
 
 

Delft University of Technology

A Scalable Quantum Gate-Based Implementation for Causal Hypothesis Testing

Kundu, Akash; Acharya, Tamal; Sarkar, Aritra

DOI
10.1002/qute.202300326
Publication date
2024
Document Version
Final published version
Published in
Advanced Quantum Technologies

Citation (APA)
Kundu, A., Acharya, T., & Sarkar, A. (2024). A Scalable Quantum Gate-Based Implementation for Causal
Hypothesis Testing. Advanced Quantum Technologies, 7(8), Article 2300326.
https://doi.org/10.1002/qute.202300326

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1002/qute.202300326
https://doi.org/10.1002/qute.202300326


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



RESEARCH ARTICLE
www.advquantumtech.com

A Scalable Quantum Gate-Based Implementation for Causal
Hypothesis Testing

Akash Kundu,* Tamal Acharya, and Aritra Sarkar

In this work, a scalable quantum gate-based algorithm for accelerating causal
inference is introduced. Specifically, the formalism of causal hypothesis
testing presented in [Nat Commun 10, 1472 (2019)] is considered. Through
the algorithm, the existing definition of error probability is generalized, which
is a metric to distinguish between two competing causal hypotheses, to a
practical scenario. The results on the Qiskit validate the predicted speedup
and show that in the realistic scenario, the error probability depends on the
distance between the competing hypotheses. To achieve this, the causal
hypotheses are embedded as a circuit construction of the oracle. Furthermore,
by assessing the complexity involved in implementing the algorithm’s
subcomponents, a numerical estimation of the resources required for the
algorithm is offered. Finally, applications of this framework for causal
inference use cases in bioinformatics and artificial general intelligence
are discussed.

1. Introduction

Despite the huge success of machine learning (ML) algorithms
based on deep neural networks, these systems are inscrutable
black-box models. This hampers users’ trust in the system and
obfuscates the discovery of algorithmic biases that stem from
flawed generative processes, which can be prejudicial to certain
inputs (e.g., racial discrimination). Explainable artificial intelli-
gence (XAI)[1] focuses on human understanding of the decision
from the learned solution as white-box models. These models
provide results that are understandable for domain experts, thus
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providing transparency, interpretability,
and explainability. XAI algorithms provide
a basis for justifying decisions, tracking
and thereby verifying them, improving
the algorithms, and exploring new facts.
There has been relatively slow progress
in XAI, despite realizing its importance
as we increasingly automate critical sys-
tems. Early advances in XAI were based
on symbolic reasoning systems and truth
maintenance systems. To achieve causal
reasoning,[2] rule-based learning and logic-
based inference systems were proposed.
Methods to address inherent opaque mod-
ern methods like deep learning-based
neural networks and genetic algorithms in-
clude layer-wise relevance propagation and
local interpretability. Other ML algorithms
(e.g., decision trees, Bayesian classifiers,

additive models) exist that generate interpretable models, allow-
ing direct inspection of components such as feature weights, de-
cision tree paths, or specific rules to understand the predictions.
However, these models are not general and scalable to compete
with the adoption and impact of neural networks. On the other
hand, symbolic reasoning systems were abandoned owing to the
difficulty in scaling these systems for a large number of parame-
ters.
The capability of quantum computation allows us to scale sym-

bolic reasoningmodels by encoding the classical rules as a super-
position of quantum states or processes[3] is a core motivation in
quantum explainable artificial intelligence. Quantummechanics
provide enhanced ways to identify causal links; for example, cer-
tain quantum correlations can be used to infer classical causal
relationships.[4,5] This could overcome the apprehension of exist-
ing classical approaches being pursued in XAI.
In this article, we will explore how we can distinguish quan-

tum processes by their causal structure. Specifically, we study the
construction proposed in ref. [6] toward a quantum circuit imple-
mentation on the Qiskit quantum programming language. In
doing so, we uncover i) the implementation aspects of the causal
oracle, ii) the gate and qubit complexity of the full algorithm, and
iii) practical case error probability, which we introduce in the pa-
per that shows the dependence of the error probability on some
distance measure between the set of processes/hypotheses being
tested. While the current technology readiness level of quantum
systems prevents us from demonstrating this causal reasoning
within a broader application framework, we present the quantum
kernel that can be readily embedded within a software pipeline
for applications in bioinformatics and artificial general intelli-
gence (AGI). In particular, it will be useful in XAI pipelines.[7,8]
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The remaining article is organized as follows. In Section (2),
we briefly review the specifics of causal reasoning and some of
the well-studied techniques. A discussion on the basic concepts
and quantum advantage of causal hypothesis testing is given in
Section (3). In the following Section (4), we describe the problem
formulation; containing themain findings of the article.Here, we
define a model implementation on Qiskit followed by a correc-
tion factor introduced in the error probability based on our em-
pirical results; which we call practical error probability. Finally, in
Section (6), we discuss some potential use cases in bioinformat-
ics and artificial general intelligence. The corresponding quan-
tum resources of gates and qubits are assessed for realistic cases.
Section (7) concludes the article.

2. Overview of Causal Inference

Causal inference involves examining the assumptions, study de-
signs, and estimation strategies that enable researchers to con-
clude about the cause-effect relationships between data. In par-
ticular, it considers the outcomes that could manifest given ex-
posure to each of a set of dynamics of a specific causal variable.
Causal effects are defined as comparisons between these poten-
tial outcomes. Standard approaches in statistics, such as regres-
sion analysis, are concerned with quantifying how changes be-
tween two variables are associated, with no directional sense. In
contrast to that, Causal inference methods determine whether
changes in one variable, X, cause changes in another variable, Y,
or vice versa. If X is causally related to Y, then Y’s change can (at
least partially) be explained in terms of X’s change.

2.1. Challenges of Performing Causal Inference

Causal models are based on the idea of potential outcomes. The
two major challenges in causal inference are:

a) Causation does not imply association: For example, we want
to compare the impact of an academic degree on the income
of a middle-aged individual. The person might have attended
the academic degree ormight not have. To calculate the causal
effect of having an academic degree, we need to compare the
output in both situations, which is not possible. This dilemma
is a fundamental problem of causal inference. The challenge
in causal inference is that all potential outcomes are not ob-
served, we only observe one. Another example is described by
the situation of – a black cat ran under the fence and I tripped
and fell over. We could have tripped anyway. It had nothing
to do with the cause of the cat running under the fence, i.e.,
associated events do not imply causal connection.

b) Correlation does not prove causality: Causal inference is the
process of concluding a causal connection based on the oc-
currence of an effect. Causal inference is usually a missing
data problem[9] and we tend to make assumptions to make
up for the missing causes/variables. An example is a correla-
tion between people eating ice cream and people drownings.
It could indicate that eating ice cream affects drowning. The
actual correlation is between the season (summer) and these
otherwise unrelated things. In this case, the missing cause is
the season.

2.2. Classical Techniques in Causal Inference

Causal inference involves studying systems where the measure-
ment of one variable is believed to influence the measurement of
another. This process adheres to the scientific method. The ini-
tial step is to formulate a falsifiable null hypothesis, which is then
tested using statistical methods. Frequentist statistical inference
assesses the probability that the observed data occurred by chance
under the null hypothesis. In contrast, Bayesian inference evalu-
ates the effect of an independent variable.
Common frameworks for causal inference include the causal

pie model (component-cause),[10] Pearl’s structural causal model
(causal diagrams and do-calculus),[11] structural equation mod-
elling, and Rubin’s causal model (potential outcomes).[12,13]

presents a more comprehensive survey of classical causal infer-
ence techniques.
The most commonly used causal models can be categorized

into two types: causal Bayesian networks and structural equa-
tion models, which are closely related. The causal graph models
integrate mathematics and philosophy. The mathematical com-
ponents involve directed acyclic graphs (DAGs) and probability
theory, particularly conditional independence; the philosophical
components involve assumptions about the relationship between
causation and probability.[14] An alternative approach to causal
inference based on algorithmic generative models is currently
gaining popularity.[15] describes the process of performing causal
deconvolution using this technique. This paper talks about the
different generating mechanisms by which complex data is pro-
duced. The authors introduced a universal, unsupervised, and
parameter-freemodel-oriented approach based upon algorithmic
probability that decomposes an observation into itsmost likely al-
gorithmic generative sources. This is closely related to the quan-
tum approaches discussed in the next section.

2.3. Quantum Computation and Algorithmic Generative Models

The synergy between quantum computation and algorithmic in-
formation has been studied extensively in ref. [16]. Two main di-
rections were explored, that can be applied for causal inference.
In ref. [3] a global/objective view is presented, which involves

quantum automata for algorithmic information. We develop a
framework for causal inference grounded in algorithmic genera-
tive models. This technique of quantum-accelerated experimen-
tal algorithmic information theory (QEAIT) can be ubiquitously
applied to diverse domains, to mention a few, genome analysis,
the problem of identifying bit strings capable of self-replication
is presented. We introduce a novel quantum circuit design for a
quantum parallel universal linear bounded automata (QPULBA)
model, facilitating the execution of classical models/programs in
superposition and enabling the exploration of their properties.
The automaton prepares the universal distribution as a quantum
superposition state which can be queried to estimate the algorith-
mic properties of the causal model.
In ref. [17] the authors provide a local/subjective view that

involves universal reinforcement learning in quantum environ-
ments. This theoretical framework can be applied to automated
scientificmodelling. A universal artificial general intelligence for-
malism is presented that can model quantum processes. The
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Figure 1. All possible causal relations for three variables. Blocks shaded grey have causal loops (and are typically not considered). The set of blocks
shaded green indicates a case of causal hypothesis testing. For the sake of this paper, we consider only the scenarios where (1) A causes B and C to be
independent, and (2) A causes C and B to be independent.

developed quantum knowledge-seeking agent (QKSA) is an evo-
lutionary general reinforcement learning model for recursive
self-improvement. It uses resource-bounded algorithmic com-
plexity of quantum process tomography (QPT) algorithms. The
cost function determining the optimal strategy is implemented
as a mutating gene within a quine. The utility function for an in-
dividual agent is based on a selected quantum distance measure
between the predicted and perceived environment.
These techniques motivate our research in this article. Unlike

quantum/classical data-driven ML, these primitives of QEAIT
andQKSA preserve the explanatory power of themodel the learn-
ing converges to by exploring the space of programs on an au-
tomata model. The QPULBA model (in QEAIT) and QPT algo-
rithms (in QKSA) can be generalized to a causal oracle and causal
tomography, respectively.
Causal approaches for quantum machine learning

(QML),[18,19] and quantum algorithms for causal inference[20,21]

are also a related active research direction.

3. Causal Hypothesis Testing

A canonical approach in causal inference is to formulate different
hypotheses on the cause–effect relations and test them against
each other. This technique is typically used when there is some
knowledge of the characteristic of the phenomenon that is be-
ing tested. The complete search space of directed graphs between
events grows exponentially. An exhaustive example of three vari-
able causal relations is shown in Figure 1. In causal hypothe-
sis testing a subset of these graphs is considered as the set
of hypotheses being tested against each other. For example, in
Figure 1, we can consider, two hypotheses (shaded in green):

a) A causes B, C is independent
b) A causes C, B is independent.

3.1. Quantum Advantage in Classical Causal Hypothesis Testing

Quantum information enables a richer spectrum of causal rela-
tions that is not possible to access via classical statistics. Most re-
search in this direction is toward exploring causality in the quan-
tum context.[22–27] Our focus in this work is specifically using the

quantum formulation to provide a computational advantage with
respect to a classical technique on classical data.
This problem is studied extensively in ref. [6]. The research

analyzes the task of determining the impact of a specific input
variable. In the quantum version of the problem, the variables
A, B, and C are considered as a quantum system of dimension d
that in return satisfies either of the two following causal hypothe-
ses Either B resulted from A via an arbitrary unitary operation,
with the state of C being maximally mixed, or C resulted from A
through an arbitrary unitary operation, with B being maximally
mixed. The set of allowed causal relationships say , between
input and output, depends on the physical theory, which deter-
mines the implementable mappings achievable through physi-
cal processes. In classical physics, cause-effect relationships are
usually depicted through conditional probability distributions.
However, in quantum theory, they are characterized by quantum
channels–completely positive trace-preserving maps that trans-
form densitymatrices of an input quantum systemA into density
matrices of an output. (either B or C).
Despite the fact that a cause-effect relationship can be estab-

lished utilizing any unitary operation, the error probability that
is attained remains

perr =
1
2dN

(1)

where N represents the number of interventions between one
instance and the next.
The error probability in Equation (1) is d times smaller than the

classical error probability. To achieve this advantage the authors
in ref. [6] make use of a universal quantum strategy by preparing
a d particle singlet state of the form

|sd⟩ = 1√
d!

∑
i1 ,i2 ,…,id

𝜖i1 ,i2 ,…,id
|i1⟩ , |i2⟩ ,… , |id⟩ (2)

where 𝜖i1 ,i2 ,…,id
is an asymmetric tensor and the sum ranges over

all vectors on the computational basis. Then, each of the d sub-
systems is fed as an input to one use of . By repeating the ex-
periment for t times, and By conducting Helstrom’s minimum
error measurement, one can achieve the error probability given
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Figure 2. Here, we illustrate the three fundamental ways of constructing
parallel strategy. In (1) we initialize the quantum system A along with a
reference r in a state 𝜓 . This setting is repeated forN times. Meanwhile in
(2) an N size input, 𝜓 , is provided as an input A. Similar to the previous
strategy in (3) we have the same N probes of the input entangled using
an additional reference r. An unknown process  (an arbitrary unitary)
induces a causal relation between the input and the output in all settings.

in Equation (1) withN = t × d. This exact strategy is illustrated in
Figure 2(1).
Apart from the error probability, the discrimination rate,R, is a

very crucial performance quantifier for causal hypothesis testing
protocols. It can be defined as the rate at which the two causal
hypotheses can be differentiated from each other. In Figure 2 for
the strategy (1) and (2) the discrimination rate remains log d. But
slight engineering of the protocol (2) that adds a reference r (see
protocol (3) of Figure 2) helps us to achieve a discrimination rate
of 2 log d, which is twice as fast as the optimal classical strategy.
The primary motive behind the introduction of the reference r
lies in the fact that it helps entangle the N input probe states.
To say in a more elaborate manner, in the absence of the refer-
ence we saw through strategy (2) of Figure 2 that it is optimal to
partition the N input into N

d
groups and then entangle the probe

with each group. Generalizing this line of thought, we consider
a mechanism where the partition of the subsystems happens ac-
cording to a certain configuration i if a control system is in the
state |i⟩. Thus, when the control system is in a superposition, the
optimal input state is

|𝜓⟩ = 1
n

n∑
i=1

(|sd⟩⊗ N
d

)
i
⊗ |i⟩ (3)

where each i is labelled depending on the different ways of par-
titioning N indistinguishable objects into groups of d elements,

the number of such ways of partitioning is n, and |sd⟩⊗ N
d are or-

thogonal states of the reference system represented through a
product of N

d
singlet states. sd is defined through Equation (2).

In Figure 3, the different ways of dividing N = 4 copies of the
causal process probes (), which yields three different ways of en-
tangling bi-partitions of these probes, indexed by encoding on the
reference register (through ri, i = 1, 2, 3).
The above observation helps us to conclude that the quantum

correlation speeds up the causal hypothesis testing. However, the
caveat of the approach is that it is not practically feasible due to
the resource scaling of this encoding. The choice of a maximally
mixed quantum channel as an alternate hypothesis prevents the
step toward the practicality of the approach. In this work, we

Figure 3. The different ways of partitioning a quantum system ofN=4 size
into d=2 groups. The three distinct configurations are superposed in the
input state 𝜓 and can be accessed by the state of the reference r.

tackle this issue by easing the previously proposed general com-
pletely positive trace preserving scenario in favor of constructable
causal oracles. We provide a scalable quantum algorithm that
can be implemented in a gate-based quantum computer. This ap-
proach is described briefly in the next section.

4. Practical Implementation Considerations

4.1. The Problem Statement

In the general case considered in ref. [6] the intervention (i.e., )
is maximally mixed and the hypotheses are formulated as

a) A causes B i.e., B ← UA and C is maximally mixed,
b) A causes C i.e., C ← UA and B is maximally mixed,

where U is an arbitrary unitary operation, the authors achieve
the best error probability. It is possible to implement amaximally
mixed state by discarding one-half of a maximally entangled in-
put. However, the classical causal hypotheses are given as direct
acyclic graphs corresponding to constructable unitaries.
On the contrary, our formulation aims towards the practi-

cal feasibility achieved by introducing a quantum algorithm for
causal hypothesis testing on the Qiskit quantum simulator. To
construct the algorithm we consider a modified version of ,
where variables A, B, and C are causally connected by the fol-
lowing hypotheses

a) Hypothesis 0: A causes B i.e., B ← UA and C is independent
of A,

b) Hypothesis 1: A causes C i.e., C ← UA and B is independent
of A.

we choose U as variants of SWAP operation and C (or B) being
independent ofA, which is denoted by an Identity (𝕀) operation.
As we have discussed in the previous section the parallel strat-

egy with quantum correlated inputs through a reference, (as
shown in Figure 2(3)) gives us a quantum advantage in the de-
tection of cause and effect. Hence, we provide step-wise mod-
ification to this optimal structure to finally implement it in a
quantum computer and test the Hypothesis 0 against Hypothe-
sis 1 to benchmark its performance. In our implementation, we
consider the input variables (causes) to be denoted by the set
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C = {c0, c1,… , c|C|−1}, while the output variables (effects) are de-
noted by the set E = {e0, e1,… , e|E|−1}. Furthermore, we consider
an equal number of input and output variables to preserve unitar-
ity, i.e., |C| = |E| = k. We maintain the simplification of ref. [6],
that all variables are of equal length

d = |ci| = |ej| (4)

where ci ∈ C and ej ∈ E. Thus, each variable has 2d states. Fur-
thermore, we consider that each effect is a permutation of only
one cause, i.e., themap fromC to E is a bijective function, one-to-
one correspondence, or invertible function. To make our imple-
mentationmore general, we consider a scenario where the access
to interventions (i.e., ) on the causes and the effects are unequal.
As a proof-of-concept, we implement a causal hypothesis test-

ing with control over 1 cause C = {c0} and measurement capa-
bility over 2 potential effects E = {e0, e1}. These hypotheses are
mutually exclusive, where, (1) e0 ← Uc0, e1 is independent of c0,
and (2) e1 ← Uc0, e0 is independent of c0.
Moreover, we extend the problem statement by modifying the

U to a parametric version of Controlled-SWAP (CSWAP(𝜃orc)) op-
eration. The parameter 𝜃orc defines the strength of the SWAP ora-
cle.
Describing all the necessary ingredients for causal hypothesis

testing, we now head toward practical implementation.

4.2. The Implementation

Here, we take the parallel strategy as described in Figure 2(3)
and discuss the real-world implementation of its subroutines.
To design a quantum circuit, all variables that are potentially in-
spected as causes need to be assigned a quantum information
placeholder. There are a total of

k = max{|C|, |E|} (5)

placeholders are required for encoding cause of size |C| and ef-
fect of size |E|. Throughout the paper, we consider, k = 2 sets of
qubit registers that are used, namely system A and system B.

4.2.1. Preparation of |𝜓⟩
The very first component of the causal hypothesis testing strat-
egy is the initial state, |𝜓⟩, along with the reference r. We saw in
Equation (3) that the state is in a superposition of different parti-
tions of the input and the partition depends on d. Each state in the
superposed control input can be accessed by the state of a control
system, which is called the reference r. As each partition forms
a singlet state of the form Equation (2), we make use of the bell
unitary consisting of a Hadamard (H) and CNOT gate to represent
the singlet.

To describe in a simpler manner, the wires in Figure 3 that cor-
relate with different inputs is represented by the the Ubell. We il-

Figure 4. The practical way to implement one of the partitions of the cor-
related input with the help of the reference r.

lustrate one of the partitions in Figure 4where it can be seen that
we consider two qubits to represent the reference (i.e., the con-
trol system), this is because, for N = 4 and d = 2, there are three
possible partitions and to trigger each configuration we need at
most three linear combinations of the control in the form 00,
01, 10. This can be achieved using at least two qubits initialized
with H⊗ H. The full circuit for all the combinations is illustrated
through Uper in Figure 7.

4.2.2. Preparation of 

Recalling that  induces a causal relationship between the input
and output and in quantum, it is defined as a quantum channel
that maps the input density matrices to an output. To be consis-
tent with theHypothesis 0 andHypothesis 1, described in Section 4,
we choose U = 𝕀 for the Hypothesis 0 and a U = SWAP operation
for Hypothesis 0. The unitary that preserves the essence of the
Hypothesis 1 is given by

UH1
orc = SWAP(Ai, Bi)

⊗N ⊗ 𝕀(Ai)
⊗N ⊗ 𝕀(Bi)

⊗N (6)

and shown in Figure 5.
Now to merge the 𝕀 and the SWAPHypotheses in s single unitary

and to gain better control over the applied hypothesis, we mod-
ify Equation (6) by introducing an ancillary qubit initialized with
RX(𝜃ctrl). The ancilla qubit works as the control of the SWAP
that for 𝜃ctrl = 0 behaves as 𝕀 and for 𝜃ctrl = 𝜋 gives complete
SWAP operation. The illustration of the hypotheses is provided in
Figure 6 and given by

U
H0∕1
orc (𝜃ctrl) =

[
CSWAP(qanc, Ai, Bi)

⊗N
]

×
[
RX(qanc, 𝜃ctrl)⊗ 𝕀(Ai)

⊗N ⊗ 𝕀(Bi)
⊗N

]
(7)

4.2.3. Initial Choice of Systems

We have already mentioned that we use k = 2 sets of qubit reg-
isters to encode the cause and effects through systems A and B.
As our work primarily focuses on how different hypotheses affect
the error probability perr, we restrict ourselves to the all-zero, i.e.,

Adv. Quantum Technol. 2024, 2300326 © 2024 Wiley-VCH GmbH2300326 (5 of 11)
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Figure 5. Quantum circuit for the SWAP oracle represented in Equation (6)
for systemA (the first four qubits) andB (the last four qubits) of sizeN = 4.

|0⟩⊗N initialization. But it should be noted that the causes and
effects need not be the vacuum states but can be any arbitrary
quantum state. To introduce this degree of freedom, we propose
two unitaries UA

in and U
B
in that randomly initialize the systems A

and B.

4.2.4. Measuring the Outcome

In the original work, Helstorm’s minimum error
measurement[28] is used to obtain the advantage over the
classical causal inference as shown in Equation (1). To calculate
the distinguishing probability in computational basis, we add
the probabilities of basis states that are unique to one of the
qubits of effects (systems A and B).
The overall quantum circuit to perform the causal hypothesis

testing is provided in Figure 7 where (1) UA
in and U

B
in defines the

initial choice of system A, B, (2) UB
per prepares |𝜓⟩ (see Equa-

tion (3)), (3) TheUorc presents the hypothesis in Equation (7) and

Figure 6. We illustrate the quantum circuit for the Controlled SWAP hy-
pothesis (see Equation (7)) where the strength of the SWAP depends on an
ancilla qubit and can be varied through a parameter 𝜃ctrl. The hypothesis
illustrated is for system A (the first four qubits) and B (the last four qubits)
of size N = 4.

finally (3)MA
Z andM

B
Z are the computational base measurement

to get the error probability perr.

4.3. Resource Estimation

In this section, we briefly describe the resource estimation of
implementing our algorithm. The number of qubits in the al-
gorithm is

n + Nref (8)

where n is the number of qubits to encode the cause and effect
and Nref is the number of qubits in the reference state.

Figure 7. The illustration of complete quantum algorithm for causal hypothesis testing. In the illustration we present theUper andUorc forNA = NB = 4.

Adv. Quantum Technol. 2024, 2300326 © 2024 Wiley-VCH GmbH2300326 (6 of 11)
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Figure 8. The number of controlled Bell unitary operations required to implement the Uper increases exponentially with r andNA. On the left-hand side,
we show the variation with respect to the number of linearly independent states r and on the right-hand side with the dimension of the subsystem NA
(NB).

4.3.1. Resource Estimation of n

The number of qubits to encode the causes and effects depends
on the number of causes |C| (or effects |E|), and as C (E) denotes
a set of causes (effects) the n also depends on the size of elements
in C (E). In our case |C| = |E| = k and each element in C (E) is
of the same size i.e. |ci ∈ C| = |ej ∈ E| = d. All in all forN-qubits

n = N × k × d (9)

4.3.2. Resource Estimation of Nref

In the preparation of |𝜓⟩, the number of qubits depends on the
total possible linearly independent pair combinations. The lin-
early independent pair r depends on the number of qubits re-
quired to encode n as follows

r = n!
(n∕2)! × 2n∕2

(10)

from the point calculating the number of qubits in the reference
is straightforward. Nref can be obtained as follows

Nref = ⌈log2 r⌉ (11)

4.3.3. Total Qubit Requirement

Hence, the qubit requirement for our model grows as

n + Nref = n + ⌈log2
(

n!
n
2
! × 2

n
2

)⌉ (12)

In the case of our implementation in Figure 7, we choose a
system size N = 4, the number of cause (effect) |C| (|E|) is 1 also
the elements in the |C| (|E|) of size 1 so the qubits required to
encode the causes (effects) can be obtained from Equation (9)
and given by n = 4 × 1 × 1 = 4. Meanwhile, the number of lin-
early independent pairs is calculated through Equation (10) and

is r = 4!∕(2! × 22) = 3. Finally, the number of qubits in reference
is obtained by ceiling r i.e., Nref = ⌈log2 3⌉ = 2.
Recalling that in ref. [6], one of the innovations introduced was

to entangle the inputs for the parallel strategy instead of initial-
izing with a tensor product state, which reduces the exponen-
tial measurement resource requirement by correlating the basis.
However, the cost of implementing the entangled initialization
was not analyzed.
Through our model implementation, we are able to show that

the operations required to implement the UB
per grow faster than

exponentially with the dimension of the subsystem (NA orNB) as
illustrated in Figure 8 but linear in respect to the linearly inde-
pendent states, i.e., r.

4.4. Practical Error Probability

While the number of controllable causes |C| and the encoding
length of the causes d depends on the problem formulation, the
number of queries, i.e.,N and thereby r, is a free parameter. It can
be chosen based on the available quantum circuit resources of
the number of qubits in the quantum processor, the decoherence
time, and gate error probability, such that the pragmatic error
remains low. It is shown in ref. [6] that using the correlated input
scheme presented in Figure 2(3) we can reach an error probability

perr =
r

2dN

(
1 −

√
1 − r−2

) r>>1
←←←←←←←←←←←←←←←←←→

1
4rdN

(13)

where r is the number of linearly independent states. Equa-
tion(13) gives the limiting case error probability because, in a
more general case, the error probability of causal hypothesis test-
ing should be dependent on the two specific hypotheses.
For example, the unitary oracle as given in Equation (7) for

theHypothesis 1 at 𝜃ctrl = 0 becomesUH1
orc (0) = 𝕀 = UH0

orc (0), in that
case, the two hypothesis becomes identical and the error proba-
bility perr = 1, which can be clearly seen in Figures 9 and 10. And
as the Hypothesis1 deviates from the Hypothesis0, which can be
achieved by fine-tuning 𝜃ctrl, we see the error probability gradu-
ally decreases from 1. At 𝜃ctrl = 𝜋 when Hypothesis1 = SWAP the

Adv. Quantum Technol. 2024, 2300326 © 2024 Wiley-VCH GmbH2300326 (7 of 11)
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Figure 9. The error probability varies periodically with the parameter, 𝜃ctrl
of the parameterized SWAP oracle. The black horizontal line is the error
probability obtained for the SWAP using the definition provided in ref. [6],
which is also presented in Equation 13. It can be seen that when 𝜃ctrl = 0
both the 1st and the 2nd hypothesis are I hence it is the worst case scenario
giving an error probability of 1. On the other hand when 𝜃ctrl = 𝜋 the 2nd
hypothesismimics SWAP operation and coincides with the error probability
of ref. [6].

error probability obtains the limit reached by Equation (13) (rep-
resented by the black horizontal line in Figure 9). A brief discus-
sion of Figures 9 and 10 is provided in Section 5.
This helps us to conclude that the distance between the oracles

plays a crucial role in defining the error probability. Hence, to
incorporate this dependence on the relative distinguishability of
the hypotheses, we introduce a correction factor proportional to
the process distance (Δ) between the two oracles. This arises a

Figure 10. Illustration of variation of practical case error probability with
respect to 𝜃ctrl and 𝜃orc. The blue line represents the case when 𝜃ctrl = 𝜋∕2
and we observe the variation of practical error probability with respect to
the 𝜃orc and the red line is obtained by setting 𝜃orc = 0, which makes the

U
H0∕1
orc = SWAP then we observe the variation with respect to the 𝜃ctrl. The

black horizontal line is the error probability obtained for the SWAP using
the definition provided in ref. [6], which is also presented in Equation (13).

modified version of Equation (13) that takes the form:

ppracerr = 1 − Δ
[
UH0

orc , U
H1
orc

]
(1 − perr)

r>>1
←←←←←←←←←←←←←←←←←→ 1 − Δ

[
UH0

orc , U
H1
orc

](
1 − 1

4rdN

)
(14)

There are many choices for the distance Δ function between
the hypotheses and need to be chosen based on the experimental
and theoretical specifications of the application such as

1. Trace distance which is defined by

Δ = 1
2
Tr|𝜌orc − 𝜌alterorc | (15)

where 𝜌 represents the Choi representation of the unitary.
2. Bures distance which defined as

Δ = 2
(
1 −

√
F(𝜌orc, 𝜌alterorc )

)
(16)

where F quantifies the process fidelity between the Choi rep-
resentation of oracles.

3. Hilbert-Schmidt distance which is defined by

Δ = Tr
[(
𝜌orc − 𝜌alterorc

)2]
(17)

But the numerical results show that the error probability after
simulating the circuit in Figure 10 i.e., practical case error prob-
ability, Ppracerr , coincides with Hilbert-Schmidt distance.

5. Numerical Results

To obtain numerical results, we consider IBM’s open-source
quantum computer simulator Qiskit was used to simulate the
above-mentioned implementation. At first, we choose the oracle
unitary as given in Equation (7) where qanc is an ancilla qubit
that allows us to control the strength of the Hypothesis 1. And
the strength is dependent on parameter 𝜃ctrl. To obtain the spe-
cific hypothesis cases of 𝕀 and SWAP, the above parameters are set
to UH0

orc (0) and U
H1
orc (𝜋), respectively. The dependence of the error

probability of distinguishing two hypotheses with respect to the
relative difference is enquired by varying the alternate hypothesis
to

U
H0∕1
orc =

⎧⎪⎨⎪⎩
UH0

orc (0)

UH1
orc (𝜃ctrl)

(18)

For the sake of better understanding, we compare the theoret-
ical and practical case error probability, which is introduced in
Equation (14). For the theoretical scenario, we numerically cal-
culate the Equation (14) by utilizing the Hilbert-Schmidt distance
between two hypotheses with respect to 𝜃ctrl. Meanwhile, for the
practical scenario utilize the introduced causal hypothesis testing
circuit in Figure 7 and get the error probability directly from the
measurement outcomes.

Adv. Quantum Technol. 2024, 2300326 © 2024 Wiley-VCH GmbH2300326 (8 of 11)
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Figure 11. The variation of different distance measures with respect to
the oracle angle 𝜃ctrl. It can be seen that at 𝜃ctrl = 𝜋 the trace distance
and Hilbert-Schmidt distance coincide whereas Bures distance surpasses
them all.

In Figure 9, we illustrate the theoretical scenario to evaluate the
error probability. The black horizontal line refers to the results
corresponding to the limiting case error probability in ref. [6].
We find that when the 𝜃ctrl = 0, the RX gate that is controlling the
SWAP oracle is not activated. This makes the alternate hypothe-
sis (Hypothesis 1) 𝕀. As our default hypothesis is already 𝕀, we can
not distinguish between the two hypotheses by any method. This
gives theoretical case error probability (i.e., ptheoerr ) 1.0. In the same
way when 𝜃ctrl = 𝜋 the SWAP oracle is activated by the RX control
and we find the minimal probability of distinguishing between
SWAP and 𝕀, overlapping with the results from ref. [6], in Equa-
tion (13). It is logical to examine the variation of process distance
with respect to the oracle parameter 𝜃ctrl. In Figure 11 we illus-
trate the distance between the null hypothesis UH0

orc (0, 0) and the
alternate hypothesis UH1

orc (𝜋, 𝜃ctrl) for a class of distance measure.
For the sake of experiments, we restrict ourselves to the obser-

vation ofTrace distance,Bures distance, and theHilbert-Schmidt dis-
tance. It can be seen that the characteristics of Trace and Hilbert-
Schmidt are similar since both of them fundamentally depend on
the difference in the Choi representation of the oracles, whereas
Bures distance depends on the process distance.
In the next experiment, we modify the unitary presented in

Equation (7) to test the dependence on the error probability with
other intermediary hypotheses. We generate these intermediary
hypotheses by using a set of parameterized CSWAP gates that
are generated by the decomposition implemented as 3 iSWAP

with three interleaved SX gates on alternating qubits. This time
the strength of the parameterized CSWAP depends on the
angle in the ancilla qubit i.e., 𝜃ctrl (as shown in Figure 6) and the
angle of the iSWAP i.e., 𝜃orc. The general form of the oracle is
given by

U
H0∕1
orc (𝜃ctrl, 𝜃orc) =

[
CSWAP(𝜃orc, qanc, Ai, Bi)

⊗N
]

×
[
RX(qanc, 𝜃ctrl)⊗ 𝕀(Ai)

⊗N ⊗ 𝕀(Bi)
⊗N

]
(19)

The investigation of the hypothesis 19 is illustrated through
Figure 10, where the quantum algorithm for causal hypothe-
sis testing simulated in the Qiskit statevector simulator. In
Figure 10, the red line shows the variation of the practical er-
ror probability with the SWAP gate, which is achievable if we set
𝜃orc = 0. It can be seen that there is a significant difference in the
results for the SWAP oracle presented in this results compared to
the Figure 9 this is due to the practical case being implemented
using the sum of probabilities of distinct states and the cumula-
tive probability does not depend on the local phase. As it is not
possible to capture the essence of the local phase that arises due
to the iSWAP in Figure 10, we see the shift in the ppracerr compared
to ptheoerr .
Meanwhile, the blue line shows the variation with respect to

the parameterized CSWAP for the ancilla-control set to 𝜋∕2. As
expected, for the oracle angle of 𝜋∕2, the CSWAP is the same as a
SWAP.
We observe that the results for the theoretical case and the nu-

merically simulated practical case error probability are distinct
(see the red lines in Figures 9 and 10). This is because of two
factors: i) the perr was introduced purely theoretically where the
authors evaluated it for a maximally mixed alternate hypothe-
sis. To construct a maximally mixed hypothesis we need a uni-
tary that can generate a maximally mixed state. In the practical
case (numerical simulation of the quantum circuit) it is not pos-
sible to construct a maximally mixed unitary. This leads us to
introduce the realistic case error probability and is presented in
Equation (14). This modification is reflected through the intro-
duction of the distance between the oracles under consideration
i.e., Δ

[
Ualter

orc , Uorc

]
. ii) the maximum distinguishing measure-

ment as suggested in the original formulation, requires knowl-
edge of the hypothesis and the oracles, which cannot be known
apriori. While the theoretical process distance can be experimen-
tally achieved via quantum process tomography, in the second ex-
periment, we show the practical case error probability for Z-axis
measurements without pre-rotations.
Thus, these experiments demonstrate that: i) the quantum cir-

cuit we proposed in Figure 7 can indeed be utilized for causal
hypothesis testing, and ii) the success probability of distinguish-
ing two hypotheses is dependent on the process distance between
the two oracles.

6. Application Framework

With the quantum kernel presented above, in this section, we dis-
cuss an application framework in the context of two consequen-
tial applications.

6.1. Bioinformatics

Applications of causal inference are widespread in bioinformat-
ics. Specifically, inferring a causal network is practiced inmedical
diagnostics and genomics.
For example, causal discovery in Alzheimer’s pathophysiology

is studied in ref. [29] with nine variables (13 with longitudinal
data). Similarly, for detecting causal regulatory interactions be-
tween genes, tools like Scribe-py[30] are currently used. Exem-
plary use cases of (i) transcription expression dynamics hierar-
chy of C. elegans’ early embryogenesis and (ii) core regulatory

Adv. Quantum Technol. 2024, 2300326 © 2024 Wiley-VCH GmbH2300326 (9 of 11)
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network responsible for myelopoiesis are used for this research,
with the latter graph consisting of ten nodes.
The current generation of quantum processors supports 100s

of qubits and is expected to scale to 1000s in a few years. How-
ever, the challenge is the limitation of the decoherence time and
gate errors, which bounds the runtime of the algorithm that can
be effectively executed. For a causal graph in the order of ten
causes/effects, a causal specificity bits of d = 1 and withN = 100,
the estimation presented in Equation (12) is 6262 qubits. Keep-
ing in mind the potential of near-term devices, pragmatic indus-
trial cases of causal tomography will remain outside the reach of
quantum computing in the near term.
For applications in medical diagnostics and genomics, a prob-

abilistic graphical model encodes the assumptions about the data
generation process. This probabilistic graphical model is known
as a causal graph. Each application of the causal graph can be
distinctly represented by a unique causal graph, which can be
translated to quantum circuits via controlled rotation gates such
as CRX(𝜃) where 𝜃 represents the weight of the edges of the
causal graph.

6.2. Artificial General Intelligence

In the long term, quantum accelerated causal inference will ben-
efit artificial general intelligence. Quantum accelerated AGI is
still in its infancy. In ref. [31], the authors proposed the AIXI-q
reinforcement learning agent empowered with quantum count-
ing. Meanwhile, ref. [3] proposed an exhaustive enumeration of
all causal oracles (or, alternatively, all bounded-size programs of
a Turing machine). These techniques can develop synergies with
the quantum accelerated causal tomography circuit as developed
in this article.
In theoretical physics, automated science tools, specifically in

the context of causal set theory, will also find the causal tomogra-
phy framework of crucial use.

7. Conclusion

In this article, we extend the previously introduced causal hypoth-
esis testing formulation[6] for the practical scenario. This led us to
develop a scalable quantum gate-based algorithm that can be im-
plemented in the available near-term quantum devices. Through
the algorithm formulation, we empirically show that the limiting
case error probability that is represented in ref. [6] requires mod-
ification. In our work, this modification is done by introducing
process distance between the causal hypotheses, to the formu-
lation of error probability. We term this modified version of er-
ror probability as practical case error probability, which is stricter
than the limiting case. Additionally, our implementation enables
an estimation of the pragmatic gate complexity of the causal to-
mography entangled pair indexing.
Furthermore, the proposed algorithm is implemented using

the open-source quantum programming and simulation plat-
form Qiskit. As in ref. [6] it is shown that the quantum ad-
vantage holds for generalized probabilistic theory so the practical
case that we present here is optimal in any scenario.
Our motivation for this project is driven by the increasing fo-

cus on causal inference in ML. Besides monitoring the informa-

tion flow in future quantum communication networks, as dis-
cussed in ref. [6], causal tomography is crucial for understand-
ing the bounds of general intelligence and for bioinformatics use
cases. In our future work, we aim to apply our developed quan-
tum accelerated causal tomography framework for these applica-
tions.
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