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Abstract
In this research the effectiveness of analytical neural networks compared to the maximum likelihood
method on the prediction of spatial and DOI positioning of a Gamma detector with a NaI(Tl) scintillator of
size 590mm x 470mm x 40mm (x,y,z), with a glass lightguide of size 620mm x 500mm x 4mmand a PMT
area of 620mm x 500mm x 40mm with 2-inch round PMTs with a Bialkali photocathode is presented.
This is done by training neural networks with different cost function, different amounts of hidden layers
and different amounts of neurons per hidden layer, trained on different amounts of training data. The
resolution of the predictions of the testing data are compared with those of the maximum likelihood
method. It was concluded that the neural network with best spatial resolution, had the Huber loss
function as cost function, 4 hidden layers and 512 neurons per hidden layer and was trained on 29,970
datapoints. The FWHM and the FWTM were 3.83±, 0.54 mm and 12.49 ± 1.19 mm respectively, while
the FWHM and the FWTM of the maximum likelihoodmethod were 3.31mmand 12.13mm respectively.
The resolution of the neural network was lower than that of the maximum likelihood method. The same
was done for the DOI resolution, here a neural network with mean squared error as cost function, 4
hidden layers and 64 neurons per hidden layer trained on 9,990 datapoints, gave the best the resolution
with FWHM and FWTM equal to 6.00 ± 0.50 mm and 11.94 ± 0.94 mm respectively. The FWHM and
FWTMof themaximum likelihoodmethod were 6.16mmand 11.22mm respectively. This made the DOI
resolution of the neural network higher then that of the maximum likelihood method. Finally different
ideas were presented to increase the resolution of the neural network. These were: training the neural
network on independent data, split the neural network in a spatial part and a DOI part, create a more
complex architecture and making use of a convolutional neural network.
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1
Introduction

The Single Photon Emission Computed Tomography (SPECT) scan is a technique widely used in nu-
clear medicine for imaging [1]. SPECT scans are used in a variety of different circumstances, including
the diagnosis of Alzheimer’s disease [2], localizing different types of tumours [3], evaluating organ ac-
tivity [4] and cardiac imaging [5]. However, next to the need of studying humans with SPECT scans,
there is also a need to study the dynamic of intact small animals. With these preclinical SPECT scans
it is possible to clarify molecular interactions in the onset and progression of disease, asses potential
imaging agents, andmonitor therapeutic effectiveness of pharmaceuticals serially within a single-model
system [6].

SPECT scans have a long history, which is briefly summarized as follows: In 1923 Georg von
Hevesy used radioactive tracers in an organism which made it possible to look at dynamic systems in
the body. For his work, Von Hevesy won the Nobel prize in 1943 [7]. In 1958 Hal Anger developed
the Gamma camera (also known as the Anger camera), this resulted in the development of the SPECT
scan in 1963 and the Positron Emission Tomography (PET) scan in 1973 [8].

There are several differences between preclinical SPECT scans and preclinical PET scans. Most
notable in performance is the difference in sensitivity and resolution. With the use of a pinhole collimator,
the sensitivity of a preclinical PET scan is in the order of magnitude 3 greater compared to that of a
preclinical SPECT scan, meaning that the SPECT scan detects a lower percentage of emitted events
than the PET scan [9]. However the resolution of a preclinical SPECT scan can be better than that of
a preclinical PET scan when a pinhole collimator is used [10].

In addition to the difference in performance, there is also the difference in use of radioactive tracers.
Multiple SPECT tracers can be used for imaging simultaneously. For PET scans this is not the case,
because the energy of the 𝛾 photons created by the positron annihilation is always the same (511 KeV).
With Versatille Computed Emission Tomography (VECTor) it is possible to make images of the energy
ranges of both the SPECT tracers and PET tracers [11].

In Decuyper et al. [12], the use of Artificial Neural Networks (ANN) for preclinical PET scans was
discussed. Here a 17% improvement in the Full Width Half Maximum (FWHM) was obtained when an
optical ANN was used compared to the nearest neighborhood algorithm. Since Decuyper et al. made
such in improvement using an ANN, it is interesting to see if an ANN can be created for the more cost
efficient VECTor.

In this research an Anger camera is used with a NaI(Tl) scintillator (predominantly used for SPECT
scans [13]) of size 590mm x 470mm x 40mm (x,y,z), with a glass lightguide of size 620mm x 500mm x
4mmand a PMT area of 620mm x 500mm x 40mmwith 2-inch round PMTs with a Bialkali photocathode.
The goal of this research is to create an ANN such that either the FWHM or the Full Width Tenth
Maximum (FWTM) becomes smaller than that of the Maximum Likelihood (ML) algorithm. This results
in the following research question:
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2 1. Introduction

Can an ANN be created with smaller FWHM or FWTM than that of the ML algorithm, for
a Gamma detector based on a monolithic 40mm thick NaI(tl) scintillators with a configu-
ration of two inch round PMTs with a 4mm glass light-guide?

In chapter 2, the concept of a neural network will be discussed and the the propagation algorithm
will be mathematically derived. In chapter 3, the working of the Gamma camera will be discussed as
will the physical phenomenon of Compton scattering. In chapter 4, the construction of the data and
the methodology of how the results are achieved will be discussed. In chapter 5, the results of the
neural network will be presented, compared and discussed. In chapter 6, a conclusion will be made
and advice for future research will be given.



2
Neural Networks

In this chapter the concept of neural networks will be discussed. This will be done by first explaining
how neural networks work, and then what type of neural networks there exist.

2.1. Neurons
in 1943 a neurophysiologist and a logician came up with the idea of simulating the brain with mathemat-
ics, also known as a neural network [14]. The human brain consists of several million interconnected
neurons. A neuron itself consists out of three major parts, axons, dendrites and the soma, as can be
seen in figure 2.1.

Figure 2.1: Schematic representation of a neuron, where it can be seen that it consists out of three main parts.[15]

These three parts have different properties. The dendrite is the receiving part of the neuron, it has
a synapse of an adjacent axon as input and sends a synapse to the soma. The soma then confirms
if enough dendrites have received a signal, once a specific threshold is reached. The soma will then
send a synapse via the axon to an adjacent neuron where this process will happen again [16].

When there is a system of these neurons they can achieve very complex tasks, actually everything
that a human can do is because of these neurons [17].

2.2. Data
To make use of a neural network, several types of data are used. There is the input and output data
(also known as label). These two data sets are split in three parts, the training data, validation data
and the testing data. The training data is used to train a neural network, the validation data is used to
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4 2. Neural Networks

make sure the neural network does not overfit and the testing data is used after the neural network is
trained to test the neural network using different properties.

2.3. Working of a neural network
To determine what the response of a neuron on the previous neurons is (keeping figure ?? in mind),
all the values of the previous neurons are multiplied with a weight and then summed, as can be seen
in figure 2.2.

Figure 2.2: Visualisation of the weights, here 𝑥1, ..., 𝑥𝑑 are the inputs, 𝑤1, ..., 𝑤𝑑 are the weights, a is the summed value of the
inputs times the weights and g is the activation function [18].

Often also a bias is added to the summed input. Mathematically, the value of a, depicted in figure
2.2, is given as in equation (2.14).

𝑎 =
𝑑

∑
𝑖=1
𝑤𝑖𝑥𝑖 + 𝑏 (2.1)

After the weighted sum is calculated and the bias is added, an activation function is used to deter-
mine the output of the neuron. Activation functions are used to create more complex mappings from
the input to the output. If activation functions are not used, then the neural network is only a linear
regression model, which has a limited performance and power compared to a neural network were
activation functions are used [19]. The working of a neural network is schematically shown in figure 2.3

Figure 2.3: Working of a neural network. Here the input is given by 𝑥𝑖 and the output is given by �̂�𝑖. The output of the neurons
is 𝑧𝑙𝑗 where j is the neuron and l is the hidden layer. The outputs of the neurons are multiplied by their respective weights 𝑊𝑙

𝑘,𝑗,
where k is the neuron with which the output is multiplied, j is the neuron where the weights are added up and l is the layer where
the weights are added up.

There is a wide variety of activation functions, some of which are depicted in figure 2.4.
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Figure 2.4: Four commonly used activation functions, the step function, the sigmoid function the ReLU function and the leaky
ReLU function.

Each activation function has its drawbacks, however, overall the Rectified Linear Unit (ReLU) and
its alteration the leaky ReLU are seen as the most efficient activation functions for regression models
[19]. These two activation functions are given by equation 2.2 and equation 2.3.

𝑅𝑒𝐿𝑈(𝑎) = { 0 𝑎 < 0
𝑎 𝑎 ≥ 0 (2.2)

𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑎) = { 0.01𝑎 𝑎 < 0
𝑎 𝑎 ≥ 0 (2.3)

Between these two activation functions most drawbacks are the same. The main difference is that the
leaky ReLU does not suffer from vanishing gradient problem [20], which also will be briefly discussed
in the following section.

2.4. Training of a neural network
2.4.1. Gradient descent
When a neural network is set up with different amounts of hidden layers, neurons and activation func-
tions it will have to be trained to see which configuration of weights and biases gives the best result.
This is often done with the method of gradient descent. In this explanation first the direct algebraic
gradient descent will be discussed, after that the matrix notation of gradient descent will be discussed.

Let 𝑧𝑙𝑗 be the output of the 𝑗𝑡ℎ neuron on the 𝑙𝑡ℎ layer. Then we can write:

𝑧𝑙𝑗 = 𝑔(∑
𝑘
𝑤𝑙𝑗,𝑘𝑧𝑙−1𝑘 + 𝑏𝑙𝑗 ) = 𝑔(𝑎𝑙𝑗) (2.4)

Where g is the activation function, 𝑤𝑙𝑗,𝑘 is the weight on the 𝑘𝑡ℎ neuron in the 𝑙 − 1 layer, 𝑏𝑙𝑗 is the bias
and 𝑎𝑙𝑗 = ∑𝑘 𝑤𝑙𝑗,𝑘𝑧𝑙−1𝑘 + 𝑏𝑙𝑗 .
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The main goal of gradient descent is to minimize a cost function. Let equation 2.5 be an example
of a cost function (in this case the mean squared error) of the training example xi, where 𝑥𝑖 represents
the 𝑖𝑡ℎ input (set).

𝐸𝑖 =
1
2

𝐽

∑
𝑗=1
(𝑦𝑗(xi) − 𝑧𝐿𝑗 (xi))2 (2.5)

Here y is the desired output, J is the amount of output neurons and L is the total amount of layers. Note
that xi can also be a vector since the input of a neural network is not restricted to one value. The total
cost function is then given by ∑𝑖 𝐸𝑖 [21].

Gradient descent is defined with the following iterative step:

𝑧𝑙𝑗(𝑛 + 1) = 𝑧𝑙𝑗(𝑛) − 𝜂𝛿𝑙𝑗 (𝑛) (2.6)

Where n is an integer denoting the step, 𝜂 is the step size and 𝛿𝑙𝑗 (𝑛) is a slight alteration such that the
cost function decreases[22]. We define this alteration as follows:

𝛿𝑙𝑗 (𝑛) ≡
𝜕𝐸

𝜕𝑎𝑙𝑗(𝑛)
(2.7)

Using the chain rule equation 2.7 can be written as:

𝛿𝑙𝑗 (𝑛) =
𝜕𝐸

𝜕𝑧𝑙𝑗(𝑛)
𝜕𝑧𝑙𝑗(𝑛)
𝜕𝑎𝑙𝑗(𝑛)

(2.8)

Note that 𝑧𝑙𝑗(𝑛) is a function of 𝑎𝑙𝑗(𝑛) given by the activation function, as written in equation 2.4. Keeping
this in mind equation 2.8 is equivalent to:

𝛿𝑙𝑗 (𝑛) =
𝜕𝐸

𝜕𝑧𝑙𝑗(𝑛)
𝑔′(𝑎𝑙𝑗(𝑛)) (2.9)

Where g’ is the derivative of the activation function g. For the activation functions given in equation 2.2
and 2.3, the derivatives are quite simple. Note that for the RELU this derivative is equal to zero, for an
input smaller then zero. This is the vanishing gradient problem, which has the consequence that the
weights do not change in gradient descent method (since 𝛿𝑙𝑗 is zero). Also note that the first term of
the equation (the derivative of the cost function) can also be quite easily computed, as can be seen in
equation 2.10.

𝜕𝐸
𝜕𝑧𝑙𝑗(𝑛)

= |𝑦𝑗(𝑛) − 𝑧𝑙𝑗(𝑛)| (2.10)

Therefore, with this cost function, we can write equation 2.8 as the following equation.

𝛿𝑙𝑗 (𝑛) = |𝑦𝑗(𝑛) − 𝑧𝑙𝑗(𝑛)|𝑔′(𝑎𝑙𝑗(𝑛)) (2.11)

However, for the sake of generality, equation 2.9 will be used from now on.
An interesting aspect of the error is that the error of a neuron on a layer 𝑙, can be determined by

the error of the neurons on the 𝑙 + 1 layer, this can be done by using the chain rule, which is applied as
follows.

𝜕𝐸
𝜕𝑧𝑙𝑗(𝑛)

=∑
𝑘

𝜕𝐸
𝜕𝑎𝑙+1𝑘 (𝑛)

𝜕𝑎𝑙+1𝑘 (𝑛)
𝜕𝑧𝑙𝑗(𝑛)

(2.12)

Using the definition of 𝑎𝑙+1𝑖 (𝑛) (and taking the derivative of it with respect to 𝑧𝑙𝑗(𝑛)) and 𝛿𝑙+1𝑗 (𝑛) and
making use of equation 2.9, 𝛿𝑙𝑗 (𝑛) can be determined as follows.

𝛿𝑙𝑗 (𝑛) =∑
𝑘
𝑤𝑙+1𝑘,𝑗 𝛿𝑙+1𝑗 (𝑛)𝑔′(𝑎𝑙𝑗(𝑛)) (2.13)
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Determining the error of a neuron itself is not very interesting. However, with this error the error of the
weights and biases can be determined, and therefore they can be optimised. This is once again done
by using the chain rule and by making use of the definitions of 𝑎𝑙𝑖(𝑛) and 𝛿𝑙𝑗 (𝑛) [21].

𝜕𝐸
𝜕𝑤𝑙𝑗,𝑘(𝑛)

= 𝜕𝐸
𝜕𝑎𝑙𝑗(𝑛)

𝜕𝑎𝑙𝑗(𝑛)
𝜕𝑤𝑙𝑗,𝑘(𝑛)

= 𝑧𝑙−1𝑘 𝛿𝑙𝑗 (𝑛) (2.14)

𝜕𝐸
𝜕𝑏𝑙𝑗 (𝑛)

= 𝜕𝐸
𝜕𝑎𝑙𝑗(𝑛)

𝜕𝑎𝑙𝑗(𝑛)
𝜕𝑏𝑙𝑗 (𝑛)

= 𝛿𝑙𝑗 (𝑛) (2.15)

When the gradient descent method described in equation 2.6 is used on the weights and biases, these
will be optimised.

2.4.2. Matrix-vector notation
Since a neural network is a grid of neurons, it is a lot easier to rewrite this method in matrix notation. To
do this, all normal matrix manipulations are used, except that also the Hadamard product is also used.
Which is defined as follows:

⎡
⎢
⎢
⎣

𝑎1
𝑎2
⋮
𝑎𝑛

⎤
⎥
⎥
⎦
⊙
⎡
⎢
⎢
⎣

𝑏1
𝑏2
⋮
𝑏𝑛

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

𝑎1𝑏1
𝑎2𝑏2
⋮

𝑎𝑛𝑏𝑛

⎤
⎥
⎥
⎦

(2.16)

It can easily be seen that a lot of equations of the previous section can be written directly in matrix
notation. Therefore, the derivation of these equations will not be shown, but the results will be.

First equation 2.4 can be rewritten as follows:

zl = 𝑔(wlzl−1 + bl) = 𝑔(al) (2.17)

Where zl is a vector with all the 𝑧𝑙𝑗 values, wl is a matrix where the 𝑖𝑡ℎ row corresponds to the weights
of the 𝑖𝑡ℎ neuron, bl is a vector with all the 𝑏𝑙𝑗 values and al is a vector with all the 𝑎𝑙𝑗 values.

Using thesematrix-vector notations, the threemost important equations, namely equation 2.9, equa-
tion 2.13, equation 2.14 and equation 2.15 can easily be written in the simplified form of equation 2.18,
equation 2.19, equation 2.20 and equation 2.21.

𝛿𝑙(𝑛) = ∇zl𝐸 ⊙ 𝑔′(al(𝑛)) (2.18)

𝛿𝑙(𝑛) = (wl+1)𝑇𝛿𝑙+1(𝑛) ⊙ 𝑔′(al(𝑛)) (2.19)

∇wl𝐸 = zl−1⊙𝛿𝑙(𝑛) (2.20)

∇bl𝐸 = 𝛿𝑙(𝑛) (2.21)
Using using these equations in combination with the gradient descent method, results in a model that
constantly improves on the input data [21].

2.4.3. Back propagation
The back propagation algorithm works as follows [21]:

1. Set the input, x, for the activation layer.

2. For each layer compute al and zl.

3. Compute the error 𝛿𝐿 via equation 2.18, where L is the final layer.
4. For each layer compute 𝛿𝑙−1 via equation 2.19.
5. For each layer compute ∇wl𝐸 and ∇bl𝐸 via equation 2.20 and equation 2.21.

6. Change the weights and biases of each neuron according to the gradient descent step.
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2.4.4. Epochs
An epoch is a parameter that defines how often the back propagation algorithm will run through the
training data. This is done because this way the algorithm can more efficiently learn how to tweak
the weights and biases without having to create more training data. If there are too many epochs it is
possible that the neural network focuses to much on the training data, this has the result that the neural
network will not predict new data accurately, this is called overfitting. If there are not enough epochs,
then the weights and biases will not have enough training to accurately predict new data, this is called
underfitting. For every neural network the amount of epochs differs, this is why it is necessary to use a
validation set to check if the network is over or underfitting [23]. This can be seen in figure 2.5.
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Figure 2.5: Figure of the cost function of the training an validation data as function of the amount of epochs. As can be seen
in the figure, the cost function of the training data converges towards zero. However, the cost function of the validation data
increases again after a certain amount of epochs.
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SPECT

3.1. Gamma camera
A Gamma camera (also known as Anger camera) consists of several components, as depicted in figure
3.1. Three of these components will be discussed in this section, namely the collimator, scintillation
crystal and the Photon Multiplier Tube (PMT). These will be discussed in chronological order when
looking from the perspective of a gamma ray.

Figure 3.1: Schematic diagram of an Anger camera. Once a gamma ray goes trough the collimator, it will hit a scinitillation
crystal. After that it will split up into multiple optical photons, which can interact with the PMT after which the optical photons can
be detected. [24]

3.1.1. Parallel hole collimator
Parallel collimators are sheets of dense material, perforated by long thin channels. A parallel collimator
does not divert rays, however it does select rays that are moving in the direction of the channels (like
a tunnel). Gamma rays that are moving in different directions either collide with the collimator, in which
case they will not be detected. Or they miss the collimator entirely [25]. Since photons move in straight
lines, the detection of a photon thus indicates that the Gamma ray originated somewhere on a parallel
line with the collimator (as can be seen in the most left part of figure 3.1), making it possible to recreate
an image. Often only a small fraction of the photons move through the collimator ( 10−4-10−2), which
limits the sensitivity. To change this, the width of the hole can be increased. This however has the
effect that the resolution decreases [26].

3.1.2. Pinhole collimator
Pinhole imaging with Gamma rays is based on the same principle as the optical pinhole camera. The
resolution of the pinhole collimator can be a lot higher than that of a parallel hole collimator, because if
the detector is further away from the pinhole than the emitting object, the image of the source will be

9
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magnified by a factor M. If the image is then magnified to its original size (using algorithms instead of
optics), the resolution becomes equal to 𝑅

𝑀 , where R is the intrinsic resolution of the detector [27]. The
smaller an object is, the closer it can be placed to the pinhole, and thus the greater the magnification
can become, this is why pinhole collimators are often used for preclinical SPECT scans.

The difference between the pinhole collimator and parallel hole collimator can be seen in figure 3.2.

Figure 3.2: Image of a mouse with a pinhole collimator (left) and a parallel collimator (right). Note that for both cases the resolution
of the image is the same, but that for the pinhole the image is also magnified. [28]

3.1.3. Scintillation crystal
A scintillator is a material with the ability to absorb ionizing radiation (for example x-rays and gamma
rays) and convert the absorbed energy to light photons [29]. Such an ionizing particle dissipates its
energy by ionizing and exciting the molecules of the scintillator and free electrons [30]. This will create
a shell-hole in the valence band with an energetic electron. The electron in the conduction band will in
turn decay back to the valence band, creating a photon [31].

Sometimes (depending on the type of scintillation material), the gap between the valence and con-
duction band is to big to create a light photon. In this case a small amount of impurity is added to the
scintillation material creating extra levels within the forbidden gap of the conduction and valence band,
called activation sites. These activation sites will have levels just above and just below the valence
and conduction band, making the band gap smaller. This has the result that the energy depleted by
the deexcited electron is within the light range [32]. This is schematically depicted in figure 3.3.

Figure 3.3: Representation of the gap between the valence band and the conduction band with activator bands in between.
Activators make extra bands between the valence and conduction band. Electrons tend to migrate to the activator bands that
are near the conduction band. Making it more likely that once an electron deexcites, it will send out a scintillation photon in the
visible spectrum.

The most commonly used scintillation material is NaI(Tl). This is because it is cheap and has a high
Gamma ray absorption coefficient for low energies [32]. However, other scintillation materials have
surpassed both the resolution and the sensitivity of the NaI scintillator, but at the expense of being
more costly.

Note that for a thin scintillator, the Depth Of Interaction (DOI) does not change the image of an
object a lot when a pinhole collimator is used. However, when the scintillator becomes thicker, the DOI
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plays a more important role as can be seen in figure 3.4. This makes the prediction of the DOI more
important.

Figure 3.4: Two different Gamma photons passing trough a pinhole collimator interacting at the same (x,y)-position but at different
DOIs.

3.1.4. Photon multiplier tube
The final part of the Anger camera is the PMT. A schematic setup of a PMT can be seen in figure 3.5.
When a light photon collides with a photocathode, the photocathode will emit an electron. This electron
will then be multiplied at the dynodes, since there are multiple dynodes this will happen several times.
Finally the electrons will come in contact with the anode resulting in an electrical signal [32].

Figure 3.5: Schematic diagram of a PMT. Once a photon (within the visible light range) is emitted from the scintillator, it will be
detected by the photocathode. Which will send out a photoelectron that will be sent towards a sequence of dynodes, making the
pulse stronger. In the end the pulse will reach the anode where it is transformed into an electrical signal. [32]

In a Gamma camera several different PMTs are used next to each other (as also can be seen in
figure 3.1). The (x,y) position is then determined by comparing the signals of the different PMTs.

3.1.5. SPECT scans
To make a medical image with a SPECT scan, a radioactive tracer is inserted in a patient, which will
send out gamma rays [33].

A radioactive tracer is a radioactive element or molecule that follows a physiological or biochemical
processes. Tracers often mimic a naturally occurring element or molecule in the human body [7].

A SPECT scan itself is conventionally performed with a rotating Gamma camera at a number of
angels. This camera will acquire Gamma rays from the tracer after which slices are reconstructed of
the required body part with a 3D image algorithm [34]. An example of a SPECT scan image is given in
figure 3.6.
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Figure 3.6: An example of a SPECT scan of dopamine concentration in the brain of a patient with Parkinson’s during and after
the use of herbal medicine. [35]

3.1.6. VECTor
One of the goals of this research is to increase the resolution of a Versatile Emission Computed To-
mography (VECTor) system. A VECTor system is based on a specially designed cylindrical collimator
containing 48 clusters of 4 pinholes each, located in an existing SPECT system. With VECTor all pin-
holes focus on a central scan volume (the required volume) [11]. The image can then be reconstructed
by the method described by van der Have et al. [36]. An image of a VECTor system and its collimator
can be seen in figure 3.7.

Figure 3.7: Different parts of a VECTor system. (A) Traditional pinhole and a cluster of four pinholes. (B) Clustered-pinhole
collimator. (C) Collimator mounted on a SPECT/CT system. [11]

VECTor systems have the benefit of being able to detect Gammas over a broad energy range ( 30
KeV t0 1 MeV) at sub millimeter resolution. This makes it possible for VECTor systems to image a
wide variety of therapeutic isotopes, including those used for SPECT and PET scans.

3.2. Compton scattering
A major obstacle with SPECT scans is Compton scattering [37]. Compton scattering is an elastic
collision between a gamma ray and a (free) electron. This has the effect that the electron recoils with
an energy 𝑇𝑐 and angle Φ with the incident photon. Which in turn reduces the energy of the photon,
and lets it scatter in a direction of 𝜃 with the incident photon [38]. The effect of Compton scatter can be
seen in figure 3.8.
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Figure 3.8: Compton scattering in a clinical SPECT scan. Here A indicates an event without Compton scatter, B is scatter inside
the detector, C is scatter outside the detector and D is Septal penetration.[7]

Scattering can occur before the collimator, in the collimator and in the scintillation crystal. Energy
discrimination filters some of these events, but if the the angle of scatter is less than 45 degrees this
will not work anymore. In the case the Compton photon does get detected it is often many centimeters
from the original site of interaction inside the scintillator [7].

An example of a multiple scatter event can be seen in figure 3.9
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Figure 3.9: Multiple scatter events in a scintillattor. Note that scatter happens in 3 dimensions, but this figure only shows 2
dimensions.

Because Compton photons are often many centimeters form the original sit of interaction, there
will be a different PMT signal compared to the same interaction without Compton scatter. This has
the effect that when the image is reconstructed, there is a slight error. That is why it is necessary to
determine the first interaction position of the Gamma ray.
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3.3. Maximum likelihood
Maximum Likelihood Estimation (MLE) is often used for the determination of the location of Gamma
rays in a scintillator [39]. The ML method is fully described in Barrett et al. [40] and will therefore not be
fully discussed. The most important part of ML is that it determines the interaction positions by taking
a weighted average, this makes it more susceptible for errors when Compton scattering occurs.



4
Method

In this chapter the method with which the neural network will be changed is discussed and which
parameters will be influenced.

4.1. Materials
The data is created with a Monte-Carlo simulation from the advanced opensource software GATE [41].
This simulation is done with a NaI(Tl) scintillator of size 590mm x 470mm x 40mm (x,y,z), with a glass
lightguide of size 620mm x 500mm x 4mm and a PMT area of size 620mm x 500mm x 40mm with 108,
2-inch round PMTs with a Bialkali photocathode and in a configuration as shown in figure 4.1.

Figure 4.1: Configuration of the 2-inch round PMTs.

a schematic representation of the setup can be seen in figure 4.2.

15
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Figure 4.2: Setup of the simulation. The scintillator starts at a DOI of 0mm. The scintillator is of size 590mm x 470mm x 40mm
(x,y,z), the glass lightguide is of size 620mm x 500mm x 4mm and the PMT area is of size 620mm x 500mm x 40mm

Note that the Depth Of Interaction (DOI) is measured from the scintillator, meaning that the DOI is
0mm at the boundary of the scintillator.

4.2. Data

The Monte-Carlo simulation gives data as seen in table 4.1.

Run id Event id Time [s] E [MeV] x [mm] y [mm] DOI [mm] Particle id Interaction type
0 0 0.12212 0.511 0.00 0.00 10.66 22 PhotoElectric
0 0 0.12212 0 -9.338 10.91 44.00 0 Transportation
0 0 0.12212 0 40.25 31.14 44.00 0 Transportation
0 0 0.12212 0 164.4 -66.96 44.00 0 Transportation

Table 4.1: Table with the simulated data. Here the run id indicates fromwhich run of 1000 s the interaction is, the event id indicates
from which event the interaction is, the time indicates when the interaction took place, E is how much energy is deposited in
the interaction, the x is the x positioning in millimeter, the y is the y position in millimeter, the DOI is the depth of interaction in
millimeter, the particle id and the interaction type indicates what for interaction it was.

Visually a simulation of a Gamma ray will look like this:
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Figure 4.3: Visual representation of a simulation of a Gamma ray in a scintillator. Here the cross at the origin (0,0) represents
the initial interaction in the scintillator, the dots with z-coordinate smaller then 44mm are optical adsorptions of the Gamma ray
and the dots at z = 44mm are the optical photons interacting with the PMT.

The absorption of the Gamma ray in the scintillator then looks like this:
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Figure 4.4: Visual representation of a Gamma ray absobed in a scintillator. Here the cross at the origin (0,0) represents the initial
interaction and the dots are optical adsorptions of the Gamma ray.

Before initializing, the origin of the (x,y)-positioning (the spatial positioning) is randomized, while
the z-positioning (DOI) is kept the same. This is done because the simulated data is simulated such
that the gamma-ray’s are centered at the origin (0,0). This is very predictable behaviour for a neural
network and therefore not a good way to use the training data. The randomization is done by adding a
random variable of a uniform U(-50mm,50mm) distribution to both the x and y coordinate in each event
(different random variables for the x and y coordinates). This is only done for the training and validation
data.

The x and y positioning for the testing data is discussed in section 4.6.
From the data format in table 4.1 the PMT signal can be created via an algorithm for each event. This
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algorithm takes as input the energy of the optical photons and the (x,y,z) coordinates and determines
in which PMT from figure 3.5 it would be detected. An example of a PMT signal is given in table 4.2.

Time [s] DOI [mm] PMT 1 PMT 2 ... PMT 107 PMT 108 E [MeV] #interaction per event
0.12212 -10.66 7 6 … 7 3 0.511 1
0.54762 -2.378 4 9 … 9 3 0.511 2
3.42736 -0.4929 3 3 … 9 5 0.51101 4
3.52548 -33.67 0 1 … 10 6 0.511 1

Table 4.2: Table with the PMT-signal. Here the time indicates when each event took place, the DOI is the depth of interaction of
the gamma-ray, the PMT’s what each PMT receives as signal from the interaction and E is the energy that was deposited in the
interaction.

After the creation of the PMT signal, a lot of the data will be filtered out. Primarily, because for this
research only the positioning of the first interaction for each event has to be determined. First, all rows
except for the first will be discarded per event. Secondly, the events that are of no interest, because
the energy does not correspond with that of the energy of the Gamma ray of the tracer, are filtered out.
These are the events were the energy in the PMT-signal is not in the range of 0.46𝑀𝑒𝑉 ≤ 𝐸 ≤ 0.56𝑀𝑒𝑉.
Thirdly, since only the (x,y,z)-positioning and the PMT-signal itself are used for the neural network all
other columns are discarded.

After this the PMT-signals are sorted such that they correctly correspond to the simulation, this is
done by comparing the DOI’s of both data sets. Finally the PMT-signal is normalized by dividing all
PMT-signals by the overall maximum of the PMT-signals.

4.2.1. Division of the data
The input data is the normalised PMT-signal of the 108 PMTs, and the labeling is the (x,y,z)-positioning
of the Monte-Carlo simulation of the first event.

In the simulation 10 runs are simulated with in each run approximately 1000 events. The data is
divided as follows. First the training data is set as the data where the run id is equal to 9, about one
tenth of the total data. The rest of the data is set to the be divided between the training and validation
set, 90% to the training set and 10% to the validation set. The division of the data thus goes as follows:
training data 10%, validation data 9% and training data 81%.

4.3. Architecture of the neural network
Within the first until the second-to-last layer of the neural network, the activation function will be the
leakyReLU as defined in equation 2.3. The final layer will be the identity function 𝑓(𝑥) = 𝑥, ∀𝑥. The
used optimizer will be adam.

4.4. Metrics
For the results two types of metrics are used to determine the resolution, the Full Width Half Max
(FWHM) and the Full Width Tenth Maximum (FWTM). Both these metrics will be discussed in this
section. The full width half max (FWHM) is determined by first fitting a Gauss2 distribution, given in
equation 4.1, on the empirical density function, of the errors in the x and y positions.

𝐺𝑎𝑢𝑠𝑠2(𝑥) = 𝑎1𝑒
−( 𝑥−𝑏1𝑐1

)2 + 𝑎2𝑒
−( 𝑥−𝑏2𝑐2

)2 (4.1)

Here 𝑎1 and 𝑎2 are the weights of the two Gaussians, 𝑏1 and 𝑏2 are the centres of the two Gaussians
and 𝑐1 and 𝑐2 are the standard deviations of the two Gaussians.

After this, the maximum value of the Gauss2 distribution is determined. Then the x values for
which the distribution is half the maximum are computed and the distance between these two values
is calculated. This is shown in figure 4.5.

The full width tenthmax (FWTM) is often used to determine what the size of the tail is of a distribution.
The FWTM is determined the sameway as the FWHM. However, instead of the distance of points where
the the graph is half the maximum, it will be the distance of the points were the graph is a tenth of the
maximum.
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Figure 4.5: Gauss2 distribution fitted on the empirical density function in the x-direction (shown as histogram). Here the upper
dotted line is half of the maximum and the lower dotted line is a tenth of the maximum.

The FWHM and FWTM are usually used to determine the resolution for SPECT scans[7]. Therefore
they are useful when comparing the effectiveness of the neural network with other methods.

To determine the FWHM in the spatial resolution, the square root of the mean of the FWHM of the
x-data and the FWHM of the y-data squared is taken (this is described in equation 4.2). The same is
done for the FWTM.

𝐹𝑊𝐻𝑀 = √𝐹𝑊𝐻𝑀
2𝑥 + 𝐹𝑊𝐻𝑀2𝑦
2 (4.2)

To determine the FWHM and the FWTM for the DOI, first the labeling of the testing data is divided
in of 2 mm sections, ranging from 1 mm up to 39 mm. All the predicted testing data, where the labeling
of the testing data is in between 9mm and 11mm, is then used for the determination of the FWHM and
the FWTM. Also, instead of a Gauss2 distribution, a normal distribution (as described in equation 4.3)
is used for the fitting of on the data.

𝒩 = 1
𝜎√2𝜋

𝑒−
1
2
(𝑥−𝜇)2
𝜎2 (4.3)

4.5. Optimization factors
There are a lot of parameters on which a neural network might be optimized. In this section the param-
eters that will be optimized will be discussed.

4.5.1. Epochs
First the amount of epochs will be optimized, since it is easy to either overfit or underfit the data. This
is why when training the neural network, the validation data is used to check when to stop the training.
This is done by monitoring the cost function of the validation data when it is minimal. Here a patience
of 40 is used, that is to say that the training stops if after 40 epochs the cost function has not become
smaller than the previous minimum. When the training is stopped the weights of the epoch where the
cost function was minimal will be restored.

4.5.2. Hidden layers
The amount of hidden layers is varied between 2 and 5 with integer steps to see where the neural
network performs optimally.

4.5.3. Neurons
The amount of neurons is varied between 64 and 1024 where each step is a power of two. So 2𝑖 where
i is varied between 6 and 10 in integer steps.
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4.5.4. Cost functions
Three different cost functions are varied to see which works optimally, namely the Mean Absolute Error
(MAE), the Mean Squared Error (MSE) and the Huber loss function. These are given in equation 4.4,
equation 4.5 and equation 4.6.

𝑀𝐴𝐸 = 1
𝑛

𝑛

∑
𝑖=1
|𝑌𝑖 − �̂�𝑖| (4.4)

𝑀𝑆𝐸 = 1
𝑛

𝑛

∑
𝑖=1
(𝑌𝑖 − �̂�𝑖)2 (4.5)

𝐿1 =
𝑛

∑
𝑖=1
{
1
2(𝑌𝑖 − �̂�𝑖)

2 |𝑌𝑖 − �̂�𝑖| ≤ 1
|𝑌𝑖 − �̂�𝑖| −

1
2 |𝑌𝑖 − �̂�𝑖| > 1

(4.6)

Here 𝑌𝑖 is the predicted value and �̂�𝑖 is the true value.

4.5.5. Amount of training-data
The amount of data that is trained is also varied to see which amount is optimal. Since there is only
one original dataset. This is done by creating multiple different sets with a shift from the origin (as also
was discussed in section 4.2). The amount of training data is varied from 4995 to 29970 in steps of
4995.

4.6. Testing
To see how effective the neural network is, the FWHM and FWTM are used as measures.

First the neural network is trained over the different amount of hidden layers and neurons and
different cost functions. After this the testing-data is used to determine the spatial and DOI resolution
(both FWHM). The neural networks with the the best spatial resolutions are then trained on different
amounts of training data. The same is done for the neural networks with the best DOI resolutions. In
this situation the FWHM and FWTM are both once again computed. In this case however, to more
accurately determine them, the FWHM and FWTM are determined for Gamma rays focused on six
different locations around the origin and the mean of the FWTM and FWHM is then taken.

Finally the neural networks where the FWHM and FWTM are best when varying the amount of
training data, are compared with the method of Maximum Likelihood (ML) as described in Hunter [42]
and Barret [40].
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Results

In this chapter the results of the neural networks are discussed.

5.1. Spatial resolution
5.1.1. Cost functions
The spatial FWHM when different cost functions are trained with different amounts of layers and neu-
rons, can be seen in figure 5.1.
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Figure 5.1: Full width half maximum of the (x,y) position as function of the amount of neurons, for different amounts of layers
and different cost functions. Note that the neurons are depicted in exponents of two (2#𝑁𝑒𝑢𝑟𝑜𝑛). In this plot the continuous lines
are two hidden layers, the dashed lines are three hidden layers and the dotted lines are four hidden layers.

From the figure it can be seen that there are three neural networks for which the FWHM is the
smallest. Namely:

(a) Huber loss, 4 hidden layers and 512 neurons per hidden layer.

(b) Mean absolute error, 2 hidden layers and 64 neurons per hidden layer.

(c) Mean absolute error, 4 hidden layers and 512 neurons per hidden layer.

These neural networks will therefore be used for further testing.

21
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5.1.2. Training data
The results for the FWHM of the spatial resolution, for the neural networks trained on different amounts
of training data, can be seen in figure 5.2.
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Figure 5.2: FWHM as function of the amount of data that the neural network is trained on. Here the dots is the mean of the
FWHM for different spatial locations, and the error is the standard deviation of the FWHM for different spatial locations.

From this figure it appears that (𝑎) has the best spatial FWHM resolution when trained on 29,970
datapoints (so 4,995 original data points and 24,975 augmented data points), with a FWHM of 4.27 ±
0.35mm.

Likewise the same can be done for the FWTM, this can be seen in figure 5.3.
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Figure 5.3: FWTM as function of the amount of data that the neural network is trained on. Here the dots is the mean of the
FWTM for different spatial locations, and the error is the standard deviation of the FWTM for different spatial locations.
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From this figure it appears that (c) has the best spatial FWTM resolution when trained on 19,980-
29,970 datapoints. However, the difference in FWTM with (a) trained on 29,970 datapoints is less than
0.5 mm. Because this (a) has the best FWHM, (a) trained on 29,970 datapoints will be used for the
comparison with the ML method. The FWTM for this neural network is equal to 12.49 ± 1.19mm.

5.1.3. Comparison with maximum likelihood
When applying the ML method on the testing data, the following 2D histogram for the spatial part of the
data can be created.
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Figure 5.4: 2D histogram of the spatial prediction of the ML method. Here the red dot indicates the simulated location at the
origin.

The FWHM and the FWTM of the spatial resolution are 3.31mm and 12.13mm respectively.
For the neural network the 2D histogram can be seen in figure 5.5.
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Figure 5.5: 2D histogram of the spatial prediction neural network. Here the red dot indicates the simulated location at the origin.

From figures 5.4 and 5.5 it can be seen visually that the spatial FWHM and the FWTM of the neural
network are either worse, or as good as the spatial FWHM and the FWTM of the ML method. In figure
5.6 another visualisation of the errors can be seen.
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Figure 5.6: Histograms of the predicted x positioning and the predicted y positioning of both the ML method and the Neural
Network (NN). Here the plusses and the continuous lines are the predictions with fit of the ML method, and the dots and the
stripped lines are the predictions with fit of the neural network

From the figure it can be seen that the FWHM and the FWTM are smaller for the ML method com-
pared to that of the neural network.

5.2. DOI resolution
5.2.1. Cost functions
As with the spatial component of the FWHM, the same can be done for the FWHM of the DOI compo-
nent, the plot of the different cost functions with different amounts of layers and neurons can be seen
in figure 5.7.
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Figure 5.7: Full width half maximum of the DOI at 10mm as function of the amount of neurons, for different amounts of layers
and different cost functions. Note that the neurons are depicted in exponents of two (2#𝑁𝑒𝑢𝑟𝑜𝑛). In this plot the continuous lines
are two hidden layers, the dashed lines are three hidden layers and the dotted lines are four hidden layers.
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Form the figure it can be seen that the neural network with the best DOI resolution, is the neural
network with MSE as cost function, four hidden layers and either 64 or 256 neurons in the hidden layers.
Because both neural networks are quite similar in structure, only the neural network with 64 neurons
will be examined for further testing.

5.2.2. Training data

The results for the DOI resolution for the neural network, with the MSE as cost function, four hidden
layers, 64 neurons per hidden layer and different amounts of training data, can be seen in figure 5.8.
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Figure 5.8: FWHM and FWTM as function of the amount of data that the neural network is trained on at a simulated DOI of
10mm.. Here the dots are the means of the FWHM and FWTM for different spatial locations, and the error is the standard
deviation of the FWHM and FWTM of different spatial locations.

As can be seen from the figure, the best amount of training data for both the FWHM and the FWTM
is 9,990 datapoints (so 4,995 original data points and 4,995 augmented data points). Here the FWHM
is equal to 6.00 ± 0.50mm, and the FWTM is equal to 10.94 ± 0.94mm.

5.2.3. Comparison with maximum likelihood

When applying the ML method on the testing data the following error in the prediction of DOI can be
visualized.
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Figure 5.9: 2D histogram of the simulated DOI versus the estimated DOI when the ML method is used. Here the dotted line
indicates a simulated DOI of 10mm.

For the neural the same can be done.
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Figure 5.10: 2D histogram of the simulated DOI versus the estimated DOI when a neural network is used. Here the dotted line
indicates a simulated DOI of 10mm.

As can be seen from figure 5.9 and figure 5.10, with the ML method, there is a bias towards a
positive error (the estimated DOI is greater than the simulated DOI). This does not seem to be the case
for the neural network.

In figure 5.11 and figure 5.12, histograms of the predicted data at a simulated DOI of 10mm can be
seen for the ML method and neural network respectively.
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Figure 5.11: Histogam of the DOI estimated by the ML method at a simulated DOI of 10mm. Here a Gaussian distribution is
fitted on the empirical density function of the prediction.The stripped lines are a half and a tenth of the maximum.

For the ML method the FWHM and the FWTM, at a simulated DOI of 10mm, are equal to 6.16 mm
and 11.22 mm respectively.
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Figure 5.12: Histogam of the DOI estimated by the neural network. Here a Gaussian distribution is fitted on the empirical density
function of the prediction. Here the stripped lines are a half and a tenth of the maximum

From these results it can be concluded that, when using a neural network, the resolution can be
increased in the DOI, both for the FWHM and the FWTM. Note that the ML method does results in a
Gaussian distribution with mean 10mm (as required). However, the mean of the prediction of the neural
network is not equal to 10mm, it is 8.5mm.
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5.3. Discussion
When choosing which cost function and which architecture for the neural network was best, the amount
of datapoints stayed the same, namely 5,000 datapoints. This was done to reduce computational time.
However, the different cost functions and architectures do not always respond the same to different
amounts of training data as can also be seen in figure 5.2 and figure 5.3. This has the consequence
that a neural network which was not chosen for the differing amounts of training data, might perform
better than the neural networks used now.

Also, the training data used when training the neural networks to different amounts is not indepen-
dent of each other since the total spatial position is shifted with a random variable. This has first of all
the consequence that the DOI of the simulation does not change. But it also has the consequence that
the spatial location between each optical photon does not change, only the mean of all these photons.
This can have a negative effect on the neural network itself, making the chance of overfitting greater.

For the determination of the DOI only a small amount of data could be used, 29 datapoins. Note
that there are only 29 datapoints because, first of all, the testing data consisted out of 510 datapoints
and the datapoints in the range of 9mm and 11mm are thus even less than that (this slice is only one-
twentieth of the total width of the scintillator,).Since only this amount of data was within the required
range. 29 datapoints are usually not enough to make any accurate assumptions.

The architecture of the neural network itself was not very flexible. For each hidden layer the amount
of neurons was the same and the activation function was also always the same. Making this more
flexible could have the potential of a better spatial or DOI prediction, since then the mapping between
the PMT as input, and the coordinates can become more complex.

The neural network was trained to estimate the first interaction position. If it would be trained to
estimate the weighted average (as with ML) of all optical photons, it could be possible that the resolution
increases, because the PMT signal is based on the optical photons.

Finally since each neural network had three outputs, (x,y,z), and the spatial resolution is worse than
with ML, but the DOI resolution is better. It could be that when the neural network is split in two parts,
one part that predicts the spatial coordinates and one part that predicts the DOI coordinates, it would
give better results.
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Conclusion

From the determination of the spatial resolution, it can be concluded that the neural network with Huber
loss function as cost function, with 4 hidden layers and 512 neurons per hidden layer, trained on 30,000
datapoints has the best overall resolution. The FWHM and FWTM are 4.27±0.35mm and 12.49±1.19
mm respectively. When using the maximum likelihood method, the FWHM and FWTM were equal to
3.31 mm and 12.13 mm respectively. Therefore the spatial resolution of the neural network is lower
than that of the maximum likelihood .

From the determination of the DOI resolution, it can be concluded that the neural network with mean
squared error as cost function, with 4 hidden layers and 64 neurons per hidden layer, trained on 10,000
datapoints has the best overall resolution. The FWHM and FWTM are 6.00±0.50mm and 10.99±0.94
mm respectively. When using the maximum likelihood method, the FWHM and FWTM were equal to
6.16 mm and 11.22 mm respectively. Therefore the DOI resolution of the neural network is higher than
that of the maximum likelihood. Note however, that the fitted Gaussian has as mean 10 mm for the
maximum likelihood method, as expected. But is lower than 10 mm for the neural network.

As follow up research a lot can be done. Firstly, it would be interesting to see what the resolution
would become if the neural network was trained on independent training data. Secondly, a split in neural
network (one DOI part and one spatial part), could result in either better or worse results. Thirdly, a
more complex architecture with different activation functions and differing amounts of neurons in each
hidden layer would be interesting to look at, because then the mapping of the neural network would
become even less linear. Finally, perhaps convolutional neural network, based on a convolution of the
PMT image ,would work better than the analytical neural network.
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