain ranges, orbits and geophys-
ical corrections for all altimeters that have been flown. In this study, only the data of
the Jason-1 and Jason-2 satellites are considered to have homogeneous sampling in
space and time over the period 2004-2014. The data of Jason-1 during its geodetic
mission phase (2008-2013) are not used for the altimetry time series. Both satellites
have a repeat-track of approximately ten days and the same orbital plane, which re-
sults in a ground-track separation of approximately 315 km, or 2.8 degrees, at the
equator.

The steric component of sea level rise is determined using measurement profiles
of temperature and salinity from the Argo float network. Since the first deployments
of Argo floats in the year 1999, the number of Argo floats rapidly increased until
approximately 3900 floats currently. Argo reached maturity around the year 2007,
when at least 3000 floats were in the water (Leuliette and Willis, 2011; Canabes et

al., 2013), which means that there is on average approximately one float per 3◦ ×
3◦ box. For the North Atlantic Ocean, steric sea levels can be analysed from 2004,
because most areas in the North Atlantic are sampled already by Argo floats as shown
in Fig. 2.1. In the North Atlantic Ocean the areas around the Antilles and north of
Ireland are poorly sampled. Most floats descend to a depth around 1000-2000 m and
measure temperature and salinity while travelling upward. The resurfacing time of
an Argo float is approximately 10-12 days. The steric sea level is computed using the
Thermodynamic Equation Of Seawater (TEOS-10) software (IAPSO, 2010), which
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requires the distribution of temperature and salinity over depth as input.
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Figure 2.1: Number of Argo floats within a 10◦ × 10◦ box for grid cells where the depth is
larger than 1000 m. Only floats considered in this study are used for the statistics (Sect. 2.3.2).
The black dots indicate no floats in the 10◦ × 10◦ box.

The Earth’s time-variable gravity field is measured since 2002 by the Gravity
Recovery And Climate Experiment (GRACE). This mission measures changes in the
Earth’s gravity field by low-low satellite-to-satellite tracking. Traditionally the Earth’s
gravity field is expressed in spherical harmonics. In this study the release 5 monthly
spherical harmonic solutions computed at the Center for Space Research (CSR) (Ta-

pley et al., 2004), together with the ITSG-GRACE2016 solutions (Klinger et al., 2016)
computed at the Institute for Theoretical geodesy and Satellite Geodesy (ITSG) are
used. The CSR solutions are computed up to degree and order 60 and 96, while
the ITSG solutions are computed up to degree and order 90. All three products are
provided with full variance-covariance or normal matrices, which allows for statisti-
cal filtering. In case of a proper error description, we expect that the results of the
CSR 60- and 96-degree solutions give comparable results, except in areas with large
gradients in gravity. However, since the differences in variance-covariance matri-
ces are small during the periods July 2003-December 2010 and February 2011-July
2013, but the orbit geometry substantially varies within these periods, the provided
variance-covariance matrices are not expected to be suitable for statistical filtering.
Klinger et al. (2016) showed that the gravity field variability over the oceans indeed
increases substantially during periods when GRACE enters repeat-orbits. As a conse-
quence, the months July-October 2004 are excluded from the analysis, when GRACE
entered a near 4-day repeat-orbit. The addition of the ITSG solutions, enables us to
compare an independent solution computed with a different approach to the stan-
dard CSR products. The non-dimensional gravity field coefficients are converted to
units of Equivalent Water Height (EWH) before filtering, to make them compatible
with the other two observing systems. For comparison, we also used the publicly
available Directional Decorrelation Kernel (DDK)-filtered solutions of CSR, however
no variance-covariance matrices for those solutions are publicly available. From here
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Table 2.1: Designations of filtered gravity field solutions.

Processing group Degree Filter Designation
CSR 60 Wiener CSR60-W
CSR 96 Wiener CSR96-W
ITSG 90 Wiener ITSG90-W
CSR 60 DDK5 CSR60-DDK
CSR 96 DDK5 CSR96-DDK

on the designations listed in Table 2.1 are used to refer to the GRACE gravity field
solutions. In the processing phase, the Atmosperic and Ocean De-aliasing Level-1B
(AOD1B) product is incorporated (Dobslaw et al., 2013), which is based on the Ocean
Model for Circulation and Tides (OMCT) and the European Centre for Medium-range
Weather Forcecast (ECMWF) model. Monthly averages of the OMCT and the ECMWF
are restored after processing to the time-varying gravity field in the form of spherical
harmonics (Chambers and Willis, 2010). Details on the processing are described in
Sect. 2.3.3.

2.3 Methodology

The data described in the previous section are processed such that they are suited for
establishing monthly regional sea level budgets. It implies that the equation

h̄sla,GIA = h̄ssla + h̄mca,GIA (2.1)

is satisfied within uncertainties, where h̄sla,GIA is the Glacial Isostatic Adjustment
(GIA)-corrected Mean Sea Level (MSL) anomaly derived from the Jason satellites,
h̄ssla the mean steric sea level anomaly derived from Argo and h̄mca,GIA the mean
GIA-corrected MC anomaly in terms of EWH derived from GRACE. Note that MSL is
inverse barometer corrected and we consistently apply this to the Mass Component
(MC) anomalies from GRACE. This section describes therefore the processing strate-
gies for the three observation types from individual measurements to an average over
a specified region in the ocean including the propagation of the formal errors.

As far as altimetry is concerned, after computing individual along-track sea level
anomalies, two important processing steps are described in this section: a suitable
averaging method to come to a time series of MSL for a given area and a way to
deal with geographical dependencies of the intermission bias between the two Jason
missions (Ablain et al., 2015).

To compute steric sea levels from Argo temperature and salinity measurements
the TEOS-10 software is used (Pawlowicz et al., 2012). Since the Argo measure-
ments are heterogeneously distributed over the ocean, the steric sea levels are first
interpolated using an objective mapping procedure to a grid of 1◦ × 1◦, before being
averaged.

Monthly GRACE solutions of CSR and ITSG are provided with full variance-
covariance matrices, which allows the use of an anisotropic Wiener filter (Klees et
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al., 2008). Compared to other existing filters, it strongly reduces the stripes that are
still present in the DDK-filtered solutions (cf. Sect. 2.4, while not reducing the spa-
tial resolution as much as a Gaussian filter of suitable width would do. A fan filter
(Zhang et al., 2009) is applied after the optimal filter to reduce ringing artefacts that
occur close to Greenland due to the limited number of spherical harmonic coefficients
(degree and order 60-96).

2.3.1 Jason sea level

Individual sea level anomalies hsla measured from the Jason-1 and Jason-2 satellites
are computed with respect to the mean sea surface (mss) DTU13 as:

hsla = a− R−∆Rcor r −mss, (2.2)

where a is the ellipsoidal height of the satellite, R the Ku-band range and ∆Rcor r the
applied geophysical corrections. The satellite altitude is taken from the GDR-D orbits
and the latest versions of the geophysical corrections are applied, as listed in Table
2.2. The 35-second smoothed dual-frequency delay is used to reduce the relatively
large noise in the individual ionospheric corrections. For the wet tropospheric correc-
tion, we use the latest delay estimate from the radiometer, while the dry tropospheric
delay is computed from the European Centre for Medium-range Weather Forecasts
(ECMWF) pressure fields. Tidal corrections from the GOT4.10 model are applied,
which are based on Jason data instead of TOPEX data as in the GOT4.8 model (Ray,
2013). The Cartwright-Taylor-Edden solid earth tide model is applied (Cartwright

and Taylor, 1971; Cartwright and Edden, 1973) and an equilibrium model for the
pole tide (Wahr, 1985). For the sea state bias correction the non-parametric model
of Tran et al. (2012) is used. To correct for high frequency (periods < 20 days) wind
and pressure effects on the sea surface a dynamic atmospheric correction is applied
based on the MOG2D model (Carrère and Lyard, 2003). The dynamic atmospheric
correction in RADS also includes an inverse barometer correction as described on the
AVISO website, which corrects for the low-frequency (> 20 days) sea level anoma-
lies caused by regional sea level pressure variations with respect to the time-varying
global mean over the oceans. Sea level anomalies larger than 1 m are likely in error
and are therefore removed from further processing, as in the National Oceanic and
Atmospheric Administration (NOAA) GMSL time series (Masters et al., 2012).

In GMSL time series an intermission bias correction is applied, which is deter-
mined from the average GMSL difference between Jason-1 and Jason-2 during their
tandem phase, in which the satellites orbit the same plane only a minute apart (Nerem

et al., 2010). However, the differences reveal a geographical dependence as shown
in Fig. 2.2. Regional sea level budgets established in this study are more prone to
these geographical differences than when estimating global sea level budgets. This
problem is partly corrected for by estimating a polynomial through the intermission
differences, which only depends on latitude (Ablain et al., 2015) and is given by:

∆hsla,i b(λ) = c0 + c1 ·λ+ c2 ·λ2 + c3 ·λ3 + c4 ·λ4, (2.3)
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Table 2.2: List of geophysical corrections applied in this study and for the MSLs of NOAA.

This study NOAA
Ionosphere Smoothed dual-frequency Smoothed dual-frequency
Wet troposphere Radiometer Radiometer
Dry troposphere ECMWF ECMWF
Ocean tide GOT4.10 GOT4.8
Loading tide GOT4.10 GOT4.8
Pole tide Wahr Wahr
Solid Earth tide Cartwright-Taylor-Edden Cartwright-Taylor-Edden
Sea state bias Tran2012 CLS11
Dynamic atmosphere MOG2D MOG2D

where λ is the latitude and ∆hsla,i b(λ) is the intermission correction. The sea level
anomaly hsla,c corrected for intermission differences is then computed as:

hsla,c = hsla −∆hsla,i b. (2.4)

This correction is only applied to Jason-2 sea level anomalies i.e., Jason-1 is the
reference. The parameters cn, with n = 0, 1.., 4, depend on the applied geophysical
corrections. For the corrections given in Table 2.2 the values for the parameters are
given in Table 2.3. In the middle of the North Atlantic Ocean (approximately 40◦

N), the intermission difference is several millimeters less than when only including
the constant c0 parameter (which is slightly different if the other parameters are not
estimated). This results in an approximate trend difference of several tenths of a
millimeter over a period of 10 years.

Figure 2.2: Geographical differences between Jason-1 and Jason-2 sea level estimates aver-
aged over the tandem period.

Due to the limited sampling of the Argo network and the relatively large errors
in the gravity field solutions it is necessary to integrate sea level anomalies over
extended areas. Previous GMSL studies have used two different techniques (Masters

et al., 2012): gridding or latitude-dependent weighting based on the inclination of
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Table 2.3: Values for the parameters of the intermission difference correction.

Parameter Value Unit
c0 71.9 mm
c1 -74.7·10−3 mm deg−1

c2 51.1·10−5 mm deg−2

c3 -43.3·10−7 mm deg−3

c4 -15.1·10−8 mm deg−4

the orbit (Wang and Rapp, 1994; Nerem, 1995), which was simplified for a spherical
Earth approximation by Tai and Wagner (2011). From here on the latter is referred
to as the ’Wang and Rapp method’. The gridding method is problematic when using
the Jason satellites, because of their large track spacing at the equator, causing the
number of invidual observations per grid cell to decrease at low latitudes (Henry et

al., 2014). A solution to this problem is to increase the grid cell size, but this has
a disadvantage if sea level budgets are constructed over an irregular and/or a small
polygon. The Wang and Rapp method has the disadvantage that it underweights
measurements at high latitudes (> 50◦) (Scharroo, 2006), because it assumes the
number of measurements to go to infinity at latitudes equal to the inclination of the
satellites.

Therefore it is suggested to average the sea level anomalies based on the num-
ber of available measurements within a latitudinal band. The method connects the
weights assigned to the measurements to the number of measurements Nl in a lati-
tude band l of one degree and the area of the sea surface Al as:

ωi(l) =
Al

Nl

. (2.5)

These weights are normalized:

wi =
ωi
∑I

i=1ωi

, (2.6)

where I is the total number of observations. A MSL anomaly h̄sla for an area is
computed as:

h̄sla = ŵT ĥsla,c , (2.7)

where ŵ is the vector of normalized weights and ĥsla,c is the vector of sea level anoma-
lies corrected for intermission differences.

For the error estimation, variance-covariance matrices are computed as described
in Le Traon et al. (1998). This method separates the long-wavelength errors from rep-
resentativity errors. The representativity errors captures sea level variability caused
by the undersampling of high-frequency ocean dynamics. White measurement noise
is not considered here, because it becomes very small when averaged over large ar-
eas. Among the long-wavelength errors, we consider the orbit, ocean tide and inverse
barometer errors. These errors are assumed to be fully correlated between measure-
ments within the track and uncorrelated between inter-track measurements. It is
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noted that those correlations do not hold over large basins (> 2000 km in the East-
West direction) (Le Traon et al., 1998) and therefore the error is overestimated. The
decorrelation time is taken from Le Traon et al. (2001) and the zero crossing of the
correlation distance function dcor r is given by (Le Traon et al., 2001):

dcor r = 50+ 250
900

λ2
avg
+ 900

, (2.8)

where λavg is the average latitude of two measurements in degrees. Ultimately,
this results in equations for the covariance of respectively measurements in differ-
ent tracks and on the same track:

〈εi ,ε j〉 = ρi jσ
2
ov

〈εi ,ε j〉 = ρi jσ
2
ov
+σ2

lw
,

(2.9)

where ρi j is correlation computed with the decorrelation time and distance provided
above, σ2

ov
is the ocean variability variance, which is linked to eddy amplitudes, and

σ2
lw

is the long-wavelength variance. The values for σov and σlw are assumed 100
mm and 15 mm, where the first number comes from typical mesoscale variability
(Chelton et al., 2007). By putting these equations in the variance-covariance matrix
Csla, the standard error σ̄sla for the mean sea level anomaly is computed using:

σ̄sla =
Æ

ŵT Cslaŵ. (2.10)

Both the satellite altimetry mean sea level anomalies as well as the MC from
GRACE are affected by Glacial Isostatic Adjustment (GIA). For the corrections to
GRACE and altimetry we use the solution of Peltier et al. (2015) based on an Earth
model with VM5a viscosity profile and ICE-6G deglaciation history. The altimetric
measurements are corrected by subtracting the GIA geoid trend averaged over the
region of interest. Errors in the GIA trends are typically assumed to be in the order
of 30% of the signal (Von Schuckmann et al., 2014), which is due to the lack of any
realistic GIA error estimates.

Because the CSR gravity fields are created on a monthly basis and the altimetry
measurements are averaged over a cycle of approximately ten days, the altimetry
measurements are low-pass filtered. A low-pass filter fl p is computed by taking an
Inverse Discrete Time Fourier Transform, which results in:

fl p =
sin(2π fc(t − tm))

π(t − tm)
, (2.11)

with fc the cut-off frequency, which is taken as 12 cyc/year, t is the time in years
of the altimetry time series and tm the time at the middle of a month. This filter is
infinitely long, so therefore we cut it at two months. To obtain a better frequency
response the filter is windowed using a Hamming window wH :

wH = 0.54− 0.46 cos(
2π(t − tm − L/2)

L
), (2.12)
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where L is the length of the window in years. We take a window length of two
months. The applied filter hl p is then written in the time domain as:

hl p = fl p ◦wH , (2.13)

where ◦ is the element-by-element multiplication. The mean of the GIA-corrected,
low-pass filtered time series is subtracted, which provides the MSL anomaly h̄sla,GIA

of Eq. (2.1).

2.3.2 Argo steric sea level

Using the Argo profile instead of a precomputed temperature/salinity (T/S) grid has
the primary advantage that error covariances can be computed between steric sea
level grid cells.

First, steric sea levels are computed from the individual Argo T/S-profiles using
the TEOS-10 package. This package requires the conversion of the PSS-78 practical
salinity values measured by Argo to the absolute salinity SA (Grosso et al., 2010)
as well as the ITS-90 temperatures to conservative temperature Θ as defined in the
TEOS-10 user manual (IAPSO, 2010). The TEOS-10 program numerically integrates
the equation for the geostrophic steric sea level (IAPSO, 2010):

hssl = −
1
g0

∫ P

P0

δ̂(SA(P
′),Θ(P ′), P ′)dP ′, (2.14)

where δ̂ is the specific volume, P0 is the surface pressure, P is the reference pressure,
which is set to 1000 dbar (approximately 1000 m depth) and g0 is a constant gravi-
tational acceleration of 9.7963 m s−2, which is the average gravitational acceleration
over the ocean surface (Griffies et al., 2004).

In the analysis only profiles that reach at least 1000 m depth are included and
at least have a measurement above 30 m depth, which is the typical depth of the
mixed layer over the open ocean, but it can be substantially deeper in regions like
the subpolar gyre. A ’virtual measurement’ is created at 1 m depth, assuming the
same salinity and potential temperature values as the highest real measurement, so
that the top steric signal is not missed. Only measurements that have error flag ’1’
(good) or ’2’ (probably good) are used and the measurements are cleaned by moving
a 5◦ × 5◦ block to remove steric sea level estimates more than 3σ from the mean.

To be able to average measurements monthly over a basin or a polygon, a grid
is constructed by statistical interpolation of the steric sea levels at the profile loca-
tions based on the method described in Bretherton et al. (1976) and Gaillard et al.

(2009). First, a background field is constructed by estimating a model through the
1000 closest measurements of a profile or grid cell location. This model contains a
constant, a second-order 2-D longitude-latitude polynomial and six intra-annual to
annual cycles (Roemmich and Gilson, 2009). The background sea surface height is
taken as the model evaluated at the grid cell (or profile) location.
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Then, the background field vector ĥssl,b is subtracted from the sea level estimates,
which results in:

δĥssl = ĥssl − ĥssl,b, (2.15)

where δĥssl are the residuals. The ocean variance σ2
t

is assumed to be 100 cm2

(typical mesoscale variability (Chelton et al., 2007)), which is close to the average
squared RMS-of-fit of the differences of the measurements and the model. These
variances are subdivided into three components to represent different correlation
scales as follows (Roemmich and Gilson, 2009):

σ2
1 = 0.77σ2

t

σ2
2 = 0.23σ2

t

σ2
3 = 0.15σ2

t
,

(2.16)

which are then used to construct covariance matrices C(d) based on those used for
the Scripps fields (Roemmich and Gilson, 2009), such that:

C(d) = σ2
1e−(

d
140 )

2
+σ2

2e−
d

1111 , (2.17)

and the measurement and representativity error matrix R:

R= diag(σ2
3), (2.18)

where d is a measure for the distance in kilometers between the profiles p and the
grid points g, such that:

d =
q

a2d2
x
+ d2

y
. (2.19)

The parameter a is 1 above 20 degrees latitude and below that it decays linearly to
0.25 at the Equator, in order to represent the zonal elongation of the correlation scale
here (Roemmich and Gilson, 2009).

Using the covariances Cpg (between profiles and grid points) and Cp (between
profiles), the weight matrix K is computed as:

K = Cpg(Cp + R)−1. (2.20)

The weight matrix is then used to compute a vector of steric sea levels ĥssl,g for every
grid point within the area:

ĥssl,g = Kδĥssl + ĥssl,b, (2.21)

for which also the variance-covariance matrix Cssl,g is computed, as:

Cssl,g = Cg − KC T
pg

, (2.22)

where Cg are the covariances of the background grid.

To average the steric sea level anomalies, the values are weighted by the cosine
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of the latitude, which results in:

ωi = cos(λi). (2.23)

Like for altimetry, the weights are normalized:

wi =
ωi
∑I

i=0ωi

. (2.24)

Finally, these are used to compute the mean steric sea level h̄ssl and its associated
error σ̄ssl , with

h̄ssl = ŵT ĥssl,g , (2.25)

and
σ̄ssl =
q

ŵT Cssl,g ŵ. (2.26)

Subtraction of the mean from the mean steric sea level time series yields the steric
sea level anomalies h̄ssla used in Eq. (2.1).

2.3.3 GRACE mass

We use the full variance-covariance matrices to filter the spherical harmonic coef-
ficients with an Anisotropic Non-Symmetric (ANS) filter (Klees et al., 2008). This
Wiener filter exploits the ratio between the variance of the error and of the signal
to filter the coefficients. With the variance-covariance matrices Cx and Dx , for the
errors and the signals respectively, the spherical harmonic coefficients x̂ are filtered
as:

x̂o f = (C
−1
x
+ D−1

x
)−1C−1

x
x̂ . (2.27)

For the filtered coefficients x̂o f a corresponding variance-covariance matrix Cx ,o f is
computed. This is a joint inversion of a static background field, which is set to zero,
and the time-varying coefficients, resulting in:

Cx ,o f = (C
−1
x
+ D−1

x
)−1. (2.28)

The derivation is elaborated in Appendix A.

The filtered grids contain ringing effects around strong signals over Greenland
and the Amazon region, which can have substantial effects on the estimated trends in
the ocean (cf. Sect. 2.4). If averaged over large areas this will have hardly any effect,
but on regional scales the ringing should be reduced. To obtain smoother fields, we
use a fan filter (Zhang et al., 2009; Siemes et al., 2013), which is given as:

x̂ f f = sinc(
l

lmax

) ◦ sinc(
m

lmax

) ◦ x̂o f , (2.29)

which is a function of the degree l, the order m and the maximum degree lmax . For a
maximum degree of 60 and 96, this is comparable to a Gaussian filter of 280 km and
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110 km, respectively (Siemes et al., 2013). Suppose F f = diag(sinc( l
lmax
)sinc( m

lmax
)),

then the resulting covariance matrix Cx , f f is written as:

Cx , f f = F f Cx ,o f F f . (2.30)

Note that there is a fundamental difference between filtering the CSR and ITSG so-
lutions. The CSR solutions are computed with respect to a static gravity field, while
the ITSG solutions are computed with the respect to a time-varying field comprising
of a static part, a secular trend and an annual cycle. As a consequence, the CSR
spherical harmonic coefficients and signal variance-covariance matrices include the
annual and the secular trend at the moment the Wiener and fan filters are applied.
The ITSG gravity fields are Wiener-filtered first, then the annual cycle and the secular
trend are added back and after that the fan filter is applied.

Since the degree-1 coefficients are not measured by GRACE, we add those of
Swenson et al. (2008) to the CSR solutions. Based on the same approach degree-1
coefficients are computed for the ITSG solutions. Furthermore, we replace the C20

coefficient with satellite laser ranging estimates (Cheng et al., 2013).

The intersatellite accelerations of GRACE are dealiased for high frequency ocean
and atmosphere dynamics with the Atmospheric and Ocean De-aliasing Level-1B
(AOD1B) product. Monthly averages of the AOD1B are provided as the GAD product
for both CSR and ITSG, where the mass changes over land are set to zero. To be
able to combine the GRACE MC with inverse barometer corrected altimetry, the GAD
products containing the modelled oceanic and atmosphere mass are added back in
the form of spherical harmonics. Because the ocean model in the AOD1B product
is made mass conserving by adding/removing a thin uniform layer of water to or
from the ocean, the degree zero is removed before subtraction from the GAD prod-
uct to compensate for the mean atmospheric mass change over the ocean, which is
not measured by inverse barometer corrected altimetry (Chambers and Willis, 2010).

To compute the MC on a grid, the 4π-normalized associated Legendre functions
Y T are evaluated at the latitude-longitude locations of the grid. The vector of MCs
ĥmc is then computed as:

ĥmc = Y T x̂ f f . (2.31)

It is possible to compute the grid’s variance-covariance matrix Cmc as (Swenson and

Wahr, 2002):
Cmc = Y T Cx , f f Y. (2.32)

The averaging over an area is equal to that of the Argo grids. Suppose that ŵ are
the normalized latitude weights for the gridded MC. Then,

h̄mc = ŵT ĥmc (2.33)

is the mean MC and
σ̄mc =
Æ

ŵT Cmc ŵ (2.34)

is its error.
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To correct the GRACE MC for the GIA trend, we first convert the GIA spher-
ical harmonic coefficients into EWH. Note that GRACE only measures degrees 2
and higher and therefore the coefficients of degree 0 and 1 are not taken into ac-
count. Eventually, the GIA spherical harmonic coefficients are converted to spatial
grids, which are then averaged over the considered area, and consecutively the mean
GRACE MC is corrected for the mean GIA trend.

The mean MC anomaly h̄mca,GIA used in Eq. (2.1) is obtained by applying the
GIA correction to the mean MC h̄mc and subtracting the mean of the time series.

2.4 Comparison with existing products

In this section a comparison is made between existing products and the sea levels
from altimetry, gravimetry and Argo floats. First, we compare the MSL time series
over the North Atlantic Ocean with the existing time series provided by the NOAA
Laboratory for Satellite Altimetry (Leuliette and Scharroo, 2010) and we show the
effect of a latitude dependent intermission bias. Second, amplitude and trend grids
of steric sea level are compared to those computed from Scripps salinity and tem-
perature grids (Roemmich and Gilson, 2009) and the Glorys reanalyses grids (Ferry

et al., 2010). Third, the optimally and fan filtered gravimetry grids are compared to
the DDK5-filtered gravity fields (Kusche, 2007; Kusche et al., 2009).

2.4.1 Total sea level

Fig. 2.3 shows a comparison of the NOAA time series with the ones computed in
this study, for the North Atlantic Ocean north of 30◦ N. The NOAA time series were
computed by averaging over 3◦ × 1◦ grid cells and then weighting them according
to their latitude. Three of the time series in Fig. 2.3 are computed using the same
geophysical corrections as given in the second column of Table 2.2, while for the light
blue line the geophysical corrections in the first column are applied.

As visible from the figure, hardly any differences are observed between all four
time series. The RMS differences between all time series computed in this study and
NOAA are on the order of 3-4 mm, which is slightly larger than differences found
between the GMSL time series (Masters et al., 2012). The fact that the time series in
this study (blue) and the one computed with the Wang and Rapp method resemble
each other indicates that the underweighting of high-latitude measurements in the
Wang and Rapp method hardly has any effect. This also holds for averaging over
smaller areas in the North Atlantic Ocean, where the only noticeable difference occurs
when a substantial number of satellite tracks are missing, due to some maintainance
or orbit manoeuvres.
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Figure 2.3: Top: Comparison between North Atlantic mean sea level time series of NOAA
(green), the Wang and Rapp method (red), our method (blue) and our method using a geo-
graphically dependent intermission bias correction and the latest geophysical corrections (light
blue). Bottom: Same as the top plot, but with the seasonal signals removed.

The application of a latitude-dependent intermission bias has a substantial effect
on the trend. From the NOAA time series a trend of 1.5 mm yr−1 is found, while the
time series from the Wang and Rapp method and our method provide a trend of 1.8
mm yr−1. The difference is explained by the use of a different averaging technique in
the presence of a geographically varying sea level trend. However, if the difference
in MSL is computed between Jason-1 and Jason-2 over the North Atlantic Ocean
during the tandem phase and the result is used as the intermission bias correction,
trends of respectively 1.3 and 1.4 mm/year for the theoretical and the empirical
weighting method are found. This is comparable to the trend computed by applying
the geographical dependence of the intermission bias (the light blue line of Fig. 2.3),
which is 1.4 mm yr−1. To further illustrate this, Fig. 2.4 shows the differences in
trend if a constant intermission bias is used or a latitude dependent one. The mean
difference of 0.4 mm yr−1 is already significant, but locally the differences may attain
values of up to 0.8 mm yr−1.
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Figure 2.4: Differences in sea level trends computed with and without a latitude-dependent
intermission bias.

2.4.2 Steric sea level

Fig. 2.5 shows grids for the amplitudes and trends of the steric signal are shown. The
Scripps grids (Roemmich and Gilson, 2009) and our solution are solely based on Argo
data, while the Mercator reanalyses product Glorys 2V3 assimilates various types of
data including altimetry (Ferry et al., 2010), sea surface temperature and Argo. Note
that besides the different input data, the Glorys relies on a volume conserving ocean
model, while the other two methods are based on data only. Since we use the same
correlation structures as Scripps, the resulting grids should resemble each other quite
closely. However, to be able to create a variance-covariance matrix between grid
cells, it was required to do a 2D-interpolation of the steric sea levels instead of a
3D-interpolation of temperature and salinity profiles. The 2D-interpolation requires
different criteria for removing profiles, as described in Sect. 2.3.2, then for the 3D-
interpolation. As a consequence of the 2D-interpolation and the differences in the
removal criteria the results differ.
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Figure 2.5: Amplitudes of the annual signal (left) and trends (right) computed with the
Scripps grids (a,b), the method in this study (c,d) and from the Glorys reanalysis product
(e,f).

In terms of the amplitudes of the annual signal, all three methods provide similar
results in terms of the large scale features. Typically, amplitudes of 80 mm or more
are found in the Gulf Stream region and close to the Amazon basin, while the areas
around Greenland and West of Africa have relatively small amplitudes in order of
10-30 mm. The Glorys grid differs from the others primarily in the Labrador sea and
Northwest of Ireland. Secondly, the grid computed in this study and the Glorys grid
exhibit more short-wavelength spatial variability than the Scripps grid. As long as
the regions over which budgets are made are large enough, the methods will not
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differ substantially in terms of annual amplitude.

The plots in the right column of Fig. 2.5 reveal a significant difference in trend
between the methods and the reanalysis. It is not completely clear what the cause
for this difference is, but they are possibly related to interactions between the deep
ocean and the continental shelf in the model. Since the Scripps grid and our grid
resemble in terms of large scale features and are purely based on T/S-data, we trust
the interpolation of Argo. The difference between those two methods are again pri-
marily the noise in the grids and the area around the Antilles, where Argo samples
poorly as discussed in Sect. 2.2.

2.4.3 Mass component

Fig. 2.6 shows a comparison of the trends and amplitudes of the CSR96-DDK solution
are compared with those obtained from CSR60-, CSR96- and ITSG90-W. Note that
the Wiener-filtered solutions are also fan-filtered, as discussed in Sect. 2.3.3, but will
be referred to as Wiener-filtered from here on. Both in the annual amplitude and the
trend grids some residual striping effects are present for the CSR96-DDK solutions,
yielding non-physical trend patterns in the MC. The Wiener filter strongly reduces
the striping and as a result especially the trend grids are smoother. However, the
ITSG grids also exhibit striping (as it appears at shorter wavelengths), which is the
results of adding back the trend and annual cycle from the static field, as discussed
in Sect. 2.3.3. A second observation is that the CSR96-DDK and ITSG90-W ampli-
tudes are about 3 mm larger, which indicates that a part of the annual signal is lost
in the CSR60- and CSR96-W solutions. Thirdly, Tamisiea et al. (2010) estimated a
slight increase in MC amplitudes using fingerprint methods based on forward mod-
els of water mass redistribution around the Sahel and Amazon of 10-15 mm. In
the Wiener-filtered CSR grids, also larger amplitudes are visible in these regions,
however their amplitude of 30-60 mm is far too large and are probably the result
of hydrological leakage. This leakage is slightly reduced in CSR96-W compared to
those of the CSR60-W.

To determine how this affects sub-basin scale MC time series, it is first required
to determine the minimum area over which the measurements have to be integrated.
GRACE gravity fields have a resolution of typically 250-300 km half-wavelength
(Siemes et al., 2013). For small ocean signals after applying filtering procedures,
we expect the resolution to be closer to 400-500 km. Argo has approximately one to
two floats per 3◦ × 3◦ box, so its resolution is in the same range as that of GRACE.
Jason-1&2 have an inter-track spacing of 315 km at the Equator, which decreases
substantially towards 60◦ N. Considering all systems, this theoretically makes it pos-
sible to create budgets over grid cells of approximately 500x500 km. However, due
to the limited length of the time series, the error bars on the trends become much
larger than the signals. The size of the polygons is therefore chosen based on the
criterion that trend error standard deviation does not exceed 1 mm yr−1.
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To illustrate the effects of different filters and residual striping on sub-basin scale
budgets, Fig. 2.7 shows time series of mass averaged over the polygons shown in Fig.
2.6. All three polygons have approximately the same size, but have different orien-
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Figure 2.6: (Caption previous page.) Amplitudes of the annual signal (left) and trends (right)
of the mass signal. The first to the third row show the CSR96-DDK solutions (a,b), the CSR60-
(c,d) and CSR-96-W (e,f) solutions respectively. The fourth row shows the ITSG90-W (g,h)
solution. In the top graphs three polygons are plotted: a meridionally oriented rectangle
(purple line), a zonally oriented rectangle (black line) and a square (green dashed line) from
which mean MC time series are computed below.

tations. The location is chosen in the middle of the Atlantic to avoid effects of hy-
drological leakage. Except for the months surrounding the near 4-day repeat-period
in 2004, where the variance-covariance matrices of CSR probably do not properly
described the noise of the gravity fields, the three of the CSR solutions exhibit less
noise than in the other two polygons. In the zonal polygon the noise in CSR96-W is
substantially larger than for the other solutions. Futhermore, it becomes clear that
the CSR96-DDK solutions do not contain substantial signal above degree 60, because
the red and yellow lines are on top of each other, while CSR60- and CSR96-W are
substantially different.

The month-to-month noise of CSR60- and CSR96-W time series is comparable for
all three polygons. The CSR60- and CSR96-DDK time series become much noisier
for the meridionally oriented polygon, where month-to-month jumps of 10-20 mm
occur. In addition, the DDK time series exhibit a substantially different trend in the
meridional polygon than the other time series. While the mass anomaly in the DDK
time series is comparable ot the other time series before 2011, it is significantly lower
after 2011. This is probably the result of the orientation of the polygon, which is
aligned with the residual stripes (Fig. 2.6). The trend and noise of the DDK time
series strongly depend on the orientation of the polygon. Even though the ITSG90-
W trend and amplitude grids suffer from striping, they do not become significantly
noisier for the meridionally oriented polygon.

2.5 Results and discussion

The first objective of this section is to reveal patterns of sea-level amplitudes and
trends in the North Atlantic Ocean and how these resemble for the two different
methods: altimetry and Argo+GRACE. Secondly, this section discusses the closure
of sea-level budgets over polygons of approximately one-tenth of the North Atlantic
Ocean in terms of trend, annual amplitude and residual variability. It is shown for
which regions the budget is closed and possible causes for non-closure are discussed.
Thirdly, we focus on the best choice of GRACE filter solutions for the MC.
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Figure 2.7: Sub-basin scale time series of the MC using various filters for three polygons with
different orientation: zonal (a), square (b) and meridional (c). Red and yellow represent the
CSR60- and the CSR96-DDK solutions. The blue and light-blue time series represent
respectively the CSR60- and the CSR96-W solutions. In purple are the time series of the
ITSG90-W solution.
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2.5.1 North Atlantic sea-level patterns

In Fig. 2.8 grids of trends and amplitudes computed from Argo+GRACE are overlaid
with Jason derived trends and amplitudes at the ground-tracks. In areas where the
ground-tracks of altimetry are barely visible, there is a good resemblance between
Argo+GRACE and altimetry.
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Figure 2.8: Amplitudes of the annual signal (left) and trends (right) computed of the sum of
the components (Argo+GRACE) overlayed with those computed from the total sea level
measured with altimetry. For the two top figures the CSR96-DDK (a,b) solutions are used
and for the bottom two the CSR96-W (c,d) solution.

The grids and ground-tracks shown in the left column indicate that annual sig-
nals with an amplitude of 100 mm are present in the Gulf Stream region and in
a tongue stretching from the Amazon to the Sahel. A region without any substan-
tial annual signal is located just west of Africa, which is clearly visible in both the
Argo+GRACE grid and altimetry. Both methods reveal these large-scale oceano-
graphic features in amplitude, but there are also quite some differences. East of the
Antilles, altimetric measurement show an annual amplitude of more than 60 mm,
whereas Argo+GRACE estimates are in the range of 40-50 mm, depending on the
choice of GRACE filter. Note that in this area, there are barely any Argo floats (Fig.
2.1), which might lead to interpolation problems. A second difference is observed
in the Wiener-filtered grid (bottom-left) at the Amazon and Sahel regions. This is
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exactly at the areas where the Wiener-filtered MC grids of Fig. 2.6 likely suffer from
hydrological signal leakage.

The trends from altimetry in the right column of Fig. 2.8 show a distinct pat-
tern, where positive trends are found south of 35◦ N and negative trends north of
it, with the exception of the North American coastline. Trends of >10 mm yr−1

along the North American coast are also found by tide gauge studies (Sallenger at

al., 2012), usually attributed to a weakening Atlantic Meridional Overturning Cir-
culation (AMOC). The Argo+CSR96-W solution resemble the trend patterns derived
from altimetry measurement better, while the residual stripes in the CSR96-DDK so-
lution are clearly visible. Note that a significantly larger altimetric trend is visible
west of the Mediterranean. Possible causes will be discussed below.

2.5.2 Sub-basin scale budgets

The North Atlantic Ocean is split into ten regions, divided in the middle by the Mid-
Atlantic ridge, while in the latitude direction trying not to cut through the major
oceanographic features, like the salt water tongue in front of the Mediterranean and
the Gulf Stream, as shown in Fig. 2.8. Just as in Sect. 2.4.3, the size of the regions
is chosen such that the error on the trends does not exceed 1 mm yr−1. First, we will
discuss three representative examples of time series. Then budget closure in terms
of trend and annual amplitude is addressed and the corresponding best gravity filter
is determined. Ultimately, the trends, semi-annual and annual signals are removed
from the time series and the best filter choice in terms of residual variability is deter-
mined.

Timeseries

Figure 2.9 shows budgets for three representative regions, using the Wiener-filtered
MC solutions. The time series for the rest of the regions can be found in Appendix B.
The left plots confirm that the main driver for annual fluctuations in sea level is the
steric sea level, but that the trend is strongly influenced by a mass component. On
the right side we see that the sum of the components and the total sea level agree to
within the error bars, but some problems arise in the Gulf Stream area (region D).
These are possibly caused by sharp gradients in sea level, mesoscale sub-sampling
issues or deep-ocean steric contributions. The sea levels in Polygons D and I also
contain some interannual signals, which are especially pronounced between 2010-
2012. The left column shows that the interannual variability is primarily a steric
signal. Note that the larger size of the error bars in regions B and I is due to the
decrease in altimetry track density closer to the equator and the elongation of the
correlation radius for the interpolation of Argo floats.
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Figure 2.9: Time series of sea-level components for regions B, D and I. Left: total sea level
from altimetry in red, steric sea level in green and the ITSG90-W mass in blue. Right: total
sea level from altimetry in red and the sum of steric sea level and mass in blue. In yellow and
ligth blue their 95% confidence interval. Time series for the other regions and without the
annual cycles are found in Appendix B.

Trends

Trends computed from the time series of Fig. 2.9 are given in Table 2.4. Note that the
budget is closed when the sum of the components matches total sea level within two
standard deviations. In this case, the standard deviation includes the uncertainties
of the mass, steric and total sea-level estimates. Close to the equator (A, B, I and
J) and over the whole North Atlantic Ocean the trend budget is closed within two
standard deviations no matter which of the MC solutions is used. This confirms the
results of Fig. 2.8. In the four southernmost regions the GIA correction is relatively
small and no sharp gradients or strong features are present in the trend grids, which
contribute to proper budget closure. Budget closure is also achieved by all filters in
the northeast of the Atlantic (F, G). Again, these regions do not contain significant
gradients in trends and only a small GIA correction is applied. The results of the
Argo+GRACE however show are larger spread for the different MC solutions. It is
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important to note that especially region F suffers from some ringing artefacts before
the fan filter is applied and that the far northeast is not very well covered by Argo
floats. The trends of CSR96-DDK in region G are a bit further off than the other
solutions, probably resulting from striping issues (Fig. 2.6).

In the northwest of the Atlantic the choice of gravity field filter either substan-
tially influences the estimated trends (D and E), or the impact is just outside of two
standard deviations (C) for one ore more solutions. Using the CSR96-W solution,
the budget is closed within two standard deviations for all three polygons, whereas
the other solutions do not close the budget. For region C, the trends obtained with
any of the filters are either just within or just outside two standard deviations from
altimetry. For region D, the budgets are not closed with the CSR60-W solution, but
for the other solutions the sum of the components and total sea level are statistically
consistent. In this region, sharp gradients occur not only in the MC with the pres-
ence of a neighbouring continental shelf, but also in the steric component. This might
lead to leakage of the continental shelf mass signal or problematic interpolation of
the Argo steric sea levels. In addition for both of the beforementioned regions, the
GIA correction on the MC is relatively large. We did not add an uncertainty to the
mass component and total sea level for GIA. If a GIA correction error of 10-20% is
assumed, which is smaller than discussed in Sect. 2.3.3, it would close the budgets
in regions D and E, except for the CSR60-W solution. In region E, a clear split is
visible between the Wiener-filtered CSR solutions, which close the budget, and the
other two solutions, which do not close the budget. The difference in results could be
caused by the filter not being able to handle the large gradients (Klees et al., 2008) in
the MC within this region (Fig. 2.8). However, if we would again add only a 10-20%
GIA correction error, it would suffice to close the budget for all filters.

Ultimately, only the budget in region H cannot be closed with any of the solutions.
There is no strong GIA signal present, which could be responsible for a large bias. In
addition, the sea level in this polygon does not exhibit any strong gradients and the
number of Argo floats is substantial. This excludes interpolation or filtering problems.
A possible reason for the non-closure is a deep-steric effect, that could be related to
variations in the export of saline water from the Mediterranean (Ivanovic et al., 2014),
which is not captured by Argo.

In conclusion, it is possible to close the sea-level budget within two standard
deviations for nine-out-of-ten regions using CSR96-W. If a 10-20 % GIA correction
error is taken into account, the budget for nine-out-of-ten polygons is also closed
for CSR96-DDK and ITSG90-W. This also suggests that the commonly assumed GIA
correction error of 20-30% (Von Schuckmann et al., 2014) is probably overestimated
in the North Atlantic Ocean.

Annual signal

In Sect. 2.4.2, we showed that the seasonal cycles are primarily caused by steric
variations in sea level (Fig. 2.9). By comparing the first column with the last column
in Table 2.5, it becomes clear that in most cases an additional mass signal is required
to close the budget in terms of annual amplitude. The discrepancy between Argo and
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Table 2.4: Trends of total sea level (mm yr−1) and their standard deviations from altimetry
(Jason) and the sum of steric and mass from Argo (A) and GRACE (CSR, ITSG) for different
filter solutions. NA is the trend for the complete North Atlantic Ocean between 0-65◦ N. The
1σ error bars are computed by propagating the uncertainties using the least-squares normal
matrices. A 0.4 mm y−1 drift error is taken into account for altimetry based on the comparisons
with tide gauges (Mitchum, 1998, 2000). GIA Absolute Sea Level (ASL*) correction subtracted
from altimetry MSL and GIA Equivalent Water Height (EWH**) correction subtracted from the
GRACE MC. In bold the solutions for which the budget closes.

Jason CSR96+A CSR96+A CSR60+A ITSG90+A GIA GIA
DDK5 Wiener Wiener Wiener ASL* EWH**

A 2.6±0.5 1.8 2.4±0.9 2.7±0.9 2.3±0.9 -0.3 -2.2
B 2.8±0.5 3.1 3.0±0.7 3.7±0.7 3.1±0.7 -0.5 -3.4
C 3.2±0.4 4.2 4.4±0.5 4.8±0.5 4.5±0.5 -0.6 -5.1
D 1.0±0.4 1.5 1.9±0.5 3.1±0.5 2.3±0.4 -0.6 -6.0
E 0.5±0.4 2.2 0.3±0.5 0.0±0.5 2.2±0.4 -0.5 -7.1
F -2.4±0.4 -2.0 -3.4±0.5 -3.0±0.5 -1.8±0.4 -0.5 -4.6
G 0.7±0.5 -0.8 -0.2±0.6 0.0±0.6 0.4±0.6 -0.5 -3.6
H 4.7±0.4 1.4 2.5±0.6 2.7±0.6 3.3±0.6 -0.5 -3.5
I 2.3±0.4 1.4 2.1±0.6 2.5±0.6 2.5±0.6 -0.5 -2.8
J 2.4±0.4 1.7 1.3±0.7 1.3±0.7 1.6±0.6 -0.3 -2.0
NA 1.8±0.4 1.8 1.5±0.3 1.8±0.3 2.2±0.2 -0.5 -4.1

altimetry for the whole North Atlantic Ocean reveals that on average in-phase mass
signals with an amplitude of approximately 7 mm are required to close the budgets,
which is in line with the modelled results of Tamisiea et al. (2010). They modelled,
using fingerprints, amplitudes of the MC ranging from 3-12 mm, and phases (not
shown here) between day 210-330, which is in-phase with the steric signal.

Table 2.5 shows that for virtually every region the choice of filter matters. On
top of this, there is a clear difference between the Wiener-filtered CSR solutions and
the other two solutions. Adding the CSR60- and CSR96-W solutions increases in a
few cases even the discrepancy with altimetry, which is caused by an out-of-phase
mass signal. Especially in regions A and J, where the amplitude is underestimated
and overestimated, respectively. Only in four regions (B, D, H and I) the amplitude
budget closes within two standard deviations using these solutions.

Even though no error bars are computed for the CSR96-DDK, because no variance-
covariance matrices are provided with this product, it is clear that the results are far
better in terms of budgets closure. The results are comparable to ITSG90-W, which
closes seven-out-of-ten budgets within two standard deviations. CSR DDK5+Argo
underestimates the amplitude in region B, while ITSG90-W+Argo overestimates the
amplitude with respect to altimetry in region D. In region B the estimate of ITSG90-
W+Argo is relatively small and in region D the CSR96-DDK+Argo also relatively
large. Note that the number of Argo floats in region B is often small (Fig. 2.1)
and that large gradients in the steric sea level in region D could cause interpolation
problems for steric sea level. Secondly, in both northern polygons E and F both com-
binations of Argo+GRACE underestimate the amplitude compared to altimetry. Why
this underestimation occurs is not completely clear. A likely culprit is the gravity
field filtering, but yearly deep convection events in these regions (Våge et al. , 2009),
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Table 2.5: Amplitudes (mm) of the annual signal from total sea level from altimetry and the
sum of steric and mass from Argo and GRACE for different filter solutions. The 1σ error bars
are computed by propagating the uncertainties using the least-squares normal matrices. In
bold the solutions for which the budget closes.

Jason CSR96+A. CSR96+A. CSR60+A. ITSG90+A. A. only
DDK5 Wiener Wiener Wiener

A 42.3±1.3 36.0 26.8±3.4 28.2±3.4 36.3±3.1 32.2±3.1
B 34.2±0.9 27.5 27.8±2.7 29.6±2.7 30.5±2.5 30.2±2.4
C 54.0±0.7 52.6 49.3±2.1 48.5±2.1 52.9±1.9 47.1±1.9
D 82.1±0.6 85.0 84.3±2.0 82.8±1.9 88.3±1.7 82.6±1.7
E 48.0±0.5 43.2 40.2±1.9 38.5±1.8 42.8±1.5 39.3±1.4
F 45.8±0.6 40.4 37.6±2.0 39.6±1.9 41.2±1.6 35.1±1.6
G 45.1±0.9 44.5 37.7±2.2 39.9±2.1 43.2±2.0 38.4±1.9
H 49.9±0.8 48.8 45.1±2.3 46.5±2.3 48.1±2.1 39.6±2.1
I 18.7±0.8 19.0 16.0±2.3 17.8±2.2 19.1±2.0 11.9±2.0
J 40.3±1.2 40.8 46.1±2.5 49.0±2.4 42.9±2.2 33.9±2.1
NA 44.6±0.3 42.6 39.5±1.1 40.0±1.0 43.3±0.8 37.7±0.8

which transport surface water to depth below 1000 m, and the limited number of
Argo floats, could also be contributing factors.

Using ITSG90-W, it is also possible to close the budget on the scale of the whole
North Atlantic Ocean (last row of Table 2.5). The Argo+ITSG90-W performs best in
terms of amplitude budget closure in most regions, even though often characterized
by sligthly smaller amplitudes than those derived from altimetry. This suggests that
there is either a long-wavelength underestimation of the amplitude in GRACE, an
overestimation in altimetry, or a missing steric effect in Argo. This is in line with
Storto et al. (2017), where on a global scale, steric sea levels computed from reanal-
yses and gridded T/S fields are found to be smaller than those indirectly derived
from altimetry minus GRACE. Additionally, Marcos et al. (2011) found differences
in phase and amplitude of steric-corrected altimetry and the MC from destriped 500
km Gaussian-filtered GRACE solutions in the North Atlantic.

Residual variability

Time series for the same regions as in Fig. 2.9 are shown in Fig. 2.10, but their trend,
semi-annual and annual signals have been removed to show the residual variability.
For the rest of the regions plots of the residuals are given in the Appendix B. In
contrast to the time series for the whole North Atlantic Ocean (not shown), the sub-
basin scale time series show significant interannual variability. Region D, located at
the east coast of the United States, shows a drop of 60-70 mm within three months at
the end of 2009. This drop is possibly related to a shift in the Gulf Stream described
by Pérez-Hernández and Joyce (2014) as the largest in the decade, which they relate
to the North Atlantic Oscillation. As illustrated in the left column, the shift in the
Gulf Stream is primarily of steric nature, however small deviations in the mass signal
are also present. It is remarkable that at the same time on the other side of the
Atlantic (region I, bottom panels of Fig. 2.10), an increase in sea level is observed
by both altimetry and Argo. In region B, we also observe a small interannual effect
by altimetry and Argo. However, the amplitude of the signal is larger for altimetry
than is captured by Argo, which suggests either some interpolation issues in an area
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Figure 2.10: Time series of sea-level components for polygons B, D and I after removing the
trends and the annual and semi-annual signals. Left: ITSG90-W mass in blue and steric sea
level in green. Right: total sea level from altimetry in red and the sum of steric sea level and
mass in blue.

without many Argo floats or a deep-steric effect.

Using any of the filtered CSR or ITSG solutions, it is possible to detect the inter-
annual variability described, probably because most of the signal is of steric origin.
However, for the interannual signals that are less pronounced, or for high frequency
behaviour of sea level there are some differences between the MC solutions. Table 2.6
shows the fraction of variance of the residual signal of altimetry (trend, semi-annual
and annual cycles removed) explained by Argo+GRACE.

The third column indicates that Argo in combination with CSR96-W does not
explain much of the residual variance, but mostly introduces additional noise, which
causes the negative values. Using the DDK5-filtered MC the explained variance in-
creases, but the best performance is obtained with the CSR60-W and especially the
ITSG90-W gravity fields. The last column shows that after reducing the trend, and
the semi-annual and annual signals, between 24-53% of the residual signal can be
explained by the combination of Argo and ITSG90-W. It is remarkable that for the
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Table 2.6: Fraction of explained variance, R2, of altimetry total sea level by Argo+GRACE
steric+mass for different gravity field filter solutions after removing the semi-annual and an-
nual signals and the trend. The corresponding time series can be found in Appendix B.

CSR96+A. CSR96+A. CSR60+A. ITSG90+A.
DDK5 Wiener Wiener Wiener

A 0.32 0.07 0.33 0.38
B 0.02 -0.46 0.09 0.24
C 0.37 0.14 0.38 0.40
D 0.31 0.16 0.36 0.34
E 0.14 -0.19 0.29 0.44
F 0.09 -0.17 0.45 0.52
G 0.13 -0.05 0.29 0.34
H -0.12 -0.49 0.21 0.27
I 0.34 0.14 0.50 0.49
J 0.39 0.17 0.45 0.53
NA -0.05 -1.21 -0.06 -0.01

whole North Atlantic Ocean (last row in Table 2.6), no variance is explained by the
Argo+GRACE, primarily due to the absence of a clear interannual signal. Note that
the value -1.21 for the CSR96-W gravity fields indicates that variance increases after
its subtraction from altimetry, which indicates that the Argo+GRACE time series is
substantially noisier than the altimetry time series.

2.6 Conclusions

For the first time it is shown that sea-level budgets can be closed on a sub-basin scale.
With the current length of the time series it is possible to establish budgets over areas
of approximately one-tenth of the North Atlantic Ocean. To obtain error bars on the
annual amplitudes, trends and time series, errors for altimetry and Argo profiles
are propagated from existing correlation functions, while for GRACE full variance-
covariance matrices are used. For altimetry, a latitude dependent intermission bias
is applied and it is shown that this leads to trend differences ranging up to 0.8 mm
yr−1 if the period from 2004-2014 is considered.

To obtain proper averaged mass for sub-basin scale polygons, the gravity fields
have to be filtered. The application of an anisotropic Wiener filter on the CSR96
solutions leads to the best closure of the trend budget in nine-out-of-ten regions. In
the considered regions also the CSR96-DDK and the ITSG90-W solutions appear to
close just as many budgets when a 10-20% GIA correction error is added. The results
of the CSR96-DDK filter however, strongly depend on the orientation of the averag-
ing area due to residual meridional striping. The resemblence between trends also
suggests that the errors on the GIA model are probably smaller than the commonly
assumed 20-30%. Furthermore, a large difference in trend between altimetry and
Argo+GRACE is observed in front of the Mediterranean Sea. Since the GIA correc-
tion is small, we suggest that this originates from steric effects below the considered
1000 m, where saline water enters the Atlantic Ocean from the Strait of Gibraltar
and dives to large depths. Further research is needed to confirm this hypothesis.
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The CSR60- and CSR96-W solutions appear to underestimate the amplitude of
the annual signal substantially. They also suffer from what appears to be leakage
around the Amazon and Sahel, regions with a substantial annual hydrological cycle.
Using the CSR96-DDK gravity fields and the ITSG90-W solutions, the sum of the steric
and mass components becomes significantly closer to that of altimetry, with closure
in seven-out-of-ten regions. However, it must be noted that the altimetry signals tend
to be slightly larger. The smaller amplitudes of GRACE+Argo are partly caused by
the destruction of the signal by filtering of the gravity fields or limited Argo coverage,
or in some regions deep-steric signals.

By removing the semi-annual and annual signals and trends interannual vari-
ability can be detected. Since most of the interannual variability in the North At-
lantic Ocean is contained in the steric component, the type of filter applied to GRACE
monthly gravity models is not really important. However, if we look at differences on
a month-to-month basis, high-frequency variations or small interannual fluctuations
in mass, the use of CSR60-W the ITSG90-W solutions explains a larger fraction of
the altimetric sea level. Using the ITSG90-W solution, 24-53% of the variability in
the altimetry-derived sea-level time series is explained. The CSR96-W solution only
introduces noise and explains virtually no residual variability of the altimetry time
series. Especially in the months around the 4-day repeat-orbits in 2004, the CSR96-
W solutions do not give proper estimates of the MC, which partly contributes to a
lower explained variance.

To summarize, using the ITSG Wiener-filtered solution the trend budgets close
when an error of 10-20% on the GIA correction is assumed. They perform, together
with the standard DDK5-filtered CSR solution, best in terms of annual amplitude
budget closure. Additionally, the combination of ITSG mass and Argo steric sea lev-
els explains the largest fraction of variance in altimetry time series. Based on this, the
best option to establish budgets, at scales considered in this paper, is the ITSG90-W
solution. However, due to residual striping in the trend grids from the ’static’ back-
ground field that are added back after Wiener-filtering, one must take care when av-
eraging the MC over even smaller regions, or meridionally-oriented polygons, which
is a even a bigger problem for the standard CSR96-DDK solutions.



Chapter 3

Trends and interannual variability of mass and steric

sea level in the Tropical Asian Seas

3.1 Introduction

Sea level trends in the Tropical Asian Seas (TAS) over the altimetry era (1993-present)
are among the highest in the world (Cazenave and Le Cozannet, 2013). The region
is especially vulnerable to sea-level rise due to the many low-lying densily populated
areas (Strassburg et al., 2015). Additionally, groundwater depletion in large cities as
Manilla, Bangkok and Jakarta (Phien-Wej et al., 2006; Rodolfo and Siringan, 2006;
Chaussard et al., 2013; Raucoules et al., 2013) causes subsidence and enhances so-
cietal and economic risks. Furthermore, the TAS form an interesting area in both
sea-level and oceanographic studies, because they serve as a passage for dynamical
interactions between the Pacific and Indian oceans (Wijffels and Meyers, 2004).

Many studies considered sea-level variability in areas surrounding the TAS, mostly
focussing on the Western Tropical Pacific Ocean (WTPO). The large sea-level trends
during the altimetry area in the WTPO are attributed to strengthening of the trade
winds since the 1990s (Merrifield, 2011; Merrifield and Maltrud, 2011; Zhang and

Church, 2012; England et al., 2014). Interannual and decadal variability in trade
winds are related to the El Niño Southern Oscillation (ENSO) and the Pacific Decadal
Oscillation (PDO), who cause steric fluctuations in the WTPO region. Furthermore,
several studies indicated that the ENSO and PDO are also driving the sea level in
the Leeuwin Current at Fremantle (Feng et al., 2004; Lee and McPhaden, 2008; Mer-

rifield et al., 2012), which requires waves to propagate through the southern parts
of the TAS. The trade winds associated with the PDO are expected to weaken over
the coming years (Zhang and Church, 2012; England et al., 2014), which will lead
to lower sea-level trends in the WTPO and the Leeuwin current, but also in the TAS
(Strassburg et al., 2015).

Parts of this chapter have been published as: Kleinherenbrink, M., Riva, R., Frederikse, T., Merrifield,
M., Wada Y. (2017). Trends and interannual variability of mass and steric sea level in the Tropical Asian
Seas, Journal of Geophysical Research: Oceans, doi:10.1002/2017JC012792.

http://dx.doi.org/10.1002/2017JC012792
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Even though many studies described the relation between sea level, heat content,
ENSO and PDO in the TAS area and surroundings, the contributions of other sources
are often neglected. McGregor et al. (2012a) suggests that an additional mass com-
ponent is required to be able to capture the full sea-level rise signal. For the South
China Sea and east of the Philippines this is confirmed by Rietbroek et al. (2016), who
performed an inversion of altimetry and Gravity Recovery And Climate Experiment
(GRACE) data to obtain trends in sea level driven by global mass redistribution and
steric changes. They estimated that at least 25% of the total sea-level rise between
2002-2014 in the SCS and east of the Philippines, respectively 7.6 mm yr−1 and 14.7
mm yr−1, is due to mass changes.

Only in the South China Sea separate mass and steric changes have been esti-
mated using GRACE and ocean reanalyses or in-situ measurements of temperature
and salinity (Feng et al., 2012). The limited number of studies is mainly due to the
absence of Argo temperature and salinity measurements and a commonly applied
cut-off of GRACE data in the first 300 km from the coast to avoid hydrological signal
leakage. Not considering the individual mass and steric components in the TAS not
only limits the understanding of sea-level variability in the region itself, but it also
affects studies on larger scales. Von Schuckmann et al. (2014) showed that the TAS
region is responsible for the non-closure of the sea-level budget in the tropics, caused
by the significantly larger sea-level trends in the TAS, and that the omission of the
TAS leads to a trend discrepancy of 0.5±0.2 mm yr−1 in global sea-level budgets over
the January 2005 - December 2010 period.

In this study, we use for the first time altimetry, optimally filtered GRACE solu-
tions and temperature and salinity fields from ocean reanalysis products to separate
steric from mass contributions to sea level between January 2005 - December 2012.
We derive dedicated variance-covariance matrices for altimetry, use full variance-
covariance matrices stemming from GRACE data processing and use the spread of
steric sea levels from six ocean reanalyses to obtain a consistent separation between
mass and steric sea level. This allows for a correction of global and large-scale re-
gional sea-level budgets to the steric and mass components in the TAS, which have
been omitted in previous studies (Willis et al., 2008; Leuliette and Willis, 2011; Von

Schuckmann et al., 2014). Additionally, we investigate the dynamic mass response
in shallow regions to the larger steric response in the deeper ocean and couple both
the steric and mass components to the ENSO and the Dipole Mode Index (DMI). The
ENSO contribution is investigated in further detail by considering the first two Princi-
pal Components (PC) of the Equatorial wind stress as in McGregor et al. (2012b) and
Widlansky et al. (2014). Finally, we quantify how much the mass trend is affected by
the tidal nodal cycle and by global mass redistribution, respectively.

3.2 Study Area

To study the TAS in more detail, we separate it into four regions as shown in Fig. 3.1.
Region A, the South China Sea is characterised by deep bathymetry in the center
and relatively large shallow areas near the Chinese and Vietnamese coasts. There
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are several Argo floats present in region A, but not enough to allow for an accurate
interpolation.

Region B, referred to as Thailand-Java, is characterised by a very shallow bathymetry,
typically less than 100 meters. The steric sea level is poorly constrained due to the
absence of any Argo floats and the presence of only a few shipboard measurements
of temperature and salinity. GRACE observations are largely affected by the 2004
Andaman-Sumatra Earthquake in this region and therefore, we exclude all obser-
vations before 2005. However, as will be discussed in Sect. 3.3.2, the post-seismic
relaxation of the solid Earth still affects the observations. Furthermore, as in region
A, the neighbouring Mekong basin might introduce a substantial hydrological leak-
age, which is further discussed in Sect. 3.3.2.
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Figure 3.1: Bathymetry and topography in and around the TAS. Visible are four averaging
regions. In tables we refer to the regions as A, B, C and D for brevity.

Region C, denoted as Banda-Celebes, is very deep, but the area is divided by many
islands into several small basins, with their own regime. As a result, the correlation
scales of sea-level variability in this area are shorter than in an open basin, like region
A.

Region D is slightly deeper than region B, with maximum depths of 200-300
m. Together with region C it is subject to the throughflow from the Pacific to the
Indian Ocean. In the southwest, region D is connected to the Leeuwin Current, where
sea level strongly depends on Pacific Ocean indices, like the PDO and the ENSO as
mentioned in the introduction. This region will be referred to as Timor-Arafura.
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3.3 Data and methods

To obtain a consistent separation of the mean mass h̄mass and steric sea level h̄steric it
is required that the sea-level budget equation (Leuliette and Miller, 2009)

h̄total = h̄mass + h̄steric (3.1)

is closed within error bars. While the observation of mean total sea level h̄total in the
TAS can be done with altimetry using standard techniques, estimating the mass and
steric components is less trivial. The mass component is obtained from GRACE grav-
ity fields, which need to be corrected for contamination by leakage of hydrological
signals and gravitational effects of the Sumatra-Andaman earthquake. The absence
of Argo floats in the TAS causes difficulties in estimating the steric component and
therefore we rely on ocean reanalyses. This introduces additional problems, since
most of the reanalysis products have a resolution that cannot capture the detailed
structure of the TAS. This section will explain how the different observations and
models are used in order to obtain a statistically optimal separation between the
mass and steric components.

To explain the behavior of the steric sea level and mass components, we regress
indices and principal components (PC) and use mass redistribution fingerprints. This
section also describes how the PC of the equatorial wind stress are obtained and
briefly introduces the sea-level equation, which is used to obtain the fingerprints.

3.3.1 Altimetry mean sea level

The Mean Sea Level Anomaly (MSLA) is estimated from along-track Jason-1&2 alti-
metric sea-level measurements, obtained from the Radar Altimeter Database System
(RADS) (Scharroo et al., 2012), averaged over the regions indicated in Fig. 3.1. Ap-
plied range corrections are the same as in Kleinherenbrink et al. (2016), cf. Table 3.1.
Additionally, we apply a latitude dependent intermission bias (Ablain et al., 2015).
The Sea Level Anomaly (SLA) is then obtained by subtracting the DTU13 mean sea
surface (Andersen et al., 2015) from the corrected sea-level measurements. Surface
area weighting of the SLAs is done by dividing the ocean area Al in a latitude band l

of 1◦ by the number of measurements Nl , such that

ωi =
Al

Nl

(3.2)

are the nonnormalized weights for measurement i inside a particular latitude band
l. The weights are normalized, which results in:

wi =
ωi
∑

ωi

. (3.3)

The latitude dependent covariance functions of Le Traon et al. (2001) are not suitable
to obtain error bars for the MSLAs in the TAS due to islands, currents and depth
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Table 3.1: List of geophysical correction applied in this study. Details on the geophysical
corrections are given in Chapter 2.3.1.

Ionosphere Smoothed dual-frequency
Wet troposphere Radiometer
Dry troposphere ECMWF
Ocean tide GOT4.10
Loading tide GOT4.10
Pole tide Wahr
Solid Earth tide Cartwright
Sea-state bias Tran2012
Dynamic atmosphere MOG2D

variations. For every averaging region a dedicated covariance function is therefore
estimated. First, we compute the dissimilarity γi, j between all the measurements
over a 10-day repeat period:

γi, j =
(hi − h j)

2

2
, (3.4)

where hi and h j are two SLAs within the considered region in a 10-day repeat orbit
relative to a background field. The background field is a second-order polynomial fit
through all the measurements in the region during the Jason-1 period. A variogram
γ̂n is created by binning and averaging dissimilarities into 20 km range bins n, to
have enough measurements per bin to reduce the noise, which are then averaged
over all 10-day repeat periods of Jason-1. Using the variance σ̂2

h
of the background

removed SLAs, the experimental covariance between measurements is computed as:

ĉn =
q

σ̂2
h
− γ̂n. (3.5)

We considered Gaussian, spherical and exponential covariance functions, and found
that the exponential one fits the experimental covariances best (not shown). Using
the weight vector ŵ, the distance between the measurements and the fitted covari-
ance functions, the standard error σh̄ for mean sea-level time series is computed,
such that:

σh̄ = ŵT Ctotal ŵ, (3.6)

where Ctotal is the variance-covariance matrix of the measurements computed from
the exponential covariance function. In addition we add an time-dependent error,
related to the uncertainty of the drift in the altimeter system, which is validated with
tide gauges(Mitchum, 1998, 2000). The uncertainty is given as:

εdri f t = α(t − t0), (3.7)

with t the time in years, t0 the time of the middle epoch of the time series and α= 0.4
mm yr−1.
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3.3.2 GRACE ocean mass

To minimize leakage and reduce striping effects, an anisotropic Wiener filter (Klees

et al., 2008) is applied to the GRACE gravity fields. The ITSG-Grace2016 spherical
harmonic solutions are selected, because they give the best overall performance in
combination with the Wiener filter in previous work about the North Atlantic (Klein-

herenbrink et al., 2016). Let x be a vector of monthly spherical harmonic ITSG coef-
ficients, then the resulting filtered coefficients are given as:

x f = (D
−1
x
+ Nx)

−1Nx x , (3.8)

which rely on the signal variance-covariance matrix Dx and the normal matrix Nx of
the solution. The corresponding noise variance-covariance matrix Cx , f is computed
as:

Cx , f = (D
−1
x
+ Nx)

−1. (3.9)

The derivation of the Wiener filter is provided in Klees et al. (2008) and the derivation
of the variance-covariance matrix is found in Kleinherenbrink et al. (2016). Note
that the monthly mean of background dealiasing products (GAD) has to be added to
get the full signal. The mean of GAD product over the ocean is removed, to make
GRACE compatible with altimetry corrected for the inverse-barometer. Averaging
over a region is performed by weighting with the cosine of the latitude as described
in Kleinherenbrink et al. (2016).

The mass variability on the continental shelves of the TAS is large with ampli-
tudes reaching 10 cm. The load causes the ocean floor to move several millimeters,
which cannot be neglected. Altimetry measures absolute sea level and GRACE the
mass component relative to the ocean floor, therefore we will add the ocean floor
motion to the GRACE-derived mass time series. To compute the ocean floor motion
the GAC instead of the GAD product is added to the GRACE products, which includes
atmospheric pressure over land (Fenoglio-Marc et al., 2012). Consecutively, we com-
pute ocean floor motion from monthly GRACE gravity fields in spherical harmonics
as (Wahr et al., 1998; Fenoglio-Marc et al., 2012):

Yvlm(l, m) = Yewl(l, m)
3ρw

ρe

hl

2l + 1
, (3.10)

where the Yewl(l, m) and Yvlm(l, m) are the spherical harmonic coefficients of de-
gree/order (l, m) in equivalent water height and vertical land motion, respectively.
The constants ρw and ρe denote the densities of water and the Earth, while hl is the
Love number that relates the body tide to the static equilibrium tide. The resulting
vertical land motion affects the trends up to 0.4 mm yr−1 and has an annual cycle
with an amplitude of up to 3 mm.

Hydrological signal leakage

From the PCRaster GLOBal Water Balance (PCR-GLOBWB) we obtain monthly aver-
aged Terrestrial Water Storage (TWS), including surface water (Wada et al., 2011).
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Groundwater depletion is not considered. Although cities, like Jakarta, extract large
quantities of groundwater, the limited resolution TWS model does not include this
effect. We do not expect ground water depletion to have a significant influence on
the trends, because of the difference in scale between the averaging regions and the
groundwater depletion zones. Using the TWS, one can obtain an estimate for the
hydrological signal leakage of GRACE gravity fields into the surrounding ocean in
terms of equivalent water level. We do this by reducing the resolution of TWS grids
to that of the ITSG-Grace2016 and by applying the corresponding filter parameters.
Based on the PCRGLOBWB data the TAS area typically has a TWS variability ranging
from several centimeters up to decimeters, which is confirmed by a comparison with
GRACE in the Mekong basin by Tangdamrongsub et al. (2016).

The ITSG-Grace2016 monthly gravity fields are provided as departure from the
GOCO05s model, which contains a static field, a trend and an annual cycle (Klinger

et al., 2016). To be consistent with the (post-)processing of ITSG-Grace2016 as done
in Kleinherenbrink et al. (2016), we first isolate the mean, the trend and the annual
signal independently for each grid point, which we refer to as the background signal.
Then the background signal, excluding the mean, and the residual signal are both
converted to spherical harmonics and truncated at degree 90. The degree 0 and 1
terms for the background and residual signal are set to zero and the background
signal is converted back to a grid. The same filtering is applied to the spherical
harmonics of the residual signal as in Eq. 3.8 and the signal is converted back to a
spatial grid. The resulting hydrological leakage has a negligible effect on the time
series, the trend and the annual cycle in case of the ITSG-Grace2016 gravity fields.
However, this might be different for other GRACE products, such as CSR, which do
not compute the gravity field solutions with respect to a background trend and annual
cycle.

Sumatra-Andaman earthquake

The gravity field in the Thailand-Java region is strongly affected by the 2004 Sumatra-
Andaman earthquake. Even though our time series starts in 2005, post-seismic de-
formation affects the obtained mass and geoid trends (Broerse et al., 2015). We will
also remove the effect of the earthquake before the statistical separation discussed
in Sect. 3.3.4. A regression is made of a logarithmic relaxation function (represent-
ing post-seismic effects), a trend, annual and semi-annual cycles, PC1&2 of the wind
stress and Dipole Mode Index (DMI) to reduce as much variability as possible in the
time series of region B. Long-term ocean dynamics, as represented by the mentioned
indices, might correlate with the relaxation function and therefore excluding them
might lead to significantly different regression parameters (Einarsson et al., 2010).
The computation of PC1&2 is explained in Sect. 3.3.5. We will also remove the ef-
fect of the nodal cycle before the regression with the mass time series, of which the
computation is given in Sect. 3.3.7. The logaritmic relaxation function is given as
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(Hetland and Hager, 2006):

uln,t = A · ln(1+ t − teq

τln

), (3.11)

where the magnitude A is the parameter to be estimated in the regression and teq

the time of the Sumatra-Andaman earthquake. The relaxation time is τln = 5 yrs,
which corresponds to the mean relaxation time found by Broerse et al. (2015). The
regression is repeated for the 95 % confidence intervals of τln = 1.5 and τln = 20.8
yrs (provided by Broerse et al. (2015)) to get an estimate of the spread. A time-
dependent standard error is then estimated by subtracting both relaxation functions
and dividing them by four. The error is referenced such that it is largest directly
after the earthquake and decays to zero at the end of the time series. Eventually, the
geoid and mass relaxation functions are subtracted from respectively the total sea
level derived from altimetry and the mass component derived from GRACE.

3.3.3 Steric sea level

The steric sea level is inferred from reanalysis temperature and salinity fields using
the TEOS-10 package (Pawlowicz et al., 2012), which requires profiles of absolute
salinity SA, conservative temperature Θ and pressure P ′. Using the gravitational con-
stant g0 and the atmospheric pressure P0, the steric sea level is computed as (IAPSO,
2010; Kleinherenbrink et al., 2016):

hrean = −
1
g0

∫ P

P0

δ̂(SA(P
′),Θ(P ′), P ′)dP ′, (3.12)

with respect to a reference pressure P. The reanalysis products considered in this
study are given in Table 3.2. The reference pressure is in all cases set to either the lo-
cal maximum depth in the models or limited to 2000 dBar, since the limited resolution
of some of the models reduces the number of grid cells to a few tens below the ref-
erence depth. Not all reanalyses provide conservative temperature, so a conversion
from potential to conservative temperature is applied using the TEOS-10 software
package. In addition, we add a virtual temperature and salinity observation at 0.5
dBar depth, because the steric sea level is computed at the top pressure level, which
varies between 0-10 dBar, so that the whole steric signal is captured (Kleinherenbrink

et al., 2016). The virtual temperature and salinity observations have the same values
as observations in the top layer of the reanalysis product.

As provided in the table, the resolution and the type of grid varies for the reanal-
yses. For the tripolar grids, steric sea levels are averaged onto a 0.5◦ × 0.5◦ (Glorys
and ORAP5) or a 1◦ × 1◦ (GFDL) grid. Then, the steric sea levels are weighted
with the cosine of their latitude to get a mean steric sea level for a region. Finally,
the zero reference of the time series is set to the middle of the time series (approxi-
mately 2009) and then the RMS of the suite of reanalyses for each epoch (monthly) is
used as an approximation of the error and the mean as the steric sea level for further
analysis.
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Table 3.2: Reanalyses used in this study. *Tripolar grids.

reanalysis Resolution[◦] reference
GODAS 1 × 0.33 (Behringer and Xue, 2004)
GFDL CM2.1* 1 × 1 (Zhang et al., 2007)
ECCO-JPL 1 × 1 (Forget et al., 2015)
GECCO2 R1 1 × 0.33 (Köhl, 2015)
ORAS4 1 × 1 (Balmaseda et al., 2013)
ORAP5.0* 0.25 × 0.25 (Zuo et al., 2015)
Glorys2V3* 0.25 × 0.25 (Ferry et al., 2010)
SODA v3.3.1 0.5 × 0.5 (Carton and Giese, 2008)

The ocean reanalyses all make specific choices on, amongst other factors, model
specifications, horizontal and vertical resolution, and assimilated techniques. There-
fore, over parts of the oceans that are not well-constrained by direct observations, the
model spread provides is used as an estimate of the uncertainty of the ocean state.
Since some co-varying bias may exist between similar models, such as the models
from the ECMWF ocean reanalysis project (ORAS4 and ORAP5), and to enhance the
estimate of the underlying uncertainty of the ocean state, we use a large set of ocean
reanalysis products from different modelling groups, which include the new genera-
tion of eddy-permitting ocean reanalyses, but also reanalyses on coarser grids. Table
3.2 lists the reanalysis that are used.

To check the stability of the mean time series from the eight products a test is
performed by each time omitting one reanalysis product. In case of outliers, one
of the time series averaged over seven products should deviated significantly from
the one averaged over eight reanalysis products. Based on this test, we find that
the results do not change significantly if one reanalyis is left out (Appendix C). All
reanalyses are contrained by sea surface temperature, satellite altimetry sea surface
height, a few CTD and XBT observations and in the surrounding areas and the South
China Sea by Argo float observations. Since their physics are also quite similar, it is
not expected that the computed steric sea levels deviate significantly.

To examine the relative contributions of temperature and salinity to steric sea
level, we compared time series of the full steric sea level against the thermosteric sea
level (Appendix C). For the time series of thermosteric sea level, the salinity is kept
constant at 35 PSU. Salinity changes only have an affect on the trends in regions
A and B. In terms of interannual variability and annual cycles, the steric sea-level
variability is primarily driven by thermosteric changes in all regions.

For a comparison between the interannual variability of steric sea level of the
WTPO with the mass component in the TAS in Sect. 3.4.2, the independent gridded
temperature and salinity product of Roemmich and Gilson (2009) is used, so that a
correlation will not be an artefact of one of the models. Besides being independent,
we expect that the interpolated grid of Roemmich and Gilson (2009) performs better
in the WTPO than the reanalyses, particularly in terms of steric sea-level trends as
shown in Kleinherenbrink et al. (2016) over the North Atlantic Ocean. The inter-
polated grid cannot properly be used inside the TAS, due to a lack of observations
at depth, so there we have to rely on the physics of the reanalysis products. This
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product is created by statistical interpolation of Argo float temperature and salinity
measurements onto monthly 3D grids with a horizontal resolution of 1◦ × 1◦.

3.3.4 Statistical separation

As shown in Fig. 3.2 the time series of summed steric and mass and total sea level for
the whole TAS do not always resemble each other within error bars. After subtract-
ing the seasonal cycle (shown in Appendix C), it becomes clear that both methods
capture the interannual variability, however they still depart on occassion and their
trends are not statistically consistent. Due to the lack of in-situ data, it is difficult to
determine where the discrepancies originate from. We assume that our errors prop-
erly represent the uncertainties in the datasets. Statistically weighting will then give
a more consistent division between the mass and steric components, such that they
better match the three observations of mass, steric and total sea level.

The vector yt for time step t contains three observations: the monthly low-pass
filtered altimetric mean sea level h̄al t,t , the mean steric sea level h̄rean,t computed
from the reanalyses and the mean mass h̄grace,t from GRACE, such that:

yt =





h̄al t,t

h̄rean,t

h̄grace,t



 , Q y y,t =





σ̄2
al t,t 0 0
0 σ̄2

rean,t 0
0 0 σ̄2

grace,t



 . (3.13)

The variance-covariance matrix Q y y,t contains the variances of the observations:
σ̄2

al t,t , σ̄
2
rean,t and σ̄2

grace,t , which are obtained as described in the first Sect. 3.3.1,
3.3.2 and 3.3.3. Using the design matrix

A=





1 1
1 0
0 1



 (3.14)

the statistically optimal mean steric sea level h̄steric,t and mean mass h̄mass,t are com-
puted using least-squares:

�

h̄steric,t

h̄mass,t

�

= (ATQ−1
y y,tA)

−1ATQ−1
y y,t yt . (3.15)

The corresponding variance-covariance matrix Q x̂ x̂ ,t is given by:

Q x̂ x̂ ,t = (A
TQ−1

y y,tA)
−1. (3.16)

The resulting optimally weighted time series for the whole TAS region are given in
Fig. 3.3.

3.3.5 Wind stress and the Dipole Mode Index

Widlansky et al. (2014) showed that sea level in the neighbouring WTPO correlates
with the first two principal components of the equatorial wind stress. The first PC
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Figure 3.2: Sea level time series for the subregions and the total TAS. The South China Sea,
Thailand-Java, Banda-Celebes and Timor-Arafura regions are respectively indicated with A, B,
C and D. In blue GRACE mass + steric sea level from the reanalyses. In red altimetry-derived
total sea level.

represents eastward equatorial wind stress anomalies, which strongly correlates with
the Niño 3.4 sea surface temperature anomalies (McGregor et al., 2012b), while the
second PC indicates the seasonal weakening and southward shift of anomalous winds
during ENSO events.

To obtain the PCs the monthly ERA-Interim (version 2.0) 10 m wind speed is
used between 10◦S - 10◦N and 100◦E - 60◦W as in McGregor et al. (2012b). The wind
stress (τx ,τy) is estimated from the wind speed (u, v) using the relations (Pugh and
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Figure 3.3: Time series of total and steric sea level and mass for the whole TAS region. Top:
total sea level from altimetry in red, from GRACE+reanalyses in blue and the optimal solution
in black. Middle: mass from GRACE in lightblue, from steric-corrected altimetry in orange
and the optimal solution in black. Bottom: steric sea level from the reanalyses in green, from
altimetry-GRACE in purple and the optimal solution in black.

Woodworth, 2014):

τx = ρair

(0.8+ 0.065
p

u2 + v2)

1000
u
p

u2 + v2

τy = ρair

(0.8+ 0.065
p

u2 + v2)

1000
v
p

u2 + v2 ,

(3.17)

where ρair is the density of air. We create a 2D-matrix with the wind stress time
series in both directions for all 2◦ × 2◦ grid cells over the whole dataset (January
1979 - December 2015), so that we capture multiple La Nina and El Nino events.
Before computing the covariances, the mean, the annual and semi-annual signals are
removed. The Empirical Orthogonal Functions (EOFs) are consecutively computed
as the eigenvectors of the variance-covariance matrix of the remaining wind stress
anomalies. PC1 and PC2 are the time series for the first two EOFs of the wind stress
anomalies, accounting for 25 % and 14 % of the total anomaly variance, respectively
(Fig. 3.4).

PC1 peaks in El Niño periods and is negative during La Niña (Fig. 3.4), while
PC2 is slightly delayed with respect to PC1. The associated mode 1 spatial pattern
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Figure 3.4: The first two PCs of the wind stress anomaly and the DMI. All low-pass filtered with
a three month moving average filter to reduce high-frequency noise. The yellow shaded area
indicates the period January 2005 - December 2012 over which we have steric and mass time
series. The red and blue shades indicate respectively El Niño and La Niña states as given
by Climate Prediction Center of NOAA (http://www.cpc.ncep.noaa.gov/products/
analysis_monitoring/ensostuff/ensoyears.shtml).

(Fig. 3.5), which shows the typical strong easterly wind stress anomaly associated
the El Niño. This causes a positive temperature anomaly in the eastern equatorial
Pacific and a weak negative temperature anomaly in the WTPO. Meyers et al. (2007)
showed that during El Niño the sea surface temperature in regions B, C and D (as
given in Fig. 3.1) of the TAS drops as well. During La Niña this pattern reverses,
causing the thermocline to deepen in the WTPO, which leads to a positive sea-level
anomaly in the same area. In regions B, C and D of the TAS we find a positive sea
surface temperature anomaly during La Niña events. In the following, significant
correlations with PC1 represent variability that is in phase with ENSO and with PC2
variability associated with the seasonal weakening and southward shift of anomalous
winds during ENSO events.

Additionally, we investigate the effects of interannual ocean dynamics from the
Indian Ocean using the Dipole Mode Index (DMI). The DMI features peaks that at
times align with ENSO events (e.g., 2006-07, 2010-11); however; overall the corre-
lations between the DMI and PC1 and PC2 are low. When DMI is negative, a positive
sea surface temperature anomaly occurs in the eastern Indian Ocean and in the TAS,
with the opposite temperature anomaly for a positive DMI (Meyers et al., 2007). In
case of a positive DMI and an El Niño state, the temperature anomalies, especially in

http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml
http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml
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Figure 3.5: The first two EOFs corresponding to the PCs of the wind stress. The colors indicate
the intensity of the wind stress and the vectors the direction.

the Banda-Celebes region (C) is strongly enhanced Meyers et al. (2007).

3.3.6 Present-day mass redistribution

We compute the contribution to relative sea level associated with mass changes
∆L(θ ,φ, t) due to Greenland, Antarctica and glacier ice loss, land hydrology and
dam retention. These changes result into geoid height changes∆G(θ ,φ, t) and solid
Earth height changes ∆R(θ ,φ, t) and a global mass conservation term Λ, which are
all related to each other, so that (Tamisiea et al., 2010)

∆S(θ ,φ, t) =∆G(θ ,φ, t)−∆R(θ ,φ, t) +Λ, (3.18)

where∆S(θ ,φ, t) is relative sea-level change at longitude θ , latitudeφ at time t. For
the change in absolute sea level, we only require the change in geoid and the mass
conservation term, which is estimated by solving the sea-level equation including
rotational feedback (Farrell and Clark, 1976; Milne and Mitrovica, 1996). Details
on the individual contributions are described in the supplement of Frederikse et al.

(2016).

The resulting contributions to absolute sea-level trends are computed for 2005.5-
2012.5 (Fig. 3.6). Note that the input loads are only given on yearly intervals. Only
dam retention has a negative contribution to the sea-level trend. Greenland is by far
the largest contributor due to its substantial ice loss during the considered period
and its remote location. The largest change in sea level is found far away from the
source. The average sum of sea-level trends explained by the mass transport obtained
with the fingerprint procedure in the TAS is approximately 2.4 mm yr−1. This is only
a small fraction of the total sea-level trend in the TAS. A comparison between the
trends of fingerprints and the total sea-level trends is shown in Appendix C.
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Figure 3.6: Absolute sea-level trends between January 2005 - December 2012 computed from
five present-day mass change contributions. In the last figure the sum of all contributions.

3.3.7 Nodal cycle

The effect of the lunar nodal cycles on absolute sea-level trend estimates has not
been considered previously for the TAS and surrounding regions. The amplitude of
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the nodal cycle at the Equator is approximately 7 millimeters. Since the length of our
time series is 8 years and the period of the nodal cycle is 18.61 years, we only capture
a part of the cycle, which can introduce mass trends at the millimeter-per-year level.

We evaluate the nodal cycle at the epochs of GRACE. According to Proudman

(1960), the nodal cycle has a minimum at the equator at the reference time t0 =

2006.45. The mean sea level h̄NC ,t caused by the nodal cycle at time t is then given
as:

h̄NC ,t = Ω̄ cos(2π(t − t0)), (3.19)

where Ω̄ is the average amplitude over the considered region. We follow the equilib-
rium equations of Proudman (1960) to compute the amplitude Ω

Ω = α(1+ k2 − h2)(3 sin2(θ )− 1), (3.20)

in which θ is the latitude, α is the tidal magnitude, set to 8.8 mm following Wood-
worth (2012), and the tidal Love numbers are k2 = 0.36 and h2 = 0.60 as in (Fred-

erikse et al., 2016). Using the approach described in Woodworth (2012) and Fred-

erikse et al. (2016), geoid changes resulting from the applied load are computed
using the sea-level equation from Sect. 3.3.6. Adding the geoid changes to the mass
change signal induced by the tide gives the amplitude of the geocentric sea-level re-
sponse to the nodal cycle, as is given in Fig. 3.7, which should be used to correct
altimetry. The geoid response to the nodal cycle is less than 10 % of the nodal cycle
load.
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Figure 3.7: Amplitude of the Nodal cycle in the TAS region. Positive values correspond to a
peak in the nodal cycle in 2006. Negative amplitudes indicated a minimum in 2006.
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3.4 Results

First, we compare the statistically weighted time series from Sect. 3.3.4 with the
unweighted time series from GRACE, altimetry and the reanalyses. Then we discuss
the behavior of mass and steric sea level in the four TAS regions. In Sect. 3.4.2 we
remove the semi-annual and annual cycles and we relate steric sea level and mass to
the two PCs of wind stress and Dipole Mode Indices (DMI). In Sect. 3.4.3, we regress
the steric and mass components to PC1, PC2, and DMI to examine possible oceanic
influences on the estimated trends. In addition for the mass component, we will
relate the trends to the nodal cycle and absolute sea-level trends obtained from mass
redistribution fingerprints. Lastly, the TAS contribution to GMSL rise is estimated.

3.4.1 Time series

In this section we compare the unweighted and statistically-weighted (Eq. 3.15)
mass and steric time series and describe their variability in each TAS region.

Statistically-weighted time series

In Fig. 3.8 time series of mass, steric and total sea level for the four regions are given.
The seasonal cycle of the total sea level are captured by both methods (altimetry and
GRACE+reanalyses) in the South China Sea region. When the two methods differ, the
statistical optimal time series tends to lie between the two time series. This suggests
that the error bars of altimetry and GRACE+reanalyses are on the same order of mag-
nitude. The GRACE mass time series shows a more pronounced annual cycle than
altimetry-reanalyses, which appears to be noisier. In the South China Sea region, the
reanalysis sea-level estimates do not correlate well with the altimetry measurements
(Balmaseda et al., 2013; Zuo et al., 2015) and the noise of the altimetry-reanalysis
time series is relatively large. The statistical-weighted time series therefore follows
more closely the GRACE time series. Both steric sea-level time series (reanalysis and
altimetry-GRACE) already matched well, so the statistically weighted one overlaps
with both. Note that there are some Argo floats present in this region that helped to
constrain the reanalysis products.

In the Thailand-Java region total sea level estimated from GRACE+reanalyses
departs from altimetry in the first three years of the time series. This is caused by
the effect of post-seismic deformation of the Earth due to the Sumatra-Andaman
earthquake, hence, the error model of GRACE was not correct. The statistically-
weighted mass time series for the region closely follows GRACE at the end of the
time series, but the opposite is true in the first three years, as a consequence of the
increased error in GRACE mass estimates as decribed in Sect. 3.3.2. The statistically-
weighted steric signal in the bottom plot for Thailand-Java follows the reanalyses,
because the altimetry-GRACE steric time series is relatively noisy. We must note that
large fresh water fluxes from the Mekong might also reduce the quality of reanalyses
steric sea-level estimates, because they are poorly constrained due to a lack of in-situ
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Figure 3.8: Time series of total and steric sea level and mass for the four regions with the
annual cycle retained. In this figure the term ’reanalyses’ indicates the steric sea level obtained
from reanalyses, in order to avoid confusion with the term ’steric’ used to indicate statistically-
weighted steric sea level. Top: total sea level from altimetry in red, from GRACE+reanalyses
in blue and the optimal solution in black. Middle: mass from GRACE in lightblue, from steric-
corrected altimetry in orange and the optimal solution in black. Bottom: steric sea level from
the reanalyses in green, from altimetry-GRACE in purple and the optimal solution in black.

salinity measurements (Balmaseda et al., 2013).

In the seas of Banda-Celebes, both altimetry and GRACE+reanalyses capture the
interannual and annual signals. The statistically weighted time series closely re-
sembles the altimetry time series, because it has relatively small error bars due to
short correlation scales. Mass is fully explained by GRACE, so altimetry-reanalyses
has barely any influence on the statistically weighted time series. The statistically
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weighted steric signal is primarily constrained by altimetry-GRACE, due to larger
discrepancies between reanalyses compared to the previous two regions, which in-
flates the error.

In the Timor and Arafura seas the interannual variability appears to be captured
by all time series, but there are discrepancies in the annual cycle. There are substan-
tial observable differences in the annual cycle of mass. The weighted time series for
the mass signal closely resembles the GRACE time series, because the errors on the
altimetry-reanalyses time series are larger. With the exception of a few peaks,we ob-
serve only minor differences between the steric sea-level time series. The statistically
weighted steric sea-level time series is closer to altimetry-GRACE than the reanalyses.

Mass and steric variability

Sea level variability in the South China Sea is dominated by the steric component
(Fig. 3.8) and as demonstrated in Sect. 3.3.3 this primarily reflects changes in tem-
perature. There is also an annual signal in mass, but this is approximately a factor of
two smaller than that of the steric signal, which is several centimeters in amplitude.

Much larger annual cycles in sea level are found in the Thailand-Java region of
approximately a decimeter. In contrast with the South China Sea, the largest fraction
of the variability is the mass component, indicating a seasonal mass flux component
into this basin. The mass signal might have a steric origin, originating from the
nearby deep ocean. The seasonal steric component is weak because the region is
shallow, which limits thermal expansion, and temperature changes are small over
the year, which is evident in the sea surface temperature (Knudsen et al., 1996).

The sea-level time series of the deeper Banda-Celebes region exhibit a small an-
nual cycle compared to Thailand-Java. The annual cycle in steric sea level is however
larger than that of Thailand-Java, but the annual cycle in sea surface temperature is
comparable as shown by Knudsen et al. (1996). Since the water column is deeper,
it is able to expand more in response to comparable heating than the Thailand-Java
region. The interannual variability is primarily caused by the steric signal.

The largest sea-level variability in the TAS occurs in the Timor and Arafura seas,
which are deeper than Thalland-Java and shallower than the other two regions. The
variability is a combination of mass fluctuations and temperature changes. The an-
nual cycle in sea level in this region is among the highest in the world (Vinogradov

et al., 2008). The annual cycle in the steric time series is several centimeters in am-
plitude and the mass signal is slightly larger. Note that the interannual variations
(for example smaller peaks in 2007 and 2010, coinciding with El Niño events) in the
steric and mass signals is comparable. Additionally, the steric time series in Banda-
Celebes strongly resembles the mass time series of Timor-Arafura. This suggests that
there is a dynamic coupling between the two regions, perhaps as a consequence of
the large steric sea-level fluctuations in Banda-Celebes (Landerer et al., 2007; Bing-

ham and Hughes, 2012), or the signals have the same driver. In the following section
this will be discussed further.
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3.4.2 Interannual variability

We next consider possible drivers of interannual sea-level variability in the TWS by
regressing steric and mass components to equatorial wind stress (PC1 and PC2) and
processes associated with the DMI.In Fig. 3.9, we show the PC1, PC2 of the equatorial
wind stress, and the DMI regressed through the steric and the mass components.
Before regression, the nodal cycle is removed from the mass time series, which is also
plotted as a black dotted line. The trend, the annual and the semi-annual signals are
regressed together with the indices and removed from the steric and mass time series.
In Table 3.3 we have computed the Coefficients Of Determination (COD) for each of
the indices and the sum of them. These CODs represent the ratio of the variances
of the regressed index and the mass or steric time series after removing the trend,
the nodal, the annual and the semi-annual cycles. The last three columns of Table
3.3 show the p-values of the regressed indices. We also investigate the source of the
mass fluctuations in the TAS by looking at correlations with steric sea level in the
surrounding oceans.

Regional effects

For the South China Sea, the region farthest from the equator, only a small fraction of
mass and steric sea level is explained by the indices. PC1 and the DMI explain a small
fraction of the mass variability and have a significant p-value, while PC2 explains a
small fraction of the steric variability. Combining the regressed indices shows that
only 20% of the variability of the steric signal is explained by PC1, PC2 and the DMI,
and that this is even lower for the mass signal. As visible in Fig. 3.9, there is still
substantial interannual variability in steric sea level.

In the shallow Thailand-Java region, the steric variability is small compared to
the South China Sea. Nevertheless, a substantial fraction (COD of 0.42) of the steric
signal is explained by the DMI. The regressed PC1&2 indices are insignificant as in-
dicated by their p-values. A negative (at the end of 2006) and a positive peak (at
the end of 2010) are visible in the regressed DMI time series in Fig. 3.9, which cor-
respond respectively to positive and negative peaks in the DMI of Fig. 3.4. This is
in line with Meyers et al. (2007), who showed that a positive temperature anomaly,
causing a steric response, is present during negative DMI. The mass signal in this
area is much larger than the steric signal and it is driven primarily by PC1 for which
the COD is 0.55. ENSO, which is in-phase with PC1, appears locally as a steric phe-
nomenon which manifestates itself in the WTPO as a deepening of the thermocline
during the La Niña phase and with temperature anomalies above as well as below
the thermocline (Zheng et al., 2015). We argue that during the La Niña phase water
flows into the shallow areas down a pressure gradient established by a large steric
response in surrounding deeper area. We will return to this point in Sect. 3.4.2. The
opposite occurs during El Niño. An additional fraction of the interannual variabil-
ity in the Thailand-Java region is explained by PC2, which suggests that during the
recovery phase of La Nina, the mass anomaly is positive. The effects of DMI on the
mass in Thailand-Java are small, but still a significant regression coefficient is found.
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Figure 3.9: Time series of mass (top) and steric sea level (bottom) between January 2005 -
December 2012 with annual and semi-annual signals removed. The time series for the TAS
are computed as area-weighted averages of the individual regions. In blue the regression of
PC1, in lightblue PC2, and in green the DMI. The subtracted nodal cycle is shown as a black
dotted line. The red and blue shades indicate respectively El Niño and La Niña states.

The Banda-Celebes seas exhibit only small mass variations at interannual time
scales, which are most related to PC1. Note that the mass variations are almost in-
phase with those of Thailand-Java, but that the regression with PC2 is insignificant.
The interannual steric variability is largest in the region, which is expected as the
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Table 3.3: Coefficients of determination for the indices (individually and combined) regressed
through the mass and steric time series between January 2005 - December 2012 for the four
regions. The regions South China Sea, Thailand-Java, Banda-Celebes and Timor-Arafura are
respectively indicated with A, B, C and D. The last three columns indicate the p-value. In italic
are the coefficients that are not significantly different from zero based on a 5 % significance
level. *The column ’Total’ is the COD of the multilinear regression time series of the three
indices, which is not equal to the sum of the individual CODs.

COD p-val
PC1 PC2 DMI Total* PC1 PC2 DMI

Steric A 0.03 0.19 0.01 0.20 0.37 0.00 0.42

B 0.16 0.14 0.42 0.44 0.12 0.06 0.00
C 0.53 0.50 0.21 0.70 0.00 0.00 0.00
D 0.49 0.29 0.37 0.64 0.00 0.00 0.00
TAS 0.35 0.48 0.27 0.63 0.00 0.00 0.00

Mass A 0.14 0.01 0.08 0.16 0.03 0.42 0.05
B 0.55 0.18 0.14 0.56 0.00 0.00 0.00
C 0.77 0.01 0.12 0.77 0.00 0.44 0.00
D 0.82 0.35 0.16 0.84 0.00 0.00 0.00
TAS 0.73 0.18 0.20 0.73 0.00 0.00 0.00

region is deep, which allows the water column to expand more at equal temperature
increases. We find significant regression coefficients for all indices for the steric time
series, but most of the signal is explained by PC1 and PC2. Because we find negative
regression coefficients (not shown) for both PCs and PC1 is in-phase with the Niño 3.4
index, while PC2 responds just out-of-phase, we argue that the steric signal in Banda-
Celebes is sligthly delayed with respect to ENSO. The DMI also has an influence (COD
of 0.20), which agrees with the temperature patterns found by Meyers et al. (2007).

The southernmost Timor-Arafura region exhibits the largest interannual variabil-
ity, of which mass represents the largest fraction as is visible in Fig. 3.9. All of the
regressed indices are significant in this region, as shown by their p-values. The indi-
vidual COD for the regressed PC1 is 0.82, with a negative regression coefficient this
means that the mass anomaly is positive when PC1 is negative. Since this is a rela-
tively shallow area, water is expected to move into the Timor-Arafura region at the
moment of La Niña from a region with a large steric response, a comparable effect as
for the mass signal in Thailand-Java. Note that at the Fremantle tide gauge, located
farther south along Australia’s west coast, correlations between sea level and ENSO
are observed as well (Feng et al., 2004). Also PC2 has a large COD, which means that
the water inflow is slightly delayed with respect to ENSO, which is in-phase with PC1.
The steric signal in the Timor-Arafura region is in-phase with the mass signal. Table
3.3 shows that PC1&2 represent a smaller fraction of the steric signal compared to
that of the mass and that the DMI is responsible for a large fraction of the variabil-
ity, although it is still smaller than PC1. Again, this is in line with the sea surface
temperature patterns in Meyers et al. (2007) as discussed in Sect. 3.3.3.



3.4. Results 65

Remote steric effect

Interannual steric variations summed over the entire TAS correspond primarily to
the steric signals in the Banda-Celebes region and the South China Sea. Based on
the CODs, PC2 is responsible for the largest part of the steric signal, which indicates
the highest and lowest temperatures are found just after La Niña and El Niño events,
respectively. Table 3.3 indicates that we can explain about 63 percent of the steric
signal for the whole TAS. The interannual variability of the mass signal, which is
primarily linked to the Timor-Arafura and Thailand-Java regions, is slightly smaller,
but about 73% is explained by the regressed indices of which PC1 respresents by far
the largest fraction. While the steric signal can be explained by temperature changes
of the water within the TAS, a flux of water is required from outside the TAS to
account for the area-weighted mass signal.

In Fig. 3.10, we investigate the origin of the interannual mass fluctuations fur-
ther. The steric sea-level fluctuations outside the TAS are higher than within. In the
deep ocean this would indicate a geostrophic circulations, which causes a balance
between the Coriolis force and the pressure gradient. However, we hypothesize that
the TAS continental shelf acts like a barrier, which affects balance. This can cause
a mass flux on to the continental shelf, which we will refer to as the remote steric
effect. Therefore, steric sea level in the surrounding regions of the TAS is computed
from interpolated Argo grids (Roemmich and Gilson, 2009) (so that they are inde-
pendent from the reanalyses used in this study) as is done in Sect. 3.3.3, from a
reference depth of 1500 dBar. We then compute the difference of steric sea levels
in the surrounding regions at each grid point with the mean steric sea level in the
TAS. The correlation of these steric sea-level differences with the mass time series
in the TAS is depicted in the top-left panel of Fig. 3.10. We find a significant corre-
lation across a large section of the WTPO, indicating that the steric sea level in this
region drives a mass flux into the TAS. A small region of high correlation appears
near the equator in the Indian Ocean, which may be associated with DMI-related
fluctuations. We repeat the calculation using mass from the Timor-Arafura region,
where the mass component is strongest, instead of the entire TAS. We find a simi-
lar correlation pattern as for the entire TAS (bottom-left panel, Fig. 3.10), but with
weaker correlations with the Indian Ocean steric variations, as expected from the
lower COD. Comparable, but slightly weaker correlation patterns are found for the
Banda-Celebes and Thailand-Java regions (not shown). For the South China Sea, we
find correlations of maximally 0.4 in the WTPO, but the patterns looks significantly
different (not shown).

To confirm that ENSO is the principal driver of steric sea-level variations in the
region, we repeat the analysis but regress and remove PC1 (middle panels, Fig. 3.10),
and PC1 and PC2 from the steric height differences (right panels, Fig. 3.10). For the
whole TAS, correlations with PC1 removed are reduced from 0.6-0.7 to 0.4 to 0.5 in
the WTPO. For the Timor-Arafura region, the correlation is even further reduced to
typically around 0.3-0.4 in the WTPO. Reductions in correlation by removing PC1 are
also present when considering the mass signals in Thailand-Java and Banda-Celebes
regions, but barely for the South China Sea (not shown).
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Figure 3.10: Correlation of relative steric sea level (i.e. the steric sea level minus the mean
steric sea level in the TAS), surrounding the TAS with the mass in the TAS. Left: Full signal.
Middle: PC1 removed. Right: PC1&2 removed.

The correlations drop considerably lower (<0.2) with the inclusion of PC2 (right
panels, Fig. 3.10). For the Timor-Arafura seas comparison, correlations are near zero
across the WTPO. Similar results are found for the mass in Thailand-Java, while for
the Banda-Celebes region a substantial amount of correlation is still present. After
removing PC1&2 from the relative steric sea level, the correlation between mass in
the South China Sea is virtually unchanged.

In conclusion, mass changes in the TAS are linked to steric sea-level changes in
the WTPO. The steric changes in the WTPO are driven by ENSO. Both PCs of the
equatorial wind stress are required to remove the largest part of the correlation be-
tween mass in the TAS and WTPO. Since PC2 is required, it appears that the dynamic
response of the mass is slightly delayed with respect to El Niño and La Niña. Only
the mass signal in the South China Sea appears to be decoupled from the first two
PCs of the equatorial wind stress.

3.4.3 Trends

Interannual ocean dynamics strongly affect trends computed from short time series
and the estimated trends therefore do not provide a proper indication for what hap-
pens to sea level on time-scales longer than the considered eight years. We therefore
investigate the effects of including indices of ocean dynamics in the regression on
the estimated trend from the statistically-weighted steric and mass time series. The
trends and their errors are computed using weighted least squares, by propagating
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the errors obtained from Eq.3.16 in Sect. 3.3.4. For the mass time series specificially,
we also take into account the nodal cycle. Eventually for the mass time series, we
compare the trends after removing the nodal cycle and with the regression of the
indices to those obtained from mass redistribution fingerprints. In Table 3.4 the esti-
mated steric sea level trends are given, which are computed over the period January
2005 - December 2012. The same is performed for the mass trends and those are
given in Table 3.5. In the last three columns the ’negative’ regression trends for the
three indices are provided, to give an indication how indices affect the trends. A
positive value for the regression trends therefore indicates a positive effect on the
estimated trend. The regression trends are computed with ordinary least-squares
through the PC1, PC2 and DMI regression time series, as given in Fig. 3.9. Summing
them gives a different value than the difference between the trends regressed with
and without indices, because correlations are not taken into account.

Regional trends

The total steric trend in the South China Sea of 5.3 mm yr−1 is about twice as large
as the the mass trend of 2.8 mm yr−1. By removing the contribution of the nodal
cycle the mass trend reduces by 1.2 mm yr−1. Both tables indicate that the effect
of regressing indices has a minimal effect on the estimated mass and steric sea-level
trends in the South China Sea region. This is expected, because the CODs of the time
series of the indices, given in Table 3.3, are only 0.20 and 0.16, respectively.

In the shallow Thailand-Java region comparable trends are found for mass and
steric sea level between 4-5 mm yr−1. The nodal cycle reduces the mass trend to 3.4
mm yr−1. While the steric sea-level trend increases by regression with the indices,
primarily as a result of the DMI, the mass trend decreases further due to PC1. The
negative effect of PC1 on the trend is the compensation for the high amplitude La
Niña event relatively late in the time series (Boening et al., 2012), which affects the
mass in Thailand-Java area as discussed in the previous section. PC2 and the DMI
have a small positive effect on the mass trends.

The Banda-Celebes seas exhibits by far the largest steric sea-level trend in the
TAS, even after the regression with the indices. It is again the negative trend of
PC1 that causes this reduction, while part of the trend is recovered by the other two
indices. In contrast to steric sea level, the mass component exhibits the smallest trend
of the four regions. After removing the nodal cycle and regressing with the indices
there is no significant mass trend left.

In the Timor-Arafura region, a larger mass than steric trend is present. After the
removal of the nodal cycle, the mass trend still remains significantly (two standard
deviations) larger than the steric trend. The ocean dynamics have no influence on
the steric trend, because PC2 and the DMI compensate loss of trend caused by the
regression of PC1. The mass trend is reduced to 3.6 mm yr−1 by regressing indices,
which remains the largest mass trend in the TAS.

The steric trend averaged over the whole TAS is about 2 mm yr−1 larger than the
mass trend. There is a insignificant reduction of the steric trend to 6.1 mm yr−1 when
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Table 3.4: Steric sea-level trends in mm yr−1. The four regions South China Sea, Thailand-
Java, Banda-Celebes and Timor-Arafura are respectively indicated with A, B, C and D. The
second column ’Total’ shows the trend without regressing the indices. The third column ’Ind
rem.’ show the trend with regressing the indices. In the last three columns we indicate the
regression trends of the indices.

Total Ind rem. PC1 PC2 DMI
A 5.3±0.5 5.4±0.6 0.1 0.1 0.0
B 4.3±0.3 4.8±0.4 0.2 -0.0 0.3
C 9.6±0.3 8.2±0.4 -2.9 0.7 0.5
D 4.5±0.4 4.5±0.4 -1.7 0.3 0.6
TAS 6.4±0.3 6.1±0.4 -1.0 0.3 0.3

Table 3.5: Mass trends in mm yr−1. The four regions South China Sea, Thailand-Java, Banda-
Celebes and Timor-Arafura are respectively indicated with A, B, C and D. The second column
’Total’ shows the trend without regressing the indices. The third column ’NC rem.’ provides
the trend after removing the nodal cycle. The fourth column ’Ind rem.’ shows trends after
removal of the nodal cycle and with regression of the indices. In the fifth column ’FP’ the
estimated trends from mass redistribution fingerprints is given. In the last three columns we
indicate the regression trends of the indices.

Total NC rem. Ind rem. FP PC1 PC2 DMI
A 2.8±0.2 1.8±0.2 1.6±0.2 2.5 -0.2 0.0 0.1
B 4.9±0.4 3.4±0.4 2.3±0.5 2.4 -2.5 0.2 0.3
C 2.5±0.2 1.2±0.2 -0.1±0.2 2.4 -1.4 -0.0 0.1
D 7.7±0.2 6.6±0.2 3.6±0.3 2.2 -4.1 0.5 0.4
TAS 4.5±0.2 3.1±0.2 2.0±0.2 2.4 -1.8 0.1 0.2

the indices are regressed. Removal of the nodal cycle and regression of the indices
lowers the mass trend to 2.0 mm yr−1, about one-third of the remaining steric trend.

Comparison to mass redistribution fingerprints

Once the major ocean dynamic signals (PC1&2 and DMI) are removed, the residual
mass trends are compared to the sum of the mass fingerprints. The mass redistri-
bution fingerprint trends for the individual regions are given in the fifth column ’FP’
of Table 3.5. For the whole TAS the yearly sea-level time series of the mass redistri-
bution fingerprints are shown in Fig. 3.11. As visible in the figure, the trend of the
fingerprints is close (within the 95% confidence interval) to the observed changes.
Based on this correspondence, we infer that the net flux of water mass, after re-
moving the ocean dynamics and mass redistribution effects, through the boundaries
of the TAS is statistically insignificant. Table 3.5 shows that there is a positive dis-
crepancy with respect to the fingerprints in the shallow Timor-Arafura region and
negative discrepancies in the deep regions. Since the water influx into the TAS is
statistically insignificant, this suggests mass exchange between the deep and shallow
regions within the TAS, especially between Banda-Celebes and Timor-Arafura.

Time series of the individual fingerprints (Fig. 3.11, bottom panel) show that
over the considered time period, Greenland ice loss is the largest contributor to mass
trends in the region, followed by continental glacier melt. Not only does the Green-
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land ice sheet have the largest mass loss, but its location far away from the TAS
increases the contribution with respect to the glaciers and Antarctic melt. Further-
more, while the glaciers contribute spatially quite homogeneously to the trends in the
TAS (Fig. 3.6), the contributions of Antarctica and Greenland vary primarily from
north to south. The meridional gradient of the Greenland fingerprint is particularly
evident, with approximately a 0.3 mm yr−1 trend difference between the South China
Sea and the Timor-Arafura regions.
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Figure 3.11: Top: In red the sea-level time series (m) for the whole TAS region, after removing
the contributions of the regressed PC1&2 and DMI indices, the nodal cycle and the annual and
semi-annual cycles. In black the sum of the mass fingerprints. Bottom: The fingerprint time
series of Greenland, glaciers, Antarctica, dam retention and land hydrology respectively in
lightblue, green, blue, yellow and orange.

3.4.4 Contribution to global mean sea-level rise

To determine the contribution of the TAS to global sea level, we first estimate the
global mean mass and steric sea-level trends. Then the differences between the TAS
trends and the global trends are computed. An estimate of the contribution of the
differenced trends ∆t relat ive is then computed using the ratio between the surface
area ATAS of the TAS and the rest of the oceans Aglobal − ATAS , such that

∆t global =
ATAS

Aglobal − ATAS

∆t relat ive, (3.21)

is the effect of including the TAS into global ocean budgets. This approach is applied
for both the mass and the steric components.

The global mean steric sea level and global mean mass time series are obtained
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from the NASA website (Llovel et al., 2014; Watkins et al., 2015). The global mean
steric sea level is computed from Scripps temperature and salinity grids (Roemmich

and Gilson, 2009), in which the TAS region is completely excluded. A 3◦ × 3◦ mas-
con solution is used to construct the global mean mass time series, which includes
several cells within the TAS region. Since the effect of the mass in the TAS on the
global mean mass trend is only a fraction of the mass trend in the TAS itself, this will
not significantly affect the outcome of the computation. The time series trends are
computed between January 2005 - December 2010 for comparison with other stud-
ies, which results in 0.1 mm yr−1 for the steric trend and 1.6 mm yr−1 for the mass
trend. The trends over the period January 2005 - December 2012 are statistically
similar to the trends over the shorter period.

The TAS trends derived from the statisticaly-weighted time series are 8.2 mm
yr−1 for the steric component, and 4.2 mm yr−1 for the mass component (Table 3.6,
Col. 1). Taking the difference between the TAS and global trends estimated above
(Table 3.6, Col. 2), we compute that the TAS contribution is 0.2 mm yr−1 for global
steric and 0.1 mm yr−1 for global mass. Because the ratio of the surface area of the
TAS and the global ocean is small, the error bars on the contribution to the global
estimates are small and therefore they are not provided in the table.

Based on the ORAS4 reanalyses, Dieng et al. (2015) estimated that the global
mean steric sea level is underestimated by approximately 0.25 mm yr−1 over the
period January 2005 - December 2013. Even though we computed the value over a
slightly shorter period, our estimate of 0.2 mm yr−1 is close to this value. They did
however not discus the effect of the 300 km cut-off from the coast in GRACE global
mass, which was based on the time series of Johnson and Chambers (2013). A 300
km cut-off effectively removes the whole TAS contribution from the global solution.
We estimate that excluding the TAS in global mass estimates causes underestimation
of 0.1 mm yr−1. Combining both numbers gives a trend of 0.3 mm yr−1, which is
consistent with the 0.5±0.2 mm yr−1 computed by Von Schuckmann et al. (2014).

3.5 Conclusions

For the first time satellite altimetry, satellite gravimetry and reanalysis data are used
to determine the steric and mass components of sea-level variations in the TAS. To
study the sea-level variability in the TAS in more detail, time series of the sea-level
components are computed for four regions. The uncertainties of the time series of
total sea level from altimetry, mass from GRACE and steric sea level from reanaly-
ses, are used to derive a statistically optimal separation between the steric and mass
components. The statistically weighted time series are used to study the interannual
variability and trends in the TAS, as well as their contribution to global mean sea
level.

The largest variability in steric sea level is found in the deeper areas as the South
China Sea and the Banda-Celebes seas. The small water column of the Thailand-Java
and Timor-Arafura regions is not able to expand as far as the other two. In constrast,
the largest mass signals are present in the shallower regions. We argue that this is a
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Table 3.6: Contribution to GMSL over January 2005 - December 2010 in mm yr−1. The first
column contains the trends in the TAS. The second column contains the relative trends with
respect to the global estimates. The last column shows the contribution to the global budget.

TAS only TAS-Global Global contr.
Sum 12.4 10.7 0.3
Steric 8.2 8.1 0.2
mass 4.2 2.6 0.1

dynamical response to larger steric sea-level fluctuations in neighbouring areas.

Regression with the first two PCs of the equatorial Pacific wind stress and the DMI
showed that the South China Sea largely is unaffected by ENSO and Indian Ocean
dipole dynamics. The steric sea level in the Banda-Celebes and Timor-Arafura seas is
strongly driven by PC1&2, which are used to represent wind forcing that is either in
phase with ENSO (PC1), or peaked around the southward shift of anomalous winds
(PC2). The DMI has a small effect on the temperatures in Thailand-Java and causes
a substantial fraction of (thermo-)steric variability in Timor-Arafura. Mass signals in
the shallow areas are almost 180 degrees out-of-phase with PC1. PC2 shows a strong
contribution, especially in the Timor-Arafura region. We believe that the shallow
region mass changes, which dominate the total mass change in the TAS, are due to
a net transport from the neighboring WTPO to the shallow regions associated with
variations in WTPO steric sea level, which are related to PC1&2.

Accounting for interannual variations associated with the PC1, PC2, and DMI
indices impacts the estimation of linear trends. Regressing PC2 and the DMI through
the time series for the whole TAS region, has a slight positive effect on the mass and
steric trends, while regressing PC1 reduces the trends. This leads to a reduction in
mass and steric trends. The mass trends are also affected by the nodal cycle, because
it causes a mass change with a mimimum in 2006 and a maximum in 2015. Trends
decrease with approximately 1.3 mm yr−1 when correcting for the nodal cycle.

The mass trend over the whole TAS is statistically consistent with the trend esti-
mated from mass redistribution fingerprints. However, within the four regions there
are differences: the deep regions have smaller mass trends than their fingerprint es-
timates, while in the Timor-Arafura region we find larger trends than its fingerprint.
We argue that there is an internal redistribution of water within the TAS, where water
flows from deep regions with a large steric response into the shallower regions.

Finally, we computed trends for the whole TAS and estimated the contribution
to the global budgets. Omitting the TAS results in an underestimation of the mass
and steric components with 0.1 and 0.2 mm yr−1, respectively. These numbers are
in line with previous studies.

Our approach for separating mass and steric contributions to sea-level changes
can be applied to other basins where Argo float coverage is limited, such as the
Caribbean Sea, the Gulf of Mexico and the Yellow Sea. To investigate the drivers
of mass and steric sea-level variability, appropriate indices should be used.





Chapter 4

A comparison of data weighting methods to derive

vertical land motion trends from GNSS and altimetry

at tide gauge stations

4.1 Introduction

Tide Gauges (TGs) measure local relative sea level, which means that they observe
sea level, but also Vertical Land Motion (VLM). Knowing VLM at TGs is essential to
convert the observed sea level into a geocentric reference frame, in which among
others satellite altimeters operate. The mean of VLM at TGs is not equal to that of
the basin, and therefore local VLM estimates are required to get an accurate estimate
of ocean volume change. The models for large scale far-field VLM processes, such
as Glacial Isostatic Adjustment (GIA) and the elastic response of the Earth due to
present-day mass redistribution, are becoming more accurate. TGs are often only
corrected for the GIA signal, which typically reaches values of 10 mm yr−1 in Canada
and Scandinavia (Gutenberg et al., 1941). The elastic deformation due to present-
day mass redistribution is often ignored. However, elastic deformation is becoming
larger due to the increasing rate of Greenland’s ice mass loss, and to a lesser extent
due to other processes. Trends at TGs are also affected by a large number of other
local signals, including water storage, postseismic deformation and anthropogenic
activities (Hamlington et al., 2016; Wöppelmann and Marcos, 2016). Since the local
VLM processes cannot be captured by models, and the large-scale processes contain
large uncertainties, measuring VLM at TGs is indispensable.

One method to estimate VLM at TGs uses geodetic Global Positioning System
(GPS) antennas at fixed locations or Doppler Orbitography and Radiopositioning In-
tegrated by Satellite (DORIS) observations. Since many other navigation satellites
are currently providing range estimates as well, we will refer to the GPS stations as
Global Navigation Satellite System (GNSS) stations. Most studies compute GNSS

Parts of this chapter have been been published as: Kleinherenbrink, M., Riva, R., & Frederikse, T.
(2018). A comparison of data weighting methods to derive vertical land motion trends from GNSS and
altimetry at tide gauge stations, Ocean Science, doi:10.5194/os-14-187-2018.

http://dx.doi.org/10.5194/os-14-187-2018
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VLM at TG stations from one of the datasets by University of La Rochelle (ULR)
(Wöppelmann et al., 2007; Pfeffer and Allemand, 2016; Wöppelmann et al., 2014;
Wöppelmann and Marcos, 2016). Even though the ULR database contains several
GNSS solution inland, its main focus is the coastal zone. Currently, 754 GNSS sta-
tions are processed in the ULR6 database. A more extensive database with approxi-
mately 14000 GNSS is processed by the Nevada Geodetic Laboratory (NGL). They use
a different processing procedure to estimate trends from time series, which makes
trends less vulnerable to jumps (Blewitt et al., 2016). A statistical comparison be-
tween several GNSS solutions was recently made by Santamaría-Gómez et al. (2017).
They concluded that the number of stations in the NGL database was larger, but that
trend differences between neighboring stations were significantly larger than the Jet
Propulsion Laboratory (JPL) and ULR6 trend estimates. They also discussed system-
atic errors due to differences in the origin of the reference frames, which were on
the order of 0.2 mm yr−1 globally. Furthermore, they found that the error of VLM es-
timates increases with an increasing distance between the tide gauge and the GNSS
station. Globally averaged, the error increased with 4 × 10−3 mm yr−1 km−1. Most
studies use the trends of either co-located GNSS stations or the closest GNSS station
or the (weighted) mean of all GNSS stations within a radius of several tens of kilome-
ters (Santamaría-Gómez et al., 2014; Pfeffer and Allemand, 2016). Only Hamlington

et al. (2016) involved a more complex GNSS post-processing procedure using NGL
trends, based on a combination of spatial filtering, Delaunay triangulation and me-
dian weighting. One way to quantify the accuracy of GNSS-based VLM trends at TGs
is to compute the spread of individual geocentric sea-level estimates or the spread of
geocentric sea level between regions (Wöppelmann and Marcos, 2016). The spread
of regional trends reduced from 0.9 mm yr−1 in the ULR1 solution (Wöppelmann et

al., 2007) to 0.5 mm yr−1 in the ULR5 solution (Santamaría-Gómez et al., 2012; Wöp-

pelmann et al., 2014), which is approximately the expected residual climatic signal.
Any further improvements in the GNSS trends require therefore another validation
technique.

A second way to observe VLM at TGs, to overcome the limitations of the sparsely
distributed GNSS stations, is differencing satellite altimetry and TG time series, which
we will refer to as ALT-TG time series from here on. Initially, the ALT-TG time series
were used to monitor the stability of satellite altimeters for the Global Mean Sea Level
(GMSL) record, which is currently estimated to be 0.4 mm yr−1 (Mitchum, 1998,
2000). The first study to infer VLM trends from ALT-TG time series was Cazenave et

al. (1999). Based on the method of Mitchum (1998) they compared ALT-TG to DORIS
at six stations. Later, several studies were conducted on regional and global scale of
which an overview is given by Ostanciaux et al. (2012). The first study to estimate
more than 100 VLM trends (Nerem and Mitchum, 2002) presented uncertainties for
60 of 114 TGs smaller than 2 mm yr−1, which is still larger than the 1 mm yr−1

uncertainty required for sensitive coastal assets (Wöppelmann and Marcos, 2016).
However, they noted that the TGs should be visually inspected on a case-by-case
basis to determine if the result was truly VLM. Ostanciaux et al. (2012) increased the
number of ALT-TG VLM trend estimates sixfold to 641, but it included some outliers
with trends above 20 mm yr−1. They also made a comparison between their study
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and several earlier studies. The best agreement was found over a small set of 28 tide
gauges, where the results of Ostanciaux et al. (2012) differed from Ray et al. (2010)
by an RMS of 1.2 mm yr−1.

Recently, several studies have compared the GNSS trends to those of ALT-TG glob-
ally (Santamaría-Gómez et al., 2014; Wöppelmann and Marcos, 2016; Pfeffer and Alle-

mand, 2016). Several other studies did an equivalent comparison with DORIS and
ALT-TG for a limited number of stations (Cazenave et al., 1999; Nerem and Mitchum,
2002; Ray et al., 2010). While the older studies primarily used along-track data from
the Jason (TOPEX/POSEIDON (TP), Jason-1 (J1) and Jason-2 (J2)) series of satel-
lite altimeters, the latest studies used preprocessed grids. Wöppelmann and Marcos

(2016) made a comparison between several gridded products and one along-track
dataset. All recent studies used ULR5 GNSS trends for comparison. The best results
were obtained with an interpolated altimetry grid provided by AVISO (Pujol et al.,
2016), yielding a median of differences of 0.25 mm yr−1 with an RMS of 1.47 mm
yr−1 based on a comparison at 107 locations (Wöppelmann and Marcos, 2016). It is
important to note that the time series for all sites were visually inspected, primarily to
remove those with non-linear behaviour. Additonally, the corresponding correlation
between TG and nearby altimetry time series were found to be highest for AVISO.
Pfeffer and Allemand (2016) did not apply visual inspection and obtained a compara-
ble result for 113 stations (an RMS of 1.7 mm yr−1), while only incorporating GNSS
trends from stations within 10 km from the tide gauge.

This study aims to further reduce the discrepancies between GNSS and ALT-TG
trends, while increasing the number of trend pairs. To do this, we will apply sev-
eral steps to improve the VLM estimates at tide gauges. First of all, the number of
reliable trend estimates is increased by using the GNSS trends from the larger NGL
database. The NGL applies a trend estimation technique that is less sensitive to dis-
continuities to the time series (Blewitt et al., 2016). Most TGs will neighbour multiple
GNSS stations for which several combination methods are applied to determine the
best procedure. Correlations between altimetry and TG time series are exploited to
reduce residual ocean variability, which is often present in ALT-TG time series (Vino-

gradov and Ponte, 2011). The reduction in ocean variability should lead to more
reliable ALT-TG VLM trends. Correlation thresholds additionally function as a filter,
to remove time series that are uncorrelated due to differences in ocean signals, pos-
sible (undocumented) jumps in the TG time series, or interannual VLM signals that
cannot be separated from the ocean signal (Santamaría-Gómez et al., 2014). Addi-
tionally, we address the problem of contemporary mass redistribution on trends over
different time spans using a fingerprinting method.

4.2 Data and Methods

In this section, we describe the processing procedures for deriving GNSS and ALT-TG
VLM trends for comparison at TG locations. First, we will address the estimation
of GNSS trends at the TG locations. The estimation of ALT-TG differenced trends
is discussed in several steps. We briefly discuss the selection of the tide gauges.
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After that we will discuss the altimetry processing procedures. We briefly review the
Hector software (Bos et al., 2013) for the estimation of trends from differenced ALT-
TG time series. Eventually, trend corrections for contemporary mass redistribution
using fingerprinting methods are described.

4.2.1 GNSS trends

The trend estimation at tide gauges primarily deals with two problems. First, a trend
is estimated from a GNSS time series, which contains an autocorrelated noise sig-
nal, and often undocumented jumps. We use pre-computed trends, of which the
procedure is briefly reviewed below. Second, many GNSS stations are not directly
co-located to the TG station. Regular leveling campaigns, to monitor the relative
VLM between the TG and the GNSS stations, are often absent. Therefore, the as-
sumption is made that both locations are affected by the same VLM signal. When
multiple GNSS receivers are present in the vicinity of the tide gauge, a method is
required to estimate a single VLM trend from multiple GNSS stations. This is also
discussed below.

GNSS trend estimation

To obtain VLM trends at TGs, often the products of the Université de La Rochelle
(ULR) are used. ULR versions 5 and 6 make use of the Create and Analyze Time Series
(CATS) software (Williams, 2008), which is able to estimate trends and errors from
time series, taking into account temporally correlated noise. It has the advantage that
it computes a more realistic trend uncertainty. The software is also able to estimate
and detect discontinuities that occur due to earthquakes and equipment changes.
Even though a large proportion of the trend estimates have formal accuracies better
than 1 mm/yr, undetected discontinuities might bias the estimated trends (Gazeaux

et al., 2013).

In this study the results of NGL (Blewitt et al., 2016) are used. Blewitt et al.

(2016) proposed the Median Interannual Difference Adjusted for Skewness (MIDAS)
approach, which is based on the Theil-Sen estimator. The procedure estimates trends
from couples of daily data points separated by 365 days. It then removes all estimates
outside two standard deviations, which are computed by scaling the Median of Ab-
solute Devations (MAD) by 1.4826 (Wilcox, 2005), with respect to the median of the
trend couples. Afterwards, a new median is computed, which serves as the trend es-
timate. Blewitt et al. (2016) demonstrated that MIDAS has a smaller equivalent step
detection size than methods which included step detection. Besides the advantage
of detecting smaller jumps, approximately 14000 GNSS time series are processed,
which is almost 20 times more than ULR6. Unlike Wöppelmann and Marcos (2016),
no manual screening is applied to the time series or trends.
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Trend estimation at tide gauges

Despite several recommendations to co-locate GNSS receivers with TGs, currently
only a few have a record that enables to estimate a trend with an uncertainty of 1
mm yr−1 or better. Therefore we take all stations into account that are within 50 km
from a TG, provided that the standard deviation on the trend is lower than 1 mm yr−1

as estimated from the MIDAS algorithm. The threshold on the standard deviation
ensures that most records containing large non-linear effects, due to for example
water storage changes and co-seismic and post-seismic deformations, are removed
from the analysis. Other studies used ranges from 10 km (Pfeffer and Allemand,
2016) up to 100 km (Hamlington et al., 2016). At 100 km the uncertainty due to
relative VLM trends increases substantially, on average with more than 0.5 mm yr−1

(Santamaría-Gómez et al., 2017) for the NGL estimates, while taking a range of 10
km reduces the number of trends substantially. Therefore the range is set to 50 km,
but comparable results are found for 30 and 70 km yielding a different number of
trends.

Most studies simply average all neighbouring TG trends or take the trend from
the closest station. However, many other techniques have been suggested in litera-
ture. We compare trends from several approaches in Sect. 4.3.1 and with the ALT-TG
trends in Sect. 4.3.3. In total eight different approaches are considered. The first two
involve all of the trends at neighbouring GNSS stations by computing their mean [1]
and median [2]. Method [1] is among others applied by Frederikse et al. (2016) for
regional sea-level reconstructions. One of the most frequently applied approach uses
the trend at the closest station [3]. It is used in two recent studies by Santamaría-

Gómez et al. (2012) and Pfeffer and Allemand (2016). We also investigate inverse
distance weighting [4] in which the trend dhT G

d t is estimated as:
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where di and dhi

d t respresent the distance to the tide gauge and the trend at GNSS
station i. We also use the GNSS trends based on the longest time series [5] and
smallest error [6] from stations within the 50 km radius. The seventh approach
involves weighting with the variances σ2

i
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And the last method [8] takes into account spatial dependency and trend uncertainty
by combining methods [4] and [7], i.e. by weighting with the variance and with the
distance, so that:
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Method [8] is a variant of the method used in the altimeter calibration study of
Watson et al. (2015). It penalizes the distance between the TG and the GNSS antenna
and the uncertainty of the GNSS trends. Note that the uncertainties range mostly
between 0.7-1 mm yr−1 and therefore method [8] is more sensitive to the distance
from the TG than to the variance of the GNSS trends. The distance weights used in
methods [4] and [8] quickly decrease with distance, effectively reducing the number
of GNSS trends involved in the estimate. In several studies the method to estimate
VLM trends at tide gauges from GNSS is not documented.

4.2.2 Tide-gauge time series

Monthly TG data are obtained from the PSMSL database (Holgate et al., 2013). If
any of the data points is flagged after 1993, the time series are removed from further
analysis. Peak-to-peak variations in monthly time series are typically on the order of
five decimeters. Monthly estimates outside of 1 meter from the mean are not likely
to occur and are therefore removed from the data. This number is similar to our
altimetry sea-level anomaly threshold and based on the criterion used by the National
Oceanic and Atmospheric Administration (NOAA) for their global mean sea-level
estimates (Masters et al., 2012). To be consistent with the altimetry observations,
we apply a Dynamic Atmosphere Correction (DAC) consisting of a low-frequency
inverse barometer correction and short-term wind and pressure effects Carrère and

Lyard (2003). Initially, we consider all TGs with at least 10 years of valid data.

4.2.3 Differenced ALT-TG time series

Wöppelmann and Marcos (2016) obtained the smallest standard deviation in the dif-
ferenced time series by averaging grid cells within 1 degree from the TG using the
AVISO interpolated product. The results obtained by taking the most correlated grid
point from AVISO within 4 degrees around the TG increased the standard deviation.
Wöppelmann and Marcos (2016) obtained lower correlations by averaging Goddard
Space Flight Center (GSFC) along-track altimetry measurements within a radius of 1
degree from the TG. Note that the AVISO grid is constructed using correlation radii of
50-300 km (Ducet et al., 2000) and it includes measurements from all altimetry satel-
lites, not only the Jason series. The AVISO grid therefore effectively averages over
a much larger radius around the TG and it includes data from more satellites. The
larger uncorrelated noise using GSFC compared to AVISO, as shown by the combina-
tion of the increased RMS and the spectral index (Wöppelmann and Marcos, 2016),
is therefore likely an effect of the limited number of GSFC altimetry measurements.
However, using the large effective radius of AVISO, data far away from the TG are
included, which might not correlate with the sea-level signal at the TG. This can re-
sult in a remaining ocean signal in ALT-TG time series, which contaminates the VLM
trend estimates.

To overcome the limitations of gridded products, we work with along-track data
and exploit the correlations between sea level at the satellite measurement location
and at the TG on interannual and decadal scales by using a low-pass filter. We start by
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Table 4.1: List of geophysical corrections and orbits applied in this study. Details on the geo-
physical corrections are given in Chapter 2.3.1.

Satellite T/P Jason-1&2
Orbits CCI GDR-E
Ionosphere Smoothed dual-frequency
Wet troposphere Radiometer
Dry troposphere ECMWF
Ocean tide GOT4.10
Loading tide GOT4.10
Solid Earth tide Cartwright
Sea state bias CLS
Mean sea surface DTU15
Dynamic atmosphere MOG2D

creating sea-level time series every 6.2 km along-track using the measurements from
TP, J1 and J2 from the RADS database (Scharroo et al., 2012) between 1993-2015. In
the cross-track direction the measurements are within 2-3 km of each other, because
the satellites are kept in a repeat-orbit. In order to get a consistent set of altimetry
observations, the same geophysical correction models are used for all satellites, as are
given in Table 4.1. All time series within 250 km from the TG are taken into account.
This radius is larger than the open ocean correlation distances used by Ducet et al.

(2000) and Roemmich and Gilson (2009), except for the equatorial region where the
correlation scales become much larger. At distances larger than 250 km, one will still
find some highly correlated signals, but the trends caused by large scale processes
like GIA and present-day mass redistribution will differ from that at the TGs. It also
ensures that at least one ground track of the altimeters is within the range of the tide
gauge at the equator. Reducing the 250 km radius leads to a decreased number of
available trends.

Additionally, intermission biases between TP-J1 and J1-J2 are removed. Ablain

et al. (2015) revealed a large dependence of the intermission biases on the latitude.
For the J1-J2 differences, a single polynomial is estimated through the differences
between the sea-level observations of both instruments, such that the correction
∆hsla,i b(λ) becomes:

∆hsla,i b(λ) = c0 + c1 ·λ+ c2 ·λ2 + c3 ·λ3 + c4 ·λ4, (4.4)

with λ the latitude of the altimetry observations. For the TP-J1 differences, separate
polynomials are estimated for four latitude regions and the ascending/descending
tracks (Ablain et al., 2015). The values for the parameters cn are given in Table 6.1.
More details on the computation procedure are provided in Appendix D.

The Jason satellite series samples sea level every ten days, hence we average
monthly 3-4 measurements in order to make a first set of time series that is compati-
ble with the monthly TG observations. Small discrepancies might still be present be-
tween the time series due to inaccurate corrections for or filtering of high-frequency
signals, like tides or wind and pressure effects. As for the case of the TG monthly
solutions, observations more than 1 m from the mean sea surface are removed and
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the time series should have at least 10 years of valid observations. Additionally, a
second set of time series at each along-track bin is created, by applying a yearly
moving-average filter. This second set of altimetry time series is correlated with a
yearly low-pass filtered version of the TG series, in order to test whether their sig-
nals match on interannual and longer time scales. The yearly moving-average filter
allows to suppress the noise present in individual altimetry measurements. The full
pole tide from RADS (which contains a solid Earth, loading and ocean tide as in Desai

et al. (2015)) is subtracted from both time series before correlation, whereas for the
TG time series we restore the solid Earth pole tide as computed in Desai et al. (2015).
The loading tide is at its maximum only a few millimeters, which has no significant
effect on the interannual correlation, and is therefore not restored. We also remove
residual annual and semi-annual cycles and a linear trend before correlation, because
the yearly moving-average filter has side-lobes causing these seasonal signals to be
partly retained. Other longer filters are considered to reduce the side lobes, but they
would introduce larger transient zones at the start and the end of the time series. An
iterative procedure removes sea surface heights outside of 3 RMS up to a maximum
of 10% of the observations. The outlier removal is primarily implemented to remove
any spurious data present in the RADS database. It is unlikely that more than 10%
of the observations contain processing problems or outliers due to extreme events.
If more observations would be discarded, high correlations might not represent the
corresponding ocean signal anymore. The result is a set of correlations that indicate
which altimetry sea-level time series resemble the TG time series on interannual time
scales and longer.

The monthly low-pass filtered altimetry time series are kept, if the corresponding
correlation from yearly low-pass filtered time series are above a certain threshold.
The level of the threshold is discussed in Sect. 4.3.2. We average the remaining
monthly altimetry time series, to get a single altimetry time series per TG. Alterna-
tively, we also use the correlations as weights, to get one correlation-weighted altime-
try time series per tide gauge. In this case the monthly low-pass filtered time series
are weighted by their corresponding correlation, then added together and accord-
ingly normalized, so that the weights sum up to one. The resulting time series are
subtracted from the TG time series if there are at least ten altimetry time series with
a correlation above the threshold. The resulting differenced ALT-TG time series with
less than 15 years of valid observations are further discarded. The length require-
ment is due to the fact that remaining ocean signals can still affect the estimated
trends significantly. An example of the reduction of variability due to correlation
thresholds and weighting is shown in Fig. 4.1. The white noise in the unfiltered time
series is reduced in the red curve, however the opposite might happen if the number
of altimetry time series decreases. Most important is to note that there is a strong
reduction in the variance of temporally correlated residuals, represented here by the
low-pass filtered time series. Correlated residual signal can strongly affect the esti-
mated trend, especially in areas with large variability due to interannual events like
ENSO. Note that for the ALT-TG trend computation only the solid Earth part of the
pole tide is added to the TGs, but this time as is done in the IERS2010 conventions
(Petit and Luzum, 2010), such that the trends are consistent with those of the GNSS



4.2. Data and Methods 81

data. The main difference is that the altimetry pole tide correction of Desai et al.

(2015) is computed with respect to a linearly drifting mean pole, while in the IERS
conventions the mean pole location is modelled as a third order polynomial. If the
pole tide is not taken into account consistently, it can introduce biases of 0.1 mm
yr−1 (Santamaría-Gómez et al., 2017). Since the mean polar motion is non-linear,
this will introduce trend biases if the time spans between GNSS and altimetry do not
match. The drift of the mean pole is caused by a redistribution of mass in the Earth
system. This is corrected for using the mass-redistribution fingerprints discussed in
Sect. 4.2.5, which are computed using a model that includes elastic responses and
rotation changes. The drifting mean pole is primarily captured by the C21 and S21

spherical harmonic coefficients (Wahr et al., 2015), which indicates a symmetrical
pattern around a 45◦ inclinated line with respect to the Equator.
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Figure 4.1: Time series of ALT-TG differenced VLM at Winter Harbour. After averaging or
weighting with the correlation a moving-average filter is applied to visualize the remaining
interannual variability. In blue: without a threshold on the correlation and without correlation
weighting. In red: with a threshold of 0.7 for the correlation and with correlation weighting.
In the background the time series without the moving-average filter applied.

4.2.4 Differenced ALT-TG trends

The ALT-TG time series have a monthly resolution, so they contain less observations,
and they exhibit substantial interannual variability. These time series are therefore
less suitable to be processed with the MIDAS algorithm used to compute GNSS trends.
For the computation of the ALT-TG trends and the corresponding standard deviation,
we fit a power-law in combination with a white noise model by using the Hector
software (Bos et al., 2013). The spectrum of power-law noise, P( f ), decays with
frequency and is given by (Bos et al., 2013):

P( f ) =
1
f 2
s

σ2

(2 sin(π f / fs))
2d

, (4.5)

where fs is the sampling frequency, σ the power-law noise scaling factor and d links
to the spectral index κ in Wöppelmann and Marcos (2016) by κ = −2d. The value
of d is related to the strength of the autocorrelation of the sequence (Bos et al.,
2013). This is required to capture the temporal correlation in the ALT-TG time series
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as shown by Fig. 4.1 in which the low-pass filtered time series give an idea of the
memory in the system. We use the function ’PowerlawApprox’, which uses a Toeplitz
approximation for power-law noise (Bos et al., 2013).

4.2.5 Contemporary mass redistribution

The trends estimated from GNSS time series are computed over different time spans
than the ALT-TG trends and will be affected by, e.g., non-linear VLM induced by elas-
tic deformation due to present-day ice melt and changes in land hydrology storage
(Riva et al., 2017). To quantify those non-linear VLM signals, the response to mass re-
distribution is computed using a fingerprinting method at yearly resolution. We take
into account the loads of Greenland, Antarctica and glacier mass loss, the effects of
dam retention and hydrological loads. A detailed description of the input loads is
given in Frederikse et al. (2016). To estimate the fingerprints of VLM, the sea-level
equation is solved, including the rotational feedback (Farrell and Clark, 1976; Milne

and Mitrovica, 1998). Since not all load information for the last years is available
yet, we will limit the time series of ALT-TG up to 2015. Some GNSS trends are es-
timated from time series that span beyond 2015. Therefore we linearly extrapolate
the fingerprint data, if necessary, to 2015 and 2016 based on the difference between
years 2013 and 2014.

4.3 Results

This section first addresses the trends obtained from GNSS stations. The averaging
methods are discussed and the NGL trends are compared to those of ULR5. Then the
results of the correlation-weighted ALT-TG trends are discussed. These are compared
to those from Wöppelmann and Marcos (2016). After that, the GNSS and ALT-TG
trends are compared and best weighting methods are discussed. For the comparison
we take into account that both trends are not computed from time series covering
the same period by correcting for non-linear VLM trends estimated from fingerprints.

4.3.1 Direct GNSS trends

For 570 TGs at least one GNSS station is found within a 50 km radius with an uncer-
tainty on the trend that is below 1 mm yr−1 (one standard deviation). The VLM for
these TGs is shown in Fig. 4.2 using the median of the surrounding GNSS stations
in case there are multiple GNSS stations available. The signature of GIA dominates
the signal on large scales, and is primarily visible in Scandinavia and Canada. In
Alaska there might be a significant contribution of present-day ice mass loss. If GIA
is removed the VLM signals typically range between -3 and 3 mm yr−1 (Wöppelmann

and Marcos, 2016), with a few exceptions.

Even though the large-scale GIA process appears to be captured properly, regional
VLM have large effect on the GNSS trends. In Fig. 4.3 the differences between the
lowest and highest VLM estimate from the eight methods discussed in Sect. 4.2.1 are
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Figure 4.2: VLM (mm/yr) at TGs using the median of the neighbouring trends.

shown. The figure shows that the range is generally higher, where more GNSS trends
are available. In particular the seismically active zones like the US West Coast show
a larger range. In most cases the VLM trend furthest away from the mean of the eight
methods is estimated with a methods involving only one station, i.e. methods 3, 5
and 6 (Fig. 4.4). The range of solutions, when considering all TGs with at least two
GNSS trends, has a mean of 0.92 mm yr−1 with 25 and 75 percentiles of 0.38 and 1.20
mm yr−1. In case at least three available GNSS trends are considered, the mean of the
differences rises to 1.09 mm yr−1 and the 25 and 75 percentiles to 0.56 and 1.34 mm
yr−1. Since we only considered GNSS trends with a maximum standard deviation of 1
mm yr−1, this implies that a significant contribution of kilometer-scale VLM variations
is present along the West Coast of the US, where the difference between methods
is often larger than 1 mm yr−1. Note that the range of individual GNSS trends is
on average even larger than the range between methods. Santamaría-Gómez et al.

(2017) estimated the global numbers for the impact of spatial variations in VLM at
30 km and 100 km separation to be 0.2 mm yr−1 and 0.5 mm yr−1. At coasts of
Europe and North America, where most tide gauges are located, these numbers are
substantially larger, i.e. even the range between methods is on average larger than 1
mm yr−1. The differences between methods is often comparable in size as the VLM
signal, especially after the GIA is removed.

Wöppelmann and Marcos (2016) show that a comparison between their ALT-TG
trends and their GNSS trends yields an RMS of 1.47 mm yr−1. They use visual in-
spection to remove tide gauges where clear non-linear effects or discontinuities were
present. In Table 4.2 a comparison is made between the eight different approaches
and the GNSS trends of Wöppelmann and Marcos (2016) that were used in the afore-
mentioned comparison with ALT-TG trends at 70 locations. The values show that
a substantial fraction of the RMS between GNSS and ALT-TG trends can already be
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Figure 4.3: Range (mm/yr) of VLM estimates at TGs using eight different approaches. The
size of the symbols indicates the number of GNSS trends available (with a maximum of ten).
Red and black symbols indicate a difference between the approaches, which is larger than
the formal uncertainties of the GNSS trends. This is an indication for significant relative VLM
motion between the stations.

Table 4.2: Statistics of trend differences between NGL and ULR5 at 70 stations for the eight
approaches.

RMS Mean Median
Approach Keyword mm yr−1 mm yr−1 mm yr−1

1 mean 1.11 0.07 0.05
2 median 1.05 0.12 0.03
3 closest 1.36 0.02 0.02
4 dist. weight. 1.21 0.00 0.03
5 longest 1.29 0.32 0.20
6 smallest error 1.15 0.24 0.17
7 error weight. 1.11 0.08 0.02
8 dist./error weight. 1.23 0.01 0.05

explained by different GNSS averaging and processing methods. Using the closest
station (approach 3) an RMS of 1.36 mm yr−1, which is comparable in magnitude
to the RMS between GNSS and ALT-TG trends found by Wöppelmann and Marcos

(2016). Note that we remove all NGL GNSS trends with an uncertainty larger than 1
mm yr−1 and therefore co-located stations are sometimes removed. The closest GNSS
station in our selection is therefore not always the same as the one used by Wöppel-

mann and Marcos (2016). The best comparison is found with the median (approach
2), even though the RMS of differences is still above 1 mm yr−1. Since the closest
station method depends on a single station, there is a larger chance some outliers are
present, which substantially increases the RMS of differences. For the closest station
method three trend differences larger than 3 mm yr−1 are found, whereas only one
is found for the median method.
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Figure 4.4: Plot indicating the method (1-8) that yields the largest deviation from the mean
trend of the eight methods. Only locations shown where at least two GNSS stations are within
50 km of the tide gauge.

4.3.2 Differenced ALT-TG trends

Using correlation thresholds, we try to minimize the residual ocean signal in the ALT-
TG time series. Additionally, it will filter problematic stations, where no correlation
between TG and altimetry observations is found. A higher threshold reduces there-
fore the number of ALT-TG trends. Table 4.3 shows the reduction of the differenced
VLM trends, when the correlation threshold increases. After a correlation thresh-
old of 0.4, the number of observations drops substantially. At a threshold of 0.7, the
number of TGs for which a trend is computed, is only half of that without a threshold.
The remaining trends are generally more reliable, because of two reasons: VLM time
series that exhibit relatively large residual ocean signals are removed; and secondly,
TG time series that contain large jumps due to unidentified reasons (e.g. earthquakes
or equipment changes) are removed.

Table 4.3: Number of TGs at which trends are estimated from differenced ALT-TG time series.
The ’-1.0’ indicates no correlation threshold is set.

Threshold Number of TGs
-1.0 663
0.0 660
0.1 658
0.2 655
0.3 638
0.4 602
0.5 549
0.6 470
0.7 344
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In order to show that the method decreases the oceanic signal, we compare the
standard deviation reduction by using correlation thresholds and weighting (Fig.
4.5). The plot in the top panel shows the comparison between the standard de-
viation of the differenced time series using no correlation threshold and the time
series using a threshold of 0.7 together with a correlation weighting. The mean re-
duction in standard deviation is 3.9 mm, whereas the mean standard deviation is
37 mm. The change in standard deviations at several locations are coherent, which
is expected because the sea-level fluctuations along continental slopes are coherent
(Hughes and Meridith, 2006). Substantial reductions in standard deviation are ap-
parent at both North American coasts, in Japan and in Northern Europe. Vinogradov

and Ponte (2011) had already observed large discrepancies in interannual ocean sig-
nals between TGs and altimetry in North America and in Japan. It suggests that our
method is capable to reduce these ocean signals. This is confirmed by the change in
the median of the spectral indices, κ, as discussed in Sect. 4.2.4. The median of the
spectral indices changes from -0.63 to -0.57, which indicates that the autocorrelation
in the residuals decrease. The Winter Harbour (Canada) VLM time series (Fig. 4.1)
shows a typical example in which especially the correlated noise is reduced. How-
ever, there are several locations where the standard deviation increases substantially.
Most of them are sporadic, but in a few locations, like in the UK and France there is
coherent increase.

Similar patterns of standard deviation decrease, albeit reduced in magnitude, are
observed for the not-weighted against weighted VLM time series with a correlation
threshold of 0.0 (bottom of Fig. 4.5), i.e. when only positively correlated altimetry
time series are taken into account. Instead of 344 VLM trends, as for the compari-
son discussed above, 660 trends are compared. The mean reduction of the standard
deviation is 1.4 mm, whereas the mean standard deviation is 38 mm. Remarkable is
the strong reduction of the standard deviation at the southeast side of Australia. In
the UK and France an increase in standard deviation is present again. In most cases
an increase in white noise, likely due to the decreased effective number of altime-
try measurements, is responsible for the higher standard deviation, as demonstrated
in Fig. 4.6 for a VLM time series at Llandudno, UK. In most cases of an increasing
standard deviation, the correlated ocean signals are still reduced or remain approxi-
mately equal.

Fig. 4.7 shows the VLM trends estimated from the ALT-TG time series using no
correlation threshold and a threshold of 0.7. A comparison of Fig. 4.2 and Fig. 4.7
reveals that especially the Indian Ocean and the southern Pacific Ocean are sampled
better using ALT-TG instead of GNSS trends. If the correlation threshold is set to 0.7,
the number of trend estimates decreases, which has particularly an impact on the
number of trend estimates at TGs in South America and Africa. Hence, for regional
reconstructions, a careful choice should be made for the correlation threshold.

Compared with the GNSS trends, the neighbouring ALTG-TG trends show more
variation, which is especially true for the UK and Japan. It is difficult to say whether
this is a true VLM signal, but it is important to note that many GNSS stations are
placed on bedrock, which exhibits more stable trends than the coastal locations of
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A: No correlation threshold vs weighted correlation threshold 0.7
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B: Unweighted correlation threshold 0.0 vs weighted correlation threshold 0.0
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Figure 4.5: Change in standard deviation (mm) of the differenced time series using corre-
lation thresholds and weighting. Note that a correlation threshold of 0.0 indicates positive
correlations only.

tide gauges. Secondly, the GNSS trends with an uncertainty larger than 1 mm yr−1

are removed, which reduces the variability. Of the 663 ALT-TG trends, 293 (44 %)
have a trend uncertainty smaller than 1 mm yr−1. Therefore larger spatial trend
variability can also be induced by remaining ocean signals in the VLM time series.
In the Fig. 4.7B, showing the 0.7 threshold trends, the number of trends is reduced
due to the correlation threshold. It removes most tide gauges in the highly variable
regions mentioned before and the neighbouring differences are therefore less erratic.
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Figure 4.6: Time series of ALT-TG differenced VLM at the Llandudno (UK) TG. A moving-
average filter is applied to visualize the interannual variability. In blue: with a threshold of
0.0 for the correlation, but without correlation weighting. In red: with a threshold of 0.0 for
the correlation and with correlation weighting. In the background the time series without a
moving-average filter applied.

284 out of 344 trends (83 %) have a trend uncertainty smaller than 1 mm yr−1 using
the 0.7 correlation threshold.

The results of applying correlation weighting and thresholding are shown Fig.
4.7C. Two spots of coherent changes in the trends can be clearly identified: in Norway
the trends increased by approximately 1 mm yr−1, while in the East Coast of the
United States the opposite happens. These spots exhibit longshore coherent sea-
level signals that are not found in the open ocean (Calafat et al., 2013; Andres et al.,
2013). Note that both locations also exhibit a strong reduction in standard devation
(Fig. 4.5). Coherent changes are also present around Denmark. Other regions,
where substantial reductions in the standard deviation are found, do not experience
coherent changes in trends.

4.3.3 GNSS vs ALT-TG trends

In this section the VLM trends from GNSS using the eight approaches as described
in Sect. 4.2.1 are compared with the differenced ALT-TG VLM trends using various
correlation thresholds. Based on the intercomparison we determine the best solution
for the GNSS approach and the correlation thresholds for altimetry. Additionally, a
comparison is made with Wöppelmann and Marcos (2016). We also investigate the
effect of present-day mass redistribution on the difference in trends due to varying
time spans of the GNSS and the ALT-TG methods.

Fig. 4.8 shows the RMS of trends differences between various GNSS combina-
tion methods and correlation thresholds for ALT-TG. The RMS of trend differences
is computed at 155 TG stations for which all solutions are available. The colors ex-
hibit small differences horizontally and large differences vertically, indicating that
the GNSS method is more important in reducing the RMS. The difference between
the method with the lowest RMS of differences, which is obtained by taking the me-
dian of the GNSS trends (2), and the method with the highest RMS, which uses the
closest GNSS station (3), is approximately 0.12 mm yr−1. Hamlington et al. (2016)
computed VLM trends at TG locations by using a complex filtering procedure that
also implicitly takes into account the median of the GNSS trends. Next to taking the
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A: No correlation threshold
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B: Correlation threshold 0.7
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C: Differences between A and B
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Figure 4.7: ALT-TG trends (mm yr−1) estimated using no threshold (A), with a correlation
threshold and correlation weighting (B) and the difference between them (C).
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Figure 4.8: RMS (mm/yr) of differences between GNSS and ALT-TG VLM trends. The ’W’
indicates weighting by correlation. The ’-1.0’ indicates no correlation threshold is set. The
numbers of the y-axis refer to the approaches used to combine the GNSS trends as described
in Sect. 4.2.1.

median of the GNSS trends, taking the mean (1) within the 50 km radius and using
variance weighting (7) also yield substantially lower RMS differences than the other
five methods. However, the median method performs slightly better. Besides, the
median method is less sensitive to large values caused by GNSS trends with larger
uncertainties (for which the mean method is sensitive) and also less to outliers caused
by large local VLM differences (for which the variance weighting method is sensitive).

In Table 4.4 we analyze the results for different correlation thresholds in more de-
tail by comparing them to the GNSS trends based on the median method. On the left
side of the table the RMS, mean and median are shown for all VLM estimates avail-
able for each correlation threshold. Setting no correlation thresholds yields trend
estimates at 294 TGs for comparison, while setting a threshold at 0.7 leaves only
155. While the number of trends decreases, the RMS decreases as well, indicating
that the correlation thresholds can serve as a selection procedure, which filters out
outliers. This is confirmed by Fig. 4.9, in which we see the decrease of the number
of available trends, but also the removal of the outliers. If the threshold is set to 0.7
only three discrepancies in trends of larger than 3 mm yr−1 are found. Note that the
reduction in RMS is not only caused by the removal of uncorrelated altimetry and
TG time series. Large earthquakes for example might induces jumps or non-linear
behaviour in both the TG and GNSS time series. Those tide gauges are not taken
into account and therefore the problematic GNSS time series are left out as well.
The larger range in Fig. 4.9 for no correlation threshold may therefore be partly at-
tributed to problematic GNSS trends. In the last row the Wöppelmann and Marcos

(2016) trends are compared with our GNSS trends. It has a similar RMS with the
0.4-0.5 correlation threshold trends, but it is computed with a substantially smaller
number of trends.

On the right side of the table, we only included TGs for which all solutions are
available, which reduces the number from 155 to 137, because W&M trends are also
considered for comparison. The RMS of differences for 155 stations is only slightly
larger as shown below in Table 4.5. Note that the RMS of the residuals using ALT-TG
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Table 4.4: Statistics of the differences between the median of the GNSS trends (approach
2) and the ALT-TG trends for various correlation thresholds. The ’W’ indicates that the al-
timetry time series are weighted by the correlation. The row ’W&M’ shows the comparison
with Wöppelmann and Marcos (2016) trends. The column ’NoT’ indicates the number TGs for
which trend estimates are computed. On the left side of the table all stations are taken into
account, on the right side only stations are taken into account for which a solution exist for
all correlations thresholds (and including those from W&M).

All Same
Corr. RMS Mean Median NoT RMS Mean Median NoT

mm yr−1 mm yr−1 mm yr−1 mm yr−1 mm yr−1 mm yr−1

-1.0 2.141 -0.241 -0.107 294 1.234 -0.167 -0.099 137
0.0 2.108 -0.248 -0.101 294 1.226 -0.175 -0.068 137
0.0W 2.103 -0.250 -0.036 294 1.219 -0.172 -0.056 137
0.1 2.113 -0.258 -0.096 293 1.219 -0.174 -0.074 137
0.1W 2.108 -0.260 -0.043 292 1.218 -0.170 -0.045 137
0.2 2.082 -0.233 -0.073 292 1.217 -0.163 -0.074 137
0.2W 2.080 -0.234 -0.015 292 1.216 -0.168 -0.042 137
0.3 1.986 -0.152 0.047 283 1.221 -0.157 -0.066 137
0.3W 1.991 -0.157 0.056 283 1.217 -0.165 -0.044 137
0.4 1.695 -0.106 0.065 264 1.223 -0.152 -0.050 137
0.4W 1.696 -0.112 0.071 264 1.218 -0.158 -0.041 137
0.5 1.554 -0.086 0.044 239 1.220 -0.153 -0.058 137
0.5W 1.552 -0.087 0.056 239 1.217 -0.155 -0.067 137
0.6 1.417 -0.093 -0.065 204 1.209 -0.155 -0.087 137
0.6W 1.416 -0.093 -0.083 204 1.208 -0.156 -0.094 137
0.7 1.220 -0.142 -0.123 155 1.206 -0.140 -0.060 137
0.7W 1.220 -0.144 -0.124 155 1.206 -0.142 -0.074 137
W&M 1.658 -0.177 -0.050 211 1.328 -0.101 0.020 137

from W&M, is already 0.14 mm yr−1 lower than those in the study of Wöppelmann and

Marcos (2016) and about 0.4 mm yr−1 lower than in Pfeffer and Allemand (2016),
who incorporated only 109 and 113 stations, respectively. This is a consequence
of the combined use of the median of the NGL trends and the selection based on
correlation. Our altimetry solutions further decrease the RMS by another 0.1 mm
yr−1 compared to W&M, even when no threshold on the correlation is set. In the
study of Wöppelmann and Marcos (2016), the along-track altimetry ALT-TG trends
performed worse than the AVISO results. The reason for this discrepancy could be
the latitudinal intermission bias, or the small radius around the TG used in that study
for including altimetry measurements.

Increasing the correlation threshold only slightly reduces the RMS between GNSS
and ALT-TG trends and the additional weighting has a negligible effect on the RMS.
As mentioned before, for higher thresholds and correlation weighting the standard
deviation of the ALT-TG time series is generally reduced (Fig. 4.5) and Fig. 4.7
showed coherent changes in trend. Additionally, the NGL and ULR trends showed an
RMS of differences more than a millimeter and the range of trend estimates between
the eight approaches is often larger than a millimeter. We argue that the absence of
a clear improvement or a change in RMS due to correlation thresholds is a result of
the relatively large noise in the GNSS trends. The histogram in Fig. 4.9 shows that
for 155 stations, only three discrepancies are larger than 3 mm yr−1. For these TGs
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Figure 4.9: Histogram of GNSS and ALT-TG trend differences. In blue the results without any
correlation threshold and in red with a correlation threshold of 0.7 and correlation weighting.

(located at Galveston (US), Eureka (US) and the Cocos Islands (Australia)) we find
that the neighbouring GNSS stations are located at the other side of lagoons or on
different islands. Therefore the likely cause for the largest discrepancies is not the
ALT-TG trend, but local VLM differences between the GNSS stations and the TG.

The third column of Table 4.4 shows that the mean is in all cases negative, i.e.
the GNSS trends are larger than those of ALT-TG. Trends obtained with correlations
-1.0, 0.0, 0.1 and 0.2 are barely statistically different from zero based on a 95%
confidence level, while the others are not. The 95% confidence level is approximated
as two times the standard deviation of the mean of the residual trends ( σnp

N
, where N

is the number of trends and σn the standard deviation of the residual trends). In the
right ’mean’ column for the 137 stations, the means are statistically insignificantly
different from zero at the 95%-confidence level, wheras at a 90%-confidence level
several are not. The medians in both columns are closer to zero and deviate up to
0.2 mm yr−1 from the mean, which indicates a slightly skewed distribution.

There is a non-linear VLM signal due to present-day mass loss in both GNSS and
ALT-TG trends and since they cover different time spans this causes small systematic
differences between trends. Due to the inhomogeneous distribution of the TGs and
the spatial signal of non-linear VLM, this affects not only the mean, but also the skew-
ness of the distribution. In Fig. 4.10 the trend differences between the GNSS and
ALT-TG methods are visualized for all 294 stations. Most of the negative differences in
trends are observed in Europe and parts of North-America, while positive differences
in trends are observed in Australia. In Europe there is an uplift due to present-day
mass loss, which increases over the last few years. Since the GNSS time series are
generally shorter, they measure a larger uplift signal. By subtracting the present-day
VLM that GNSS observes from altimetry observations, we obtain negative signals in
Europe.

We applied a correction for the effect of present-day mass loss to the trends for
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Figure 4.10: Trend differences (mm yr−1) between the GNSS and ALT-TG time spans induced
by non-linear VLM due to present-day mass redistribution.

the 155 stations for which a trend is found with all methods in Table 4.5. Similarly,
this is done for the 137 stations, so that the results are comparable with Table 4.4.
There is no significant reduction in RMS. The maximal deviation of the median from
zero is 0.06 mm yr−1 for the 155 stations and maximally 0.07 mm yr−1 for the 137
stations, which is a reduction with respect to the values listed in Table 4.4. The mean
is also reduced to approximately -0.1 mm yr−1, which is not statistically different from
zero. This result is at the level of the noise in the determination of the ITRF origin
(Santamaría-Gómez et al., 2017) and it is smaller than the 0.4 mm yr−1 to which
global mean sea level trends from altimetry are gauranteed (Mitchum, 2000). Unless
it is proven that the altimeters are more stable and the uncertainties in the ITRF origin
are reduced, a mean of trend differences closer to zero cannot be expected.

4.4 Conclusions

We presented several ways to estimate VLM at TGs from GNSS and differenced ALT-
TG time series. A comparison is made between eight different methods to obtain VLM
at the TG from NGL GNSS trends. The range of the trends between the approaches is
at the same level as the standard deviations of the GNSS trends, with a mean of 0.92
mm yr−1 and a median of 0.71 mm yr−1. A comparison with the estimates of ULR5
(Wöppelmann and Marcos, 2016) at 70 stations yielded an RMS of at least 1.05 mm
yr−1. A comparison with ALT-TG showed that using the median of all neighbouring
GNSS provided the best results.

For the ALT-TG trends we used along-track data from the Jason series of altime-
ters. At every 6 km along-track data were stacked, to create time series. The time
series were low-pass filtered with a moving-average filter of one year and correlated



94 Chapter 4. A comparison of data weighting methods to derive vertical land
motion trends from GNSS and altimetry at tide gauge stations

with low-pass filtered TG time series. An average or weighted monthly time series
for altimetry was created taking into account only the time series corresponding to
correlations above a threshold. The TG time series were subtracted from the aver-
age of monthly low-pass filtered altimetry time series to create a ALT-TG time series.
Using the Hector software, between 344 and 663 trends were computed from the
ALT-TG time series, depending on the correlation threshold set.

Table 4.5: Statistics of ALT-TG trend differences with the median GNSS approach for various
correlation settings after applying a correction for non-linear VLM.

NoT: 155 NoT: 137
Correlation RMS Mean Median RMS Mean Median

mm yr−1 mm yr−1 mm yr−1 mm yr−1 mm yr−1 mm yr−1

-1.0 1.231 -0.102 -0.039 1.223 -0.100 0.030
0.0 1.225 -0.109 -0.027 1.215 -0.108 0.031
0.0 1.223 -0.106 0.016 1.209 -0.105 0.048
0.1 1.220 -0.107 -0.014 1.208 -0.107 0.034
0.1 1.222 -0.104 0.003 1.208 -0.104 0.072
0.2 1.220 -0.099 0.016 1.207 -0.096 0.027
0.2 1.221 -0.101 -0.001 1.206 -0.101 0.059
0.3 1.223 -0.091 0.011 1.211 -0.090 0.018
0.3 1.221 -0.098 -0.001 1.207 -0.098 0.036
0.4 1.226 -0.087 0.011 1.214 -0.085 0.021
0.4 1.223 -0.092 0.008 1.209 -0.091 0.037
0.5 1.225 -0.088 0.020 1.212 -0.086 0.042
0.5 1.222 -0.090 0.027 1.208 -0.088 0.045
0.6 1.222 -0.087 -0.007 1.202 -0.088 0.018
0.6 1.222 -0.087 -0.006 1.201 -0.089 0.028
0.7 1.220 -0.071 0.021 1.202 -0.073 0.037
0.7 1.219 -0.074 0.012 1.201 -0.075 0.036

The standard deviation of the differenced ALT-TG time series was reduced on
average by approximately 10% when a correlation threshold of 0.7 was used instead
of no correlation threshold. Spatially coherent differences in trends between vari-
ous thresholds are observed at the east coast of the US and in Norway. We argue
that residual interannual ocean variability in ALT-TG time series can locally induce
VLM trend biases, especially when time series are short. For 155 globally distributed
stations, increasing the correlation threshold does not significantly affect the RMS
of differences between GNSS and ALT-TG trends. However, the correlation thresh-
old also works as a selection procedure. When considering 294 VLM estimates from
GNSS and ALT-TG at the same TGs for comparison, with no threshold the RMS of
differences was 2.14 mm yr−1, whereas an RMS of 1.22 mm yr−1 was reached using
155 stations and a threshold of 0.7. This is a substantial improvement with respect
to the 1.47 mm yr−1 RMS of Wöppelmann and Marcos (2016) at 109 TGs, the best
result so far. Note that increasing the threshold considerably reduces the number
of time series in the southern hemisphere and therefore other thresholds might be
better depending on the purpose.

The comparison with tide gauges also reveals that the trends from ALT-TG are
biased low (similar to Wöppelmann and Marcos (2016)), even though this is barely
significant. Using mass redistribution fingerprints, a correction is applied for trend
differences caused by non-linear behaviour of present-day mass changes. The RMS
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of differences is barely affected, but the mean of differences is changed from about
-0.2 to -0.1 mm yr−1, which is now statistically insignificant.

The trends for all solutions (median GNSS and ALT-TG for all correlations) are
provided in the supplementary material of Kleinherenbrink et al. (2018). The ALT-TG
trends are accompanied by error bars computed using the Hector software. The pro-
vided uncertainties for the GNSS use the MAD from the median of the trends within
50 km, scaled by 1.4826 (Wilcox, 2005). If only a single GNSS station is present, the
MIDAS uncertainty is provided. If two GNSS stations are present and both trends are
statistically equal, it takes the square-root of the mean of the GNSS variances to avoid
very small error bars. When no correlation threshold is used 663 ALT-TG and 570
GNSS trends are available at 939 different TGs. By setting the correlation threshold
to 0.7, the number of TGs, for which a trend is estimated, decreases to 759. Depend-
ing on the application, the value of the threshold can be varied to find an optimum
between the reliability and the number of TG for which a trend is estimated. If both
GNSS and ALT-TG trends are available, we recommend to use GNSS trends, because
of correlated residual ocean signals between various ALT-TG time series. However, if
a large discrepancy (> 3 mm yr−1) is found between the GNSS and ALT-TG trends,
we recommend to use the ALT-TG trend, because the culprit is likely local VLM dif-
ferences between the TG and the GNSS stations. The GNSS - ALT-TG histogram for
no correlation threshold reveals large discrepancies between the two methods up to
10 mm yr−1. While the problems with ALT-TG trends are mostly resolved by setting
a higher threshold, the GNSS trends might still require some inspection before they
are used in sea-level studies.





Chapter 5

Calibration of the TOPEX global mean sea level record

using ERS1&2

5.1 Introduction

Since the publication of Watson et al. (2015) (from here on W15) there is renewed
interest in the processing and interpretation of the first years of the Global Mean
Sea-Level (GMSL) record based on satellite altimetry. The absence of a detectable
acceleration in the 25-year altimeter record led to the suspicion that data collected
during the first years of TOPEX were not properly calibrated (Callahan et al., 2016;
Beckley et al., 2017) (from here on B17). Two studies (Chen et al., 2017; Dieng et

al., 2017) reported that calibrations of the TOPEX altimeter with tide gauges, as
done in W15, would lead to improved budget closure. However, the absence of an
acceleration could also be partly attributed to the recovery of a dip in ocean heat
content after the eruption of the Pinatubo in 1991 (Fasullo et al., 2016; Dieng et al.,
2017). By compensating for the effects of the eruption on GMSL and removing a
calibration correction (as done in B17), Nerem et al. (2018) came to the conclusion
that there is an observable climate-driven acceleration in the altimeter record.

There is no significant acceleration present in the GMSL time series based on
standard processing. W15 applied calibrated TOPEX, because of the presence of a
U-shape drift in a comparison of the TOPEX side A (TOPEX-A) sea surface heights
with tide-gauge records (Mitchum, 2000). The drift is related to a degradation of the
Point Target Response (PTR) of TOPEX-A near the end of its operation (Hancock et

al., 1999). Since the PTR is directly related to the shape of the altimeter waveforms,
parameters like Significant Wave Height (SWH) and radar range are directly affected
by it. The effect on SWH is shown in B17 based on a method designed by Ray and

Beckley (2012), which involves the comparison of TOPEX-derived SWH with bouys.
This led to studies that produced corrections for the TOPEX SWH (Queffeulou, 2004),
but not to the range. B17 indicated that the effect of the problematic PTR on the

Parts of this chapter will be published as: Kleinherenbrink, M., Riva, R., & Scharroo, R. (2018).
Calibration of the TOPEX global mean sea level record using ERS1&2, Nature Geoscience, In preparation.
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range was counteracted by an overly large Sea State Bias (SSB) correction, which
is a consequence of overestimated SWHs. Therefore most studies involving TOPEX
never applied any correction to the range.

However, in a globally-averaged tide-gauge comparison a millimeter-level varia-
tion is revealed during TOPEX-A. Even though the signal is small, it is large enough
to significantly affect the acceleration. After the switch to TOPEX-B in January 1999
the drift disappeared. B17 showed that the drift is similar in shape as a calibra-
tion correction (cal-1), which is applied to deal with internal path delays of TOPEX
(Hayne et al., 1994). During the calibration phase for cal-1, the signal is routed back
and not transmitted via the antenna, which yields a received signal that resembles a
point target (B17). Since the PTR is changing over time it therefore also affects cal-1,
which for the same reason provides incorrect range corrections for the degradation
of the PTR.

Three solutions to compensate for the drift of TOPEX-A have been proposed.
The tide-gauge calibration of W15, in which a drift for TOPEX-A, a drift for TOPEX-
B and an intramission bias between them are removed. This however, makes the
altimeter-derived GMSL dependent on tide-gauges. B17 proposed to unapply cal-1 to
both TOPEX-A and TOPEX-B, which leads to a better overall agreement with the tide
gauges and yields a small negative drift of -0.45 mm yr−1 of TOPEX-A with respect
to tide gauges. B17 also used the retracked data of Callahan et al. (2016) based
on an improved PTR for TOPEX-A, which reduced the difference in SWH between
TOPEX-A and buoys. Furthermore, a better agreement was found with tide gauge,
but the first two years of TOPEX-A had to be excluded because of anomalous sea
surface heights. Note that W15 used a 4-parameter SSB correction model derived
by Chambers et al. (2003), while B17 adopted a non-parametric model (Tran et al.,
2010). The intramission bias depends on the applied SSB correction.

The calibration and validation methods discussed above rely on the compari-
son with tide gauges. There are several issues with tide-gauge methods related to
the intramission bias estimates and the drift estimates. Ablain et al. (2015) showed
that the intermission biases between TOPEX-Jason-1 and Jason-1-Jason-2 are geo-
graphically varying. Due to the fact that the SSB corrections rely on the ’wrong’
TOPEX-A SWH estimates, it is reasonable to assume that the intramission bias be-
tween TOPEX-A&B is also varying geographically. A tide-gauge comparison always
overweights certain regions with respect to others, so the intramission bias might be
affected. Secondly, the altimeter-tide gauge (ALT-TG) differences contain residual
noise due to incomplete cancellation of ocean signal (Mitchum, 1998, 2000; Beckley

et al., 2017). ENSO-related signals propagate along the shores of North and South
America (Hughes and Meridith, 2006). These signals have relatively small cross-shelf
length scales, which can lead to significant differences between TGs and altimetry
due to spatial separation. Altimetry measurements are generally taken several tens
of kilometers from the coast where the signals are weaker. Kleinherenbrink et al.

(2018) gave an example of ENSO signals affecting ALT-TG time series as far as the
Winter Harbour tide gauge, located at the west coast of Canada. Since these sig-
nals are correlated between tide gauges, this could affect the short-term altimetry
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drift detection as well as the intramission bias estimates. Thirdly, the Vertical Land
Motion (VLM) trends estimated from GNSS or inferred from models based on load-
ing input (e.g. GRACE) have been linearly extrapolated in W15 and B17. Studies
showed there is a significant non-linear contribution of mass redistribution to VLM
(Riva et al., 2017). Therefore there might be a small bias in the estimated TOPEX
drifts.

This study extends the work of W15 and B17 with respect to cal-1 and the SSB
correction in several ways. Instead of a comparison with tide gauges, we use the
crossovers of the satellite missions ERS1&2 to calibrate TOPEX. The main advantage
of the crossover method over a comparison with tide gauges is the spatial coverage.
Based on the crossovers analysis, we will argue whether cal-1 should be applied or
not. Then we determine whether an TOPEX-A/B intramission bias should be esti-
mated and whether TOPEX-A&B are drifting and how both are related to the applied
SSB. A new calibration technique is proposed based on the crossovers with ERS1&2.
A tide-gauge comparison using different averaging techniques to estimate the ALT-TG
drifts and intramission biases is performed, to check the reliability of such a calibra-
tion or validation method. Eventually our crossovers results are benchmarked using
the tide-gauge comparison. The effect of this calibration on GMSL is quantified and
the question is answered whether there is a statistically significant acceleration in
sea level from the altimetry record.

5.2 Methodology

This section discusses the processing steps for the validation and calibration of TOPEX
time series using ERS-1&2 altimetry data and tide gauges. In Sect. 5.2.1, we describe
the crossover approach using ERS-1&2. It requires the removal of an intermission
bias between ERS-1&2, which might be latitude dependent. Then several SSB models
for TOPEX are applied, for which we determine if the estimation of an intramission
bias between TOPEX-A&B is required. In Sect. 5.2.2 we describe the comparison of
TOPEX-A&B against tide gauges. This involves corrections for the non-linear part of
VLM caused by present-day mass redistribution. Additionally, several averaging ap-
proaches are tested that combine the nonuniformly-spaced ALT-TG drifts and biases
differently.

5.2.1 Crossovers

In order to perform the crossovers analysis in a consistent way, satellite altimetry data
from the Radar Altimetry Database System (RADS) is used (Scharroo et al., 2012).
The geophysical corrections, listed in Table 5.1, are fixed except for the Sea State Bias
(SSB), which is varied for TOPEX. For ERS-1&2 only one SSB correction is available,
which is based on a 4-parameter model of (Gaspar et al., 1994). To ensure a smooth
transition between the ERS-1&2 sea surface heights, we remove a latitude-dependent
intermission bias between both (Ablain et al., 2015).

The crossover locations are determined with an algorithm which is implemented
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in RADS. First it computes all crossover locations of the ERS and TOPEX ground
tracks. Consecutively, it finds data close to the crossover location within a time win-
dow of half the repeat-period, which is 10 days for TOPEX and 35 days for ERS-1&2.
The orbits of ERS-1 were changed several times during its life time and therefore the
repeat periods differ from 35 days. The time window is adjusted accordingly, which
implies that the number and the spatial distribution of the crossovers is different dur-
ing several cycles. Sea surface height anomalies with an absolute value larger than
1 m are removed from the analysis. All crossovers are averaged monthly to created
an equal temporal spacing in the global sea surface height difference time series.
Spatial averaging is done by weighting the mean sea surface height difference per
1-degree latitude band with the sea surface area it represents, as in Kleinherenbrink

et al. (2016).

Table 5.1: List of geophysical corrections used for ERS-1&2 and TOPEX. *Not applied in the
comparison with tide gauges. **Only the solid Earth part of the pole tide is corrected for in the
comparison with tide gauges, following the IERS2010 conventions. Details on the geophysical
corrections are given in Chapter 2.3.1.

Correction TOPEX ERS-1&2
Orbital altitude CCI
Range Ku-band
Ionosphere Smoothed dual-frequency
Wet troposphere Radiometer
Dry troposphere ERA
Dynamic atmosphere MOG2D*
Ocean tide GOT4.10*
Loading tide GOT4.10*
Solid Earth tide Cartwright*
Pole tide Desai2015**
Sea state bias bm4/CSR/CLS bm4
Mean sea surface DTU15

Three models are fitted through the global sea surface height difference time
series, to be able to determine whether TOPEX GMSL is drifting and/or an intra
mission bias between TOPEX-A&B is present. The first model [1] only estimates a
single trend through the TOPEX time series (1993.0-2002.5). The second model [2]
includes an offset at the moment of the A-B altimeter switch (January 1999) and the
third model [3] computes a bias with separate trends for the A and B periods. We
use an F-test to determine whether there is a significant change in residuals if we use
the second and third models (Heij et al., 2004):

F =
(eT

1 e1 − eT
i

ei)/g

eT
i

ei/(n− k)
, (5.1)

where e1 are the residuals of model 1 and ei represent the residuals of the other two
models [2,3], g is the number of additional parameters that is estimated and n− k

the degrees-of-freedom.

The above models are fitted to the TOPEX-ERS1&2 crossover time series with
and without applying cal-1. It will be applied to time series generated with the three
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SSB corrections available in RADS. The oldest parametric model, denoted as ’bm4’
in Table 5.1, is computed from crossovers in TOPEX-A cycles 1-110 and consecu-
tively applied to TOPEX-A&B (Gaspar et al., 1994). The CSR SSB correction (Cham-

bers et al., 2003) uses separate parametric models for TOPEX-A&B, computed from
crossovers in cycles 11-158 for TOPEX-A and from cycles 240-349 for TOPEX-B. A
non-parametric SSB correction is computed by CLS (Gasper et al., 2002; Labroue and

Tran, 2004) from colinear differences in TOPEX-B cycles 240-350 and applied to the
whole TOPEX time series.

5.2.2 Tide-gauge comparison

For the comparison with tide gauges, we use a procedure slightly modified with re-
spect to W15. Instead of the fast delivery products (fast), the hourly research quality
tide-gauge records (rqds) from UHSLC (Caldwell et al., 2015) are used. This includes
the tide gauges in and around Australia, which were separately added in W15. Ini-
tially, all records that span the period 1993.0-2002.5 are considered. The tide-gauge
records within a radius of 1000 km from≥7.5 moment-magnitude earthquake events
during that period are removed.

The TOPEX altimetry data are extracted from RADS. Most geophysical correc-
tions are similar to those used for the crossovers, but we do not apply the dynamic
atmosphere, the ocean and load tide and the pole tide corrections. Only the solid
Earth part of the pole tide is applied following the IERS2010 conventions, to be con-
sistent with the GNSS VLM corrections. The discrepancy in VLM, attributed to the
difference in time span between the altimeter and the GNSS time series, is corrected
for by mass redistribution modelling, as discussed in Sect. 4.2.5. All altimetry time
series within a radius of 220 km around a tide gauge are taken into account, with
a minimum distance from the coast of 30 km to avoid land signals contaminating
waveforms and radiometer wet troposphere delay estimates. The TOPEX data are
colinearly stacked, so that we create altimetry time series at every 6 km along-track.
Sea surface height anomalies larger than 1 meter are removed.

For every altimetry time series, cubicly interpolated UHSLC tide-gauge sea-level
measurements are subtracted, creating an ALT-TG differenced time series at each
altimeter location, refered to as Control Point (CP) in W15 and from here on. Sim-
ilar to W15, we fit a model to the CP time series containing 12 ocean tides and we
cope with a sloping sea surface, which can be caused by ocean dynamics, by includ-
ing a latitudinal and longitudinal dependence. The trends and biases of the three
models described in Sect. 5.2.1 are considered, so that we again estimate three dif-
ferent models. Spectrograms of the residuals of the models are computed and signals
corresponding to peaks larger than 4σ2 are added to the model, after which it is re-
computed. Outliers outside three times the RMS of the residuals are then iteratively
removed. Ultimately, time series longer than 250 samples and their corresponding
trends and biases are considered for further analyses.

Linear corrections for VLM are obtained by modelling or from GNSS trends. We
take the median of all GNSS trends within 50 km from the tide gauge in the database
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of the Nevada Geodetic Laboratory (NGL) (Blewitt et al., 2016). Only GNSS trends
with a formal uncertainty smaller than 1 mm yr−1 are included. To cope with VLM
differences between the time spans of GNSS and TOPEX, due to non-linear present-
day mass redistribution, we use the VLM estimates based on the models and loads
used by Frederikse et al. (2016). The correction is implemented as in (Kleinherenbrink

et al., 2018) and implicitly also deals with the problem of polar wander, which is
not captured by the IERS2010 pole tide used as background model for GNSS and
altimetry. In case there are no GNSS stations nearby the tide gauge, the linear trends
from the present-day mass redistribution VLM model and the ICE-6G_C VM5a GIA
model (Peltier et al., 2015) are used to estimate the total VLM trend at the tide gauge.

Thresholds are set to remove noisy CP time series, which require the propagation
of uncertainties. To estimate uncertainties on the trends and biases, which are com-
puted from the CP time series using ordinary least-squares, we fit an AR(1)-model
through the residuals. With that we construct variance-covariance matrix Q y y :

Q y y =
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, (5.2)

where σ is the standard deviation of the residuals and φ1 the first-lag autocorrela-
tion. By propagation of errors, we estimate the variance-covariance matrix for the
estimated parameters as:

Q x x = (A
TQ−1

y y
A)−1, (5.3)

where A is the design matrix used in the ordinary least-squares estimate described
above. The standard deviations for the drifts and biases are extracted from the matrix
Q x x . We remove the time series for which the standard deviation of the residuals is
larger than 110 mm, with a TOPEX-A drift uncertainty larger than 10 mm yr−1 (both
as in W15) or a TOPEX-A/B drift uncertainty larger than 8 mm yr−1.

To inspect the stability of the ALT-TG comparison, the drifts and intramission
biases are averaged using four methods. First we simply take the mean of all CP
trends and biases (m1). The mean and uncertainties of the drifts and biases are
computed from distributions estimated with a Monte-Carlo simulation, in which we
randomly leave twenty tide gauges out of consideration. These uncertainties only re-
flect changes due to weighting and network geometry. The uncertainties are inflated
by 0.3 mm yr−1 to account for reference frame stability issues (Santamaría-Gómez et

al., 2017) and differences between long-term ALT-TG and GNSS VLM trends (Klein-

herenbrink et al., 2018). This is done for all four methods. The second method is
similar to W15 and weights the trends and biases with their variance (m2). A 1.5
mm yr−1 uncertainty for the GNSS trends is taken into account. Third, the means
of trends and biases are computed for every tide gauge and consecutively all mean
trends and biases are averaged (m3). Only tide gauges that are coupled with at least
ten trends/biases are included, which makes the method less prone to outliers. And
finally, a virtual station method (Jevrejeva et al., 2006) is applied (m4). This takes an
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average of the trends and biases between the nearest tide gauges and creates a vir-
tual station at the midpoint. The virtual station is added and the two original stations
are removed. This process loops until no stations are closer than 500 km from each
other, which should be enough to remove most correlations between neighbouring
stations and which creates a more homogeneously spaced network. The limit of 500
km is chosen to avoid generation of high weights for several remote stations, which
would make the result sensitive to outliers. Secondly, in most regions ocean signals
correlate at smaller radii. Similar to the third method, a minimum of ten trends and
biases is required per tide gauge.

5.3 Results

Similar to the methodology section, the results section addresses the crossovers and
the tide-gauge comparison separately. First, we discuss the results of the crossovers
with ERS-1&2 using three SSB models and three model fits, as discussed in Sect.
5.2.1. After that, we discuss whether the complementary tide-gauge comparison
confirms the findings with the crossovers and which issues remain. Eventually, the
effect of the crossover calibration on the GMSL trend and acceleration is addressed.

5.3.1 Crossovers

Fig. 5.1 shows the original, cal-1 calibrated, global sea surface height differences
between TOPEX and ERS1&2. Whatever SSB model is used, the U-shaped signal,
supposedly caused by cal-1 is visible in the time series. This comparison supports the
notion that cal-1 should be removed from the TOPEX-A time series.
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Figure 5.1: Global mean sea surface height differences from crossovers (TOPEX-ERS1&2) for
three different SSB models. The darker shading indicates the ERS1 crossovers. Left: Cal-1 is
applied and the cal-1 correction is plotted in grey. Right: Cal-1 is not applied.

Only the crossovers time series using the bm4 SSB correction clearly exhibit a
discontinuity at the moment of the TOPEX-A/B transition. The cal-1 correction also
exhibits a jump, however it appears to be slightly smaller that the one in the bm4 time
series. The time series based on the CSR and CLS SSB correction have a relatively
smooth transition between TOPEX-A/B. As a consequence, removing cal-1 from the
TOPEX time series reduces the discontinuity when the bm4 correction is used, but
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introduces a discontinuity when the CSR and CLS SSB correction are used. This latter
is shown in the right panel of Fig. 5.1.

Comparison with W15

In Fig. 5.2, three models have been fit through the original data, which includes
the cal-1 correction. The magnitude of the trends and biases are given in Table 5.2.
Estimation of separate trends and an intramission bias is a similar approach to that
of W15. The F-test indicates that also here an intramission bias is required for each
of the SSB corrections. Computing separate drifts does not reduce the residuals sig-
nificantly. In contrast to the positive drift estimates of W15, 1.5±0.5 mm yr−1 for
TOPEX-A and 0.9±0.9 mm yr−1 for TOPEX-B, we find significantly different and even
negative estimates for the TOPEX-A&B drifts no matter which SSB correction is used.
Additionally, W15 observed a negative bias based on the CSR SSB model, while we
find a positive one. The CSR and CLS SSB correction tested by W15 also yielded
significantly different intramission biases, -2.9±2.5 and -7.6±2.5 mm yr−1, while we
find intramission biases similar in magnitude. Note that using model 2 and 3 gives
similar results for the biases and the drifts between TOPEX-A&B do not differ more
than 0.3 mm yr−1.
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Figure 5.2: Top: time series of sea surface height differences (TOPEX-ERS1&2) for the bm4
(left), CSR (middle) and the CLS (right) SSB models for which cal-1 is applied, together with
three models fitted to the data. Bottom: residuals after subtracting the models.

The observed differences with W15 could be due to several different causes.
Firstly, the newer corrections together with the different orbits, could lead to dif-
ferent drifts and intramission biases. However, changing the TOPEX orbits (REAPER
and GDR-CP) and the dry tropospheric corrections (ECMWF) did not lead to signif-
icantly different results. Most other corrections are not likely to have a dramatic ef-
fect on GMSL trends, because similar corrections are applied to TOPEX and ERS1&2.
However, the SSB corrections in coastal waters (at most tide gauges) or at very high



5.3. Results 105

SWHs (primarily in the circumpolar current) could influence estimates of the drift
and biases due to the geometry of the tide-gauge network. Secondly, the sea surface
heights estimated from the ERS1&2 missions are drifting and therefore an indepen-
dent comparison with tide gauges is required. This cannot explain the difference in
the intramission bias between our results and W15. And thirdly, the validation and
calibration of TOPEX with tide gauges of W15 is biased. Remaining ocean signals
in the ALT-TG time series could induce short-term trends and possibly misleading
discontinuities in the models. GNSS receivers are often not colocated with the tide
gauge and therefore several incorrect VLM trends might affect the drift. Over the
whole altimetry period mean differences between VLM trends of ALT-TG and GNSS
are in the order of 0.3 mm yr−1 (Wöppelmann and Marcos, 2016; Kleinherenbrink et

al., 2018). The geometry of and averaging techniques in the tide-gauge compari-
son could cause drift and bias changes, which is not unlikely because geographically
varying intermission biases have already been detected between TOPEX and Jason-1
(Ablain et al., 2015). Fourthly, W15 linearly extrapolated GNSS and GRACE trends
back in time, while contemporary mass redistribution causes non-linear VLM trends
(Riva et al., 2017). This is further discussed in Sect. 5.3.2.

Table 5.2: Modeled drifts and biases from crossovers of TOPEX-ERS1&2 before and after re-
moving cal-1. The models are described in Sect. 5.2.1. The F-scores are computed with
respect to model 1, with high scores indicating a significant improvement. *For model 2 the
5% significance level is 3.9, while for model 3 it is 3.1.

SSB Model Drift A [mm yr−1] Drift B [mm yr−1] Bias A/B [mm] F-score*

bm4 1 -0.96±0.16 0 -
CSR 1 0.14±0.16 0 -
CLS 1 -0.02±0.15 0 -
bm4 2 -0.48±0.28 -3.2±1.6 3.9
CSR 2 -0.45±0.28 3.9±1.6 5.9
CLS 2 -0.50±0.28 3.2±1.6 4.1
bm4 3 -0.51±0.31 -0.34±0.69 -3.4±1.8 2.0

CSR 3 -0.49±0.31 -0.27±0.69 3.7±1.8 3.0

CLS 3 -0.55±0.31 -0.27±0.68 3.0±1.7 2.1

bm4 no cal 1 -1.53±0.14 0 -
CSR no cal 1 -0.44±0.14 0 -
CLS no cal 1 -0.59±0.14 0 -
bm4 no cal 2 -1.13±0.25 -2.7±1.4 3.6

CSR no cal 2 -1.10±0.25 4.4±1.4 10.0
CLS no cal 2 -1.15±0.25 3.7±1.4 7.1
bm4 no cal 3 -1.22±0.27 -0.71±0.61 -3.2±1.5 2.1

CSR no cal 3 -1.19±0.27 -0.64±0.60 3.9±1.5 5.3
CLS no cal 3 -1.25±0.27 -0.64±0.60 3.1±1.5 4.0

Comparison with B17

Fig. 5.3 shows the time series and residuals after removal of cal-1. The drifts and
biases for the accompanying models are given in the bottom of Table 5.2. Removal of
cal-1, causes the drifts over the whole TOPEX period to decrease by at least 0.5 mm
yr−1, which corresponds closely to the results of B17 when applying the CSR and
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CLS SSB corrections. The drift is reduced by incorporating a bias into the model,
when we apply the bm4 SSB correction, but increases when the CSR or CLS SSB
correction are applied. The F-test demonstrates that the use of an intramission bias
no longer significantly reduces the residuals. For the other SSB corrections, the bias
becomes larger and therefore regression of an intramission bias is required. Note
that the drifts computed over the TOPEX-B period are for all SSB corrections about
0.5 mm yr−1 smaller than for the TOPEX-A period, if separate trends are estimated
(model 3), but they are statistically equal. Separate estimation of TOPEX-A&B drifts
is therefore not required.

B17 mentioned that the TOPEX-A/B intramission bias is sensitive to the number
of cycles taken on either side of the transition. Based on the bias uncertainty, B17
noted that it added only 0.11 mm yr−1 uncertainty to the GMSL trend, however it
can have a significant effect on the acceleration. Preferably, an intramission bias
is not estimated at all, which therefore suggests that the ’old’ bm4 SSB correction
should be used. However, the estimated bias is close to the 2σ confidence interval
and not estimating a bias yields a large drift between TOPEX and ERS1&2. Note that
including a bias (model 2) leaves statistically consistent drifts no matter what SSB
correction is used. It suggests that with a crossover analysis, it is possible to find
accurate intramission biases if cal-1 is not applied. Model 2 could therefore serve
as a calibration for TOPEX-A&B GMSL if the drift found from the crossovers can be
confirmed with a tide-gauge comparison.
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Figure 5.3: Top: time series of sea surface height differences (TOPEX-ERS1&2) for the bm4
(left), CSR (middle) and the CLS (right) SSB models for which Cal-1 is removed, together
with three models fitted to the data. Bottom: residuals after subtracting the models.

It is however also possible to treat TOPEX-A&B as two separate systems (in con-
trast to B17), by only unapplying the cal-1 correction in TOPEX-A. As shown in Table
5.3, when using the bm4 correction and not estimating a bias, a drift is obtained,
which is not statistically different from those for model 2 when cal-1 is not applied
for the whole TOPEX time series. As for the results in the preceding paragraph, a sig-
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Table 5.3: Modeled drifts and biases from crossovers of TOPEX-ERS1&2 after removing cal-1
only from TOPEX-A. The F-scores are computed with respect to model 1. *For model 2 the 5%
significance level is 3.9, while for model 3 it is 3.1.

SSB Model Drift A [mm yr−1] Drift B [mm yr−1] Bias A/B [mm] F-score*
bm4 no cal-A 1 -1.25±0.13 0 -
bm4 no cal-A 2 -1.07±0.24 -1.20±1.37 0.7

bm4 no cal-A 3 -1.22±0.27 -0.34±0.60 -2.06±1.51 1.3

nificant negative drift between TOPEX and ERS remains, which implies that GMSL
from ERS exhibits a larger secular trend.

Regional differences

The drifts and especially intramission biases are geographically different. To demon-
strate this, the crossover differences are averaged over the southern and northern
hemisphere, respectively. The resulting time series are shown in Fig. 5.4 with their
corresponding fitted models. For all SSB corrections, both TOPEX-A&B crossovers
exhibit a negative drift in the southern hemisphere, while TOPEX-B exhibits a posi-
tive drift with respect to ERS2 in the northern hemisphere. The intramission bias is
negative for bm4 in the southern hemisphere and neglectable for the other two SSB
corrections. In the northern hemisphere, the bm4 intramission bias is neglectable,
but for CSR and CLS they become substantially larger. For the northern hemisphere,
there is also a substantial difference between the intramission biases, depending on
the model used (model 2 or 3). On smaller scales, i.e. latitudinal bands, the dif-
ferences become even larger, but the signals also substantially noisier, partly due to
differences in the amplitudes of seasonal cycles observed by the two altimetry sys-
tems, TOPEX and ERS.

Also note that the SSB corrections in undeep coastal zones, where tide gauges are
often located, might not be appropriate due to the changing wave climate. Andersen

and Scharroo (2011) showed that the magnitude of the SSB is correlated with water
depth and/or distance to the coast. Averaging crossovers only in the coastal zones
(< 200 km) yields intramission bias differences up to a millimeter. The largest bias
differences between the coastal zones and the open ocean are obtained with the CLS
SSB correction. The differences are not significant, but note that these values are
with respect to the ERS1&2 sea surface heights, which in themselves are also likely
to be affected by coastal effects.

The geographical depence of the SSBs and the intramission bias have two impli-
cations. First, if a globally averaged intramission bias is estimated, it is only appli-
caple to GMSL studies. For regional studies, a separate intramission bias should be
estimated, but the size of the region has a lower bound depending on the altimeter
noise in the considered area, because the estimates become noisier and therefore
eventually lead to uncertainties in regional sea-level trends. It is therefore also not
recommendable to use TOPEX-A in sea-level trend studies on sub-basin scales or in
marginal seas. Second, it sets strong requirements for the geometry of the tide-gauge



108 Chapter 5. Calibration of the TOPEX global mean sea level record using
ERS1&2

−40

−20

0

20

40
s
s
h

a
 d

if
f.

 [
m

m
]

1992 1994 1996 1998 2000 2002 2004
years

1992 1994 1996 1998 2000 2002 2004
years

bm4 CSR CLS

Figure 5.4: Right: Averaged crossover sea-level differences between TOPEX and ERS1&2 over
the southern hemisphere. Left: Averaged sea-level differences over the northern hemisphere.
Cal-1 is in all cases unapplied.

network for validation and calibration of altimeters. Overweighting certain regions
might over- or underestimate the intramission biases and drifts of TOPEX. Likely, the
uncertainties of 2-2.5 mm yr−1 of the intramission bias estimates of B17 and W15
are underestimated.

5.3.2 Tide-gauge comparison

First, the depence of the results on the averaging methods is discussed. It is deter-
mined under which circumstances a stable and reliable result is obtained. Then our
methods are compared to those of crossover results and previous studies.

Models and averaging methods

The number of CPs varies strongly per tide gauge (Fig. 5.5). In combination with
the variance of the residuals of the CP time series this leads to varying weights per
tide gauge (Fig.5.6). Method m1 heavily weights the Pacific and the high-latitude
regions, especially Europe, for which more CPs are available. In method m2, the
high-latitude regions are still strongly represented, but the contribution of the Pacific
is reduced. All tide gauges in method m3 are weighted equally and in the virtual sta-
tion method (m4) a better geographical distribution is achieved. However, methods
m3 and m4 are more sensitive to outliers due to remaining ocean signals, because
tide gauges containing only a few CPs are weighted equally or possibly even heav-
ier than tide gauges surrounded by many CPs. Methods m1, m2 and m4 all suffer
from sensitivity to outliers in VLM estimates, due to the strongly enhanced weighting
of a few stations. In all methods, large parts of the Pacific and Atlantic Oceans are
underrepresented.

As a reference, the three models are computed through the time series with the
cal-1 correction unapplied. The histograms of the drifts and biases estimated with
models 1 (Fig. 5.7), model 2 (Fig. 5.8) and model 3 (Fig. 5.9) demonstrate the
effects of the weighting methods. With model 1, a slightly larger drift is found for the
bm3 SSB time series than for the other two. Despite the differences in the weighting
methods, all model 1 results are statistically equivalent on a 95% confidence level
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Figure 5.5: Number of CPs per tide gauge. Only stations with more than ten CPs are shown.

to the crossovers (Table 5.2). As shown by the crossover analysis, for the bm4 time
series modelling a single drift should be sufficient. This suggests there is a drift in
TOPEX and not in the ERS1&2 sea surface heights.

However, when additionally a bias (model 2) is estimated in the ALT-TG time
series, different intermission biases are obtained than for the crossovers (Fig. 5.8).
Indepent of the averaging method and the SSB correction the intramission biases
become 4-6 mm lower than those found when using the crossovers. This leads to an
TOPEX-A/B drift that is statistically indistinguishable from zero. As demonstrated in
Sect. 5.3.1, the intramission bias is geographically varying. This, in combination with
the over- and underweighting of certain regions in the tide-gauge validations could
affect the estimated intramission bias. We argue that the intramission bias obtained
from the crossovers is therefore more accurate. Besides geographical varying TOPEX-
A/B bias, the problem of residual ocean signals in ALT-TG time series, which can be
correlated between tide gauges, could also bias the results. ALT-TG bias estimates
from CPs located in the tropical Pacific and along the American shore are especially
prone to remaining signals from the consecutive 97-98 El Niño and 99-00 La Niña
events, because they occurr around the time of the TOPEX-A/B transition.

The statistics of model 3 (Fig. 5.9) show that the averaging methods find large
differences in the drift of TOPEX-B. The estimated biases are closer to zero with re-
spect to model 2 and appear to be negatively correlated with the drifts in TOPEX-B.
The drifts in TOPEX-A are negative for methods m1, m2 and m3 and slightly higher
for m4, but all of them close to zero and statistically consistent between the meth-
ods. Large deviations between the methods suggest that geographically varying sig-
nals affect the global estimate. Additionally, for estimating an accurate drift through
TOPEX-B, the time series appear to be too short.

A stability check is carried out to inspect the sensitivity of the methods to the
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thresholds set by W15 for the standard deviation of the residuals and the TOPEX-A
drift uncertainty and by us for the TOPEX-A/B drift uncertainty. In Fig. 5.10, the
threshold on the standard deviation of the residuals is varied while we set the trend
uncertainty thresholds to 100 mm yr−1. In Fig. 5.11, the threshold on the trend
uncertainty is varied, while the threshold on the standard deviation of the residuals
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Figure 5.6: (Caption previous page.) Relative weight per tide gauge or virtual station. Top-
left: m1 (mean). Top-right: m2 (variance weighting). Bottom-left: m3 (mean per station).
Bottom-right: m4 (virtual stations).
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Figure 5.7: Histograms of the TOPEX A/B drift for the four averaging methods based on
model 1 without cal-1 applied to TOPEX-A&B. On the left, at the middle and on the right
the histograms for the bm4, CSR and CLS SSB corrections. In red, green, blue and purple the
methods m1, m2, m3 and m4, respectively.

is set to 200 mm. Note that the nominal thresholds were 110 mm for the standard
deviation and 10 mm yr−1 and 8 mm yr−1 for the trend uncertainties of TOPEX-A
(model 1) and TOPEX-A/B (models 2 and 3), respectively. As already suggested by
the histograms, it is difficult to constrain a drift for TOPEX-B. The TOPEX-B drifts be-
tween methods differ more than 1 mm yr−1 and the estimated drift strongly depends
on the threshold for the standard deviation of residuals. This also appears to nega-
tively correlate with the estimated intramission bias and slightly with the estimated
TOPEX-A drift. Therefore, we do not recommend to apply model-1 for validation pur-
poses, and certainly not for calibration. More stable results are obtained for models
2 and 3. The virtual station method (m4) yields a larger intramission bias at higher
thresholds than the other methods. This could be related to the overall geometry of
the network, but the method is also more prone to outliers as shown by the wider
distributions in the histograms. The estimated TOPEX-A/B drift in both models 2
and 3 for all methods is statistically equivalent. Overall, the results of the variance
weighting method (m2) yields the most stable result, i.e. it does not vary much when
the thresholds are changed. However, this does not mean it is the best method, be-
cause the results are biased towards several stations at high latitudes (Fig. 5.6). In
conclusion, we should only rely on tide-gauge comparisons when all methods give
the statistically equivalent results, which is only the case for model 1.

Comparison with crossovers and previous studies

The crossover analysis (Tables 5.2 and 5.3) indicated that TOPEX GMSL is drifting
with respect to ERS1&2 GMSL. The TOPEX-tide-gauge comparison is required to
determine whether TOPEX or ERS1&2 GMSL is drifting. Since it is not possible to
accurately constrain an intramission bias with a tide-gauge comparison, we will focus
on the application of model 1. All statistics for the drifts and intramission biases
discussed here are shown in Table 5.4. The histograms in Fig. 5.12 show that from
four methods drifts are obtained between -0.8±0.3 and -1.4±0.3 mm yr−1 for the
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Figure 5.8: Histograms of the TOPEX A/B drift and intramission bias for the four averaging
methods based on model 2 without cal-1 applied to TOPEX-A&B. On the left, at the middle
and on the right the histograms for the bm4, CSR and CLS SSB corrections. In red, green, blue
and purple the methods m1, m2, m3 and m4, respectively.

0

30

60

90

120

150

n
u

m
b

e
r 

o
f 

d
ri
ft

s

−3 −2 −1 0 1 2 3

drift−A [mm/yr]

−3 −2 −1 0 1 2 3

drift−A [mm/yr]

−3 −2 −1 0 1 2 3

drift−A [mm/yr]

0

20

40

60

80

n
u

m
b

e
r 

o
f 

d
ri
ft

s

−3 −2 −1 0 1 2 3

drift−B [mm/yr]

−3 −2 −1 0 1 2 3

drift−B [mm/yr]

−3 −2 −1 0 1 2 3

drift−B [mm/yr]

0

20

40

60

80

n
u

m
b

e
r 

o
f 

b
ia

s
e

s

−10 −5 0 5

bias−A/B [mm]

−10 −5 0 5

bias−A/B [mm]

−10 −5 0 5

bias−A/B [mm]

Figure 5.9: Histograms of the TOPEX A&B drifts and intramission bias for the four averaging
methods based on model 3 without cal-1 applied to TOPEX-A&B. On the left, at the middle
and on the right the histograms for the bm4, CSR and CLS SSB corrections. In red, green, blue
and purple the methods m1, m2, m3 and m4, respectively.

case that the bm4 SSB correction is applied and cal-1 is only applied to TOPEX-B
(as in Table 5.3). This is statistically equivalent to the crossover drift. Additionally,
we computed model 1 for the TOPEX-tide-gauge comparison for the case that the
CSR SSB correction is applied and cal-1 is unapplied to TOPEX-A&B. This allows for
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Figure 5.10: Sensitivity of the four averaging methods m1 (red), m2 (green), m3 (blue) and
m4 (pink) to the threshold for the standard deviation of the residuals. On the left separate
drifts are estimated for TOPEX-A&B and an intramission bias (model 3), in the center one drift
for TOPEX is estimated and an intramission bias (model 2) and on the right only one drift is
estimated (model 1).

another comparison with the crossovers and with B17. All four methods are equal
on a 95% confidence level to both B17 and the crossovers. Note that the crossovers
for the CSR SSB indicate a positively biased TOPEX-B GMSL with respect to TOPEX-
A. Removal of the intramission bias as determined with the crossovers would lead
to a stronger drift than found by B17. Both results confirm that the crossover drift
is caused by TOPEX and not by ERS1&2 and therefore we recommend to calibrate
TOPEX GMSL using the crossovers.

Even though no stable results are obtained from the tide-gauge comparison in
combination with model 3, the results are given in Table 5.4 for an intercompari-
son with W15 and B17. W15 and B17 both computed two separate drifts and an
intramission bias for TOPEX with cal-1 applied. The drifts for TOPEX-A in both stud-
ies are significantly higher than our tide-gauge- and crossover-derived drifts. The
drifts obtained for TOPEX-B are difficult to constrain and therefore there is a huge
spread, but all results are captured in two standard deviations of W15 results. Our
tide-gauge-based intramission biases are just or just not statistically equivalent to the
positive bias obtained by the crossovers. W15 finds a negative bias, which is statis-
tically consistent with our tide-gauge results. B17 finds a much larger bias, which is
probably related to their processing scheme. It remains unclear why W15s TOPEX-A
drift is so much larger than our results, but it is probably a combination of several
factors, like the weighting procedure, tide-gauge selection and VLM correction.
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Figure 5.11: Sensitivity of the four averaging methods m1 (red), m2 (green), m3 (blue) and
m4 (pink) to the threshold for the trend uncertainties. On the left separate drifts are estimated
for TOPEX-A&B and an intramission bias (model 3), in the center one drift for TOPEX is esti-
mated and an intramission bias (model 2) and on the right only one drift is estimated (model
1).
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Figure 5.12: Histogram of the TOPEX-A/B drift for the four averaging methods based on the
bm4 SSB and model 1. Cal-1 is only applied to TOPEX-B. In red, green, blue and purple the
methods m1, m2, m3 and m4, respectively.

Model 3 is also computed after unapplying cal-1. The drift of TOPEX-A found
by B17 is just outside the 95% confidence interval of our tide-gauge results. The
TOPEX-B drift is similar to three averaging methods and the crossovers. For only
two averaging methods the intramission bias is statistically similar to B17, while the
crossovers yield an intramission bias of opposite sign. Since our results and those
of B17 for model 1 are similar, but not model 3, it supports the notion that estimat-
ing two separate drifts and an intramission bias for TOPEX-A/B leads to unreliable
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Figure 5.13: Histograms of the TOPEX-A&B drifts and intramission bias for the four averaging
methods based on model 3 with the CSR SSB correction applied. Cal-1 is applied to TOPEX-
A&B.

Table 5.4: Drift and biases for the W15 and B17 comparison with model 3 (Fig. 5.12) and for
the crossover and B17 comparison with model 1 (Fig. 5.13).

SSB Method Drift A [mm yr−1] Drift B [mm yr−1] Bias A/B [mm]

Model 1 bm4 No cal-1 TP-A m1 -1.10±0.33 0
bm4 No cal-1 TP-A m2 -1.26±0.33 0
bm4 No cal-1 TP-A m3 -0.80±0.33 0
bm4 No cal-1 TP-A m4 -1.44±0.34 0
bm4 No cal-1 TP-A X-overs -1.25±0.13 0

Model 1 CSR No cal-1 m1 -0.55±0.33 0
CSR No cal-1 m2 -0.75±0.33 0
CSR No cal-1 m3 -0.33±0.33 0
CSR No cal-1 m4 -0.90±0.33 0
CSR No cal-1 X-overs -0.44±0.14 0

B17 -0.45 0
Model 3 CSR m1 0.24±0.34 -0.19±0.47 0.0±0.9

CSR m2 0.21±0.35 -0.99±0.43 0.6±0.7
CSR m3 0.21±0.35 0.75±0.45 -0.7±0.8
CSR m4 -0.01±0.36 0.39±0.50 -2.3±1.2
CSR X-overs -0.49±0.31 -0.27±0.69 3.7±1.8

W15 1.49±0.49 0.92±0.93 -2.9±2.5
B17 1.02 0.53 -8±2

Model 3 CSR No cal-1 m1 -0.50±0.34 -0.27±0.47 -0.5±0.9
CSR No cal-1 m2 -0.54±0.35 -1.07±0.42 0.1±0.7
CSR No cal-1 m3 -0.48±0.35 0.64±0.47 -1.4±1.0
CSR No cal-1 m4 -0.71±0.36 0.18±0.49 -2.7±1.3
CSR No cal-1 X-overs -1.19±0.27 -0.64±0.60 3.9±1.5

B17 0.25 0.23 -5±2

results.

5.3.3 Global mean sea level

A time series of GMSL is computed using the TOPEX, Jason-1 and Jason-2 data from
the RADS database with the correction applied as in Table 5.1. For the Jason-1&2
the Geophysical Data Record version E (GDR-E) orbits are taken and the SSB cor-
rection from Tran et al. (2012) is used. Fig. 5.14 shows the effects of the removal
of cal-1 and the calibration with ERS1&2 on the GMSL record. Table 5.5 lists the
corresponding trends and accelerations. In the original setting, a trend is obtained
of 2.8±0.4 mm yr−1, which exludes a GIA correction of approximately 0.3 mm yr−1.
There is no significant acceleration detected in GMSL based on a 95% confidence
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level. By not applying cal-1 the trend decreases by 0.16 mm yr−1 and a significant
acceleration of 0.052±0.013 mm yr−2 is detected, which corresponds closely to the
value of 0.051±0.020 mm yr−1 of B17.

As observed by the ERS1&2 crossovers and confirmed by the tide-gauge com-
parison, a significant drift and a TOPEX-A/B intramission bias are present after the
removal of cal-1. The intramission biases from model 2 (Table 5.2) are subtracted
from the TOPEX-B GMSL time series and accordingly a drift correction is applied to
the whole TOPEX time series. For all of the SSB corrections this lead to comparable
GMSL trends and accelerations and all of the acceleration become statistically in-
significant on a 95% confidence interval. If the cal-1 is only not applied to TOPEX-A,
while using the bm4 SSB correction, the removal of only one trend through TOPEX-
A&B and no intramission bias would suffice. This leads to a statistically equivalent
trend and acceleration with respect to the other three calibrated solutions. Based
on the results of Nerem et al. (2018), the acceleration increases when the effects of
the Mount Pinatubo eruption in 1991 are taken into account, which cause our accel-
eration estimates to become just significant. However, a consecutive correction for
ENSO leads to a decrease in the accelerations, which makes them likely insignificant
again.

Table 5.5: GMSL trends and accelerations before and after cal-1 and drift corrections based
on the crossovers with ERS1&2.

SSB Trend [mm yr−1] Acceleration [mm yr−2]

Original CSR 2.8±0.4 0.017±0.013
No cal-1 CSR 2.7±0.4 0.052±0.013
No cal-1 + model 2 CSR 2.8±0.4 0.017±0.013
No cal-1 + model 2 CLS 2.8±0.4 0.018±0.013
No cal-1 + model 2 bm4 2.8±0.4 0.019±0.013
No cal-1 TP-A + model 1 bm4 2.9±0.4 0.015±0.014
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Figure 5.14: Residuals time series after removing the seasonal cycles for crossover time series
based on various SSB, cal-1 and model corrections.
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5.4 Conclusions

This study proposes a calibration method for TOPEX GMSL time series. The cal-
ibration method is based on a crossover analysis with the ERS1&2 satellites. We
focussed on the effects of the sea state bias corrections, the estimation of a TOPEX-
A/B intramission bias an possible drifts in the TOPEX altimeter. Then a tide-gauge
comparison using four averaging methods is applied to investigate whether it is pos-
sible to calibrate or validate TOPEX GMSL using tide gauges. The results of the
tide-gauge comparison are compared with the crossover analysis. Both the results
of the crossover analysis and the tide-gauge comparison have been compared to the
studies of W15 and B17.

The TOPEX-ERS1&2 crossovers indicate that there is clear U-shape drift in the
TOPEX-A time series and that not applying cal-1 as done in B17 is justified. The
remaining drift in the crossovers is similar to the one found by the tide-gauge com-
parison of B17. However, models indicate that next to a drift, the estimation of
an TOPEX-A/B intramission bias is required to obtain a consistent drift of about -1.1
mm yr−1, independently of the SSB correction applied. A similar drift is also obtained
without estimating a bias, by using the bm4 SSB correction while only removing the
cal-1 correction of TOPEX-A. These approaches are only applicable to GMSL, because
regional differences in the intramission bias are observed. Regional intramission bi-
ases can be estimated, but we recommend caution, because the uncertainty increases
substantially over sub-basin-scale regions.

These regional differences have a profound effect on the estimation of the in-
tramission bias using tide gauges. The geometry of the network in combination
with the averaging method applied tends to overweight certain regions. Besides
these issues, remaining ocean signals in ALT-TG time series that correlate between
tide gauges or control points could bias the overall solution. Note that two ENSO
events, an El Niño (1997-1998) and a La Niña (1999-2000), occurred around the
time of the TOPEX-A/B transition, which could affect the estimation of the TOPEX-
A/B intramission bias. The estimated TOPEX-B drift varies strongly between the four
ALT-TG averaging methods applied and is therefore difficult to constrain. Separately
estimating TOPEX-A&B drifts and intramission biases from tide gauges, as done by
W15, is therefore not recommended. Even though the TOPEX-A drift is stable among
four averaging methods, the drift is significantly smaller than those obtained by W15.
The discrepancies may be related to the VLM correction for the tide gauge, but the
cause is unresolved. By only estimating a single drift through TOPEX-A&B, similar
results are obtained as with the crossovers and B17.

We therefore calibrate TOPEX with the ERS1&2 crossovers. Either cal-1 is re-
moved from both TOPEX-A&B and accordingly a drift over the whole TOPEX period
is removed together with an intramission bias, where the magnitude depends on the
SSB correction. Or the bm4 SSB model is applied and cal-1 is only removed over
the TOPEX-A period. Then a drift of 1.25±0.13 mm yr−1 is removed. Both solutions
lead to statistically consistent GMSL trends and accelerations. This has implications
for the trend and acceleration estimated from GMSL records. The removal of cal-
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1 decreases the estimated trend by 0.1-0.2 mm yr−1, but this is restored again by
the crossover calibration. The removal of cal-1 also yields a significant acceleration,
but the ERS1&2 calibration reduces the acceleration so that it becomes statistically
insignificant again.



Chapter 6

Conclusions and recommendations

This chapter consists of two parts. Sect. 6.1 lists and answers the research questions
posed in the first chapter. Sect. 6.2 provides recommendations for future work and
possible improvements to the research.

6.1 Conclusions

Can the sea-level budget be closed on a regional scale in the North Atlantic

Ocean using satellite altimetry, satellite gravimetry and Argo float observations?

To investigate this research question the North Atlantic Ocean has been split into ten
regions, such that the uncertainties on the trends do not exceed 1 mm yr−1. For all
three observation systems, state-of-the-art or novel post-processing techniques have
been applied to obtain adequate solutions for the sum of the GRACE mass and Argo
steric components and the Jason total sea level. Budget closure is assumed if the
sum of the component equals the total, or absolute, sea level over the region on a
95% confidence level, based on the uncertainties of all three observation systems.
The uncertainties for mean steric and mean total sea level are approximated using
well-known correlation functions.

The primary focus for budget closure lies, however, on the mass component de-
rived from GRACE. Filtering of the GRACE solutions is required to suppress noise
due to stripes in the gravity fields. An anisotropic Wiener filter is used to reduce the
loss of resolution, which is large if a Gaussian filter would be applied. Four different
solutions are compared: the standard degree-96 Center for Space Research DDK5
filtered gravity field (CSR-DDK) as a reference and furthermore the Wiener-filtered
degree-60 CSR (CSR60-W), degree-96 CSR (CSR96-W) and degree-90 Institute of
Theoretical geodesy and Satellite Geodesy (ITSG90-W) solutions. We determine that
the summation of Argo steric sea level with ITSG90-W mass closed best the sea level
budget with Jason-1&2 altimeters. Using ITSG90-W in nine-out-of-ten sub-basins the
sea level trend budget is closed when an uncertainty of 20% on the Glacial Isostatic
Adjustment (GIA) correction is assumed. In seven-out-of-ten regions the annual am-
plitudes are statistically comparable. After subtracting linear trends and annual cy-
cles, the sum of ITSG90-W mass and Argo steric sea level explains 24-53% of the
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residuals in Jason-1&2 mean sea levels.

The trend budget in the region next to the Gibraltar strait is not closed. We
suggest that this is due to density changes at depths below the considered 1000 m,
because of saline water influx from the Mediterranean. Temperature and salinity
measurements below 1000 m are not considered, because not enough Argo floats
descended deep enough in the first years of the considered period. In the north-
ernmost regions the annual amplitudes of Argo and GRACE do not equal those of
altimetry. It is not clear why the amplitude budget does not close, but possible cul-
prits are GRACE filters that destroy part of the signal, yearly deep convections events
and Argo interpolation issues. On interannual scales, Argo+GRACE and altimetry
are both capable to detect centimeter-level signals in sea level, such as north-south
shifts of the Gulf Stream. However, close to the Amazon basin altimetry detects some
additional variability, which is likely not captured due to a sampling issue of Argo.

To summarize, in most of the North Atlantic Ocean sea level budgets can be closed
at sub-basin scales. However, steric estimates over a larger depth are required to find
the definitive cause for the non-closures. Even smaller scales (< 1/10th North At-
lantic) and meridionally-oriented averaging regions are not considered, because the
trend uncertainties become larger than 1 mm yr−1. We expect however that in those
cases stronger filters are required to suppress the striping noise in GRACE, which
likely destroys part of the signal. From the Argo perspective improvements are ex-
pected, because the number of floats is still increasing after 2014 and the larger
depths are better sampled.

How can we consistently separate the mass and the steric component of sea

level on continental shelves and in coastal regions?

This question is answered by using the Tropical Asian Seas (TAS) as a case study,
because it is sufficiently large to contruct sea level budgets. The TAS is furthermore
an interesting study area for its ocean dynamics and large sea level trends. The region
is split into four areas, of which two are shallow (<200 m) and two are deep (>1000
m).

Similar to the budgets over the open ocean, absolute sea level and the mass
component are derived from Jason altimetry and GRACE. Since correlation scales in
complex regions like the TAS differ from those over the open ocean, variograms are
used to estimate covariance parameters between Jason altimetry measurements. For
GRACE the uncertainties are propagated from the formal variance-covariance ma-
trices. Additionally, a bottom deformation correction is applied to GRACE, because
of the large mass variability in the region. Temperature and salinity estimates from
eight ocean reanalyses are used to estimate steric sea level and their variances.

The time series match quite well, but the seasonal signals and the trends statisti-
cally differ from each other. Therefore the variances of the three time series are used
in a least-squares inversion to estimate consistently the mass and steric components
of sea level. This leads to a statistically-weighted mass time series that still strongly
resembles the GRACE time series, but a statistically-weighted steric time series that
differs from the ocean reanalysis time series.
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We investigate interannual dynamics in the steric and mass components by re-
gressing two principal components of the Pacific equatorial wind stress and the Dipole
Mode Index (DMI). In the South China Sea, we cannot explain the interannual vari-
ability with these components and sea level is apparently driven by other processes.
In the deep Banda and Celebes Seas, there is large steric variability which is related
to the DMI and the Pacific equatorial wind stress. The shallow regions exhibit a large
mass signal, which is primarily related to the first principal component and coupled
to the El Niño Southern Oscillation (ENSO).

The mass and steric trends are reduced by 0-3 mm yr−1 by including the two
principal components of wind stress and the DMI into the regression. Additionally,
a small mass signal is caused by the nodal cycle which affects the trends by another
1 mm yr−1. The residual mass trends are close to the trends estimated by mass-
redistribution models. Omission of the TAS in global sea level budgets leads to a bias
of 0.3 mm yr−1.

In conclusion, statistically weighting the time series of sea level components from
two observing systems (GRACE and Jason altimetry) and from ocean reanalyses al-
lows to get a consistent separation between mass and steric sea level. This is primarily
required to find consistent trends and annual signals, while most of the interannual
variability in the statistically-weighted time series can be explained with well-known
oceanic indices. The estimated mass trend can be accounted for by models and re-
gression of the same indices.

Can we improve the ALT-TG-derived and GNSS-derived VLM estimates at tide

gauges?

Using a cross-validation, the consistency of altimetry-tide gauge (ALT-TG) and Global
Navigation Satellite System (GNSS) methods has been investigated. A number of
improvements for both methods have been suggested. The Nevada Geodetic Labora-
tory (NGL) database has been used for the GNSS trends and they are compared to the
commonly used University of La Rochelle trends. Besides the larger number of GNSS
trends, the processing procedure of NGL makes the trend estimates less sensitive to
discontinuities caused by earthquakes or equipment changes. Eight methods have
been compared to combine nearby GNSS trends into a single VLM trend estimate at
the tide gauge. It is found that taking the median of the GNSS trend provides the
best agreement with the ALT-TG trends.

In ALT-TG time series interannual signals related ocean dynamics are present,
which might bias VLM trend estimates. In order to reduce this, thresholds are set
on the correlation between along-track altimetry and tide-gauge time series, so that
surrounding altimetry time series are only considered if their oceanic signals are sim-
ilar to those at the tide gauge. Per tide gauge the remaining altimetry time series are
averaged and subtracted from the tide-gauge record. Note that in case of a disconti-
nuity in the tide-gauge record, the chosen thresholds automatically remove the tide
gauge as well. We are indeed able to reduce the oceanic signals in ALT-TG time se-
ries and find spatially coherent changes in the trend, but the agreement with GNSS
trends is not significantly improved in a statistical sense. However, the correlation
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threshold also acts as a filter to remove problematic ALT-TG trends. This reduces the
number of tide gauges for which trends are computed, but enhances the reliability
of the estimated trends.

In conclusion, the consistency between the ALT-TG and GNSS VLM trends is im-
proved by reducing the RMS of the differences from 1.47 mm yr−1 (Wöppelmann and

Marcos, 2016) to 1.22 mm yr−1 for a larger number of stations. The cross-validation
shows that a large part of the improvement can be attributed to using the median of
the surrounding GNSS stations instead of the nearest station. Applying correlation
thresholds and weights do not further reduce the RMS of the differences. Correcting
for non-linear VLM due to present-day mass redistribution reduces the mean of ALT-
TG and GNSS trend differences.

How to process and calibrate GMSL derived from the TOPEX altimeter using

crossovers, tide gauges and VLM estimates?

Due to issues with the point target response of the TOPEX side-A altimeter, drifts of
non-geophysical origin contaminate the GMSL record. There is also a discontinuity
present between TOPEX-A&B, which requires the removal of an intramission bias.
Two methods to cope with these problems are investigated: 1) the calibration of
separate TOPEX-A&B drifts and an intramission bias estimate based on a comparison
with tide gauges and 2) the removal of an internal calibration (cal-1) from the whole
TOPEX time series. We analyse the two strategies by means of a crossover analyis
with ERS1&2 sea surface heights.

Since the intramission bias is spatially varying and the tide-gauge calibration
tends to overweight certain geographical regions, the accurate estimation of an in-
tramission bias is challenging. Additionally, when relying on tide gauges for cali-
bration, the intramission bias and two short-term drifts for TOPEX-A&B are likely
affected by remaining oceanic signals in the difference ALT-TG time series. There-
fore, we show that solution 1 is not suitable to calibrate TOPEX GMSL.

The crossover analysis with ERS1&2 sea surface heights shows that not applying
cal-1 over the TOPEX period is justified as in solution 2, so it is removed. However,
the analysis also reveals that the intramission bias depends on the Sea State Bias
(SSB) correction and that there is a negative drift of TOPEX with respect to ERS. By
estimating a single drift over the TOPEX period and an intramission bias, a drift of
more than 1 mm yr−1 is found that is independent of the SSB correction. A similar
drift is obtained without estimating an intramission bias if the bm4 SSB correction
(Gaspar et al., 1994) is used and cal-1 is only applied to TOPEX-B. The latter is con-
firmed by the presence of a drift estimated from a comparison with tide gauges.

Our results have strong implications for the acceleration detected in the GMSL
record. If cal-1 is unapplied to the whole TOPEX time series, an acceleration in
sea level is detectable in case the commonly used CSR and CLS SSB corrections are
applied. However, after calibration with the intramission biases and the drifts found
by the crossover analysis, the acceleration becomes statistically insignificant.

In summary, findings from TOPEX-ERS crossovers and a comparison with tide
gauges suggest that there is a drift in the TOPEX GMSL record if cal-1 is not applied.
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If any of the available SSB corrections is used and cal-1 is not applied, a single drift
over TOPEX-A&B and an intramission bias should be corrected for. Similar results
are obtained by only removing a TOPEX-A&B drift when the bm4 SSB correction
is used and cal-1 is applied to TOPEX-B alone. Tide gauges should not be used to
estimate two separate drifts for TOPEX-A&B and an intramission bias, but only used
for validating a single drift over the whole TOPEX record. After calibration with the
crossover results, there is no significant acceleration detectable in the GMSL record.

6.2 Recommendations

In the North Atlantic sea level budget study it is assumed that the contribution of sea
floor deformation to absolute sea level is only caused by GIA. The sea floor defor-
mation due to present-day ice mass loss is neglected. The time series of GRACE are
currently 3 years longer and even though those solutions are of poorer quality, the
uncertainties on the trends and the amplitudes of the annual cycle likely decrease.
Besides that, the ice mass loss of Greenland has been accelerating (Svendsen et al.,
2013). Both could cause sea floor deformation to have a significant effect on several
of the considered sub-basins. Therefore we recommend to apply either a correction
to GRACE or altimetry for sea floor deformation due to loading, which can be com-
puted using models (Riva et al., 2017; Frederikse et al., 2017) or inferred directly
from GRACE (Fenoglio-Marc et al., 2012). Note that the GRACE-derived correction
does correct for ocean floor deformation caused by rotation changes.

In this thesis, the steric and mass components of the budgets have been associ-
ated with ocean dynamics (ENSO, Gulf stream variability) and possibly salinity vari-
ations (from the Gibraltar Strait). We recommend to expand both budget studies to
other parts of the ocean to further understand sea level behaviour at regional spatial
scales and various temporal scales. The approach here applied to the TAS can be
applied on continental regions and marginal seas where no data-driven budget stud-
ies have been performed yet like the Yellow-Bohai seas, the Gulf of Mexico and the
North Sea. The approach we applied to the North Atlantic Ocean could be applied to
open-ocean regions where interannual variations are expected to occur such as the
Kuroshio and the Algulhas currents. Furthermore, as demonstrated for the Gibral-
tar outflow region, budget studies can give insight and help to contrain deep-steric
expansion.

Having multiple GNSS stations around a tide gauge provides only limited insight
in local VLM variability. For single GNSS stations, in the absence of regular levelling
campaigns, it cannot be assumed that the relative VLM between GNSS station and
tide gauge is zero. Since the launch of Sentinel-1 in 2014, Synthetic Aperture Radar
(SAR) data is available worldwide at a sampling rate of 6 (two satellites) to 12 (one
satellite) days. By using interferograms derived from SAR data, we expect that the
relative VLM between GNSS and tide-gauge stations can be estimated over the last
few years. This is propably not long enough yet to estimate an accurate (< 1 mm
yr−1) relative trend, therefore we suggest two solutions. Over several tide gauge
sites, SAR data are available from other satellites like ERS1&2, Envisat, Radarsat
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and TerraSAR-X, so time series could be long enough to estimate accurate trends.
Secondly, the short Sentinel-1 time series can possibly be used to estimate VLM cor-
relation scales, which help to enhance the uncertainty propagation.

The correlation thresholds, which were set to reduce the remaining oceanic sig-
nal in ALT-TG time series, did not significantly reduce the RMS of differences between
VLM estimated from ALT-TG and GNSS time series. However, coherent differences
in ALT-TG VLM trends at several coastal regions are observed e.g., Norway and the
US east coast. This suggests that for several regions an improvement is possible and
therefore regional statistics should be computed. Furthermore, it appears that the
GNSS-derived VLM trends at tide gauges are too noisy to properly validate if there
is any improvement caused by setting correlation thresholds. A manual selection
of the best GNSS records is suggested to evaluate the improvements due to ALT-TG
thresholding and weighting.

Boundary waves propagate over the continential shelves such that their signals
are largest at many tide-gauge locations. The first accurate altimetry measurements
are made several 10s of kilometers from the coast and therefore differencing them
with tide gauge leaves an oceanic signal in the time series, which affects the estimated
ALT-TG VLM trends. Sentinel-3 measurements enable the use of a delay/Doppler or
even fully-focussed SAR processing to enhance the along-track resolution. Reliable
sea surface height measurements can therefore be made closer to the coast. Using
Sentinel-3 data, it should be possible to inspect the shape and size of boundary waves
as function of distance from the coast. This could help to correct or identify problem-
atic ALT-TG time series. Furthermore, once the Sentinel time series are long enough,
VLM trends can be estimated with substantially smaller correlated noise. As an alter-
native solution, ALT-TG VLM trends can be estimated from regressions that include
relevant oceanic indices like ENSO 3.4.
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Appendix A

The Wiener filter is in principle a joint inversion of the spherical harmonic coefficients
of the background field x̂b and those of the time-varying gravity field x̂ . Suppose that
Cx is the error variance-covariance matrix of x̂ and Dx the signal variance-covariance
matrix, then the filtered coefficients x̂ f are expressed as:
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Assuming the spherical harmonic coefficients of the background field are zero, this
equation reduces to Eq. 2.27. The associated variance-covariance matrix Cx , f is
computed using:
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are symmetric, we obtain:
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which is further simplified by using the identity C−1
x

Cx = I to:
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(6.4)

Finally, this equation is rewritten, such that:

Cx , f = (C
−1
x
+ D−1

x
)−1(C−1

x
+ D−1

x
)(C−1

x
+ D−1

x
)−1, (6.5)

which is identical to Eq. 2.28.
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Appendix B
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Figure B1: Time series of sea level budgets of the sub-basins. In both columns the red line
indicates the MSL from altimetry. In the left column the green line indicates the steric sea
level from Argo and the blue line respectively the MC from ITSG90-W. In the right column the
blue line represents the sum of the steric and the mass components. The corresponding 95%
confidence intervals are given in yellow and light blue.
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Figure B2: Time series of residual sea level budgets of the sub-basins. In both columns the red
line indicates the MSL from altimetry. In the left column the green line indicates the steric sea
level from Argo and the blue line respectively the MC from ITSG90-W. In the right column the
blue line represents the sum of the steric and the mass components.
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Appendix C

This appendix contains figures related to Chapter 3.
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Figure C1: In gray: Eight steric sea level time series computed from the combination of seven-
of-eight reanalysis products. For each time series another reanalysis is left out. In red: the time
series averaged over all eight products used in this study. The South China Sea, Thailand-Java,
Banda-Celebes and Timor-Arafura regions are respectively indicated with A, B, C and D.
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Figure C2: Comparison of time series of steric sea level and thermosteric sea level for all four
regions. The South China Sea, Thailand-Java, Banda-Celebes and Timor-Arafura regions are
respectively indicated with A, B, C and D.
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Figure C3: Sea level time series for the subregions and the total TAS after subtracting the an-
nual and semi-annual cycles. The South China Sea, Thailand-Java, Banda-Celebes and Timor-
Arafura regions are respectively indicated with A, B, C and D. In blue GRACE mass + steric
sea level from the reanalyses. In red altimetry-derived total sea level.
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ssaltoduacs-multimission-altimeter-products.html).

https://www.aviso.altimetry.fr/en/data/product-information/information-about-mono-and-multi-mission-processing/ssaltoduacs-multimission-altimeter-products.html
https://www.aviso.altimetry.fr/en/data/product-information/information-about-mono-and-multi-mission-processing/ssaltoduacs-multimission-altimeter-products.html
https://www.aviso.altimetry.fr/en/data/product-information/information-about-mono-and-multi-mission-processing/ssaltoduacs-multimission-altimeter-products.html
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Appendix D

The latitude-dependent intermission biases are computed from 1/8 degree latitudi-
nally averaged sea surface height differences between TOPEX and Jason-1 (TP-J1)
and Jason-1 and Jason-2 (J1-J2). For the TP-J1 bias four separate functions are fit-
ted for ascending tracks and four for the descending tracks, while for J1-J2 a single
function is estimated. Depending on the geophysical corrections and the processing
of the altimetry data, not all parameters are statistically different from zero based on
variances of the residuals. However, to be consistent with the study of Ablain et al.

(2015), we maintain the functions as such.

Table D1: Values for the parameters of the latitudinal intermission bias correction. These
numbers are added to the sea surface height anomalies of the respective satellites. TP asc. and
TP desc. indicates the function variables that should be added to the ascending and descending
tracks of TOPEX/POSEIDON using Eq. (4.4), respectively. J2 indicates the function variables
to be used for Jason-2.

TP asc. TP desc. Jason-2
Parameter Lat(deg) Value Lat(deg) Value Lat(deg) Value
c0(mm) (-66.2,-1.5) 80.3 (-66.2,-1.5) 77.3 (-66.2,66.2) 98.1
c1(mm deg−1) -2.3·10−1 -1.7·10−1 -9.3·10−2

c2(mm deg−2) -1.1·10−2 1.2·10−3 3.8·10−3

c3(mm deg−3) -3.0·10−4 2.9·10−4 8.4·10−7

c4(mm deg−4) -2.4·10−6 3.8·10−6 -7.6·10−7

c0(mm) (-1.5,0.2) 83.8 (-1.5,1.3) 79.9
c1(mm deg−1) 1.3 2.4
c2(mm deg−2) -1.3 5.2·10−1

c3(mm deg−3) -5.3·10−1

c4(mm deg−4)
c0(mm) (0.2,4) 84.9 (1.3,4) 73.3
c1(mm deg−1) -8.0·10−1 13.7
c2(mm deg−2) -8.6·10−1 -5.1
c3(mm deg−3) 1.5·10−1 4.9·10−1

c4(mm deg−4)
c0(mm) (4,66.2) 72.9 (4,66.2) 75.8
c1(mm deg−1) 8.1·10−1 7.9·10−1

c2(mm deg−2) -2.8·10−2 -3.3·10−2

c3(mm deg−3) 3.4·10−4 6.4·10−4

c4(mm deg−4) -1.1·10−6 3.9·10−6
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