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Machine learning to support prospective life cycle
assessment of emerging chemical technologies
C. F. Blanco1,2, N. Pauliks1, F. Donati1, N. Engberg3 and
J. Weber4
Increasing calls for safer and more sustainable approaches to
innovation in the chemical sector necessitate adapted
methods for the environmental assessment of emerging
chemical technologies. While these technologies are still in the
research and development phase, gaining an early under-
standing of their potential implications is crucial for their
eventual introduction into markets worldwide. Life Cycle
Assessment (LCA) is a core tool which has been recently
adapted for such purpose. Prospective LCA approaches aim to
develop plausible future-oriented models which account for the
evolution of factors both intrinsic and extrinsic to the technol-
ogies assessed. Such future-oriented models introduce many
indeterminacies, which could, to some extent, be addressed by
Machine Learning techniques. Recent demonstrations of such
techniques in the context of prospective LCA, as well
as promising avenues for further research, are critically
discussed.
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Introduction
The call for a more responsible approach to innovation

has spurred methodological advancements for the
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environmental assessment of novel materials and prod-
ucts. This is of particular importance for emerging
chemical technologies, which are largely driving global
oil consumption [1], belong to the hard-to-abate sectors
[2] and whose products preponderate in most aspects of
our lives [3]. Since the 1980’s, Life Cycle Assessment
(LCA) has prevailed as the preferred tool for assessing
product and service performance across diverse envi-
ronmental criteria [4]. In assessing multiple criteria
across entire product life cycles, LCA is unique in its
ability to reveal undesirable environmental trade-offs

associated with the consumption of products and
services.

LCA was originally conceived as an ex-post assessment,
wherein the material/energy consumptions of product
systems and their environmental emissions could e at
least in principle e be measured based on past data.
However, with the shift to responsible innovation, the
LCA community is now proposing future-oriented ap-
proaches for early environmental appraisal of emerging
technologies that are still under development and can

only partly be empirically measured [5e9]. Henceforth,
we will refer to these approaches collectively as prospective
LCA [10]. In the context of the chemical industry, a
prospective LCA might be required to redesign a current
chemical production system anticipating future sce-
narios, or for assessment during novel chemical discov-
eries and process development [11]. The ultimate goal is
to incorporate sustainability criteria during the initial
stages of chemical (re)discovery and process (re)devel-
opment, maximising the potential for significant changes
while minimising resource expenditures [12].

In order for LCA results to be meaningful, they must
represent a marketable technology and foreseeable
conditions in which it would operate when released.
This may require future projections of 10 or more years,
depending on technological maturity. However, future
projections are characterised by high levels of uncer-
tainty. While ex-post LCA methods already grappled with
challenges regarding uncertainty, data availability and
variability [13e15], prospective LCA introduces a novel
challenge (i.e., the need to anticipate how both internal

and external factors will evolve during the research and
development stages of emerging technologies) [16e19].
Some examples of such indeterminacies in the context
of the chemical industry are: characteristics of novel
chemistry itself (yields, reaction conditions and
urrent Opinion in Green and Sustainable Chemistry 2024, 50:100979
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further), process scale-up behaviour, anticipated future
chemical supply chains and process electrification
scenarios.

To meet the challenge, prospective LCA has employed
process modelling, scenario analysis and various forms
of uncertainty analysis and sensitivity analysis
[16,20,21]. In addition to these, first demonstrations of

the use of Machine Learning (ML) that can help
address key knowledge gaps have been presented. In
the following sections we will discuss selected exam-
ples of the latter, distinguished according to three main
applications (for a detailed explanation of the LCA
model and its components and definitions, we refer the
reader to Ref. [22]):

1. Surrogate models for early-stage screening: ML-
derived models that contribute to early-stage
screening and ranking without LCA model con-

struction. This includes algorithms that predict LCA
scores, related early-stage sustainability metrics, or
fill in data gaps that allow for early-stage assessment
(Figure 1: A).

2. Informing prospective LCA models: ML algorithms
to aid LCA model construction, assessment and
interpretation by estimating model parameters
within specific phases of LCA:
- Goal and scope definition: parameters needed to define
the function, alternatives, functional units, refer-
ence flows and system boundaries of future product

systems (Figure 1: B)
- Life Cycle Inventory Analysis: economic (Figure 1: C)
and environmental (Figure 1: D) inputs and out-
puts of unit processes in future product systems

- Life Cycle Impact Assessment: characterisation factors
that translate environmental inputs/outputs to im-
pacts (Figure 1: E, F, G, H), as well as normalisation
factors (Figure 1: I)

- Interpretation: parameters to quantify the magnitude
of uncertainty (Figure 1: J) and sensitivity
(Figure 1: K) in prospective LCA models. Novel
techniques have also been presented to identify

scenarios of interest (Figure 1: L)
Here we also consider ML algorithms developed for
models outside the LCA domain (e.g. models of func-
tional performance and reliability, landscape parameters

that are used in impact models) which can serve to
inform and complement the above elements of the LCA
model.

3. Decision support: ML techniques that can enhance
decision-making following the results of prospective
LCA (e.g., in the determination of pareto-optimal
technology configurations via multi-objective opti-
misation) (Figure 1: M)
Current Opinion in Green and Sustainable Chemistry 2024, 50:100979
In Figure 1 we also differentiate between elements that
have been targeted in published case studies where ML
has been clearly integrated in prospective LCA (green),
potential elements where we believe ML can already
support prospective LCA (yellow), and elements un-
explored in the context of prospective LCA but with
potential integration in the future (red).
Surrogate models for early-stage screening
One important application for ML in LCA of emerging
chemical technologies is to enable the early-stage
screening of thousands of novel products, molecule al-
ternatives, or reaction/production pathways. The known

chemical design space is estimated to contain about 100
million molecules, whereas the unknown chemical space
can be approximated to go up to the order of 1060 mol-
ecules [12]. Considering the laborious nature of
modelling new products and compiling LCA databases, a
sensible initial application for ML is to approximate
selected sustainability criteria or the results for the
entire LCA model, using predictions based on existing
LCA databases. The general intention is not to entirely
circumvent LCA models of novel products or novel
production routes, but to screen for most promising

configurations in large and early-stage decision-making
space and then explore more limited configurations
through full prospective LCA models [23].

We note two distinct approaches here. First, different
reaction pathways towards specified products or product
categories can be assessed through optimisation ap-
proaches [24e26]. Common applications are bio-
refineries, bioplastics, or further emerging process or
product classes. We expect ML to play a supporting role
in filling data gaps for such large-scale and early-stage
screening schemes. For instance, models like the Mo-

lecular Transformer may complete known or predict
novel reactions along the pathways [27e29] or may be
used to predict reaction yields [30]. Artificial Neural
Networks can be used to inform about the reaction
context [31] and QSPR models (quantitative structure-
property relationships) or Graph Neural Networks can
make predictions for a range of molecular properties
needed to evaluate the reactions (e.g. toxicity or ther-
modynamic properties) [32e34].

Second, life-cycle impacts have been estimated directly

for specific chemicals based on molecular and thermo-
dynamic properties and process-level parameters. Such
an approach was developed in the FineChem [35,36]
and recently updated FineChem 2 [37] tools, which
predict product carbon footprints, critical raw materials
and the endpoint Ecoindicator99 from existing LCA
databases and molecular structures. In a similar fashion,
the CLiCC tool [38], and the implementation by Sun
et al. [39] directly calculate additional impact scores
such as cumulative energy demand, acidification, human
www.sciencedirect.com
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Future-oriented elements in prospective LCA of emerging chemical technologies that might be informed by ML. Triangles represent output variables with
the information obtained from different modelling steps that have (green) or may be (yellow) predicted or informed by ML techniques. In red we indicate
variables for which ML support is largely unexplored to date but may be an interesting research topic. *Decision support is not a phase of the standard
LCA model, but is included here as a key aspect of early-stage environmental assessment of emerging technologies. (For interpretation of the ref-
erences to color in this figure legend, the reader is referred to the Web version of this article.)
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health, ecosystem quality, metal depletion, freshwater
ecotoxicity, and particulate matter formation. Additional
demonstrations of this approach are found in Kleine-
korte et al. [40] and Karka et al. [41].

Notably, the literature on surrogate models for LCAs
does not differentiate explicitly between ex-post and
prospective LCA predictions. The current state of
www.sciencedirect.com C
research in screening applications is on improving model
accuracy, generating relevant datasets, and integrating
tools for multiple data gaps. As of now, this has been
irrespective of the stage of technological development.
In the following section, we discuss ML applications to

help fill knowledge gaps within the full prospective LCA
models and aid in model construction, assessment and
interpretation.
urrent Opinion in Green and Sustainable Chemistry 2024, 50:100979
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Informing prospective LCA models
Future-oriented goal and scope
Indeterminacies in the first phase of the LCA method,
Goal and Scope, are contextual and relate to the adequacy
of high-level definitions and modelling choices
regarding (e.g. function, functional unit, reference flow
and system boundaries) [42]. From a prospective LCA
standpoint, the additional question is how future de-
velopments could influence any of such modelling
choices. For example, Hischier et al. [19] rightly high-
light the challenge in defining a functional unit for
nanomaterials. So-called multifunctional nanomaterials
may deliver more than one function and in different

quantities [43]. This will largely depend on
the properties of the nanomaterials (e.g. electronic,
magnetic, optical, catalytic) which may not be fully
understood until later R&D stages. This often-over-
looked aspect is hard to capture in prospective LCA
models, yet it is very relevant as LCA models are highly
sensitive to functional performance variations [44].
There are already several publications demonstrating
the use of ML to predict such performance-related
properties of nanomaterials [45]. ML has also been
used to predict the functional performance of other

technologies often assessed in prospective LCA (e.g.
long-term energy yield of photovoltaic installations
[46,47] and battery storage) [48]. Here we observe that
such technology-specific models would likely be pro-
duced by technology experts (rather than LCA special-
ists) and would only inform functional unit definitions in
the LCA model. However, the scopes, assumptions and
limitations of these models would be inherited by the
prospective LCA model and so must be properly un-
derstood and communicated.

Prediction of prospective inventory data
The second phase of LCA includes the collection of

data, namely the material and energy inputs and outputs
associated with the unit processes or activities that
comprise the product system or value chain, from raw
materials extraction to end of life. Naturally, this aspect
has been the focus of most prospective LCA strategies
to date, where proposed approaches include, e.g. fore-
seeable roadmaps/scenarios in raw materials and energy
sourcing and manufacturing [8].

A central question for prospective LCA of emerging
chemical technologies is how the synthesis of novel
chemicals and materials will be upscaled for mass pro-

duction [20,49]. Evidently, this will have a large influ-
ence on the materials and energy requirements of a
commercialised product. Several authors have advocated
for the use of process simulation to develop upscaled
models of the manufacturing stage [50e52]. ML has
already been used in process simulation optimisation in,
e.g. polymer composites [53] and semiconductors [54].
As an example, Lockner & Hopmann [55] train an ANN
Current Opinion in Green and Sustainable Chemistry 2024, 50:100979
to optimise parameters for an injection moulding pro-
cess; injection flow rate, holding pressure time, holding
pressure, cooling time, melt temperature, and cavity
wall temperature. All of these parameters could deter-
mine energy inputs of foreground processes in a pro-
spective LCA model of novel polymers. The
combination of ML-supported process simulation for
LCA shows large potential to address data gaps in the

inventories of upscaled chemical technologies [56].

One often overlooked but highly sensitive aspect of the
inventory phase is the choice of allocation factors. They
inform the model on how to allocate environmental
burdens when unit processes perform more than one
economic function (multifunctional), including chemi-
cal co-products and recycling of waste. Allocation factors
can be based on the economic values of each product/
service, on physical principles of the products (mass/
energy content) or others. As for economic factors, ML-

based forecasting has been widely applied to commodity
prices, and thus we can imagine the use of such tech-
niques for multifunctional systems in the LCA frame-
work for finding allocation factors that depict future
developments. Examples are co-produced metals such
as copper and molybdenum [57]. We want to emphasise
that the interpretation of LCA results is highly sensitive
to allocation factors. Thus, while this approach allows to
consider future economic scenarios, it also introduces
novel model uncertainties which may or may not be
desirable. If allocation factors are based on ML com-

modity price predictions, we recommend carefully
executed exploratory scenario approaches complemented
by other types of scenario analysis.

Prediction of prospective characterisation factors
Perhaps the most active area of work on integrating ML
with LCA of chemicals is on the prediction of (human
and eco-) toxicity characterisation factors (CFs) for the
life cycle impact assessment phase of LCA [58e61].
These approaches typically rely on molecular de-
scriptors as model inputs and molecule-specific CFs as
outputs. Subsequently, the CFs are then multiplied by
the emitted chemical masses in each compartment
(obtained during the inventory phase) to produce an

impact score. In a more nuanced approach, von Borries
et al. [62] propose ML to predict the most influential
parameters required to calculate the CF’s, including
fate, exposure and effect factors such as degradation
half-life and bioaccumulation.

Other impact categories next to toxicity are currently
underexplored. As emerging chemical technologies
advance through R&D, impact characterisation factors
may be contingent on evolving extrinsic factors. LCA
impact categories such as abiotic resource depletion and

water scarcity are temporally dependent and highly
sensitive to future trends. An emerging chemical
www.sciencedirect.com
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technology may be better or worse placed to benefit
from such trends depending on the quantity and loca-
tion of the materials and water demand of its value chain
[63]. Through forecasting environmental variables and
coupling them with different characterisation methods,
insights into the future evolution of impact mechanisms
can be obtained. This is especially interesting for CFs
whose underlying environmental data is not covered in

Integrated Assessment Models, as is the case with the
water scarcity method AWARE [64].

Interpretation
The ubiquitous nature of uncertainty and complexity in
prospective LCA calls for a more nuanced and sophis-
ticated interpretation of results. Various authors have
argued for the application of Global Sensitivity Analysis
(GSA) [65], as it can add robustness in the presence of
numerous, large and heterogeneous uncertainties, and it
can also aid in model simplification and dimensionality
reduction by identifying poorly known parameters of low
or high relevance [16,44,66,67]. ML-based techniques
have been recently proposed to conduct GSA [68e70],

which could streamline its implementation in prospec-
tive LCA. For example, random forest algorithms were
used to produce surrogate (meta) models. Here, the
random forest variable importance measure can be used
to define sensitivity measures in a computationally
efficient way, while accounting for
correlations and interactions in high-dimensional LCA
models (numerous uncertain variables) [69].

Other authors have recognised the presence of unquan-
tifiable and so-called deep uncertainties as well as more

general forms of indeterminacy in prospective LCAwhich
fall in the realm of postenormal science [71]. The scenario
discovery approach employs ML and other algorithms to
systematically identify combinations of uncertain param-
eters that produce scenarios that fail tomeet performance
criteria [72e74]. Suchan approachwasdemonstrated for a
case study of geothermal heating networks, where diverse
design alternatives with uncertain parameters were
screened to find combinations of parameter ranges that
would produce scenarios of interest (e.g. exceeding a
water consumption threshold as calculated by LCA) [68].

Amore recent implementation of scenario discovery in the
context of prospectiveLCAapplied to thedevelopment of
microalgal compounds for aquaculture can be found in
Jouannais et al. [71].

Decision support systems
Given prospective LCA’s mission to guide technological
development, we believe the analysis in this review
must extend beyond discussion of LCA results and step
well into decision-making. This means translating LCA
model outcomes e including uncertainty and sensitivity
analysis e into actionable decisions. ML has been
increasingly used within Decision Support Systems [75]
www.sciencedirect.com C
(e.g. in multi-objective optimisation) [76,77]. A note-
worthy example is the SUSCAPE tool [78], which op-
timises chemical processes while taking into
consideration LCA indicators. SUSCAPE uses neural
networks to derive surrogate models from full process
models (flow sheet simulators or large differential
equation systems). The surrogate models are then
passed to multi-objective optimisation algorithms to

produce a set of solutions for optimal process design. In
the final step, the solution set is filtered and ranked
using Data Envelope Analysis techniques. Multi-criteria
decision analysis (MCDA) tools have also been proposed
as a final step to rank the optimal solutions based on
stakeholder preferences [79].

Discussion and conclusions
It is well-reckoned within the scientific modelling com-

munity that the future is unpredictable. Thus, prospec-
tiveLCA of emerging chemical technologies supported by
ML should focus on ensuring that the decisions made
during R&D are the best ones given the information
available to us at present. ML no doubt has a promising
potential to enhance the broader decision-making process
within which prospective LCA is embedded, guiding it
towards safer and more sustainable innovation. At the
same time, there is a risk of ML obscuring the analyses
and/or creating a false sense of confidence in future sce-
narios. This is a risk, as modellers must acknowledge that

ML algorithms bring their own sources of error, even if
best practices such as rigorous data preparation andmodel
validation are applied. The irreducible errors should be
analysed and clearly disclosed.

MLwill also tend to drive results towards expected values
or ranges which are for the most part predicated on past
data. The future does not necessarily behave like the past,
so it is imperative to keep a close eye on potential black
swans, i.e. low-likelihood but high-consequence scenarios
and emergent behaviour resulting from complex systems

in which LCA product systems are embedded. The other
side of this coin is thatwemight alsowant to allow roomfor
creativity and out-of-the-box thinking, which is not only
based on statistical predictions.

We conclude by advocating for the continued and
energised pursuit of research in the integration of ML
into prospective LCA, embracing ML not as a silver
bullet but as an important decision-support tool in a
broader catalogue of prospective LCA strategies.
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